000085414 001__ 85414
000085414 005__ 20200716101546.0
000085414 0247_ $$2doi$$a10.3390/w11081684
000085414 0248_ $$2sideral$$a113125
000085414 037__ $$aART-2019-113125
000085414 041__ $$aeng
000085414 100__ $$0(orcid)0000-0003-1556-555X$$aRobles Rovelo, Cruz Octavio
000085414 245__ $$aCharacterization and simulation of a low-pressure rotator spray plate sprinkler used in center pivot irrigation systems
000085414 260__ $$c2019
000085414 5060_ $$aAccess copy available to the general public$$fUnrestricted
000085414 5203_ $$aSpray sprinklers enable to operate at low pressures (<103 kPa) in self-propelled irrigation machines. A number of experiments were performed to characterize the water distribution pattern of an isolated rotator spray plate sprinkler operating at very low pressure under dierent experimental conditions. The experiments were performed under two pressures (69 kPa and 103 kPa) and in calm and windy conditions. The energy losses due to the impact of the out-going jet with the sprinkler plate were measured using an optical technique. The adequacy to reproduce the measured water distribution pattern under calm conditions of two drop size distribution models was evaluated. A ballistic model was used to simulate the water distribution pattern under wind conditions evaluating three different drag models: (1) considering solid spherical drops; (2) a conventional model based on wind velocity and direction distortion pattern, and (3) a new drag coeffcient model independent of wind speed. The energy losses measured with the optical method range from 20% to 60% from higher to lower nozzle sizes, respectively, for both evaluated working pressures analyzing over
16,500 droplets. For the drop size distribution selected, Weibull accurately reproduced the water application with a maximum root mean square error (RMSE) of 19%. Up to 28% of the RMSE could be decreased using the wind-independent drag coeffcient model with respect to the conventional model; the dierence with respect to the spherical model was 4%.
000085414 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/AGL2013-48728-C2-1-R$$9info:eu-repo/grantAgreement/ES/MICINN/AGL2017-89407-R
000085414 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000085414 592__ $$a0.108$$b2019
000085414 593__ $$aWater Science and Technology$$c2019$$dQ2
000085414 593__ $$aBiochemistry$$c2019$$dQ3
000085414 593__ $$aFluid Flow and Transfer Processes$$c2019$$dQ4
000085414 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000085414 700__ $$aZapata Ruiz, Nery$$uUniversidad de Zaragoza
000085414 700__ $$0(orcid)0000-0003-4367-2598$$aBurguete Tolosa, Javier
000085414 700__ $$aFélix-Félix, Jesús Ramiro
000085414 700__ $$aLatorre, Borja
000085414 7102_ $$15011$$2X$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cÁrea Administrativa
000085414 773__ $$g11 (2019), 1684 [20 pp.]$$pWater (Basel)$$tWATER$$x2073-4441
000085414 8564_ $$s1197628$$uhttps://zaguan.unizar.es/record/85414/files/texto_completo.pdf$$yVersión publicada
000085414 8564_ $$s471705$$uhttps://zaguan.unizar.es/record/85414/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000085414 909CO $$ooai:zaguan.unizar.es:85414$$particulos$$pdriver
000085414 951__ $$a2020-07-16-09:43:14
000085414 980__ $$aARTICLE