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RESUMEN 

En este trabajo se ha analizado el proceso de expansión de los denominados compuestos 

intercalados de grafito (GIC's). En este estudio se ha investigado el efecto de las principales 

variables de operación como son el tiempo, temperatura y la velocidad de calentamiento. Se 

ha investigado también la fuente de energía necesaria para la expansión: horno convencional 

(convección); microondas. Se estudiará el potencial de aplicación en: (i) almacenamiento de 

energía (baterías recargables), (ii) adsorción de contaminantes en agua. 

Se ha analizado el efecto de la temperatura, tiempo y velocidad de calentamiento sobre la 

expansión de 5 GIC's comerciales (ASBURY, GK) en horno convencional. En el caso del horno 

microondas se ha estudiado la influencia del tiempo y potencia del horno MW. 

Las muestras obtenidas se han caracterizado mediante: análisis termogravimétrico, difracción 

de Rayos X, espectroscopia Raman, medida del área BET y medidas de conductividad eléctrica. 

Fases del trabajo: 

Fase IA: estudio de la expansión de GIC's en horno convencional. Análisis del efecto de la 

temperatura tiempo y velocidad de calentamiento sobre las propiedades de las muestras 

obtenidas.  

Fase IB: estudio de las propiedades de los materiales carbonosos obtenidos mediante TGA, 

XRD, Raman y área BET y conductividad eléctrica, 

Fase IIA: similar a la fase IA pero en horno microondas. Análisis de tiempo y potencia del MW. 

Fase IIB: análoga a la fase IB, con las muestras obtenidas en microondas. 
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1.Introducción 
 

Desde que en 2004 Geim y Novoselov [1] aislaron y caracterizaron grafeno en forma de 

monocapa obteniendo de esta manera el Premio Nobel de Física en el 2010, este nanomaterial 

carbonoso, y todos los relacionados con él, han despertado un gran interés en todo el mundo 

debido a sus excelentes propiedades. Entre éstas cabe destacar una elevada área superficial 

(≈2630 m2 g-1), alta conductividad térmica (≈5000 W mK-1) y eléctrica (≈9,87 x 107 S m-1, la más 

elevada de los materiales conocidos), un elevado valor del módulo de Young (≈1 TPa) y una 

gran resistencia mecánica (≈130 GPa). Esto hace que el grafeno tenga un gran potencial de 

aplicación en múltiples áreas como almacenamiento de energía, elemento de refuerzo para 

materiales compuestos con polímeros, e.g. polietileno, filtros de gran selectividad, catálisis y 

fotocatálisis heterogénea, adsorción de contaminantes, etc. Aún con todo esto a su favor, su 

comercialización es todavía escasa ya que cualquier material nuevo que se quiera introducir en 

el mercado, se debe satisfacer el balance entre sus excelentes propiedades y la viabilidad 

económica, siendo éste último factor el determinante del éxito empresarial en su 

comercialización. 

El objetivo es, por tanto, desarrollar procesos de producción de éste material que sea 

viable económicamente manteniendo los estándares de calidad necesarios para obtenerlo con 

las propiedades adecuadas para cada aplicación. En la pasada década se han explorado 

distintos métodos de obtención de grafeno como los derivados del método de Hummers [2] 

oxidación-reducción (ref.), oxidación química de nanotubos de carbono [3] o procesos de 

exfoliación (división) micromecánica o química de grafito [4] (figura 1.1,1.2.). Dentro de los 

métodos de obtención de grafeno, el de exfoliación mecánica(ME) es el más fácil de realizar 

[5]. Otro método de exfoliación es la de expansión química del grafito (CE), basado en oxidar el 

grafito en un ácido fuerte como puede ser el H2SO4 o HNO3 y formando así oxido de grafeno 

(GO) para luego reducirlo químicamente para producir grafeno [6]. El método de crecimiento 

epitaxial (EG) consiste en una descomposición térmica del sustrato de carburo de silicio en 

ultra alto vacio (UHV) y altas temperaturas [7,8] o por descomposición química (CVD) [9-12].  

 

 

Figura 1.1. Esquema para la obtención de grafito por diversos métodos. 
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Figura 1.2. Esquema para la obtención de grafito por diversos métodos. 

Existen numerosos materiales compuestos de carbono siendo la mayor diferencia 

entre ellos su estructura. Los más comunes son el grafito y el diamante, que hasta el siglo XX 

eran las únicas forman alotrópicas conocidas del carbono, pero a lo largo del último tercio del 

siglo XX y el inicio del siglo XXI se han descubierto otras estructuras de carbono. Entre ellos se 

encuentras los compuestos de intercalación de grafito (GICs-Graphite Intercalation 

Compunds), objetivo central de este estudio, los fullerenos o fulerenos, los nanotubos de 

carbono o el grafeno.  

Los fullerenos son una forma estable del carbono compuesto de 60 átomos de carbono 

(C60) con formas de icosaedro truncado, un polígono de 60 vértices [13] denominadas 

buckyesferas. Su nombre viene de Buckminster Fuller [14]. En el campo de la nanotecnología 

las características más explotadas son su resistencia térmica y la superconductividad. Variando 

la estructura de los fullerenos se pueden obtener una gran variedad de materiales diferentes 

como pueden ser los buckyball fullerenos de distintos tamaños, variando el número de 

carbonos, los megatubos, las nano “cebollas” o los anillos fullerenos; pero los más destacables 

son los nanotubos o buckytubos, los nanoribbons y el grafeno. 

Los nanotubos de carbono (CNT) son alótropos de carbono con forma cilíndrica hueca 

y un radio de unos pocos nanómetros lo que hace que se puede considerar unidimensional; 

compuestos de átomos de carbono (láminas grafénicas) enrolladas entre sí [15]. Sus 

propiedades más destacables son su alta conductividad eléctrica, su elevada resistencia 

mecánica siendo mucho más que la del acero y su gran conductividad térmica, además de sus 

excelentes propiedades como nanorrefuerzos debido a su rigidez y tenacidad [16]. Dentro de 

los CNT hay que diferencia entre CNT de una capa (SWCNT) [17,18] y los CNT de pared múltiple 

(MWCNT) [19,20] (figura 1.3.).  
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Fig. 1.3. a) Nanotubos de Carbono de una capa, b) Nanotubos de Carbono de Capas 

Múltiples. Figura tomada de: Viviana Jehová González Velázquez “Nanomateriales de Carbono, 

síntesis, funcionalización y aplicaciones”. 

Otro tipo de alotropía son los nanoribbons de carbono que consisten en nanocintas de 

grafeno (GNRs) y son estructuras unidimensionales con una red hexagonal de átomos de 

carbono [21-23] (figura 1.4.). 

 

Fig. 1.4. Estructura de nanoribbon de Carbono. Figura tomada de: Viviana Jehová 

González Velázquez “Nanomateriales de Carbono, síntesis, funcionalización y aplicaciones”. 

En el presente trabajo fin de grado se ha estudiado la obtención de materiales 

grafénicos y grafíticos (Graphene Related Materials, GRMs), a partir de la exfoliación de los 

denominados Compuestos Intercalados de Grafito (GICs) debido a su elevada capacidad de 

producción y bajo coste.    

Los GICs han sido desde su descubrimiento en 1841 un material que ha sido estudiado 

intensamente debido al fenómeno de staging [24] y la gran variedad de comportamientos 

físicos-químicos anómalos que presentan [25-33]. Además, los GICs son muy importantes en la 

producción de grafito expandido y potencialmente útiles en otros campos industriales como el 

de los superconductores, catalizadores heterogéneos, materiales para ánodos y estabilización 

de reactivos pirotécnicos. 

En la actualidad, los GICs se utilizan en la preparación de grafito expandible 

(Expandable graphite, EG), nanoláminas de grafito (Graphene Nanoplatelets, GNP), y 

obtención de grafeno de una sola capa (Single-layer Graphene) [2].  

Los GICs son capas grafénicas entre las cuales se encuentran otras moléculas o 

elementos intercalados. Esto hace que la separación entre las capas aumente en comparación 

a un grafito puro y disminuya la fuerza de van der Waals entre capas. El intercalado consta de 

moléculas o iones metálicos. Después de la intercalación, el material de grafito resultante 

adquiere nuevas propiedades en función del intercalante y la forma en la que se asocia con las 

especies hospedantes (grafito). Las propiedades físicas y químicas incluyendo la estructura 

cristalográfica, el área superficial, la densidad, las propiedades electrónicas, el 

comportamiento intumescente, la reactividad química, etc, pueden verse afectadas por el 

intercalante [34-36]. Los tipos de GICs dependiendo su unión pueden ser covalentes o iónicos. 

Dentro de los covalentes se encuentra el grafito oxidado GO, monofluoruro de carbono y 

monofluoruro de tetracarbono [34]. Por el contra los de unión iónica pueden ser sales de 

grafito (e.g. nitrato de grafito), compuestos de metales alcalinos, compuestos halogenados, y 

compuestos de cloururo. La estructura de los GICs depende del número de capas de grafeno 

que se encuentran entre las moléculas del intercalado según el modelo de Rüdorff y Daumas-

Herold’sB (figura 1.5.). El espesor del nanocristal del grafito depende del grado de 

intercalación del GIC, el cual viene dado por su nivel de estadificación (staging phenomenom), 

en otras palabras, el número de capas grafénicas entre los intercalantes. Dependiendo de la 
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naturaleza del agente intercalante, del tipo de oxidante y de las condiciones experimentales, 

es posible obtener los GIC como “estado 1”, “estado 2”, “estado 3” … Así en un compuesto de 

estado 1, una única capa de grafeno se alternaría con las especies intercaladas.  

 

Figura 1.5. Ilustración de los modelos de Rudorff y Daumas-Herold’s (modificado de 

[36]) según su fase.  

Una vez que el grafito esta intercalado, se puede obtener grafito expandido mediante 

la exfoliación del GIC, lo que implicaría la vaporización de la sustancia intercalada en el grafito, 

obteniéndose un grafito expandido cientos de veces en uno de los ejes y de muy baja densidad 

y alta resistencia térmica. El calentamiento de los GICs generalmente causa la descomposición 

térmica de los intercalados en especies gaseosas que empujan las capas separadas 

obteniéndose un “grafito expandido”, también conocido como “grafito exfoliado”. Los 

elementos o moléculas que se encuentran entre las capas de grafitos influyen a la hora de 

producirse la expansión, esto hace que se hagan pretratamientos al grafito [2]. El método más 

común para la formación del grafito expandido es a través de la exposición del grafito a ácidos 

fuertes para producir un GIC (a menudo bisulfato de grafito) que luego es exfoliado por 

calentamiento térmico rápido, o más recientemente por radiación producida por microondas, 

infrarrojos y láser.  La principal idea de este método es pasar de una estructura tridimensional 

del grafito a una bidimensional hexagonal propia del grafeno (figura 1.6.).  

Una vez obtenido el grafito expandido son muchas las aplicaciones que tiene gracias a 

sus excelentes propiedades. Aplicaciones tales como: juntas, cierres y embalajes [37-40], 

agentes cortafuegos [41], aislantes térmicos [42], composite de resina, electrodos [43], capa 

protectora en crisoles de carbono [44], suporte de lubricantes [45], reactivos químicos [46], 

sustratos de adsorción [47,48] etc.  
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Figura 1.6. Figura tomada: Park, et al. ©2014 American Chemical Society: Scientists 

fabricate defect-free graphene, set record reversible capacity for Co3O4 anode in Li-ion 

batteries August 22, 2014 by Lisa Zyga. 

En este trabajo se han estudiado las principales variables de expansión de 5 tipos 

diferentes de GICs, suministrados por las compañías Asbury Carbons (https://asbury.com/) y 

Graphit Kropfmühl (https://www.gk-graphite.com). En particular se ha estudiado el efecto del 

tipo de calentamiento (horno convencional de flujo o microondas), velocidad de 

calentamiento, tiempo de calentamiento, temperatura final de expansión y potencia y tiempo 

de calentamiento en el horno MW.  

Los materiales carbonosos obtenidos se han caracterizado con distintas físico-

químicas, estructurales, espectroscópicas y de eléctricas (conductividad). Finalmente, y como 

ejemplo de aplicación de estos materiales se han realizado medidas de conductividad eléctrica. 

El alcance del trabajo es la obtención de un material grafénico de altas capacidades 

con un campo de aplicación prácticamente sin límites con el fin de mejorar las prestaciones 

que hoy en día nos ofrecen otros productos basados en otros materiales y de una forma 

competitiva gracias a una alta viabilidad económica. 

2.Experimental 
 

2.1 GICs de Partida 
 

 En este estudio se ha trabajado con 5 grafitos expandibles comerciales. Estos grafitos 

ya están pretratados por lo cual no es necesario realizar un intercalado. Los nombres 

comerciales de estos GICs son: Asbury 3558, Asbury 3772, GK8580150, ES 350 F5 y ES 100 C10. 

Los dos primeros los suministra la empresa ASBURY CARBONS y los otros tres Graphit 

Kropfmühl (GK). Su porcentaje en carbón es de 98%, 99%, 85%, 98% y 92% [49], [50] 
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respectivamente según los Proveedores (Tabla 2.1.). Se han realizado pruebas de 

espectroscopía fotoelectrónica de rayos X (XPS) a los grafitos de la suministradora GK y los 

resultados no concuerdan, al menos en la superficie, con la composición que el fabricante 

afirma tener ya que este está compuesto de un 74% C.  

Tabla 2.1. Composición y principales características de los GICs de partida. Información de los 

proveedores. 

 

*Información no indicada por el proveedor. 

2.2Procedimiento de expansión 
  

Para la expansión de los GICs hace falta aplicar una fuente de calor que sea capaz de 

evaporar los elementos intercalados. Para ello se han utilizado dos métodos para la expansión. 

El primero es mediante un horno carbolite y el segundo con un microondas convencional. En el 

primero la expansión ocurre de una forma más paulatina sin embargo en el microondas la 

expansión se produce de una forma mucho más virulenta. Se ha realizado un estudio 

comparando ambos métodos para comprobar si influye en el modo con el cual se ha 

expandido los grafitos.  

2.2.1 Carbolite 
  

 El carbolite es un horno tubular horizontal de una alta precisión en el control de la 

temperatura [51]. Para el calentamiento se usa una resistencia eléctrica que se encuentra 

alrededor del reactor y es capaz de alcanzar una temperatura de 1200 °C. Lleva incorporado un 

sistema regulador por el cual podemos controlar y programar las variables de temperatura 

máxima de trabajo, rampa de calentamiento y tiempo a temperatura máxima.  

 El experimento consiste en introducir uno de los grafitos dentro de un reactor y 

calentarlo a diferentes temperaturas. Se realizó en atmósfera inerte por lo cual se le hizo pasar 

una corriente de N2 de 200 ml/min en condiciones estándar. Se ha preparado una disolución 

NaOH 2 M en un borboteador para neutralizar los gases a la salida del horno. Después de dejar 

que se enfriara a temperatura ambiente el grafito ya una vez expandido éste se guardó para su 

posterior caracterización. Para aislar el reactor y mantener la temperatura lo máximo posible 

se ha taponado la entrada y la salida del horno con lana de vidrio. 

 Se ha estudiado la influencia que tiene sobre la calidad de los grafitos expandidos, las 

condiciones de operación como la temperatura máxima de tratamiento, tiempo de exposición 

a dicha temperatura y de la velocidad de calentamiento hasta alcanzarla.  

%Carbono %Sulfuros
Ratio de expansión 

(cm³/g)

Tamaño de 

partícula (μm)

Asbury 3772 98,00 3,10 300:1 >300

Asbury 3558 99,00 3,10 210:1 >180

GK8580150 85,00 x* x x

ES 350 F5 98,00 x 350:1 >300

ES C100 C10 92,00 x 100:1 >150
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 Inicialmente, se cargó el reactor con 1 gramo de GIC, pero al producirse la expansión 

ocupaba todo el volumen disponible por lo que era muy posible que las paredes internas del 

tubo obstaculizaran la expansión. Por eso se decidió reducir la masa inicial a 0,5 gramos para 

asegurarnos de que la expansión no estaba limitada por las dimensiones del reactor.  Se ha 

trabajado con tres temperaturas: 500, 700, 900 °C. Como rampa de calentamiento se ha 

utilizado 50 °C/min y 10 °C/min y los tiempos de mantenimiento a dichas temperaturas fueron 

de 12, 16, 20 min. Debido a que los GICs dependiendo de la rampa de calentamiento y de la 

temperatura final, están sometidos a diferentes tiempos de tratamientos térmicos, se ha 

calculado el ITC (índice de castigo térmico) que es la suma del tiempo a la máxima temperatura 

y el que tarda en alcanzar esta.  

  

2.2.2 Microondas 
 

 Los GICs también fueron sometidos a tratamientos térmicos mediante microondas 

convencional (uso doméstico) [2]. En este proceso el calentamiento se produce por la 

excitación de las moléculas debido a la incidencia de las microondas electromagnéticas 

calentado así el grafito y evaporando los intercalados. En este caso, de las únicas variables que 

se pueden modificar son la potencia y el tiempo. En el caso de la potencia, el rango de valores 

se encuentra entre 600 y 800W y en el caso del tiempo está entre 30 y 180 segundos. 

Como material necesario solo hace falta un vaso de cuarzo ya que las temperaturas 

que se alcanzan en la expansión son considerablemente altas. Se vierte el grafito dentro del 

vaso de cuarzo y se introduce en el microondas. El tiempo dentro del microondas a 800W no 

ha de ser más de 1 min ya que hay riesgo de que se queme la muestra. También hay que tener 

en cuenta la masa a introducir puesto que se expande de manera muy rápida y el grafito ya 

expandido hace de pantalla no dejando que las microondas lleguen de manera eficiente al 

grafito sin expandir que se encuentra en la parte inferior del vaso. Una vez expandido, la 

muestra resultante se ha guardado para su posterior caracterización. Cada muestra ha sido 

pesada antes y después del tratamiento.  

3. Resultados y Discusión 
 

 A continuación, se muestran los resultados de caracterización de las muestras. Para 

empezar, se realizaron caracterizaciones de los GICs antes de ser tratados. En la figura 3.1. se 

muestra un resumen de los resultados obtenidos con algunas de las técnicas para 2 GICs de 

diferente proveedor, el Asbury 3772 de ASBURY CARBONS y el otro el GK8580150 de Graphit 

Kropfmühl. El resto de las caracterizaciones de los GICs faltantes se encuentran en los anexos 

A.1, B.1 y C.1. 
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      a)      b) 

 

       c)      d) 

 

    e)      f) 

 

 Para el área BET, los valores de los GICs son inferiores al obtenido tras la expansión tal 

y como se muestra en el apartado 3.2. En el caso de los valores del TGA se observa una pérdida 

de peso a partir de la temperatura de 150 °C por consecuencia de la evaporización de los 

intercalados. En los valores de la espectrocopía Raman se asemeja a los valores de referencia 

de un grafito tal y como se indica en la figura 3.6. Por último, los valores del XRD hacen 

referencia a su alta cristalinidad propia de los grafitos, aunque cabe destacar el pico alrededor 

de los 11° que puede hacer referencia al GO [Huh 2011].  
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      e)      f) 

 

 

Figura 3.1. Resultados de caracterización de los GICs. GIC GK8580150 a) Área BET, c) TGA, e) 

XRD, g) Raman. GIC Asbury 3772 b) Área BET, d) TGA, f) XRD, h) Raman. 

En las tablas 3.1. y 3.2 se indica un resumen de las muestras que se ha realizado según 

su variable.  

Tabla 3.1. Resumen de muestras realizadas. Variación de temperatura en el horno 

convencional y variación de potencia en el microondas. 

 

Tabla 3.2. Resumen de muestras realizadas. Variación del ITC y rampa en el horno 

convencional y variación de tiempo en el microondas. 

 

 
 

 

 

 

300 400 500 700 900 600 700 800

Asbury 3772 x - x x x x - x

Asbury 3558 x - x x x x - x

GK8580150 x x x x x x x x

ES 350 F5 x - x x x x - x

ES C100 C10 x - x x x x - x

Microondas (W)Horno Carbolite (°C)

30 12 16 10 50 30 60 180

Asbury 3772 x - - x x x - -

Asbury 3558 x - - x x x x x

GK8580150 x x x x x x - -

ES 350 F5 x - - - x x - -

ES C100 C10 x - - x x x - -

Horno Carbolite (°C) Microondas (W)

Tiempo (s)ITC (min) Rampa(°C/min)
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3.1 TGA  
 

 TGA proporciona una gran información a la hora de investigar la cinética de la 

descomposición térmica de los GICs [60].  

En la figura 3.2. a) y b) que representa los resultados de referencia del grafito, GOy 

grafeno se puede observar la curva de la cinética del grafeno así como la del grafito y GO 

(oxido de grafeno). Cabe destacar la similitud entre las curvas del grafito y el grafeno en 

comparación al del óxido de grafeno. Esa caída representativa hace referencia a los 

compuestos oxigenados que se encuentras en el GO.  Así mismo en la figura 3.2. c) y d) se 

observa los TGA realizados a los diferentes GICs de partida y como en un rango de 

temperaturas entre 150°C y 250°C tienen una pérdida de peso de entre 40 y 20%, debido a la 

evaporización de los intercalados. Además, se ha añadido el TGA de dos grafitos no 

intercalados (UF2 96/97 y UF4 99.5) para comparar.  

a)     b) 

 

          c)                          d) 

 

 
 

Fig. 3.2. TGA de a) Grafeno, b) Grafito y GO, c) GICs Asbury 3558 y 3772, d) GICs GK8580150, ES 

350 F5, ES 100 C10 y los grafitos UF2 96/97 y UF4 99.5. 

 Primero se ha realizado un estudio de la influencia de la temperatura en el horno 

carbolite. Se han realizado TGA a los GICs una vez expandidos. En la figura 3.3. se muestran las 

curvas TGA a distintas temperaturas, 500, 700 y 900 °C, de la muestra Asbury 3772. En ellas se 

puede observar que no hay pérdida de peso entre los rangos de 150 y 250 °C por lo que los 
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intercalados, durante la expansión en el horno, se han visto eliminados. Entre ellos la única 

diferencia reseñable es la diferencia del peso final entre la muestra a 500°C y las muestras a 

700 y 900°C.  

 

Fig. 3.3. TGA del Asbury 3772 expandidos en el horno carbolite a temperaturas de 500, 700, 

900°C. Condiciones de operación: masa=0,5g, velocidad de calentamiento=50°C/min, ITC=30 

min. 

 En la figura 3.4. se muestra la influencia del GIC de partida expandido en el horno bajo 

las mismas condiciones de operación (Temperatura=500°C, masa=0,5g, velocidad de 

calentamiento=50°C/min, ITC=30 min). La mayor diferencia se encuentra en el porcentaje final 

de masa. Para el caso del GK8580150 y del ES 100 C10 son los que presentan mayor porcentaje 

de masa siendo esto debido a algún elemento o compuesto químico intercalante que no se ha 

podido eliminar. Estos elementos no han sido objetivo de este estudio, pero sería adecuado 

estudiarlo.  

 

Fig. 3.4. TGA de todos los gráfitos expandidos en el horno carbolite bajo las mismas 

condiciones. Condiciones de operación: temperatura=500°C masa=0,5g, velocidad de 

calentamiento=50°C/min, ITC=30 min. 
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3.2 Área Bet  
 

 Con la medida del Área BET [61] podemos hallar el área superficial de las muestras, 

para conocer sus posibilidades como catalizadores o filtros. Para ello se ha sometido tanto a 

los GICs originales como a las muestras ya expandidas a una prueba de adsorción de N2 a 77K y 

luego de desorción para obtener un ciclo de histéresis. Mediante la rama de adsorción como 

se ha mencionado antes podemos calcular el área superficial además de calcular el área 

microporosa según el método t-plot [62]. El volumen del poro se ha calculado a partir de 

volumen total adsorbido a p/p0> 0,99. Luego con la rama de desorción se ha podido calcular el 

tamaño del poro mediante los métodos de BJH (Barret-Joyner-Halenda) [63] o de NLDTF (non-

local-density functional theory). 

 Una vez teniendo el volumen de microporos y el volumen total adsorbido se puede 

calcular el % de microporos como: 

%𝑀𝑖𝑐𝑟𝑜𝑝𝑜𝑟𝑜𝑠𝑖𝑑𝑎𝑑 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑛 𝑑𝑒 𝑚𝑖𝑐𝑟𝑜𝑝𝑜𝑟𝑜𝑠 (

𝑐𝑚3

𝑔
𝑆𝑇𝑃)

𝑉𝑜𝑙𝑢𝑚𝑒𝑛 𝑡𝑜𝑡𝑎𝑙 (𝑐𝑚³/𝑔) 
∗ 100 

 La primera variable estudiada ha sido la influencia de la temperatura de trabajo en el 

área BET y % de microporosidad además de comparar el área BET con los valores obtenidos 

para los GICs sin expandir. Como se puede observar en la tabla 3.3., el área superficial 

aumenta considerablemente conforme aumenta la temperatura de expansión ya que 

aumentando la temperatura aumenta el grado de expansión. Además, el % de microporosidad 

aumenta también. En la figura 3.5. se muestra la comparación del ciclo de adsorción y 

desorción con respecto a la temperatura de trabajo para las muestras del GIC Asbury 3558 

antes y después de la expansión a distintas temperaturas. 

Tabla 3.3. Influencia de la temperatura en las propiedades texturales en horno convencional. 

GIC Asbury 3558. 

 

Temperatura ( °C) Preexpansión 300 500 700 900

BET Surface Area 

(m²/g) 
1 2 10 16 15

Volumen total (cm³/g) 0,002 0,065 0,047 0,065 0,05

Diámetro poro  (nm) * * 81,14 64,54 46,97

Volumen microporos 

(cm³/g STP) 
0,000 0,000 0,005 0,008 0,008

%Microporos * * 11% 12% 16%
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Fig. 3.5 Gráfica de volumen adsorbido frente a presión relativa a diferentes temperaturas. GIC 

Asbury 3558 a temperaturas de 500, 700 y 900°C. Condiciones de operación: masa=0,5g, 

velocidad de calentamiento=50°C/min, ITC=30 min. 

 A continuación, se ha realizado un estudio de la influencia de los métodos de 

expansión sobre el área BET. En la tabla 3.4. muestra como en el caso del GK 8580150 

expandido en MW se obtiene un área superficial 5 veces mayor en comparación con el horno 

carbolite. 

Tabla 3.4. Variación del área BET en función del método del grafito GK8580150. 

  

 Como conclusión del estudio del área BET, el método de expansión en microondas es 

el que ofrece una mayor área superficial. Aunque no por ello significa que sean buenos en ese 

campo ya que el área superficial de otros compuestos ronda por un orden de magnitud 

superior al que hemos obtenido. Su mayor ventaja es el aprovechamiento óptimo de su área 

superficial debido a su bajo porcentaje de microporosidad.  

3.3 Raman 
 

La espectroscopia Raman revela la estructura de los enlaces carbón-carbon dando 

información cristalográfica y vibracional de los materiales carbonosos. El espectro depende de 

la estructura del grafito siendo influyente los valores de longitud de las capas (La y Lc, valores 

que serán estudiados en el apartado 3.4) o el espacio entre las capas d002 [64].  

Para el buen entendimiento de lectura en la espectroscopia Raman hay que conocer 

los picos que aparecen en el espectro de un grafito y del grafeno para luego compararlos entre 

sí y/o con los valores de referencia [88]. Dos de los picos más representativos son los 

denominados G y D, dentro de las bandas de primer orden las cuales nos describen la forma de 

la estructura del grafito en el orden bidimensional [65]. El pico G se encuentra se encuentra 

Microondas (W)

Preexpansión 300 400 600

BET Surface Area 

(m²/g) 
2 3 12 63

Carbolite ( °C)
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entre los valores de 1572-1579 cm-1 y corresponde a las vibraciones E2g del grafito que están 

relacionadas con los enlaces de carbón sp2 y su comportamiento de vibración elástica [66-68]. 

Por otro lado, el pico D, el cual se sitúa en un rango de valores de 1341-1347 cm-1, es debido a 

la formación de defectos por la activación de anillos de 6 átomos [67, 69]; dichos defectos 

pueden ser la no existencia de espacio suficiente en la red cristalina del grafito por la 

existencia de amontonamiento de capas de grafeno [70]. Junto a G se encuentra otro pequeño 

pico denominado D’ el cual se encuentra alrededor del valor 1609cm-1 y su origen está 

asociado al desorden en el grafito y como ocurre en el pico G por las vibraciones de los enlaces 

sp2 pero esta vez provocado por capas de grafeno y el carbón sp2 oxidado [71-73]. Además de 

estos se encuentran otros dos picos, el I y el D’’, los cuales se encuentran centrados en 1195-

1256 y 1469-1501 cm-1 respectivamente. El pico I está relacionado con la naturaleza no 

homogénea del material que provoca defectos [71, 74]. Por su parte el pico D’’ está asociado a 

los defectos del pico D [75]. En resumen, los picos I, D’’, D y D’ hacen referencia a posibles 

defectos o desorden en la estructura del grafito mientras que el pico G está relacionado con el 

orden en su estructura.  

 Por último, se encuentra el pico más característico a la hora de diferenciar entre 

grafito y grafeno, el pico 2D el cual se encuentra sobre el 2681-2684 cm-1. Este pico es debido a 

la vibración de la retícula del grafito [76]. Además de este pico se encuentran armónicos de los 

picos anteriores, pero de menor importancia. Todos estos picos se encuentran el rango de la 

banda de segundo orden dando información de la estructura tridimensional de la muestra.    

 Con la localización de los picos característicos y dependiendo de su intensidad relativa 

se han definido dos relaciones las cuales nos ayuda y nos proporciona más información sobre 

la estructura del grafito. El primero de ellos es el cociente  de intensidades entre el pico G y el 

pico D, 
𝐼(𝐺)

𝐼(𝐷)
,  el cual nos indica los defectos de la muestra siendo el cociente mayor cuanto 

menos defectos tenga la muestra [69, 77]. La segunda relación es el cociente entre el pico G y 

el 2D, 
𝐼(2𝐷)

𝐼(𝐺)
, y hace referencia a la proporción de capas de grafeno. Este valor puede ser como 

máximo de 4 siendo este el valor del grafeno monocapa. Conforme el cociente baja, el grafeno 

pasa a ser bicapa, multicapa y por último con  
𝐼(2𝐷)

𝐼(𝐺)
, <0,7   pasa ya a ser grafito (figura 3.6.).  

 

Fig. 3.6. Espectros Raman característicos del grafeno y grafito. Figura tomada de [88]. 
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3.3.1 Resultados Raman de las muestras expandidas en el horno carbolite  

  
 La primera variable a estudiar va a ser la influencia de la temperatura máxima de 

calentamiento a la que son sometidos los GICs en el carbolite. En la mayoría de los GICs, una 

vez expandidos, la influencia de la temperatura máxima de calentamiento no es clara ya que la 

muestra no presenta apenas variaciones en la espectroscopía (gráficas en el Anexo B, figuras 

B.3-6.). Sin embargo, para la muestra 3772 de Asbury, sí que se observan diferencias en los 

espectros Raman obtenidos para las muestras expandidas a diferentes temperaturas tal y 

como se muestra en la figura 3.7. En ella se observa que a una temperatura de 500 °C carece 

de defectos por la ausencia de los picos D, D’, e I y conforme aumentamos la temperatura la 

muestra comienza a mostrar cada vez más defectos disminuyendo el cociente 
𝐼(𝐺)

𝐼(𝐷)
 por el 

aumento de la intensidad relativa del pico D. Además de esto se nota un ligero aumento en el 

cociente 
𝐼(2𝐷)

𝐼(𝐺)
 .  

 

Fig. 3.7. Espectros Raman de la muestra Asbury 3772 obtenidos a diferentes temperaturas de 

expansión. Condiciones de calentamiento: masa=0,5g, rampa de calentamiento=50°C/min, 

ITC=30 min. 

 La siguiente variable estudiada ha sido la influencia de la rampa de calentamiento. En 

este caso sí que se han observado las mismas tendencias para todos los GICs, excluyendo el 

grafito ES 100 C10 el cual en ninguno de las pruebas ha mostrado un Raman libre de defectos y 

a esto hay que añadir que entre todos los grafitos es el que menos se expande con gran 

diferencia. Como se puede observar en las gráficas (figura 3.8.) cuanto mayor es la velocidad 

de calentamiento menos defectos tienen las muestras. Esto puede ser debido a la influencia de 

la virulencia en la expansión.  

         a)                                                                                 b 
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Fig. 3.8. Espectros Raman de las muestras a) GK8590150 y b) Asbury 3772 obtenidos a 

diferentes velocidades de calentamiento. Condiciones de calentamiento: masa=0,5g, 

temperatura=500°, ITC=30 min. 

Otra variable estudiada en las pruebas realizadas en carbolite es la influencia de la 

masa inicial. Respecto al efecto de la cantidad de masa inicial como ya se ha comentado, un 

exceso de masa provoca un efecto pantalla sobre el grafito sin expandir, que unido, además a 

la falta de espacio dentro del reactor provoca la dificultad en la expansión. Gráficas incluidas 

en el anexo B. 

3.3.2 Resultados Raman de las muestras expandidas en microondas.  
 

 Dentro de las muestras expandidas en MW, se ha estudiado la influencia de la potencia 

y del tiempo de exposición para los diferentes grafitos. Con respecto al tiempo no se ven 

excesivas diferencias entre los valores de 30 y 60 segundos, solo una leve mejora a un tiempo 

de 30 segundos en ambas relaciones (
𝐼(𝐺)

𝐼(𝐷)
 y 

𝐼(2𝐷)

𝐼(𝐺)
). Aunque está leve mejora se tomó en cuenta 

para realizar las siguientes muestras a un tiempo de 30 segundos. Es a partir de un valor 

superior de 60 segundos cuando el pico D aumenta de intensidad relativa. Esto es debido al 

exceso tiempo de exposición a las microondas provocando que la muestra a 180 segundo del 

GIC Asbury 3558 se quemara (figura 3.9.). En cuanto a la potencia tampoco se aprecia 

diferencia, solo en el caso del grafito Asbury 3558 el cual muestra una mejora en sus relaciones 

a una potencia de 600 W. Gráficas adjuntas en el anexo B.  

 

Fig. 3.9. Espectros Raman de la muestra Asbury 3558 obtenidos a diferentes tiempos de 

expansión. Condiciones de operación: masa=0,5g, Potencia=800W. 

 Para ver la comparación con respecto a los GICs antes de realizar la expansión se han 

adjuntado las gráficas de la figura B.1 en el anexo B en las cuales se puede comprobar los 

espectros Raman antes de la expansión. En la tabla 3.5. se recogen los valores de la relación 

entre la señal G y D y se puede comprobar la disminución de defectos producida por la 

expansión por MW aumentando notablemente el cociente 
𝐼(𝐺)

𝐼(𝐷)
. 
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Tabla 3.5. Comparación del factor 
𝐼(𝐺)

𝐼(𝐷)
 entre los GICs antes y después de la expansión en MW a 

600 W y 30 s. 

 

Las muestras expandidas en MW están todas prácticamente libres de defectos además 

de presentar una relación de 2D frente G mayor, siendo en algunos casos casi el doble que las 

realizadas en el horno carbolite (figura 3.10.). Hay que recordar que el valor límite para 

considerar grafeno de multicapa se encuentra en 0,7 y hay puntos del Raman de las muestras 

en el microondas las cuales se acercan a ese valor con 0,6. Esta mejoría notable de los 

resultados entre métodos puede ser explicada por la virulencia de la expansión en el 

microondas, separando las capas grafénicas de una manera más eficaz ya que la vaporización 

de los intercalados es más reactiva. El único caso que no cumple esta tendencia es el ES 100 

C10 que como se ha expuesto ya con anterioridad, este grafito siempre muestra el pico D 

asociado a defectos, pudiendo ser debido a factores como a su poca expansión en 

comparación a los otros GICs o a algún elemento del intercalado que no se ha podido eliminar 

durante el proceso de expansión.   

                            a) 

 

 

 

 

 

 

GICs Expandido

Asbury 3558 13,51 27,22

Asbury 3772 11,63 111,21

GK 8580150 6,10 9,76

ES 350 F5 3,15 50,00

ES 100C 10 17,24 8,34

I(G)/I(D)
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   b) 

 

Fig. 3.10. Espectros Raman de las muestras Asbury 3558, Asbury 3772, GK8580150, ES 100 C10, 

ES 350 F5 obtenidos a diferentes métodos de expansión. a) Condiciones de operación para 

MW: masa=0,5g, Potencia=600W. b) Condiciones de operación para horno Carbolite: 

masa=0,5g, Temperatura=500°C, ITC=30min. 

 Como conclusión de los resultados de caracterización por Raman se puede decir que el 

método de expansión más óptimo es el del microondas convencional ya que las muestras 

expandidas así, carecen de defectos y presentan una relación más alta entorno al pico 2D. 

Además, cabe destacar la facilidad con la cual se puede realizar este proceso.  

3.4 XRD 
 

 La técnica del XRD en materiales grafíticos se usa para el cálculo de parámetros como 

las dimensiones de las capas grafénicas o el espacio existente entre ellas además de tensiones 

residuales en la estructura o impurezas. Los rayos x interactúan con el grafito provocando una 

emisión de ondas en fase de acuerdo a la ley de Bragg, lo que permite la interpretación del 

difractograma [78].  

 Para los materiales grafíticos uno de los parámetros más importantes se encuentra en 

el ángulo de difracción 2θ = 26° que corresponde al grafito (planos cristalográficos 002). Este 

pico varía según la separación interplanar de las capas, del número de capas y la orientación 

de estas variando la intensidad y la altura del pico [79] siendo este más ancho y menos intenso 

conforme aumenta la separación interplanar. Con la ecuación de Debye Scherrer podemos 

calcular el tamaño del cristal, Lc002, (figura 3.12) de la muestra gracias a la información que 

nos muestra el pico 002. Dicha ecuación es:   

Ec.Scherrer Lc002 =
𝐾∗𝜆

𝐹𝑊𝐻𝑀∗cos (2𝜃)
 ; donde 

 K una constante que está relacionado con el factor de forma adimensional 

 λ longitud de onda de los rayos x. 

 FWHM la anchura del pico 002 a la mitad de la intensidad en radianes 
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 θ posición del pico 002 del ángulo de Bragg en radianes. 

Teniendo el tamaño de cristal total se puede calcular el número de capas de grafeno que 

hay en la muestra calculando primero el espacio existente entre capas d002 (figura 3.11) con la 

ecuación de Scherrer [80, 81]: 

d002 =
𝐾∗𝜆

𝐹𝑊𝐻𝑀∗2sen (𝜃)
 ; donde cada parámetro es el mismo que en la ecuación anterior.  

 Al final el número de capas se calcula como el cociente entre la anchura total y el 

espacio entre capas más un pequeño factor corrector [82].  

nºcapas = (
𝐿𝑐

𝑑002
) + 1  

Además del pico 002 se encuentran otros picos como son el pico 001 que se encuentra 

en el ángulo alrededor del ángulo 44° y el pico 110 en la posición de 77,7°.  El pico 001 nos 

ayuda en el cálculo del tamaño de la capa de grafeno dando la magnitud de la diagonal La 

(figura 3.11) de la capa según la ecuación de Scherrer: 

La =
𝐾∗𝜆

𝐹𝑊𝐻𝑀∗cos (2𝜃)
 ; donde 

 K una constante que está relacionado con el factor de forma adimensional 

 λ longitud de onda de los rayos x. 

 FWHM la anchura del pico 001 a la mitad de la intensidad en radianes 

 θ posición del pico 001 del ángulo de Bragg en radianes. 

  

 

Fig. 3.11. Esquema de los parámetros que determinan las dimensiones de las capas de grafeno. 

 En la figura 3.12. se muestra los difractogramas característicos correspondientes al de 

referencia para un grafito, oxido de grafeno y de grafeno. El pico del plano (002) situado en el 

entorno del ángulo 26,5° da información de la cristalinidad del grafito siendo la más alta con 

respecto al resto de estructuras de grafito como puede ser el diamante o el grafeno.  Si se 
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oxida la muestra el pico (002) se desplaza y disminuye su intensidad dando lugar a un pico 

(002)* en torno a 11,1° hasta que el pico (002) ya no se observa. Esto provoca un aumento de 

la distancia interplanar, d002, típica de los grafitos de 0,344 nm [83] a valores entre 0,75-0,85 

nm. Este aumento de la distancia interplanar da como resultado una disminución de las capas. 

Por último, el alto nivel de FWHM en el pico (002) hace referencia a un bajo nivel de 

cristalinidad pudiendo llegar a eliminar dicha estructura cristalina del grafito, sintetizando así 

el grafeno, si este ha sido totalmente exfoliado dando lugar a una separación interplanar 

mayor.  

 

Fig 3.12. Gráfica referencia de los difractogramas del grafito, oxido de grafeno (G0) y grafeno 

[84]. 

3.4.1. Resultados XRD de las muestras expandidas en horno carbolite. 

  
A continuación, se muestran los resultados de difracción de Rayos X obtenido para las 

muestras expandidas en el horno carbolite. 

Para empezar, se ha estudiado la dependencia de la masa introducida en el carbolite. 

Como se ha venido mencionando en apartados anteriores un exceso de masa provoca la 

dificultad de la muestra a la hora de la expansión. Esto se ve reflejado en la figura 3.13. la cual 

son GICs GK 8580150 con unas condiciones de operación de T=500°C; rampa= 50°C/min; ICT= 

30min con m=1 g y 0,5 g y la tabla 3.6., donde se comprueba un número mayor de capas, así 

como un porcentaje menor de pérdida de peso para la muestra de 1 gramo. Esto puede ser 

debido a la expansión incompleta dentro del reactor por la falta de espacio. 
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Fig. 3.13. Difractogramas del GICs GK8580150 expandido en carbolite. Condiciónes de 

operación: T=500°C; Velocidad de calentamiento = 50°C/min; ICT= 30min. Variación en función 

de la masa. 

Tabla 3.6. GICs GK8580150 expandido en carbolite. Condiciónes de operación: T=500°C; 

rampa= 50°C/min; ICT= 30min. Variación del nº de capas, La y %pérdida de peso en función de 

la masa. 

 

 La siguiente variable estudiada ha sido la influencia de la temperatura máxima en el 

horno carbolite. Como se muestra en la figura 3.14. y en las tablas 3.7. y 3.8., donde se ha 

trabajado a 500°C y 900°C respectivamente, la diferencia de temperaturas con respecto al 

número de capas no presenta una tendencia clara, así como en el tamaño de la capa grafénica 

(La). Por lo que la temperatura de expansión no es un factor relevante una vez se llega a una 

temperatura a la cual se produce la expansión. En el anexo C en el apartado C.2. se 

complementa el resto de gráficas y tablas de forma individual además de incluir una 

temperatura intermedia de 700°C. Todos los grafitos expandidos presentan una estructura 

grafítica, es decir, de alta cristalinidad.  

        a)                                                                                 b) 
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Fig. 3.14. Difractogramas. a) GICs expandidos en carbolite. Condiciónes de operación: T=500°C; 

rampa= 50°C/min; ICT= 30min. b) GICs expandidos en carbolite. Condiciónes de operación: 

T=900°C; rampa= 50°C/min; ICT= 30min. 

Tabla 3.7. GICs expandidos en carbolite. Condiciónes de operación: T=500°C; rampa= 

50°C/min; ICT= 30min. 

 

Tabla 3.8. GICs expandidos en carbolite. Condiciónes de operación: T=900°C; rampa= 

50°C/min; ICT= 30min. 

 

 Como se ha visto tanto en la figura 3.14. como en las tablas 3.7. y 3.8. el pico (002) se 

puede descomponer en diferentes picos. Esto puede ser debido a las diferentes orientaciones 

de las capas grafénicas las cuales devuelven los rayos X difractados bajo ángulos de difracción 

(2θ) ligeramente diferentes. Esta existencia de los diferentes picos se observa en la figura 3.15. 

donde se ha ampliado la escala para estudiar con más detalle el pico entre los rangos de 25° y 

28°. Al no tener suficiente información encontrada sobre este fenómeno, por consenso se ha 

realizado una suma total de capas de entre todos los picos para poder definir y comparar entre 

diferentes muestras.  

 

Grafitos AB 3558 AB 3772 GK85 ES 100 ES 350

nº de capas (Total) 570 225 229 172 177

La (nm) 11,36 7,32 10,73 8,34 7,62

%perdida de peso(%) 31,87 32,47 29,03 28,23 31,87

Nº de capas Pico 1 57,26 56,26 51,74 61,04 59,48

Nº de capas Pico 2 139,52 168,79 177,12 110,47 117,15

Nº de capas pico 3 512,48 0,00 0,00 0,00 0,00

Grafitos AB 3558 AB 3772 GK85 ES 100 ES 350

nº de capas (Total) 493 163 174 189 218

La (nm) 5,69 8,73 12,68 7,64 8,85

%perdida de peso(%) 27,54 23,86 25,80 28,60 28,49

Nº de capas Pico 1 50,79 71,49 80,99 57,69 53,93

Nº de capas Pico 2 276,21 91,34 92,75 131,46 163,85

Nº de capas pico 3 441,97 0,00 0,00 0,00 0,00
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Fig. 3.15. Difractogramas. GICs expandidos en carbolite. Condiciónes de operación: T=500°C; 

rampa= 50°C/min; ICT= 30min. Detalle del pico (002). 

 Para el horno carbolite se ha realizado otro estudio de variabilidad en torno a la 

velocidad de calentamiento. Para ello se han realizado varios experimentos para diferentes 

GICs donde se ha modificado la velocidad de calentamiento entre 50°C/min y 10°C/min. Al 

igual que en el caso anterior de la temperatura, la velocidad de calentamiento no muestra 

ninguna tendencia que indique que existe una dependencia entre el número de capas 

obtenidas tras la expansión a una temperatura y velocidad de calentamiento como se puede 

observar en la figura 3.16. El resto muestras se incluyen en el anexo C, donde se confirma esta 

afirmación. 

a) 
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b) 

 

Fig. 3.16. Difractogramas. a) GIC Asbury 3772. Condiciónes de operación: T=500°C; ICT= 30min. 

b)  GIC Asbury 3772 en carbolite. Condiciónes de operación: T=900°C; ICT= 30min. 

3.4.2 Resultados XRD de las muestras expandidas en microondas. 
  

Una vez analizadas las variables en el horno carbolite, se ha realizado un estudio de las 

variables controlables para el microondas, MW. La primera variable controlable a estudiar ha 

sido la potencia. Para ello se ha estudiado la influencia de la potencia entre dos tiempos 

diferentes. Como se muestra en la tabla 3.9. junto a la figura 3.17. si la potencia es baja y el 

tiempo también es menor, el número de capas es mayor debido sobre todo a su alta 

cristalinidad reflejada en su bajo valor de FWHM. Esto puede ser debido a una falta de 

exfoliación, aunque a primera vista tras realizar el experimento parecía totalmente expandido. 

Por el contrario, cuando la potencia y el tiempo es mayor, su número de capas aumenta 

considerablemente debido seguramente a un exceso de tiempo de exposición provocando 

daños a la muestra. De aquí se puede deducir que lo óptimo es buscar un tiempo y una 

potencia en el microondas los cuales sean suficientes para su exfoliación y que no dañen al GIC 

provocando la combustión de la muestra.  

Tabla 3.9. GICs ASbury 3558 expandido en MW bajo diferentes condiciones de operación. 
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Fig. 3.17. Difractogramas del GICs Asbury 3558 expandido en MW bajo diferentes condiciones 

de operación. Detalle del pico (002). 

 Como se ha mencionado, un excesivo tiempo de exposición provoca un deterioro en la 

muestra. En la tabla 3.10. muestra el aumento excesivo de capas para una muestra expandida 

a 800W y 180 segundos además de una reducción de peso mucho mayor, indicando que la 

muestra se quemó. Gráfica adjunta en el Anexo C, figura C.5.  

Tabla 3.10. GICs ASbury 3558 expandido en MW. Condiciones de operación: Potencia 800W, 

masa 0,5g. 

 

3.4.3. Resultados. Diferencia entre métodos de expansión 
 

Por último, se ha estudiado la influencia de la fuente de calor en la expansión del GIC.  

Para ello se han comparado todos los GICs expandidos mediante microondas y horno carbolite. 

Es en este caso, donde se puede apreciar una gran diferencia entre ambos métodos. Mientras 

que en el horno carbolite el número de capas es mayor, como lo indica la existencia de picos 

con una anchura media de pico baja (FWHM), en el microondas, a excepción del GIC Asbury 

3558, se observa el pico 002 con una anchura mayor lo que da lugar a un número de capas 

inferior debido a su baja cristalinidad con respecto a las realizadas en el horno, por lo que las 

muestras resultan con un grado de exfoliación mayor. En las figuras 3.18. y 3.19. y en las tablas 

3.11. y 3.12. se muestra esta evidencia, así como en el anexo C apartado C.5. donde se 

complementa con más información.   

Tiempo(s) 30 60 180

nº de capas (Total) 158 810 1419

La (nm) 8,52 8,52 16,24

%perdida de peso(%) 74,41 34,26 72,98

Nº de capas pico 1 58,19 53,12 273,44

Nº de capas pico 2 100,05 624,03 807,03

Nº de capas pico 3 0,00 133,09 134,41

Nº de capas pico 4 0,00 0,00 204,30
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Fig. 3.18. GICs ASbury 3558 y 3772, GK8580150, ES 100 C10 y ES 350 F5 expandido en horno 

carbolite. Condiciones de operación: Temperatura=500°C; ITC=50°C/min; masa=0,5g. 

 

Fig. 3.19. GICs Asbury 3558 y 3772, GK8580150 y ES 350 F5 expandido en MW. Condiciones de 

operación: Potencia=600W; t=30s; masa=0,5g. 

Tabla 3.11. GICs Asbury 3558 y 3772, GK8580150, ES 100 C10 y ES 350 F5 expandido en horno 

carbolite. Condiciones de operación: Temperatura=500°C; ITC=50°C/min; masa=0,5g. 

 

Tabla 3.12. GICs Asbury 3558 y 3772, GK8580150 y ES 350 F5 expandido en MW. Condiciones 

de operación: Potencia=600W; t=30s; masa=0,5g. 
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 Se puede concluir a partir de la técnica de los rayos X que mediante la expansión en 

microondas los GICs pasan a un estado de expansión con un grado mayor de exfoliación. La 

agresividad de la expansión puede ser la razón de dicha diferencia frente al horno carbolite. 

Esto se apoya además con los resultados de las espectroscopías Raman mostradas en el 

apartado 3.3.2.  

3.5 XPS 
 La espectroscopía fotoelectrónica de rayos X es una técnica de caracterización de 

superficies, la cual nos permite conocer la composición química de las primeras capas de una 

muestra de forma tanto cualitativa como cuantitativa a una profundidad de entre 5 y 20 Å 

[85]. Además, nos permite identificar el grado de oxidación del grafeno así como el tipo de 

funcionalización y la interacción entre los diferentes grupos funcionales [86].  

3.5.1. Resultados. Diferencia entre métodos de expansión 
  

Para este estudio se ha realizado una comparativa entre diferentes métodos de 

expansión, así como de la composición antes del tratamiento. En la tabla 3.13. se muestran los 

resultados XPS obtenidos para el GIC GK8580150 antes de expansión, expandido en el horno 

carbolite a 700 y 900 °C y en el microondas a 700 W. Lo primero a destacar es el porcentaje 

inicial de carbono en la muestra del grafito GK8580150 el cual no llega al 75% cuando en el 

catálogo de la empresa nos indicaba que su composición era del 85% de grafito. Aparte se 

obtiene otra gran cantidad de diversos elementos y compuestos químicos como por ejemplo el 

oxígeno o el azufre existente por los sulfuros en forma de intercalados. Una vez expandido, la 

cantidad de oxígeno se reduce de manera drástica dando lugar a un aumento del porcentaje 

de carbono. Además, se observa una disminución del resto de elementos en la composición 

incluso llegando alguno de ellos a desaparecer por completo. Entre los diferentes métodos se 

identifica una disminución del % de oxígeno conforme aumentamos la temperatura dentro del 

horno carbolite. El resto de elementos químicos son eliminados en el proceso de expansión en 

el horno excepto el azufre. Esto puede ser debido a grupos sulfónicos en la superficie los 

cuales no han sido eliminados [87] ya que soporta altas temperaturas. Es entre el método del 

carbolite frente al microondas convencional donde se observan mayores diferencias, ya que en 

el microondas no se eliminan muchos de los elementos iniciales por completo, aunque esto no 

significa que el porcentaje de carbono sea menor. Esto puede ser debido al poco tiempo de 

exposición que sufre la muestra en el MW. 

Tabla 3.14. Composición química superficial (XPS) de las muestras antes y después de 
expansión en horno carbolite y microondas GK 8580150. 

 

GK 8580150 %C %O %N %S %Na %Si %Se %B %Al

GIC 74.70 18.06 0.34 2.01 1.06 2.08 1.05 0.04 0.66

Horno a 700 °C 95.40 4.43 --- 0.17 --- --- --- --- ---

Horno a 900 °C 96.54 3.28 --- 0.17 --- --- --- --- ---

Microondas a 700W 96.16 2.78 --- 0.23 0.32 0.39 0.12 --- ---
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3.6 SEM 
 

 Mediante la microscopía electrónica de barrido se ha observado la morfología de los 

grafitos una vez expandidos. En la figura 3.20 se observa una forma de gusano característico de 

una exfoliación de las capas de grafeno debido al aumento de temperatura.  

           a)      b) 

 

Fig. 3.20. GK 8580150 expandidos en MW, a), y Carbolite, b). 

 En la figura 3.21 se muestran las diferentes cavidades que se han formado tras la 

expansión por diferentes métodos, así como la diferencia entre los GICs usados a una barra de 

escala de entre 5 y 10 nanómetros. 

           a)      b) 
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         c)                    d) 

    

  e) 

 

 

Fig. 3.21. SEM de los grafitos expandidos; a) Asbury 3772 expandido en carbolite: T=500°C, 

ITC=30 min, rampa= 50°C/min; b) Asbury 3558 expandido en MW: P=600W, t=30s; c) GK 

8580150 expandido en MW: P=600W, t=30s; d) ES 350 F5 expandido en MW: P=600W, t=30s; 

e) ES 100 C10 expandido en MW: P=600W, t=30s. 
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3.7 TEM 
 

Mediante la técnica de caracterización de microscopía electrónica de transmisión 

(TEM) podemos obtener la morfología y topografía de los materiales grafénicos.  

Como se puede observar en la figura 3.22. para una muestra del GIC 8580150 

expandido en MW, se obtiene unas hojas bien definidas de grafeno. Estas imágenes en contra 

posición a los resultados obtenidos en los difractogramas muestran un número bajo de capas 

grafénicas, llegando incluso a valores de una capa, apoyando de este modo la idea de que las 

capas de grafeno se encuentran en orientaciones distintas dando lugar a esa variación en el 

pico (002) y como resultado final un número de capas mayor de lo esperado.  

 

Fig. 3.22. Imágenes TEM. GK 8580150 expandido en MW. Condiciones de operación: Potencia 

600W; tiempo 30s.  

3.8 Conductividad  
 

Una de las propiedades más destacable entre los grafitos y en especial en el grafeno es 

su alta conductividad eléctrica. Es por ello que se ha realizado medidas de conductividad con el 

fin de comprobar su dependencia en función del método de expansión, así como si varía frente 

a los GICs pre-expansión. Hay que aclarar que dichas medidas son orientativas y solo muestran 

las tendencias y no los valores reales de conductividad y resistencia.  

 Las medidas se han realizado mediante la toma de medidas de resistencia de los 

grafitos, los cuales están situados entre dos vástagos de cobre introducidos en un tubo 

cilíndrico de vidrio y testados mediante un voltímetro de alta precisión. 

 Para la toma de medidas se han seguido los siguientes pasos: 

 Medir la resistencia. 

o Distancia entre vástagos de cobre:3, 6, 9 mm. 

o 10 medidas por cada distancia 

o Cálculo de la media por cada distancia 
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 Cálculo de la resistencia del cobre sin material. 

o 𝜌 = 𝑅
𝑆

𝑙
  (x); donde: 

 ρ: Resistivad del cobre : 1,71E-08 Ω·m 

 S : sección del émbolo : 2,27E-06 m2 

 l: longitud : 0,035 m 

 Cálculo de resistividad  (Ω·m). 

o Restar la resistencia del cobre a las resistencias medidas. 

o Usar (x) para el cálculo de resistividad de cada material a las diferentes 

medidas de distancia 

 Cálculo de conductividad (Ω−1·m−1). 

o Siendo la conductividad la inversa de la resistividad; 𝜎 =
1

ρ
 .  

En la tabla 3.15 se muestran las medidas de resistencia y conductividad de todos los 

GICs antes de la expansión, expandido en el horno y en microondas. La primera observación es 

el aumento de conductividad conforme se aumenta la distancia entre los vástagos. En las 

gráficas de la figura 3.23. se muestra la tendencia de la conductividad frente a la longitud de 

material, aumentando la conductividad conforme hay más separación entre los émbolos de 

cobre. Otra observación es la diferencia de conductividad entre los diferentes métodos. Tanto 

en los GICs como los expandidos en carbolite, sus valores de resistencia y conductividad son 

similares, a excepción del asbury 3558 donde los valores caen considerablemente, primero se 

pensó que el error fue en la medida, aunque se realizó un nuevo muestreo y volvió a dar estos 

valores de resistencia tan altos. Este hecho nos dio a entender que la muestra fue dañada o 

ensuciada en algún paso intermedio antes de su caracterización en la conductividad. Pero es 

en las medidas tras la expansión de microondas donde se nota una mejoría en la 

conductividad, siendo en más de un caso el doble. Esto puede estar relacionado con la posible 

mayor exfoliación producida en el microondas, así como su mayor pureza y falta de defectos, 

como ya se ha visto con anterioridad por otros métodos de caracterización como pueden ser 

por Raman (apartado 3.3) y por XRD (apartado3.4.). Por último, hay que señalar los altos 

valores de conductividad del grafito asbury 3772 estando ligado también a sus buenos 

resultados con respecto al resto de grafitos exfoliados como se ha señalado en los puntos 3.3.2 

y 3.4.3. 
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Tabla 3.15. Valores de resistencia y conductividad para todos los GICs pre-expandidos y 

expandidos en horno carbolite y microondas convencional. 

 

        a)          b)  

 

 

 

 

ASBURY 3558 Resistencia(Ω)
Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductivida

d (Ω−1·m−1)

L=3mm 0,41 3226 4,15 319 0,15 8827

L=6mm 0,36 7348 4,68 565 0,34 7781

L=9mm 0,36 11022 3,04 1304 0,31 12802

ASBURY 3772 Resistencia(Ω)
Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductivida

d (Ω−1·m−1)

L=3mm 0,65 2034 0,24 5513 0,12 11038

L=6mm 0,62 4265 0,24 11026 0,21 12603

L=9mm 0,30 13229 0,39 10174 0,19 20898

GK 8580150 Resistencia(Ω)
Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductivida

d (Ω−1·m−1)

L=3mm 0,54 2460 1,21 1092 0,48 2754

L=6mm 0,66 3992 0,78 3389 0,40 6609

L=9mm 0,84 4736 0,94 4218 0,48 8261

ES 350 F5 Resistencia(Ω)
Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductivida

d (Ω−1·m−1)

L=3mm 0,39 3391 0,55 2404 0,22 6015

L=6mm 0,61 4335 0,45 5878 0,36 7348

L=9mm 0,45 8817 0,64 6198 0,42 9447

ES 100 C10 Resistencia(Ω)
Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductividad 

(Ω−1·m−1)
Resistencia(Ω)

Conductivida

d (Ω−1·m−1)

L=3mm 0,89 1485 0,34 3890 0,29 4562

L=6mm 1,17 2260 0,59 4482 0,35 7558

L=9mm 0,87 4559 0,59 6724 0,43 9227

GIC Carbolite Microondas

GIC Carbolite Microondas

GIC Carbolite Microondas

GIC Carbolite Microondas

GIC Carbolite Microondas
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           c) 

 

Fig. 3.23. Lineas de tendencia de conductivdad frente a longitud. a) Asbury 3558 y 3772 pre-

expansión; b) Asbury 3558 y 3772 expandido en horno carbolite; c) Asbury 3558 y 3772 

expandido en microondas convencional. 

4. Conclusión  
 

 A partir de los resultados obtenidos en este trabajo fin de grado se puede 

concluir que la expansión de los materiales de tipo GIC (grafito con compuestos intercalados) 

llevada a cabo en horno microondas es notablemente mejor que la producida en el horno 

convencional. Este resultado se confirma para todas las variables estudiadas. 

Tanto para los GIC suministrados por Asbury como los GICs GK8580100 y ES100 C10, 

suministrados por GK, presentan mejores resultados de caracterización estructural. Estos 

resultados incluyen los indicadores más relevantes obtenidos por espectroscopia Raman (i.e. 

las relaciones I2D/IG y IG/ID) y del número de capas de cada lamina exfoliada, que estima a partir 

de los difractogramas de rayos X.  

Comparando los resultados obtenidos con todas las muestras de partida, el GIC que 

más destaca es el denominado Asbury 3772. Este material muestra un índice muy bajo de 

defectos en su estructura (determinado por los valores de la relación IG/ID), la mayor 

proporción entre material grafénico y grafítico (deducido de la relación Raman I2D/IG,) el menor 

número capas grafénicas. Estos resultados explicarían la mayor conductividad eléctrica 

obtenida con esta muestra entre todas las estudiadas. 

En todas las imágenes de microscopia electrónica de barrido (SEM) obtenidas, se 

observa que, en todos los casos, se ha producido la expansión real de las capas de grafito que 

constituyen el GIC de partida, presentando una forma característica de “gusano” o de 

“acordeón”.  

Por otra parte, y más importante, a partir de las imágenes TEM, indican la existencia 

inequívoca de material grafénico de muy pocas capas (menos de 5), e incluso de monocapa. 

No obstante, también se ha observado que junto a este material grafénico, coexisten láminas 

de grafito con un número mayor de capas de grafeno (más de 10). En cualquier caso, el 

material obtenido directamente tras la expansión del GICs y sin ningún tratamiento adicional 

en un material potencialmente valido para aplicaciones en catálisis (soporte de catalizadores), 

adsorción de compuestos orgánicos, filtros de partículas, material para equipos de 
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almacenamiento de energía (e.g. baterías, electrodos, capacitadores, etc.), aditivos de 

pinturas, polímeros, etc.  

No obstante, y dado que mediante las técnicas utilizadas en este TFG es difícil 

cuantificar la proporción entre los distintos materiales grafénicos y grafíticos que constituyen 

el producto final de la expansión, las propuestas de trabajo futuro para aumentar el campo de 

aplicación de estos materiales son: 

a) Seguir optimizando el método de expansión de GICs mediante hornos MW para 

lograr la exfoliación total. 

b) Estudiar métodos alternativos de expansión de los GICs, eg. expansión mediante 

ultrasonidos. 

c) Estudiar la expansión adicional de los materiales expandidos en MW o en horno 

convencional, mediante la combinación de técnicas químicas (e.g. método de 

Hummer, uso de líquidos iónicos) y físicas (e.g. sonicación). 

d) Estudiar en los materiales expandidos, el efecto de la activación físico-química 

mediante tratamiento con ácidos (e.g. ácidso nítrico o fosfórico), u oxidación 

superficial controlada con aire, CO2 o vapor de agua. Estos tratamientos de 

activación modifican la química superficial del carbón cambiando su carácter 

hidrofóbico/hidrofílico y por tanto sus potenciales aplicaciones para la formación 

de “composites” o mezclas con compuestos orgánicos, o para el tratamiento de 

corrientes acuosas. 
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Nomenclatura y definiciones 
 

m=metro 

g=gramo 

W=vatios 

K=kelvin 

S= siemens 

Pa=pascales 

ME=exfoliación mecánica 

CE=expansión química  

GO=oxido de grafeno  

EG= crecimiento epitaxial  

UHV=ultra alto vacio  

CVD=descomposición química de vapor  

GICs=graphite Intercalation compunds  

CNT=carbon nanotube  

SWCNT=single-wall carbon nanotube  

MWCNT= multi-wall carbon nanotube 

GNRs= Graphene nanoribbons 

GRMs= Graphene Related Materials 

EG= Expandable graphite 

GNP= Graphene Nanoplatelets 

GK= Graphit Kropfmühl 

MW=microwave 

M=molar 

°C=Celsius 

Min=minuto 

TGA= thermal gravimetric analysis o Thermogravimetric analysis 

BET= Brunauer, Emmett y Teller 

NLDTF= non-local-density functional theory 

XRD= X-ray powder diffractio 
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V=voltio  

2θ=ángulo de barrido  

XPS=espectroscopia fotoelectrónica de Rayos X 

SEM= scanning electron microscopy 

TEM= Transmission electron microscopy 

ITC=índice de castigo térmico 

FWHM= Full Width at Half Maximum 

Ω=ohmios 

σ =resistividad 

ρ= Resistivad del cobre 

S =sección del émbolo 

l=longitud 

Ω−1·m−1= Cálculo de conductividad 
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