000086371 001__ 86371
000086371 005__ 20200716101558.0
000086371 0247_ $$2doi$$a10.3390/ma12132057
000086371 0248_ $$2sideral$$a115037
000086371 037__ $$aART-2019-115037
000086371 041__ $$aeng
000086371 100__ $$aArias-Serrano, Blanca I.
000086371 245__ $$aExploring tantalum as a potential dopant to promote the thermoelectric performance of zinc oxide
000086371 260__ $$c2019
000086371 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086371 5203_ $$aZinc oxide (ZnO) has being recognised as a potentially interesting thermoelectric material, allowing flexible tuning of the electrical properties by donor doping. This work focuses on the assessment of tantalum doping effects on the relevant structural, microstructural, optical and thermoelectric properties of ZnO. Processing of the samples with a nominal composition Zn1-xTaxO by conventional solid-state route results in limited solubility of Ta in the wurtzite structure. Electronic doping is accompanied by the formation of other defects and dislocations as a compensation mechanism and simultaneous segregation of ZnTa2O6 at the grain boundaries. Highly defective structure and partial blocking of the grain boundaries suppress the electrical transport, while the evolution of Seebeck coefficient and band gap suggest that the charge carrier concentration continuously increases from x = 0 to 0.008. Thermal conductivity is almost not affected by the tantalum content. The highest ZT~0.07 at 1175 K observed for Zn0.998Ta0.002O is mainly provided by high Seebeck coefficient (-464 µV/K) along with a moderate electrical conductivity of ~13 S/cm. The results suggest that tantalum may represent a suitable dopant for thermoelectric zinc oxide, but this requires the application of specific processing methods and compositional design to enhance the solubility of Ta in wurtzite lattice.
000086371 536__ $$9info:eu-repo/grantAgreement/ES/FEDER/POCI-01-0145-031875$$9info:eu-repo/grantAgreement/ES/FEDER/UID/CTM/50011/2019$$9info:eu-repo/grantAgreement/EC/H2020/734187/EU/Spin conversion, logic storage in oxide-based electronics/SPICOLOST$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 734187-SPICOLOST
000086371 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000086371 590__ $$a3.057$$b2019
000086371 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b132 / 314 = 0.42$$c2019$$dQ2$$eT2
000086371 592__ $$a0.647$$b2019
000086371 593__ $$aMaterials Science (miscellaneous)$$c2019$$dQ2
000086371 593__ $$aCondensed Matter Physics$$c2019$$dQ2
000086371 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000086371 700__ $$aXie, Wenjie
000086371 700__ $$0(orcid)0000-0002-1296-4793$$aAguirre, Myriam H.$$uUniversidad de Zaragoza
000086371 700__ $$aTobaldi, David M.
000086371 700__ $$aSarabando, Artur R.
000086371 700__ $$aRasekh, Shahed
000086371 700__ $$aMikhalev, Sergey M.
000086371 700__ $$aFrade, Jorge R.
000086371 700__ $$aWeidenkaff, Anke
000086371 700__ $$aKovalevsky, Andrei V.
000086371 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000086371 773__ $$g12, 13 (2019), 2057 [11 pp.]$$pMATERIALS$$tMaterials$$x1996-1944
000086371 8564_ $$s5299580$$uhttps://zaguan.unizar.es/record/86371/files/texto_completo.pdf$$yVersión publicada
000086371 8564_ $$s105592$$uhttps://zaguan.unizar.es/record/86371/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000086371 909CO $$ooai:zaguan.unizar.es:86371$$particulos$$pdriver
000086371 951__ $$a2020-07-16-09:50:58
000086371 980__ $$aARTICLE