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Nanomedicina (CIBER-BBN), Madrid, Spain.

E-mail: ahersanz@unizar.es

Abstract.

Objective: an evaluation of the location of the photoplethysmogram (PPG) sensor

for respiratory rate estimation is performed. Approach: finger-PPG, forehead-PPG,

and respiratory signal were simultaneously recorded from 35 subjects while breathing

spontaneously, and during controlled respiration experiments at a constant rate from

0.1 Hz to 0.6 Hz, in 0.1 Hz steps. Four PPG derived respiratory (PDR) signals were

extracted from each one of the recorded PPG signals: pulse rate variability (PRV),

pulse width variability (PWV), pulse amplitude variability (PAV) and the respiratory-

induced intensity variability (RIIV). Respiratory rate was estimated from each one of

the 4 PDR signals for both PPG sensor locations. In addition, different combinations

of PDR signals, power distribution of the respiratory frequency range and differences

of the morphological parameters extracted from both PPG signals have been analysed.

Main results: results show a better performance in terms of successful estimation

and relative error when: i) PPG signal is recorded in the finger; ii) the respiratory

rate is less than 0.4 Hz; iii) RIIV signal is not considered. Furthermore, lower spectral

power around the respiratory rate in the PDR signals recorded from the forehead was

observed. Significance: these results suggest that respiratory rate estimation is better

at lower rates (0.4 Hz and below) and that finger is better than forehead to estimate

respiratory rate.
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1. Introduction

Pulse photopletysmographic (PPG) signal is a non-invasive technique widely used to

obtain clinic monitoring information (Shelley 2007, Seymour et al 2010). This technique

was explained for first time (by Hertzman and Spielman 1937) and it was usually used

to detect blood volume changes in the microvascular bed of tissue (Challoner 1979).

Nowadays, PPG measure needs only one low-cost device widely used in the clinical

routine that can be located in several parts of the body. Among its multiple applications,

the most highlighted are (Allen 2007): evaluation of the Autonomic Nervous System

(ANS), through the Heart Rate Variability (Nitzan et al 1998 and Gil et al 2010);

vascular assessment, measuring the arterial disease, compliance or ageing among others

characteristics of the vascular tissue (Takazawa et al 1998); and the physiological

monitoring of the organism, estimating the heart rate and the oxygen saturation (Chon

et al 2009 and Jensen et al 1998).

Analysis of the pulse photopletysmographic waveform also offers a non-invasive

alternative of respiratory rate monitoring based on the assumption that respiration

modulates PPG signal through several effects (Meredith et al 2012). A lot of works have

developed algorithms to estimate respiratory rate from PPG signal directly, as in (Chon

et al 2009) where respiratory rate is estimated using time-frequency spectral methods or

in (Lin et al 2013) where autoregressive decomposition is applied. Other works prefer to

develop their algorithms over PPG derived respiration (PDR) signals, which reflect the

respiratory modulation over the PPG. Probably, the most common PDR signal used

to extract the respiratory information is the respiratory-induced intensity variability

signal (RIIV) (Nilsson et al 2000, Lin et al 2013, Karlen et al 2013). This modulation

arises from respiratory-induced variations in venous return to the heart, caused by

the alterations in intrathoracic pressure. Other possible PDR signals described in

the literature are: Pulse Rate Variability (PRV), modulated by respiration through

respiratory sinus arritmia (Dash et al 2010); Pulse Amplitude Variability (PAV), also

modulated by respiration through variations in stroke volume and in blood vessels

stiffness (Johansson and Oberg 1999); and Pulse Width Variability (PWV), modulated

by blood vessels stiffness in addition to the pressure changes in the thorax during

respiratory cycle (Lázaro et al 2013). Respiratory rate estimation can be done over

one of this PDR signals or over an ensemble of them, through the application of several

techniques as fusion of fast Fourier transforms (Karlen et al 2013), wavelet transform

methods (Addison et al 2015) or peak-averaged combination of power spectra estimation

(Lázaro et al 2013).

All the mentioned works have one thing in common: PPG sensor is located in the

finger. However, morphological changes in PPG have been observed due to the body

location where PPG is registered (Allen 2007, Hartmann et al 2019) and due to different

respiratory patterns as deep or spontaneous breathing (Hartmann et al 2019). Even

more, PPG signal spectral power in the respiratory band is also affected by the PPG

sensor location (Nilsson et al 2007). Few works in the bibliography have compared
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respiratory rate estimation extracted from different PPG locations, as in (Johnston

and Mendelson 2004) where finger and forehead were compared and good results were

obtained in both locations or in (Charlton et al 2017) where finger was chosen as the

best place to locate the PPG sensor. However, these works do not explore the reasons

of why these locations present a different performance. Therefore, we propose one more

deep study comparing respiratory rate estimation of two possible PPG sensor locations,

together with a power spectral analysis and a PPG morphological study to find out the

best place to estimate respiratory rate and its causes.

In this work, PPG signal is recorded in finger and forehead and PRV, PAV, PWV

and RIIV signal are extracted from each location. Respiratory rate for these PDR

signals (and all the possible combinations of them) is estimated and the success rate,

the relative error and a confusion matrix are computed to evaluate how the location of

the PPG sensor affects to the respiratory rate estimation. The power distribution of

respiratory information and some morphological parameters of both PPG signals are

studied too to complete the analysis. A preliminary version of this work was presented

(Hernando et al 2017), where only finger and forehead respiratory rate estimation from

PAV was classified as correct or wrong if matched with the reference, in a subset of 10

subjects.

2. Materials

Thirty-five subjects (18 males and 17 females) with a mean age of 35.1 ± 6.5 years

conformed the whole database. During the whole test subjects remained comfortably

seated during approximately half an hour. The protocol consisted of 7 different stages

with a duration of 3 minutes each one: first, subjects are registered during spontaneous

breathing; then a different respiratory rate is imposed in each of the remaining six stages,

starting at 0.6 Hz and ending at 0.1 Hz in steps of 0.1 Hz. This controlled breathing

is given by a sinusoidal wave that the subjects had to follow, marking the moment of

inhale and exhale.

Finger and forehead PPG signals were recorded simultaneously as well as a chest-

band respiratory signal. These signals were registered with the Medicom System, ABP-

10 module (Medicom MTD, Ltd, Russia), a device specifically created to acquire raw

biomedical signals without any pre-processing. The sample frequency was fs =250 Hz.

Only the last 2 minutes of each stage are used to extract the features of the

wave morphology and the respiratory information from the PPG signals. Results of

respiratory chest-band signal obtained the same respiratory rate imposed by the guided

sinusoidal wave, so it was used as the reference to compare the respiratory rate estimated

from finger and forehead PPG.
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3. Methods

3.1. PPG derived respiration signals

First of all, a band-pass filter (cut-off frequencies of 0.3-35 Hz) was applied to both PPG

signals (xPPG(n)) in order to avoid baseline noise and possible interferences (Garzón-Rey

et al 2017). Then, artefactual pulses were suppressed by using the artefact detector

described in (Gil et al 2008). Finally, the apex (nAi), the basal (nBi) and the medium

(nMi) points of PPG pulses were automatically detected using an algorithm based on a

low-pass differentiator filter (Lázaro et al 2014). The medium points are considered the

fiducial points in PPG (Peralta et al 2019) to compute the pulse to pulse (PPi) time

series. Onset (nOi) and end (nEi) of the pulses were detected as described in (Lázaro

et al 13). Figure 1 shows an example of finger and forehead signals with their most

representative points highlighted.
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Figure 1. Two pulse waves of the both PPG signal (left image, finger PPG; right

image, forehead PPG; measure in arbitrary units, au) with their most representative

points highlighted. Distance between two adjacent medium points is the Pulse to Pulse

interval or PPi, used to compute the time series.

Finally, 4 PDR signals were obtained:

• Pulse Rate Variability (PRV) represents the time difference between two adjacent

medium points (Bailón et al 2011):

du
PRV

(n) =
∑
i

fsδ(n− nMi)/(nMi − nMi−1). (1)

• Pulse Amplitude Variability (PAV) reflects the amplitude variation between the

apex and the basal points (Lázaro et al 2013):

du
PAV

(n) =
∑
i

[xPPG(nAi) − xPPG(nBi)] δ(n− nMi). (2)

• Pulse Width Variability (PWV) reflects the width variation of the pulses:

du
PWV

(n) =
∑
i

1

fs

(nEi − nOi)δ(n− nMi). (3)
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• Respiratory-Induced Intensity Variability (RIIV) was estimated from (nBi) (Karlen

et al 2013). It must be noticed that for this PDR signal the initial band-pass

filter is not applied in order to maintain the intensity variations produced by the

respiration.

du
RIIV

(n) =
∑
i

[xPPG(nBi)] δ(n− nMi). (4)

The four PDR signals assume that their variations are due to a modulation based

on respiratory information. These signals are unevenly sampled (superscript u) so a

resampling at 4 Hz to standardize them is applied using cubic splines in addition to a

median-absolute-deviation based outlier rejection rule. Then, a band-pass filter (cut-off

frequencies of 0.07-0.8 Hz) is applied over the PDR signals in order to limit the analysis

within the frequency range where respiratory information is (Lázaro et al 2013). An

example of the four PDR signals is shown in Figure 2.
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Figure 2. One minute representation of the respiration extracted in the finger (Fin,

in blue), in the forehead (For, in red) and the chest-band respiratory signal (Resp,

in black) for the 4 PDR signals (PRV, PWV, PAV and RIIV, one each column

respectively).

3.2. Respiratory rate estimation

A fusion technique based on frequency analysis of PDR signals (Lázaro et al 2013)

is applied to estimate respiratory frequency (F̂R) every 5 seconds from “peaked-

conditioned” averaged spectra. This method estimates a power spectrum density every

5 seconds from a 40 s length running window of each PDR signal using the Welch’s



Finger and forehead PPG signal comparison for respiratory rate estimation 6

periodogram. The biggest peak near the previous respiratory rate estimation is selected

and the percentage of power around this peak with respect a reference interval is

computed. If this percentage is higher than a established threshold (if the signal is

peaked enough), it means than respiratory information of this PDR signal is very clear,

so this spectrum is promediated together to the other PDR spectra peaked enough and

a peaked-conditioned average spectra is obtained. The location of the largest peak in

this average spectra is selected as the new respiratory rate estimation. This algorithm

can be applied over a single PDR signal or over a combination of them, so results of

the estimated respiratory rate using all the possible combination of PDR signals are

considered.

The same method is applied over the respiratory chest-band information in order

to obtain a reference of the real respiratory rate (FC), that is going to be used as the

reference to check every PDR signal and combination performance.

3.3. Performance measurements and PDR signal characteristics

A comparison between the respiratory rate estimated with the PDR signals and from

the reference is done every 5 seconds with an experimental margin of error of ± 0.05 Hz

(± 0.3 bpm). If the estimation matches with the reference, it is considered as a Correct

Estimation (CE), while a Wrong Estimation (WE) is considered otherwise. The success

rate is used as a performance measure:

SR = CE/(CE + WE) × 100. (5)

The inter-subject mean of this percentage is calculated for every stage and for

each PDR signal and all possible combination of them. Also, a confusion matrix

was computed to analyse what happen when the respiratory rate was not successfully

estimated.

In addition, the relative error (er) of the respiratory rate estimation is also

calculated:

er = (F̂R − FC)/FC × 100. (6)

Another interesting point of study is the power distribution for each PDR signal.

Thus, for each stage, the power within a bandwidth of 0.1 Hz around the expected

respiratory frequency (given by the respiratory chest-band, FC) is compared with the

total power in the spectra (from 0.07 to 0.65 Hz).

PR(k) = (
∫ f=FC+0.05

f=FC−0.05
S̄k(f) df)/(

∫ f=0.65

f=0.07
S̄k(f) df). (7)

where S̄k(f) is the peaked-conditioned average spectra and k represents the time instant

(every 5 seconds) (Lázaro et al 2013). This ratio aims to quantify how much power

related to the respiratory component appears in each PDR signal in each stage, assuming

than higher relative power means more respiratory signal-to-noise ratio.
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The possible variations between each pair of PDR signals from the finger and the

forehead could be due to differences in the wave morphology associated to the location

(Allen 2007, Nilsson et al 2007). Therefore, the width and the pulse rate are analysed for

each pulse of the PPG signal (denoted with the index i) in the finger and the forehead:

• Width: reflects the pulse width of each wave.

PWi = nEi − nOi (8)

• Rate: reflects the difference between adjacent medium points.

PRi = 1/(nMi − nMi−1) (9)

Finally, an statistical analysis is made to compare all these results obtained with

the PPG signal registered in the finger and the forehead. First, a Shapiro-Wilk test is

applied to verify the normal distribution of the data. The t-Student test is applied if

the distribution is normal, otherwise, the Wilcoxon paired test is the one applied. In

both methods, p-value ≤ 0.05 defines the significance.

4. Results

Figure 3 shows an example of the time-frequency maps (S̄k(f)) of 8 different PDR signals

during the controlled breathing stage at a respiratory rate of 0.4 Hz. Each row represents

one different PPG signal (finger and forehead) and each column corresponds with one

different PDR signal (PRV, PWV, PAV and RIIV). The image shows a high spectral

power component (yellow zone) around the expected respiratory rate (red line) in six

out of eight PDR signals. In the other two, (RIIV extracted in finger and forehead),

the main frequency component is located between 0.1 and 0.2 Hz and no related to

respiration.

Table 1 shows the respiratory rate estimation success rate in each stage using a

single PDR signal and with all the possible combinations of them, for both possible

PPG sensor locations. Results show a better performance of the algorithm at low

respiratory rates and when the sensor is located in the finger. When only one PDR

signal is used, PRV obtains the best results at lower frequencies but when the frequency

is above 0.2 Hz PAV reaches the best results in finger and PWV in forehead. Good

results are found when several signals are combined, specially with PRV-PWV, PWV-

PAV and PRV-PWV-PAV. The worst results are found with RIIV signal (and all its

combinations) except in 0.1 Hz stage. It must be noticed that combining PDR signals

does not imply an increase in success rate.

Table 2 shows the relative error of each single PDR signal and with all the possible

combinations of them for both possible PPG sensor locations. It must be noticed that

the error is usually negative (except in 0.1 Hz stage). This indicates that the estimated

respiratory rate is lower than the real respiratory rate. Results show lower error when

the sensor is located in the finger and when the respiratory rate is low. Similar to

Table 1, the lower error is found in PAV in finger and in PWV in forehead when only
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Figure 3. Time-frequency maps of the respiratory rate estimation using the finger

(upper row) and the forehead (lower row) PPG signal with different PDR signals

separately: a) and e) PRV; b) and f) PAV; c) and g) PWV; d) and h) RIIV. Red line

represents the chest-band respiratory rate estimation.

one PDR signal is used. Also, combinations that show a low error are PWV-PAV and

PRV-PWV-PAV.

Due to the differences found in the respiratory rate estimation of every PDR

signal, a study of the 4 PDR signals separately is done to analyse the causes of the

differences between both locations of the PPG sensor. Table 3 shows 4 confusion matrix

where all the estimations of each single PDR signal are compared with respect to the

reference respiratory rate given by the chest band for both possible PPG sensor locations.

Results show higher accuracy in lower frequencies and in finger with respect to forehead

estimations. In PRV, PWV and PAV the diagonal presents the highest values (this

indicates than the estimation match with the reference) except from 0.6 Hz stage in

PRV and PAV. In RIIV, in all the stages except in 0.2 Hz, the highest percentage of

estimations is found in the 0.1 Hz stage in finger and in 0.1 and 0.2 Hz stages in forehead.

This means that, when an error occurs, the respiratory rate estimation is 0.1 or 0.2 Hz

in most of the cases. This result is in agreement with the poor success rate showed in

Table 1 and with the large negative error in Table 2.

Figure 4 shows the boxplots of the relative power (PR) in normalized units (n.u.). PR

in the finger is higher than in the forehead and it decreases when the frequency increases

in the four PDR signals. PWV is the one that shows less significant differences in both

locations, only in 0.2 and 0.3 Hz stages.

Not only differences in the power distribution have been found. Also morphological

differences between the two PPG signals extracted in the finger and the forehead have

been noticed. Figure 5 shows the width and rate of the PPG signal in both locations.

The width is higher in the forehead than in the finger but the rate remains nearly equal
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Table 1. Mean ± std of the respiratory rate estimation success rate (SR) using the

PDR signals separately and all the possible combinations of them, in both locations

(Fin for finger and For for forehead). Best results of each stage (single, double or

triple combination) are highlighted in bold. Significant differences between finger and

forehead values are indicated with an ∗ (p < 0.01) or with a ∗∗ (p < 0.001).

- Zone PRV PWV PAV RIIV

PRV PRV PRV PWV
PRV

PRV PRV PRV PWV PWV PAV
PWV PWV PAV PAV

PWV

PWV PAV RIIV PAV RIIV RIIV
PAV RIIV RIIV RIIV

PAV

RIIV

Spt

Fin
70.4± 69.0± 77.1± 31.2± 76.8± 68.3± 37.4± 68.8± 36.6± 36.1± 66.7± 37.9± 37.4± 36.6± 37.4±

38.5 40.7 40.3 43.5 36.9 40.3 43.1 39.7 42.7 42.9 40.9 43.5 43.6 42.9 43.6

For
51.5± 58.4± 63.4± 33.8± 57.5± 60.9± 37.2± 72.5± 43.7± 40.1± 59.0± 38.5± 39.0± 45.0± 39.2±

46.3∗ 41.8 39.3 42.6 45.7∗ 43.0 46.5 36.7 43.4 42.8 44.7 46.2 46.5 43.3 46.0

0.1

Fin
97.4± 79.9± 85.5± 94.6± 97.4± 97.4± 97.4± 91.9± 94.0± 97.4± 97.4± 97.4± 97.4± 97.4± 97.4±

15.2 34.4 33.5 22.4 15.2 15.2 15.2 24.6 22.5 15.2 15.2 15.2 15.2 15.2 15.2

For
97.1± 76.2± 43.6± 78.7± 94.5± 97.1± 95.3± 65.2± 86.8± 78.4± 97.1± 95.6± 95.3± 87.6± 95.6±

14.1 38.6 43.4∗∗ 38.8 20.5 14.1 17.4 42.0∗ 26.3 38.9∗ 14.1 16.5 17.4 26.7∗ 16.5

0.2

Fin
91.0± 90.0± 86.3± 56.5± 89.0± 90.0± 64.7± 91.1± 57.5± 57.1± 87.4± 63.8± 62.3± 56.0± 61.4±

25.9 26.2 30.9 45.0 28.1 26.9 44.6 24.4 44.7 46.5 30.0 43.8 45.2 45.9 44.5

For
77.3± 76.6± 54.9± 59.8± 80.1± 69.1± 59.2± 70.1± 65.2± 59.3± 75.1± 56.0± 58.9± 64.3± 56.0±

32.8 35.1 44.4∗ 44.4 31.8 38.5∗ 44.9 39.8∗ 41.6 43.4 36.0 45.7 44.6 43.0 45.7

0.3

Fin
83.1± 77.7± 89.3± 30.6± 81.8± 82.1± 43.5± 86.8± 39.7± 38.2± 80.0± 46.3± 44.9± 41.3± 45.4

34.2 38.0 24.7 44.1 37.1 35.5 45.8 31.4 45.0 47.1 37.4 45.3 46.1 45.9 45.9

For
58.0± 72.4± 63.3± 2.9± 64.5± 63.7± 10.1± 73.4± 12.4± 15.4± 63.6± 12.6± 15.7± 18.6± 16.2±

45.0∗∗ 39.5 46.7∗ 16.9∗∗ 42.1∗ 41.0 24.5∗∗ 37.9 29.3∗∗ 30.8∗ 41.7 27.5∗∗ 28.7∗∗ 33.3∗ 30.7∗∗

0.4

Fin
68.3± 58.7± 78.6± 30.4± 58.4± 66.0± 35.9± 61.2± 26.0± 39.0± 57.4± 29.1± 38.3± 28.6± 28.6±

45.8 46.9 39.4 45.9 48.2 46.4 45.2 43.8 43.3 44.5 47.3 44.0 44.0 42.4 42.4

For
45.1± 60.0± 55.1± 1.3± 54.0± 44.9± 2.6± 51.6± 8.3± 5.3± 44.6± 4.7± 4.2± 9.6± 5.7±

47.4 42.7 43.6∗ 7.7∗∗ 46.9 46.1∗ 13.9∗∗ 44.3 23.8∗ 17.2∗∗ 46.0 17.4∗ 15.2∗∗ 23.4∗ 18.2∗

0.5

Fin
57.7± 51.1± 75.8± 17.4± 53.9± 57.4± 17.4± 61.3± 17.9± 21.8± 55.8± 17.7± 20.3± 22.1± 20.0±

49.6 47.3 40.7 36.5 48.8 49.1 36.5 45.1 36.9 38.8 47.6 36.8 38.5 39.5 38.6

For
40.0± 45.2± 40.3± 0.0± 37.4± 40.2± 2.9± 37.8± 0.0± 3.9± 33.7± 1.8± 2.9± 1.6± 1.8±

41.3 46.5 47.2∗ 0.0∗ 44.2 43.7 16.9∗ 46.1∗ 0.0∗ 16.4∗ 42.3 10.7∗ 16.9∗ 9.2∗ 10.8∗

0.6

Fin
36.4± 45.4± 46.5± 10.1± 32.2± 34.0± 8.6± 43.4± 8.6± 8.6± 34.0± 8.6± 8.6± 8.6± 8.6±

47.2 48.7 48.0 29.4 45.9 46.3 28.4 46.2 28.4 28.4 46.3 28.4 28.4 28.4 28.4

For
27.8± 33.5± 20.5± 0.0± 26.5± 15.3± 0.8± 14.5± 0.8± 1.8± 17.9± 0.0± 0.8± 1.6± 0.5±

41.4 45.3 37.0∗ 0.0 42.7 31.3 3.4 32.0∗∗ 4.6 8.2 33.5 0.0 3.4 6.8 3.1

for both signals.

5. Discussion

In this paper, an evaluation of how the location of the PPG sensor affects the respiratory

rate estimation and which PDR signals are more appropriated to this purpose has been

performed. PPG signals were recorded in finger and forehead from subjects breathing

spontaneously and at different controlled respiratory rates. 4 PDR technique were

applied to both locations of the PPG signals, obtaining one respiratory rate estimation

per PDR signal. In addition, respiratory rate was also estimated from all the possible

combinations of these 4 PDR techniques. The estimations were compared with the

respiratory rate estimated from chest-band, which was taken as reference. A respiratory

estimation was considered to be accurate if it differs less than 0.05 Hz (0.3 bpm) from

the reference, based on the errors reported in the PDR methods (Lázaro et al 2013).

The success rate and the relative error of the estimated respiratory rate from both

locations are presented, as well as a confusion matrix for each PDR signal to evaluate
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Figure 4. Boxplots of PR from finger (blue) and forehead (red) PPG using a single

PDR signal: a) PRV; b) PWV; c) PAV; d) RIIV. Significant differences between finger

and forehead values are indicated with an ∗ (p < 0.01) or with a ∗∗ (p < 0.001).
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Figure 5. Boxplots of the morphological parameters extracted from finger (blue) and

forehead (red) PPG signal. Significant differences between finger and forehead values

are indicated with an ∗ (p < 0.01) or with a ∗∗ (p < 0.001).
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Table 2. Mean ± std of the percentage of the relative error (er) committed in the

respiratory rate estimation by each PDR signal separately and with all the possible

combinations of them, in both locations (Fin for finger and For for forehead). Best

results of each stage (single, double or triple combination) are highlighted in bold.

Significant differences between finger and forehead values are indicated with an ∗

(p < 0.01) or with a ∗∗ (p < 0.001).

- Zone PRV PWV PAV RIIV

PRV PRV PRV PWV
PRV

PRV PRV PRV PWV PWV PAV
PWV PWV PAV PAV

PWV

PWV PAV RIIV PAV RIIV RIIV
PAV RIIV RIIV RIIV

PAV

RIIV

Spt

Fin
-17.3± -8.2± -9.3± -40.4± -14.7± -17.5± -36.8± -15.2± -36.7± -37.4± -17.6± -36.5± -36.7± -37.2± -36.7±

22.3 27.9 19.1 23.7 22.3 22.2 23.5 21.2 23.6 23.3 22.6 23.7 23.7 23.3 23.7

For
-21.8± 1.9± 17.0± -29.3± -23.5± -20.0± -33.6± 2.7± -24.4± -22.7± -20.3± -32.6± -32.7± -24.6± -32.4±

34.0 43.3 41.4 24.1∗∗ 23.7 23.7 23.0 34.9∗ 23.0∗ 28.7∗∗ 25.2 22.3 22.0 21.9∗∗ 22.1

0.1

Fin
-1.1± 14.8± 11.3± 1.3± -1.1± -1.3± -1.9± 3.3± 1.6± -1.5± -1.4± -1.9± -1.9± -1.5± -2.0±

7.7 30.1 33.6 16.8 7.7 7.6 7.5 18.9 16.9 7.7 7.6 7.5 7.5 7.7 7.5

For
0.4± 34.8± 94.4± 19.2± 2.3± 0.9± 1.6± 56.5± 8.4± 19.2± 0.8± 1.4± 1.6± 8.4± 1.4±

8.8 72.3∗ 95.7∗∗ 27.1∗∗ 14.7 9.3 11.3 87.3∗∗ 18.1∗ 27.3∗∗ 9.3 11.0 11.3 19.0∗∗ 11.0

0.2

Fin
-4.3± -4.6± -1.6± -20.4± -5.5± -4.9± -16.9± -4.5± -20.1± -20.2± -6.4± -17.4± -18.0± -20.8± -18.5±

11.6 10.8 15.4 20.6 12.9 12.4 20.6 11.4 20.4 21.3 13.9 20.3 21.0 20.9 20.6

For
-4.2± 6.3± 31.4± -19.6± -7.4± 2.2± -20.4± 16.2± -13.8± -12.7± -4.2± -17.9± -20.2± -12.9± -17.9±

22.6 19.8∗ 50.4∗∗ 16.0 15.5 33.4 15.5 32.2∗ 18.6 24.4 23.4 22.9 15.7 22.7 22.9

0.3

Fin
-9.8± -10.5± -5.5± -42.6± -10.9± -10.3± -34.4± -7.6± -36.7± -38.2± -11.8± -32.7± -33.7± -35.9± -33.4±

20.9 20.7 14.3 28.4 22.5 21.3 28.7 18.4 28.4 29.6 22.3 28.6 29.2 28.7 29.0

For
-18.3± -7.3± -10.8± -49.1± -14.3± -18.6± -46.7± -12.6± -44.6± -41.7± -19.5± -46.5± -44.5± -41.0± -44.7±

28.6 21.3 25.5 11.2 28.2 23.0 16.5∗ 20.2 17.0 18.0 23.7 16.3∗ 17.3 18.9 18.4

0.4

Fin
-22.6± -24.1± -15.4± -50.2± -27.9± -24.2± -45.2± -24.9± -51.4± -43.0± -29.2± -49.4± -43.7± -49.8± -49.7±

32.7 28.7 28.2 33.5 33.3 33.5 32.8 30.1 31.4 32.8 33.7 31.8 32.5 31.0 30.9

For
-34.6± -17.3± -22.3± -62.7± -28.6± -32.2± -61.5± -24.4± -57.3± -58.7± -32.4± -60.4± -60.4± -56.1± -59.5±

32.1 20.7 27.4 7.3 30.7 28.9 10.5∗ 25.7 15.7 14.0∗ 28.3 12.4 11.6∗ 16.7 13.3

0.5

Fin
-30.6± -29.9± -16.4± 63.9± -34.1± -31.3± -64.0± -25.0± -61.9± -59.7± -31.5± -63.4± -61.4± -58.8± -61.5±

37.1 31.7 29.5 28.7 37.1 37.0 28.6 31.1 29.4 30.8 35.5 28.8 30.3 31.0 30.3

For
-35.5± -30.7± -31.0± -70.3± -37.3± -35.3± -69.1± -34.4± -69.7± -65.6± -39.1± -68.9± -67.9± -67.7± -68.5±

31.5 29.8 27.5∗ 4.4 31.8 30.3 12.8 29.4 5.2 14.0 29.6 9.5 13.1 10.1 9.7

0.6

Fin
-44.3± -36.6± -28.6± -70.7± -51.1± -43.9± -72.4± -37.4± -71.8± -72.1± -49.6± -72.8± -72.3± -72.5± -72.5±

36.1 34.8 31.7 25.8 37.3 35.7 23.7 34.7 24.0 23.9 37.2 23.6 23.8 23.8 23.9

For
-45.1± -40.1± -45.7± -75.2± -47.9± -55.0± -74.0± -54.4± -73.7± -72.4± -54.9± -74.3± -72.6± -72.3± -74.1±

33.5 31.9 28.5∗ 4.1 33.0 26.6 8.9 25.8∗ 9.6 9.9 27.7 7.9 12.2 11.0 8.2

their performance. Also, the power distribution of the respiratory information and the

rate and the width of both different PPG signals are analysed trying to explain the

differences between both sensor locations.

Focus on finger and forehead, since they are the most extended locations of PPG

sensor, it can be seen that a change in the place where PPG signal is registered

involves other variations that should be considered: different locations imply different

configurations in signal acquisition (Allen 2007), as light-transmission configuration can

be used in the finger but not in the forehead, where light-reflection is the only possible

configuration; the optical features of the skin are not the same in the finger than in

the forehead; also the peripheral blood flow varies from one location to another because

different capillary vessels irrigate the different zones. These changes affect the PPG

morphology, obtaining a smoother waveform when the signal is recorded in forehead

than in finger (Allen 2007, Nilsson et al 2007). Our hypothesis supposes that this

change in the waveform may affect PDR signals, with a decrease in the modulation that

respiration induces over these signals. As the same PDR signal is different depending on
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Table 3. Confusion matrix by each PDR signal comparing each respiratory rate

estimation (vertical axis) with the reference given by the chest band (horizontal axis),

in both locations (Fin for finger and For for forehead). Best results of each stage are

highlighted in bold.

PRV Zone Spt 0.1 0.2 0.3 0.4 0.5 0.6 PWV Zone Spt 0.1 0.2 0.3 0.4 0.5 0.6

Spt
Fin 267 0 0 0 0 0 0

Spt
Fin 262 0 0 0 0 0 0

For 196 0 0 0 0 0 0 For 221 0 0 0 0 0 0

0.1
Fin 91 371 34 55 119 144 177

0.1
Fin 75 305 34 48 90 88 98

For 152 377 65 114 150 125 147 For 55 301 27 41 44 72 101

0.2
Fin 18 0 348 8 0 5 11

0.2
Fin 17 66 346 30 34 45 56

For 12 2 292 19 18 24 32 For 45 32 289 40 18 41 51

0.3
Fin 1 0 0 317 2 4 16

0.3
Fin 21 0 2 298 30 36 20

For 1 0 9 220 30 22 13 For 38 36 42 276 86 63 35

0.4
Fin 2 0 0 0 259 8 11

0.4
Fin 4 0 0 4 226 18 29

For 14 0 9 24 174 49 39 For 2 6 18 21 224 26 23

0.5
Fin 0 0 0 0 0 220 26

0.5
Fin 0 0 0 0 0 194 3

For 2 0 1 3 0 152 39 For 5 4 0 2 0 172 38

0.6
Fin 0 0 0 0 0 0 140

0.6
Fin 0 0 0 0 0 0 175

For 0 0 0 0 0 2 107 For 11 0 0 0 0 0 129

PAV Zone Spt 0.1 0.2 0.3 0.4 0.5 0.6 RIIV Zone Spt 0.1 0.2 0.3 0.4 0.5 0.6

Spt
Fin 291 0 0 0 0 0 0

Spt
Fin 117 0 0 0 0 0 0

For 243 0 0 0 0 0 0 For 130 0 0 0 0 0 0

0.1
Fin 84 326 40 30 79 74 92

0.1
Fin 255 361 166 254 264 310 320

For 5 169 19 45 65 34 63 For 162 298 145 198 203 192 203

0.2
Fin 0 38 330 11 0 0 7

0.2
Fin 17 10 216 10 1 2 0

For 35 89 208 64 64 100 119 For 79 81 229 171 163 182 172

0.3
Fin 2 7 2 339 3 0 24

0.3
Fin 0 0 0 116 1 0 13

For 26 41 42 240 22 47 30 For 6 0 0 11 1 0 1

0.4
Fin 2 0 10 0 298 17 18

0.4
Fin 0 0 0 0 114 2 7

For 60 76 83 27 214 45 48 For 0 0 2 0 5 0 0

0.5
Fin 0 0 0 0 0 290 60

0.5
Fin 0 0 0 0 0 67 1

For 6 4 22 4 7 148 39 For 0 0 0 0 0 0 1

0.6
Fin 0 0 0 0 0 0 180

0.6
Fin 0 0 0 0 0 0 40

For 2 0 2 0 0 0 78 For 0 0 0 0 0 0 0

the PPG sensor location, respiratory rate estimation could be affected by this variable.

In fact, an important conclusion of this study is that respiratory rate estimation is more

accurate when PPG signal is recorded in the finger than in the forehead. The success

rate is higher and the relative error is lower in finger than in forehead for all the stages

and all the PDR signals. In addition, the diagonal of the confusion matrix shows higher

number of correct estimations in finger than in forehead. The fact that respiratory rate

estimation is more accurate in finger than in forehead is also reported (Charlton et al

2017).

One possible explanation of this best results in finger lies in the relative power of

the respiratory band normalized to the entire spectra, represented in Figure 4, where

recordings in finger show a higher PR than in the forehead. A higher PR means that

the respiratory component is easier to be identified, and therefore, the respiratory rate
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estimator has more chances to give a correct result. On the other hand, with a lower

value of PR is easier to mislead the respiratory component and consequently getting

a wrong estimation. This result is in contrast with (Nilsson et al 2007), where the

frequency component analysis shows lower power of the respiratory component in the

finger compared to other sensor locations. However, our results shows the opposite (see

Figure 4) indicating a minor respiratory related component in the forehead mainly at

high frequency rates. It is worth noting that signals are recorded in supine position where

parasympathetic activity is enhanced and the methodology used is based in the analysis

of the PPG signal spectrum (Nilsson et al 2007), while our recordings are in sitting

position and the analysed spectral power is extracted from PDR signals. Therefore the

counterbalance of respiratory related and unrelated components of PDR signals seems

to be essential, at least for frequency based methods.

Concerning which PDR signal is the best to estimate the respiratory rate, PRV

showed the best results for lower frequencies (below 0.3 Hz), with the higher success

rate, the lower relative error and the higher number of correct estimations. However, its

performance is not so good for higher frequencies. Above 0.3 Hz, PAV was the one with

the best results when PPG is registered in finger, although results in lower frequencies

are quite acceptable too. However, PAV shows not so good results in forehead, in fact

significant differences have been found in the success rate and the power around the

respiratory component between both locations. These bad results of PAV in forehead

has been already noticed in our preliminary study (Hernando et al 2017), but in that

work the preliminary filter to remove the baseline noise was not applied and the obtained

results were worse. As other work suggests (Sun et al 2019), removing the baseline

modulation increases the success rate of PAV signal in forehead (if not, results were

as worse as RIIV forehead ones), although its performance is not as good as in the

finger. On the other hand, PWV is the one with best results in the forehead, specially

in frequencies above 0.3 Hz. PWV is the only PDR signal whose results in finger are

quite similar to the forehead ones. This could be explained by the similar distribution

of the power related to the respiratory component in both locations, with no significant

differences between both sites. The good performance of PRV, PWV and PAV have

already been noticed in (Dash et al 2010, Lázaro et al 2013). RIIV, although it is a

very common PDR signal used in many studies (Nilsson et al 2000, Karlen et al 2013,

Lin et al 2013), is the one which obtained the worst results. However, it must be

highlighted that, in these studies subjects were breathing spontaneously and none of

them had studied RIIV signal registered in the forehead. The worst result with RIIV

could be explained by the spectral component non-related to respiration previously

explained. It must be noticed that this 4 PDR signals have been studied in this specific

database, conformed by healthy subjects with a mean age of 35.1 ± 6.5 years. However,

in the study of a different database with different subjects, maybe some of these PDR

signals could be eliminated as they could not provide faithful respiratory information.

For example, while in this database PAV seems to be the one with the best performance,

in a different database conformed by patients with a fluid overload PAV may not provide
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valid information (Javed et al 2010). Otherwise, in an elderly database where respiratory

sinus arrhythmia will be not so significant (De Meersman 1993), PRV performance

should decrease. Therefore, the inclusion of each PDR signal in the respiratory rate

estimation method should be considered depending on the final application. Finally,

the combination of PDR signals does not give the method more robustness, even more,

results with a combination of PDR signals are worse in the higher frequency stages. This

result is in contrast with the conclusion extracted in several works (Karlen et al 2013,

Lázaro et al 2013), where the PDR signal combination offers more accurate estimations.

Another important conclusion of this work is the best performance of the respiratory

estimation in lower frequencies than in higher ones. As Table 1 shows, the success rate

decreases 30% from 0.2 to 0.5 Hz stages in almost all the PDR signals (except in PAV)

and for both body locations. Consequently, the error committed is higher in 0.5 Hz

stage (more than a 25% with respect the 0.2 Hz stage). Spontaneous respiratory stage

also shows good results because respiratory rate during rest usually is in the lower

frequencies range, with a mean value of 0.23 Hz in this database. The relative error in

spontaneous breathing is slightly higher than in 0.3 Hz stage because 6 subjects have a

respiratory rate above 0.3 Hz, being more difficult to properly estimate respiratory rate

in these cases. The best performance of the respiratory estimation in lower frequencies

than in higher ones has also been reported in other studies (Johnston and Mendelson

2004, Addison et al 2015, Charlton et al 2017). Figure 4 shows less respiratory relative

power as the respiratory rate increases, for the 4 PDR signals. Respiratory rate is the

only difference in the setup of the different stages, so we interpret that the lower relative

power is due to less powerful respiration-related modulation. In case of PRV, this is

coherent with the well-known decrease of respiratory sinus arrhythmia as respiratory

rate increases (Hirsch and Bishop 1981). A possible reason of this observation is that

autonomic nervous system may act as a physiological low-pass filter. That would explain

also the effect in PAV and PWV. However, PRV and PWV are affected also by the

mechanical effect of respiration on the intrathoracic blood pressure, which may have

also a low-pass behaviour (Lázaro et al 2014b).

The decrease of the power of the respiratory spectral component at high breathing

rates causes that other spectral components non-related with respiration become

relevant and act as a confound. Our results suggest the presence of a non-respiratory

related spectral component around 0.1 and 0.2 Hz (see Figure 3, specially in RIIV).

When an error occurs, respiratory rate estimation based on PDR is usually around

0.15 Hz. In fact, in Table 3 the higher values of the confusion matrix are found either in

the expected stage or in 0.1-0.2 Hz. This component, probably related to Mayer waves,

and the problems that may cause for respiratory rate estimation has been pointed out

in others works (Karlen et al 2013), and could significantly influence PPG signal in

forehead (Pfurtscheller et al 2018). If the respiratory rate of one specific application is

expected to be higher than 0.15 Hz, a more restrictive filter with a higher value of the

low cut-off frequency could be applied trying to overcome this non-respiratory related

component. In this work, a trial with 0.15 Hz as the low cut-off frequency of the filter
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that isolate respiratory components has been implemented and results show an increase

higher than 20% in the success rate for all the single PDR signals when the PPG is

registered in the finger and an increase of 10% in the forehead.

An analysis of the morphology of PPG waveform is also presented in order to study

how different the finger and forehead waves are, and whether PPG morphology is affected

by the respiratory rate or not. Results show higher width when the PPG is registered in

the forehead in comparison with the finger, independently of the respiratory rate. These

differences imply morphological changes between both locations, as other studies in the

bibliography shown (Allen 2017, Nilsson et al 2007). However, the results do not show

that these morphological changes cause restrictions in the respiratory rate estimation.

In the case of the width of the pulses, a higher width does not imply a decrease in the

modulation that the respiration induces over the PWV signal. Therefore, respiratory

rate estimation is apparently more affected by the ratio between the respiratory power

with respect to the entire spectra that could mask the respiratory information than by

morphological factors.

6. Conclusion

It has been shown that differences in the respiratory rate estimation and changes in

morphological features are found when the PPG signal is recorded in the finger and

in the forehead. General results for respiratory rate estimation are characterized by a

better performance in the low frequencies and when the sensor is located in the finger

when compared to the forehead. Also, RIIV showed a poor performance and it affected

negatively to the accuracy of the estimation when RIIV was combined with other PDR

signals. Therefore, finger is the recommended location for PPG signal acquisition and

RIIV signal is not recommended, specially when respiratory rate could increase to higher

values. For this specific database, although PRV in finger obtain good results in lower

frequencies, the use of PAV in finger would be preferable because it also obtains good

results at lower frequencies (above 85% of success rate at 0.1 and 0.2 Hz) and the best

results at higher frequencies (almost 90% of success rate at 0.3 Hz and above 75% at

0.4 and 0.5 Hz) and during spontaneous breathing (almost 80% of success rate). The

inclusion of each PDR signal in the fusion algorithm should be analysed for each specific

application considering both the subject population and the breathing pattern, taking

into account the effect of these factors on the respiratory modulation of the PPG.
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Lázaro J, Gil E, Bailón R, Mincholé A and Laguna P 2013 Deriving respiration from

photoplethysmographic pulse width Med. Biol. Eng. Comput. 51 233–42.



Finger and forehead PPG signal comparison for respiratory rate estimation 17

Addison P S, Watson J N, Mestek M L, Ochs J P, Uribe A A and Bergese S D 2015 Pulse oximetry-

derived respiratory rate in general care floor patients J. Clin. Monit. Comput. 29(1) 113–20.

Hartmann V, Liu H, Chen F, Qiu Q, Hughes S and Zhenq D 2019 Quantitative Comparison of

Photoplethysmographic Waveform Characteristics: Effect of Measurement Site Front. Physiol. 10

198–205.

Nilsson L, Goscinski T, Kalman S, Lindberg L G and Johansson A 2007 Combined photoplethysmo-

graphic monitoring of respiration rate and pulse: a comparison between different measurement sites

in spontaneously breathing subjects Acta Anaesthesiologica Scandinavica 51 1250–7.

Johnston W S and Mendelson Y 2004 Extracting breathing rate information from a wearable reflectance

pulse oximeter sensor IEEE Engineering in Medicine and Biology Society 2 5388–91.

Charlton P H, Bonnici T, Tarassenko L, Alastruey J, Clifton D A, Beale R and Watkinson P J 2017

Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical

and physiological determinants Physiol. Meas. 38(5) 669–90.
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