000086241 001__ 86241
000086241 005__ 20200716101546.0
000086241 0247_ $$2doi$$a10.1073/pnas.1905989116
000086241 0248_ $$2sideral$$a114777
000086241 037__ $$aART-2019-114777
000086241 041__ $$aeng
000086241 100__ $$aHenehan, Michael J.
000086241 245__ $$aRapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact
000086241 260__ $$c2019
000086241 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086241 5203_ $$aMass extinction at the Cretaceous–Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ~50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.
000086241 536__ $$9info:eu-repo/grantAgreement/EUR/ERC-2013-CoG-617313$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CGL2017-84693-R
000086241 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000086241 590__ $$a9.412$$b2019
000086241 591__ $$aMULTIDISCIPLINARY SCIENCES$$b8 / 71 = 0.113$$c2019$$dQ1$$eT1
000086241 592__ $$a5.165$$b2019
000086241 593__ $$aMultidisciplinary$$c2019$$dQ1
000086241 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000086241 700__ $$aRidgwell, Andy
000086241 700__ $$aThomas, Ellen
000086241 700__ $$aZhang, Shuang
000086241 700__ $$0(orcid)0000-0002-8801-9544$$aAlegret, Laia$$uUniversidad de Zaragoza
000086241 700__ $$aSchmidt, Daniela N.
000086241 700__ $$aRae, James W.B.
000086241 700__ $$aWitts, James D.
000086241 700__ $$aLandman, Neil H.
000086241 700__ $$aGreene, Sarah E.
000086241 700__ $$aHuber, Brian T.
000086241 700__ $$aSuper, James R.
000086241 700__ $$aPlanavsky, Noah J.
000086241 700__ $$aHull, Pincelli M.
000086241 7102_ $$12000$$2655$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Paleontología
000086241 773__ $$g116, 45 (2019), 22500-22504$$pProc. Natl. Acad. Sci.$$tProceedings of the National Academy of Sciences$$x0027-8424
000086241 85641 $$uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074467351&doi=10.1073%2fpnas.1905989116&partnerID=40&md5=b17de67479958a9fc31924a260a77b1c$$zTexto completo de la revista
000086241 8564_ $$s857023$$uhttps://zaguan.unizar.es/record/86241/files/texto_completo.pdf$$yVersión publicada
000086241 8564_ $$s144303$$uhttps://zaguan.unizar.es/record/86241/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000086241 909CO $$ooai:zaguan.unizar.es:86241$$particulos$$pdriver
000086241 951__ $$a2020-07-16-09:43:20
000086241 980__ $$aARTICLE