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Highlights

• Coupled Roe’s scheme for SW-Exner equations in cross-section aver-
aged erosive flows.

• Explicit expressions for eigenvalues, eigenvectors, wave and source
strengths.

• A new parameter cb related to the bed change appears in the coupled
Jacobian matrix.

• cb depends on the erosion-deposition mechanism selected to update the
cross-section.

• Analytical expression for the equilibrium bed slope in variable width
rectangular channels.
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A 1D numerical model for the simulation of unsteady

and highly erosive flows in rivers

S. Mart́ınez-Aranda∗, J. Murillo, P. Garćıa-Navarro

LIFTEC-CSIC, University of Zaragoza, Spain

Abstract

This work is focused on a numerical finite volume scheme for the coupled
shallow water-Exner system in 1D applications with arbitrary geometry. The
mathematical expressions modeling the hydrodynamic and morphodynamic
components of the physical phenomenon are treated to deal with cross-section
shape variations and empirical solid discharge estimations. The resulting
coupled equations can be rewritten as a non-conservative hyperbolic system
with three moving waves and one stationary wave to account for the source
terms discretization. Moreover, the wave celerities for the coupled morpho-
hydrodyamical system depend on the erosion-deposition mechanism selected
to update the channel cross-section profile. This influence is incorporated
into the system solution by means of a new parameter related to the channel
bottom variation celerity. Special interest is put to show that, even for
the simplest solid transport models as the Grass law, to find a linearized
Jacobian matrix of the system can be a challenge in presence of arbitrary
shape channels. In this paper a numerical finite volume scheme is proposed,
based on an augmented Roe solver, first order accurate in time and space,
dealing with solid transport flux variations caused by the channel geometry
changes. Channel cross-section variations lead to the appearance of a new
solid flux source term which should be discretized properly. The stability
region is controlled by wave celerities together with a proper reconstruction
of the approximate local Riemann problem solution, enforcing positive values
for the intermediate states of the conserved variables. Comparison of the
numerical results for several analytical and experimental cases demonstrates
the effectiveness, exact well-balancedness and accuracy of the scheme.
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1. Introduction

Sediment transport processes in rivers are broadly classified into two dif-
ferent types, bed load movement and suspended material transport, and they
are basically caused by the gravity and friction forces at the river bed level [1].
Bed load transport takes into account the sediment movements that occur
without the solid grain losing contact with the river bed (rolling, sliding and
saltation motion mechanisms), whereas suspension transport considers both
the solid mass which is transported by the flow as a solute. Both transport
processes occur simultaneously and to identify a threshold between them is
an open research topic. Sediment transport processes are usually modelled
by means of a set of equations which includes hydrodynamic and morpho-
dynamic components. The hydrodynamic part can be described by the shal-
low water equations (SW), commonly used to study water movements in
rivers and channels. On the other hand, the morphodynamical component
is commonly represented by a system of equations modelling the solid mass
conservation property.

The relation between the actual solid transport flux and the flow dynamic
features has become one of the major uncertainty sources for sediment trans-
port modellers. The traditional approach is based on the assumption that the
actual solid transport rate adapts immediately to the hydrodynamic prop-
erties (capacity or equilibrium approach). Sediment transport capacity can
be understood as the maximum amount of sediment that can be transported
by a flow in a particular steady state. Models based on this assumption
have been proposed to compute many experimental and real-scale sediment
transport problems [2–6]. Nevertheless, in the two last decades, a new ap-
proach accounting for the time and space lag between the actual solid fluxes
and the local hydrodynamic properties has received increasing attention [7].
Non-capacity or non-equilibrium models have been reported by many authors
[8–13] for both bed load and suspended load sediment transport processes.
Although physically the non-capacity assumption seems to be always justi-
fied, especially when dealing with highly erosive and unsteady flows, capacity
models have demonstrated to be applicable for bed load transport processes
in uniform sediment beds and high-magnitude flow conditions [10, 11, 14, 15].
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The capacity assumption for the bed load sediment transport leads to re-
ductions on both the number of equations involved (four and three equations
for 1D non-capacity and capacity models, respectively) and on the number
of closure relations (adaptation lenght and net solid flux between active and
non-active sediment layers are not necessary). Capacity models formulate the
solid mass conservation by means of the well-known Exner equation [16] and
only need a closure relation for the capacity transport rate. Different empir-
ical equations can be found in literature to determine the bed-load transport
capacity (see [17] for a brief summary), being this one of the major uncer-
tainty sources for equilibrium models. In most of them, the sediment move-
ment is controlled by the critical shear stress, a physical parameter which is
experimentally determined. The reduction on the number of equations and
closure relations implies a decreased computational cost for capacity bed load
models, allowing a better efficiency in long-term real-scale cases.

Two-dimensional models have been commonly reported to simulate flow
and sediment transport, together with a fine representation of topography
and local hydraulic effects [6, 18, 19]. However, their application to real
river cases is still restricted due to the computational time required and
the amount of field data needed for the model calibration. Therefore, two-
dimensional models have been mainly applied to reach-scale domain cases
with short event time duration. However, the latest improvements in their
computational efficiency thanks to the use of GPU implementation [20] or
local-time-step approach [21] are widening the applicability of 2D models.
On the other hand, one-dimensional models require less field data and offer a
higher computational efficiency. Although 1D models are not able to capture
all the complex two-dimensional features of an unsteady flow in arbitrary
topographies, they may become a useful tool for engineers in order to predict
flood episodes and their consequences, where computation time is a key factor
in order to avoid material damages and human losses.

The hydrodynamic and morphodynamic equations that describe the bed-
load transport phenomena constitute a coupled system of conservation laws.
Although the numerical modeling of free-surface flows with bed evolution
involves transient water flow and movable bed boundaries, decoupled meth-
ods have been commonly reported to evaluate the bed morphodynamics in
1D realistic application [22–25]. In these works, shallow water and sediment
equations are independently solved. The decoupling approaches have been
successfully applied to test cases with weak interactions and slow geometrical
evolutions. However, when the two physical components of the system have
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relatively strong interactions, the decoupling strategy can create spurious
oscillations [26].

Coupling bed-load transport into the hydrodynamic shallow water sys-
tem is a more challenging topic since it leads to a more complicated eigen-
structure. From a mathematical point of view, coupling the morphodynamic
model with SW equations allows us to apply a stable hyperbolic solver with
a dynamic time step based on a CFL stability condition in order to avoid
nonphysical oscillations and deal with geometrical discontinuities potentially
formed during the bed evolution process. So far, coupled models reported in
literature were only developed for unit-width formulations, hindering their
application to complex 1D geometry models [4, 5, 27–31]. Therefore, a nu-
merical 1D coupled model able to simulate complex geometries efficiently
and demonstrate its performance in realistic applications is still required.

In [32] a capacity Exner-based coupled model for two-dimensional tran-
sient flows over erodible beds on triangular unstructured meshes was pro-
posed using a special coupling strategy to incorporate the bed slope source
term to the flux Jacobian matrix. This efficient method was later used by
[18, 33] to develop numerical schemes for the SW-Exner coupled system. In
the present work, this procedure is extended to incorporate the bed slope
component to the cross-section averaged fluxes for a one-dimensional model,
allowing to develop a coupled scheme based on the Augmented Roe’s solver
which is able to deal with non prismatic channels, preserving the solid mass
conservation property and the stability region.

This paper is structured as follows: In Section 2 the governing equa-
tions are presented, identifying clearly flux variations and source terms only
depending on the geometrical changes. The resulting system allows us to
write a numerical scheme able to handle variable cross-sections, which is de-
scribed in Section 3. In this section we also report proper numerical fixes
to deal with non-movable bed conditions and to ensure not excessive time
step reductions. A set of analytical, experimental and real-scale field tests
are used to compare with the numerical results in Section 4, in order to re-
port the model capability to handle cross-section changes. The performance
in non-movable bed conditions and their accuracy using different empirical
closure formulae for the solid discharge are also evaluated. Finally, conclu-
sions are highlighted in Section 5. Additionally, explicit expressions for wave
and source terms strengths needed to complete the numerical scheme, and
an analytical solution for erosive steady state in a variable-width rectangular
channel are reported in the appendix sections.
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2. Mathematical model

2.1. Governing equations

Free-surface flow movement in one-dimensional practical applications,
considering a complex cross-sectional shape channel, can be modeled by the
Saint-Venant equations for the mass and momentum conservation [34]. The
temporal evolution of the conserved flow variables depends on the spatial
variation of the hydrodynamic fluxes as follows:

∂A

∂t
+
dQ

dx
= 0 (1)

∂Q

∂t
+

d

dx

(
Q2

A
+ gI1

)
= g (I2 + AS0 − ASf ) (2)

where A(x, t) is the wetted cross-sectional area, Q(x, t) is the flow discharge,
g is the acceleration of gravity, S0 is the bed slope and Sf is the friction slope.
I1 represents the hydrostatic pressure force term in a section of maximum
water depth h and I2 accounts for the pressure force due to longitudinal
variations of the channel width σ(x, η) (Fig. 1):

A(x, t) =

∫ h(x,A)

0

σ(x, η) dη

I1(x,A) =

∫ h(x,A)

0

(h(x,A)− η)σ(x, η) dη

I2(x,A) =

∫ h(x,A)

0

(h(x,A)− η)
∂σ(x, η)

∂x
dη

The above equations can be also written in vector form as:

∂~V

∂t
+
d~F (x, ~V )

dx
= ~R(x, ~V ) (3)

being ~V the conserved variables, ~F the conservative fluxes vector and ~R
the vector accounting for the source terms. Note that the consideration
of domains with complex tophography, such as rivers, leads to the total
spatial variation of the cross-section averaged fluxes involved in Saint-Venant
equations cannot be directly expressed only in terms of conserved variables
derivatives as they also depend on the geometrical changes in the domain,
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Figure 1: Arbitrary cross-section geometrical description.

that is ~F = ~F (x, ~V ). This issue could lead to problems in order to design
an efficient numerical scheme which represents the conservative fluxes by
means of a Jacobian matrix defined as the partial derivative of the fluxes
respect to the flow variables [35]. Focusing on the momentum equation and
using Leibnitz’s rule, it is possible to find an expression for the total spatial
derivative of I1 in which variations depending purely on the cross-sectional
geometry (A = const) are separated from the component only related to the
conserved flow variables (x = const) [35–37].

dI1
dx

=
∂I1
∂x

∣∣∣∣
A=const

+
∂I1
∂A

∂A

∂x

∣∣∣∣
x=const

=

(
I2 + A

∂h

∂x

)
+
A

B

dA

dx
(4)

being B(x,A) the channel width at the water surface. Replacing (4) in (2):

∂Q

∂t
+

d

dx

(
Q2

A

)
+ g

A

B

dA

dx
= gAS0 − gASf − gA

∂h

∂x
(5)

The new conservative flux on the left side of (5) depends on the con-
served variables exclusively, avoiding the numerical computation of I1 and I2
additionaly.

Finally, it is important to stress that the discrete increments δ/δx of the
function h required by the numerical scheme actually approach the total
derivative instead of the partial derivative ∂h/∂x. For this reason partial
derivatives should be avoided in the mathematical formulation leading to
the numerical discretization [36]. From h = h(x,A):

dh

dx
=
∂h

∂x

∣∣∣∣
A=const

+
∂h

∂A

∂A

∂x

∣∣∣∣
x=const

=
∂h

∂x
+

1

B

dA

dx
(6)
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Therefore, replacing the partial derivative ∂h/∂x in (5) by its expres-
sion deduced from (6), the second hydrodynamic conservation law could be
expressed in terms of total derivatives as follows:

∂Q

∂t
+

d

dx

(
Q2

A

)
+ g

A

B

dA

dx
= gAS0 − gASf − gA

(
dh

dx
− 1

B

dA

dx

)
(7)

Note that this formulation does not include the hydrostatic pressure inte-
grals any more, so it is no longer necessary to compute them. The presence
of the bottom force gAS0, which can lead to inaccurate evaluations of the
pressure force in sections with very irregular shapes over steep slopes [38], is
balanced here by the new term gA(dh

dx
− 1

B
dA
dx

), that has been carefully for-
mulated to avoid partial derivatives [35, 37]. Therefore, thanks to the above
algebraic manipulations, the resulting formulation is as robust as the ones
reported in [39] or [38], where computation of I1 and I2 was included. It is
worth to note that the computation of the pressure integrals can be a dif-
ficult task in very irregular geometries, hence this formulation improves the
computational efficiency of the model without causes inaccurate evaluations
of the integral force in complex cross-sections.

On the other hand, bed-load mass conservation is modelled here by means
of the Exner continuity equation [16], which has the following expression for
an arbitrary channel cross-section:

∂As
∂t

+ ξ
dQs(x,A,Q)

dx
= 0 (8)

where As(x, t) is the solid area, Qs(x,A,Q) the total solid discharge at the
cross-section and ξ = 1/(1− p), being p the bed load layer porosity. Ab and
Qs are defined as:

As(x, t) =

∫ ZT (x)−ZR(x)

0

[ω(x, ζ)− σ(x, ζ)] dζ

Qs(x,A,Q) =

∫ B(x,A)

0

qs(A,Q) dy

(9)

where qs(A,Q) is the solid discharge per unit width and ω(x, ζ) is the erodible
domain width. As a first hypothesis, the total bed load discharge can be
defined considering a constant bed load transport rate per unit width applied
to the whole cross-section [25, 40].
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Qs(x,A,Q) = B(x,A) qs(A,Q) (10)

Note again that the total derivative of the total sediment solid discharge
at the channel cross-section Qs(x,A,Q) can be written in the following way:

dQs(x,A,Q)

dx
=
∂Qs

∂x

∣∣∣∣
A,Q=const

+
∂Qs

∂A

∂A

∂x

∣∣∣∣
x,Q=const

+
∂Qs

∂Q

∂Q

∂x

∣∣∣∣
x,A=const

(11)

Therefore, from (10), the partial derivatives in (11) are expressed as:

∂Qs(x,A,Q)

∂x
=
∂B(x,A)

∂x
qs(A,Q)

∂Qs(x,A,Q)

∂A
=
∂B(x,A)

∂A
qs(A,Q) +B(x,A)

∂qs(A,Q)

∂A
∂Qs(x,A,Q)

∂Q
= B(x,A)

∂qs(A,Q)

∂Q

(12)

Replacing (12) in (11) and reordering terms, an expression for the total
derivative of the solid discharge, which could be used in arbitrary cross-
section channels, can be obtained.

dQs

dx
=

(
∂B

∂x
+
∂B

∂A

∂A

∂x

)
qs +B

∂qs
∂A

∂A

∂x
+B

∂qs
∂Q

∂Q

∂x
=

=
dB

dx
qs +B

∂qs
∂A

dA

dx
+B

∂qs
∂Q

dQ

dx

(13)

Taking into account (13), the Exner continuity equation can be written so
that the conservative solid flux only depends on the conserved flow variables.
Furthermore, a new source term appears which represents the solid discharge
variation related to the cross-sectional changes.

∂As
∂t

+ ξB

(
∂qs
∂A

dA

dx
+
∂qs
∂Q

dQ

dx

)
= −ξqs

dB

dx
(14)

2.2. Coupled system of equations

Combining equations (1), (7) and (14), the coupled hydro-
morphodynamical system is written in vector form:

∂~U

∂t
+ J(x, ~U)

d~U

dx
= ~S(x, ~U) (15)
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~U = (A,Q,As)
T

J =
∂ ~F (x, ~U)

∂~U
=




0 1 0
c2 − u2 2u 0

ξB ∂qs
∂A

ξB ∂qs
∂Q

0




~S(x, ~U) =

(
0, gA

[
S0 − Sf −

(
dh

dx
− 1

B

dA

dx

)]
,−ξqs

dB

dx

)T

The conservative fluxes are on the left side of equations, represented
by means of the Jacobian matrix J(x, ~U). Fluxes purely caused by cross-
sectional variations are included as source terms on the right side of equa-
tions. ~U(x, t) is the vector of conserved variables, J(x, ~U) is the Jacobian

matrix, ~S(x, ~U) is the source terms vector, u = Q/A is mean flow velocity
and c =

√
g A/B is the celerity of the infinitesimal surface wave.

Notice that the Jacobian matrix of the system J(x, ~U) is singular, since
it does not depend on the third component of the conserved variables vector
As. This should create difficulties to implement a numerical scheme for this
formulation. To overcome this problem, the total bed level can be decom-
posed into two contributions: a fixed reference level which does not vary
with time ZR and, above that, a layer of erodible sediments with a thickness
εb at the lowest point of the wetted perimeter b, which coincides with the
minimum sediment layer depth. Therefore, the bed slope source term can be
rewritten as follows:

gAS0 = gA

[
− d

dx
(ZR + εb)

]
= −gA

(
dZR
dx

+
dεb
dx

)
(16)

where ZR = ZR(x) and εb = εb(x,As). Therefore, the total derivative of the
erodible layer minimum thickness is again expressed as:

dεb
dx

=
∂εb
∂x

∣∣∣∣
As=const

+
∂εb
∂As

∂As
∂x

∣∣∣∣
x=const

=
∂εb
∂x

+
∂εb
∂As

dAs
dx

(17)

Replacing (17) in (16) the bed slope source term can be rewritten as:

gAS0 = −c2b
dAs
dx

+ gAS ′0 (18)

being:

cb =

√
gA

∂εb
∂As

S ′0 = −
(
dZR
dx

+
∂εb
∂x

)
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The first term on the right hand side of (18) can be considered a new
non-conservative momentum flux depending on the solid area changes and it
is added to the left side of the momentum equation. The second term on the
right hand side of (18) remains as a modified bed slope source term. The
coefficient cb in the non-conservative flux component has velocity dimensions
[L/T ] and hence it can be considered as a celerity related to the evolution of
the lowest point of the bed at each cross-section. This celerity depends on
the erosion-deposition mechanism over the channel cross-section, which will
be further analyzed in the next sections.

On the other hand, a new partial derivative appears in the modified bed
slope source term gAS ′0 (18). Following the same procedure used in (7) to
properly evaluate the partial derivative of the maximum water depth h [36]
and taking into account that ∂εb/∂As = c2b/(gA), the modified bed slope
source term can be rewritten in terms of total derivatives.

gAS ′0 = −gA
(
dZR
dx

+
∂εb
∂x

)
= −gA

[
dZR
dx

+

(
dεb
dx
− c2b
gA

dAs
dx

)]
(19)

The coupled system (17) can be now expressed in the following non-
conservative form:

∂~U

∂t
+ J(x, ~U)

d~U

dx
+ H(x, ~U)

d~U

dx
= ~S ′(x, ~U) (20)

~U = (A,Q,As)
T

J(x, ~U) =




0 1 0
c2 − u2 2u 0

ξB ∂qs
∂A

ξB ∂qs
∂Q

0


 H(x, ~U) =




0 0 0
0 0 c2b
0 0 0




~S ′(x, ~U) =




0

−gA
[
dZR

dx
+
(
dεb
dx
− c2b

gA
dAs

dx

)
+ Sf +

(
dh
dx
− 1

B
dA
dx

)]

−ξqs dBdx




H(x, ~U) is the non-conservative flux matrix and ~S ′(x, ~U) the modified
source terms vector. Furthermore, (20) allows us to express the three equa-
tions governing the hydro-morphodynamic phenomenon as a reduced system:
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∂~U

∂t
+ M (x, ~U)

d~U

dx
= ~S ′(x, ~U)

M(x, ~U) = J(x, ~U) + H(x, ~U)

(21)

The friction source term is evaluated using the Manning law:

Sf =
n2|u|u
Rh

4/3
(22)

being n the Manning roughness coefficient and Rh = A/P the hydraulic
radius of the cross-section with P the wetted perimeter.

Finally, there only remains the evaluation of the unit solid discharge
derivatives (∂qs/∂A and ∂qs/∂Q) and the bed variation celerity cb. There-
fore, it is necessary to define both the expression for the solid transport rate
per unit width (Section 2.3) and the physical mechanism for the cross-section
shape actualization (Section 2.4), in order to obtain complete expressions for
the governing equations.

2.3. Bed load transport rate
Most of the capacity numerical models that can be found in literature

use the Grass law [41] to model the bed load transport rate per unit width
qs(A,Q). For the Grass model, qs only depends on the hydrodynamical
conserved variables A and Q obeying the following expression:

qs(A,Q) = Ag|u|2u = Agu
3 (23)

where Ag [s2/m] is a coefficient which takes into account the kinematic vis-
cosity and the grain diameter and is experimentally obtained for each case.
Grass model allows us to obtain an explicit expression for the approximate
Roe’s matrix associated to each local Riemann problem. Following the pro-
cedure developed by [32] and extended by [17], the Grass model can be easily
adapted to different empirical closure formulae, as Meyer-Peter-Müller model
[42], Smart model [43] or Nielsen model [44].

From (23), it is possible to evaluate the third row components of the

matrix J(x, ~U) in system (20) as follows:

J31 = ξB
∂qs
∂A

= ξBAg
∂u3

∂A
= −ξBAg

3u2

A
u = −ud

J32 = ξB
∂qs
∂Q

= ξBAg
∂u3

∂Q
= ξBAg

3u2

A
= d

(24)

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.4. Erosion-deposition mechanism at the cross-section

There is some freedom in the choice of the erosion-deposition mecha-
nism at every cross-section. Three different methods to compute the cross-
sectional distribution of the updated solid mass are reported in this section.
None of them include information about the streamwise channel curvature,
which may be a limitation in meandering rivers. Nevertheless, the proposed
methods are enough to approximate the cross-sectional bed evolution in many
real-scale morphodynamical flows [11].

As a first and simple approximation, the material of As can be assumed
to change following horizontal layers [option A]:

[Option A]
∂εb
∂As

= 1/Bb c2b = g
A

Bb

(25)

or uniformly at the whole wetted perimeter [option B]:

[Option B]
∂εb
∂As

= 1/P c2b = g
A

P
= gRh (26)

where Bb(x,As) is the channel width at the bed level.
However, a more complex mechanism is the evaluation of the bed variation

at each point of the cross-section as a function of the boundary shear stress
distribution. Following a modified version of the approach reported by [11],
the temporal variation of the sediment layer thickness at a partition j of
width δy in the channel cross-section (∆εj) can be evaluated as:

∆εj = Kj
∆As
δy

(27)

being ∆As the temporal variation of solid area at the whole cross-section
and Kj a weighting coefficient calculated as a function of the boundary shear
stress at the partition j (Fig. 2). Coefficients Kj for each point of the
cross-section are calculated as follows:

1. Erosion (∆As < 0)

Kj =
(γτj − τmin)3/2∑
j

(γτj − τmin)3/2
with: γ =

ρwgRh|Sf |
τmin

(28)

2. Deposition (∆As > 0)
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Figure 2: Sketch for the stress cross-section weighted updating mechanism.

Kj =
(τmax − γτj)3/2∑
j

(τmax − γτj)3/2
with: γ =

ρwgRh|Sf |
τmax

(29)

where τj is the boundary shear stress module at partition j, τmin and τmax are
the minimum and maximum (in module) boundary shear stress at the cross-
section, respectively. The parameter γ ensures that all the bed points located
under the water surface level will be moved upward or downward depending
on erosion or deposition taking place and avoiding that Kj becomes nil. The
computation of τj can be performed in different ways [45–47]. For the type
of problems considered in this work, τj can be calculated as τj = ρwghj|Sf |
[45].

From expressions (28) and (29) evaluated at the lowest point b of the
cross-section Kj(j ≡ b) = Kb, the bed variation celerity cb at the cross-
section can be calculated as:

[Option C]
∂εb
∂As

=
Kb

δy
c2b = gA

Kb

δy
(30)

3. Numerical scheme

The system of equations (21) is solved according to a finite volume
method. The domain is divided in computational cells of constant size
δx = xi+1/2 − xi−1/2. The coupled system is integrated in each cell and,
applying Gauss theorem:

d

dt

∫ i+1/2

i−1/2
~Udx+ ~Ei+1/2 − ~Ei−1/2 =

∫ i+1/2

i−1/2
~S ′dx (31)
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where ~Ei+1/2 represents the intercell fluxes at the cell face i+1/2. We indicate

the cell-average value of the solution ~U(x, t) for the cell i at time tn as ~Un
i ,

defined as:

~Un
i =

1

δx

∫ i+1/2

i−1/2
~U(x, tn)dx (32)

Therefore, assuming a piecewise representation of the conserved variables
and fluxes, the first order Godunov’s method provides a way to update the
averaged values of the solution ~Un

i to the next time step tn+1. The local
Riemann problem associated to each cell face is solved independently and
the resulting values for the conserved variables should be cell-averaged again
to obtain the updated solution ~Un+1

i :

~Un+1
i = ~Un

i −
∆t

δx

[
δ ~E|i+1/2 − δ ~E|i−1/2

]
+ ∆t

∫ i+1/2

i−1/2
~S ′(x, tn)dx (33)

being δ ~E|i+1/2 = ~En
i+1 − ~En

i the difference of the fluxes at the neighbour-
ing cells, including both conservative and non-conservative fluxes. Since the
source terms are not necessarily constant, we assume the following lineariza-
tion:

~S ′|i+1/2 =

∫ i+1

i

~S ′(x, tn)dx (34)

The numerical scheme could be rewritten as:

~Un+1
i = ~Un

i −
∆t

∆x

[
(δ ~E − ~S ′∆x)|i+1/2 − (δ ~E − ~S ′∆x)|i−1/2

]
(35)

The definition of the numerical scheme in the Godunov’s method must be
completed by the definition of an approximate solver for the local Riemann
problem governed by the fluxes ( ~En

i and ~En
i+1) and the source terms.

3.1. Roe’s approximate solver for the classical Grass model (Ag = const)

The solution at the next time ~U(x, tn+1) is approximated by cell-averaging
the solution of an equivalent linearized Riemann problem associated to each
cell face. The integral of the approximate solution Û(x, t) over a suitable
control volume must be equal to the integral of the exact solution over the
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same control volume (Consistency Condition). For each edge i + 1/2, sepa-
rating cells i and i+ 1, a linearised local RP can be defined, described by the
following hyperbolic system of equations:

∂Û

∂t
+ M̃(~Ui, ~Ui+1)

dÛ

dx
= ~̃S ′(~Ui, ~Ui+1)

M̃ (~Ui, ~Ui+1) = J̃(~Ui, ~Ui+1) + H̃(~Ui, ~Ui+1)

Û(x, 0) =

{
~Ui if x < 0
~Ui+1 if x > 0

(36)

Therefore, two proper linearized matrices J̃(~Ui, ~Ui+1) and H̃(~Ui, ~Ui+1) are
required, with the following Roe’s averaged components:

J̃(~Ui, ~Ui+1) =




0 1 0
c̃2 − ũ2 2ũ 0

−ũd̃ d̃ 0


 H̃(~Ui, ~Ui+1) =




0 0 0
0 0 c̃b

2

0 0 0


 (37)

The approximated matrices J̃ and H̃ should agree with the main prop-
erties for each local Riemann problem:

{
δ ~F |i+1/2 = J̃(~Ui, ~Ui+1) δ~U |i+1/2

J̃(~Ui, ~Ui+1) = J(~Ui)

{
~Tb|i+1/2 = H̃(~Ui, ~Ui+1) δ~U |i+1/2

H̃(~Ui, ~Ui+1) = H(~Ui)

(38)

being δ ~F |i+1/2 and ~Tb|i+1/2 the conservative fluxes jump and the non-
conservative flux vectors, respectively, at the interface i + 1/2. Application
of conditions (38) leads to the Roe’s averaged quantities for the velocity ũ,

the infinitesimal waves celerity c̃ and the solid discharge derivative d̃.

c̃ =

√
g
Ai + Ai+1

Bi +Bi+1

ũ =
ui
√
Ai + ui+1

√
Ai+1√

Ai +
√
Ai+1

d̃ = ξB̄Ag(u
2
i + u2i+1 + uiui+1)

√
Ai +

√
Ai+1√

AiAi+1 + Ai
√
Ai+1

(39)

being B̄ = (Bi +Bi+1)/2.
On the other hand, it is possible to approximate the non-conservative flux

vector at the intercell edge i+ 1/2 in the following way:

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

~Tb|i+1/2 =

(
0, gĀ

∂εb
∂As

δAs|i+1/2, 0

)T
(40)

Considering again the set of conditions (38), the definition of an explicit
expression for the averaged value of the bed variation celerity c̃b is straight-
forward:

c̃b =

√
gĀ

∂εb
∂As

(41)

with Ā = (Ai + Ai+1)/2 and ∂εb
∂As

=

[(
∂εb
∂As

)
i
+
(
∂εb
∂As

)
i+1

]
/2.

Therefore, by simply rewriting M̃ (~Ui, ~Ui+1) = J̃(~Ui, ~Ui+1) + H̃(~Ui, ~Ui+1)
the complete linearized matrix for the coupled system (36), which should be
solved at each intercell edge, can be obtained.

M̃ (~Ui, ~Ui+1) =




0 1 0
c̃2 − ũ2 2ũ c̃b

2

−ũd̃ d̃ 0


 (42)

Although similar Roe’s averaged quantities were reported by [30] for a 1D
unit-width coupled scheme, this is the first time –to the authors knowledge–
that these analytical expressions have been obtained for cross-section aver-
aged models.

3.1.1. Eigenstructure

The analysis of the eigenstructure of the matrix M̃ is of interest. Previ-
ous efforts in this sense and dealing with bed load and suspended load were
reported in [48, 49]. [2] and [3] proposed expressions to approximate the hy-
perbolic system eigenvalues for the 1D erosive bed load problem, but they did
not consider irregular topography neither the influence of the cross-section
update mechanism on the characteristic wave celerities.

The eigenvalues of the hyperbolic system (36), describing each local Rie-
mann problem, are the roots of the characteristic polynomial of matrix
M̃ (~Ui, ~Ui+1), defined as:

PM̃(λ̃) = |M̃ − λ̃I| = −λ̃
[
(ũ− λ̃)2 − c̃2

]
+ c̃b

2d̃ (λ̃− ũ) = 0 (43)
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Therefore, the roots of PM̃(λ̃) could be understood as the intersection of

a cubic polynomial f1(λ̃) = λ̃
[
(ũ− λ̃)2 − c̃2

]
(related to the hydrodynamic

component of the coupled system) with the straight line f2(λ̃) = c̃b
2d̃ (λ̃− ũ),

related to the morphodynamic component. As [50] and [26] pointed out in
the particular case of unit width rectangular channels, this kind of hyperbolic
systems has always two eigenvalues of the same sign as the flow velocity and
another one with opposite sign (Fig. 3), regardless of the flow regime.

Figure 3: Eigenvalues scheme for the linearized coupled system: (top left) subcritical
regime, (top right) critical regime and (bottom) supercritical regime. Flow av-
eraged velocity is considered positive ũ > 0.

On the other hand, the roots of PM̃(λ̃) could also be calculated by the
Cardano-Vieta formula, considering the complete form of the characteristic
polynomial PM̃(λ̃):

PM̃(λ̃) = −λ̃3 + 2ũλ̃2 +
(
c̃2 − ũ2 + c̃b

2d̃
)
λ̃− c̃b2ũd̃ = 0

λ̃3 + a1λ̃
2 + a2λ̃+ a3 = 0

with: a1 = −2ũ a2 = ũ2 − c̃2 − c̃b2d̃ a3 = c̃b
2ũd̃

(44)
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λ̃1 = 2
√
−L cos(θ/3)− a1/3

λ̃2 = 2
√
−L cos(θ/3 + 2π/3)− a1/3

λ̃3 = 2
√
−L cos(θ/3 + 4π/3)− a1/3

where : L =
3a2 − a21

9
θ = acos

(
R√
−L3

)
R =

9a1a2 − 27a3 − 2a31
54

The system is strictly hyperbolic if L3 + R2 > 0. For cases with qs
evaluated by the classical Grass model (Ag = const), that is always true.
For cases with qs evaluated by other empirical models, the only condition
necessary to ensure the hyperbolicity is |ũ| < 6c̃ [26].

Moreover, the influence of the cross-section updating mechanism (see Sec-
tion 2.4) on the hydro-morphological model is incorporated by means of the
bed variation celerity cb into the coupled conservative system solution. The
selection of a specific mechanism modifies the averaged waves celerity and
the whole eigenstructure of the local RP. Fig. 4-left shows a comparison
of the coupled eigenvalues λ̃1, λ̃2 and λ̃3 with the common values for the
fixed-bed shallow water problem (ũ − c̃ and ũ + c̃). The influence of the
morphodynamical updating criteria in the coupled eigenstructure increases
for the stress weighted erosion mechanism and is less marked for the stress
weighted deposition (both option C). Moreover, this influence also increases

as the Froude number increases, separating the coupled eigenvalues λ̃1 and
λ̃3 from those characteristic of the shallow water system, regardless of the
cross-section change criterion adopted (see Fig. 4-left). This fact affects the
stability region of the problem and hence the model efficiency. Deposition in
horizontal layers (option A) and uniform erosion-deposition (option B) show
an intermediate behaviour between those reported for the option C.

Furthermore, the bed variation celerity does not depend on the flow fea-
tures, even for the mechanism C. This proves that cb is a geometrical param-
eter related to the cross-sectional shape, regardless of the erosion-deposition
mechanism selected (Fig. 4-right).

The right eigenvectors basis ~̃em for the system can be calculated as:

M̃ ~̃em = λ̃m~̃em (45)

By setting ẽ1m = 1, one can obtain the values for the second component
ẽ2m and the third component ẽ3m of the right eigenvectors:
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Figure 4: (Left) Eigenvalues of the coupled system λ̃1, λ̃2 and λ̃3 and (right) bed variation
celerity cb as a function of the Froude number for a trapezoidal cross-section,
depending on the cross-section updating mechanism.

~̃em =

(
1, λ̃m,

(λ̃m − ũ)2 − c̃2
c̃b

2

)T

(46)

Finally, conserved variable differences δ~U |i+1/2 and source term integrals

~̃S ′∆x|i+1/2 at the intercell edge i+ 1/2 are projected on the eigenvector basis

~̃em in order to obtain the wave and source strengths, α̃m and β̃m respectively.

δ~U |i+1/2 =
∑

m

α̃m~̃em

~̃S ′∆x|i+1/2 =
∑

m

β̃m~̃em
(47)

A complete description of the explicit expressions obtained for the wave
and source strengths can be found in Appendix A, together with other
aspects related to the averaged source terms computation.

Therefore, it is possible to express the flux differences and the source
terms integral at the intercell edge i+ 1/2 as their projection onto the right
eigenvector basis of the approximate Jacobian matrix of the hyperbolic sys-
tem (36):

(δ ~E − ~S ′∆x)|i+1/2 =
∑

m

(
λ̃mα̃m − β̃m

)
~̃em

∣∣∣
i+1/2

(48)
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Finally, the augmented Roe’s upwind scheme considering Ag = cte
through the intercell edge is written as:

~Un+1
i = ~Un

i −
∆t

∆x

[∑

m

(
λ̃+mα̃m − β̃m

)
~̃em

∣∣∣
i−1/2

+
∑

m

(
λ̃−mα̃m − β̃m

)
~̃em

∣∣∣
i+1/2

]

with: λ̃±m =
λ̃m ± |λ̃m|

2
(49)

3.2. Roe’s approximate solver for empirical models (Ag 6= const)

In realistic applications, the solid transport rate is evaluated as a function
of the bottom shear stress τ . To estimate a value for the solid transport rate
per unit width, any of the experimental models published in literature could
be considered. [32] and [17] reported a method to adjust the Grass model to
these empirical formulae. The method simply modifies the Grass coefficient
value as a function, leading to different Grass coefficients Ag in the cells i
and i + 1. In these cases, and following [32], it is possible to evaluate the
solid discharge at each side of the cell face considering an averaged Grass
coefficient Āg|i+1/2:

Āg|i+1/2 =
Agi + Agi+1

2

Q̄si = Qs(Āg|i+1/2, ~Ui) Q̄si+1 = Qs(Āg|i+1/2, ~Ui+1)

Qsi = Qs(Agi, ~Ui) Qsi+1 = Qs(Agi+1, ~Ui+1)

(50)

Therefore, the total flux differences at the intercell i+ 1/2 can be written
as:

δQs|i+1/2 = δQ̄s|i+1/2 + δ(Qs − Q̄s)|i+1/2 (51)

with:

δQs|i+1/2 = Qsi+1 −Qsi

δQ̄s|i+1/2 = Q̄si+1 − Q̄si

δ(Qs − Q̄s)|i+1/2 = (Qsi+1 − Q̄si+1)︸ ︷︷ ︸
Cell i+1

− (Qsi − Q̄si)︸ ︷︷ ︸
Cell i

(52)
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Therefore, δQ̄s|i+1/2 is evaluated by the Roe’s method considering a non-
conservative Jacobian matrix, leading to the scheme (49). However, to ensure
bed load conservation, the solid flux difference δ(Qs − Q̄s)|i+1/2 should be
included by means of a new cellwise contribution which does not require any
splitting [32].

~Un+1
i = ~Un

i −
∆t

∆x

[∑

m

(
λ̃+mα̃m − β̃m

)
~̃em

∣∣∣
i−1/2

+
∑

m

(
λ̃−mα̃m − β̃m

)
~̃em

∣∣∣
i+1/2

]

− ∆t

∆x

[
δ ~F ∗i

∣∣∣
i−1/2

+ δ ~F ∗i

∣∣∣
i+1/2

]

(53)
being:

δ ~F ∗i

∣∣∣
i−1/2

=
[
0, 0, ξBi|ui|2ui(Agi − Āg|i−1/2)

]T

δ ~F ∗i

∣∣∣
i+1/2

=
[
0, 0, ξBi|ui|2ui(Āg|i+1/2 − Agi)

]T (54)

Following [32], from now on, the updating numerical scheme (53) will be
referred as Conservative Coupled Model (CCM) to clearly distinguish it from
the numerical scheme (49), which will be called as NCCM (Non-Conservative
Coupled Model).

3.3. Numerical fixes

3.3.1. Wetted area positivity

The cell averaging process could lead to unphysical negative wetted area
values due to the local Riemann problem linearization process at the cell
interfaces [51]. This problem can be avoided by enforcing positivity on the
wetted area values of the RP intermediate states. Following the formulation
in [37], the wetted area intermediate values considering right flow direction
(ũ > 0) can be expressed as:
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A∗i = Ani +

(
α̃1 −

β̃1

λ̃1

)

A∗∗∗i+1 = Ani+1 −
(
α̃3 −

β̃3

λ̃3

)

A∗∗i+1 = A∗∗∗i+1 −
(
α̃2 −

β̃2

λ̃2

)
(55)

being λ̃1 < 0 and λ̃2, λ̃3 > 0.
Positive values of the wetted area intermediate states (A∗, A∗∗, A∗∗∗) are

enforced by a proper reconstruction of the source strength βm values. This
limitation is only applied to wet-wet walls since in dry-wet walls the appear-
ance of negatives values of A∗, A∗∗, A∗∗∗ in the approximate solution is helpful
to provide a correct tracking of the flood advance.

Unlike fixed bed cases, with movable bed there always exists a wave mov-
ing upstream. The advantage is that the numerical method does not require
the usual entropy correction. The drawback is that the cell averaging process
does not ensure positivity of the solution in supercritical cases. Therefore the
intermediate states positivity control is also needed in supercritical regimes.

Enforcing A∗, A∗∗, A∗∗∗ ≥ 0, minimum values for the corresponding source
strengths β̃m can be derived:

β̃1min = −Ani |λ̃1| − |λ̃1|α̃1

β̃3min = −Ani+1λ̃3 + λ̃3α̃3

β̃2min = −A∗∗∗i+1λ̃2 + λ̃2α̃2

(56)

In the case A∗i < 0, the new value of β̃1 is redefined as β̃1min. To ensure

conservation, β̃2 and β̃3 should be redefined according to:

β̃1 + β̃2 + β̃3 = 0

β̃1ẽ
3
1 + β̃2ẽ

3
2 + β̃3ẽ

3
3 = S̄ ′3∆x

(57)

This lead to new values for all source strengths:
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β̃1 = β̃1min

β̃3 =
S̄ ′3∆x− β̃1(ẽ31 − ẽ32)

ẽ33 − ẽ32
β̃2 = −(β̃1 + β̃3)

(58)

It is necessary to check that β̃2 ≥ β̃2min and β̃3 ≥ β̃3min to ensure that
A∗∗i+1 and A∗∗∗i+1 remain also positive. This procedure could be extended in a
similar way to the cases A∗∗i+1 < 0 and A∗∗∗i+1 < 0.

3.3.2. Reduction to non-movable bed flow

During a dynamical erosive event, it is possible that erosion-deposition
is not active in some intercell edges. Therefore, for these cases the numer-
ical scheme should reduce to the shallow water flow over non-movable bed
solution. Basically this is a consequence of the shear stress on the channel
bottom τ in two consecutive cells being lower than the threshold τc, hence the
solid discharge does not exist through the edge connecting these two cells.

In this case, the Grass coefficient at both cells is set to zero (Agi =

Agi+1 = 0) and the solid discharge derivative d̃|i+1/2 is nil. Considering ũ > 0
the Roe’s averaged eigenvalues at the intercell edge i+ 1/2 evolve as follows:

1. Subcritical case:

λ̃1 = ũ− c̃ < 0 λ̃2 = 0 λ̃3 = ũ+ c̃ > 0

~̃e1 = (1, ũ− c̃, 0)T ~̃e2 =

(
1, 0,

ũ2 − c̃2
c̃b

2

)T
~̃e3 = (1, ũ+ c̃, 0)T

(59)

2. Supercritical case:

λ̃1 = 0 λ̃2 = ũ− c̃ > 0 λ̃3 = ũ+ c̃ > 0

~̃e1 =

(
1, 0,

ũ2 − c̃2
c̃b

2

)T
~̃e2 = (1, ũ− c̃, 0)T ~̃e3 = (1, ũ+ c̃, 0)T

(60)

Therefore, one of the original genuinely non-linear characteristic fields of
the coupled system evolves to a linearly degenerated field (λ̃2 for subcritical

cases and λ̃1 for supercritical cases), appearing a contact wave caused by the
non-conservative flux included in the Jacobian Roe’s matrix [52].
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In cases where a rarefaction wave with a critical point exists, the flow
changes from subcritical to supercritical regime at cells i and i + 1, respec-
tively (Fig. 5). In this situation, transonic rarefaction phenomena could not
be evaluated by the numerical scheme properly without an entropy-preserving
redistribution of the affected waves.

Figure 5: Wave orientation at cells and intercell edge for a trans-sonic rarefaction wave
case with non-movable bed: (left) subcritical edge case and (right) supercritical
edge case.

In the particular case when rarefaction wave appears at any intercell edge
with a bed discontinuity, the implementation of the classical [53] entropy
fix has been found not to be directly applicable due to the presence of two
overlapping contact waves, one generated by the source terms and one caused
by the non-conservative flux associated to a bed discontinuity [52]. Therefore,
in these cases a correction on the wave and source strengths must be done,
restoring the non-conservative flux to the bed slope source term.

Considering the subcritical case (λ̃2 = 0), the corrected values of α̃′ and

β̃′ are computed in the following way:

α̃′1 = α̃1 +
c̃b

2δAs
2c̃(ũ− c̃) α̃′2 = 0 α̃′3 = α̃3 −

c̃b
2δAs

2c̃(ũ+ c̃)

β̃′1 = β̃1 +
c̃b

2δAs
2c̃

β̃′2 = 0 β̃′3 = β̃3 −
c̃b

2δAs
2c̃

(61)

Finally, an efficient entropy-preserving correction could be computed by
affecting the waves celerity and source strengths as follows:
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λL1 = ui − ci < 0 λL2 = 0 λL3 = ui + ci > 0

λR1 = 0 λR2 = ui+1 − ci+1 > 0 λR3 = ui+1 + ci+1 > 0

λI = λL1
λR2 − λ̂
λR2 − λL1

λJ = λR2
λ̂− λL1
λR2 − λL1

(62)

So that λ̂ = λI + λJ , being:

λ̂ =

{
λ̃1 if λ̃1 6= 0

λ̃2 if λ̃2 6= 0
(63)

Concerning the source strength, the new redistributed values can be ex-
pressed as follows:

β̂ = βI + βJ with: βI = β̂ βJ = 0 (64)

being:

β̂ =

{
β̃′1 if λ̃1 6= 0

β̃′2 if λ̃2 6= 0

The wave with the subscript I affects the left cell (λI < 0), whereas the
wave with the subscript J affects to right cell (λJ > 0).

3.4. Stability region

For each intercell edge i+1/2, the time step should be dynamically limited
to ensure that there is no interaction of waves from neighboring Riemann
problems. If the positivity of all wetted area values in the intermediate
states of the solution is guaranteed (see Section 3.3.1) A∗i ≥ 0, A∗∗i ≥ 0 and

A∗∗∗i ≥ 0, in order to construct an updated cell average solution ~Un+1
i , it is

only necessary that the edge values Û(x, t) remain constant in time over the
entire time step. This unique requirement allows us to define an upper limit
for the time step depending only on the characteristic waves celerity and the
spatial cell size. In consequence, the stability region at the intercell edge k
is defined as:

∆t ≤ ∆tλ̃|k ∆tλ̃|k =
∆x

max
m

(|λ̃m|)
(65)
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Therefore, the global time step for the updated solution calculation is
obtained applying a CFL condition:

∆t = CFL
N

min
k=1

(∆tλ̃|k) (66)

where CFL ≤ 1 and N is the total number of local RP which should be
solved at each time calculation.

4. Numerical tests

4.1. Performance of the model in non-movable bed conditions

In non-movable bed conditions, the numerical scheme should reduce to
the common shallow water solution for variable cross-section channels [37].
The performance of the model in these conditions was tested by means of two
ideal dam-break flows over a rigid bed step. The Grass coefficient Ag was set
nil at the whole domain. Initial conditions are summarized in Table 1. The
domain was a prismatic rectangular cross-section channel with Bb = 1 m and
30 m length. The solution was evolved to a final time t = 1 s with CFL = 1.

Test hL (m) hR (m) uL (m/s) uR (m/s) εbL (m) εbR (m) Ag

Test 1 3.5 1.5 0 0 1.5 1.0 0
Test 2 15.5 1.5 0 0 2.0 1.0 0

Table 1: Summary of the dam-break over non-movable bed step test cases.

Figure 6: Free-surface level (left) and eigenvalues at t = 1 s (right) for subcritical dam-
break with non-movable bed conditions.
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In Test 1 (Fig. 6) the unsteady flow remains always subcritical and the

erosive coupled model eigenvalues λ̃1 and λ̃3 reduce to the common wave
celerities for the shallow water scheme, ũ− c̃ and ũ+ c̃, whereas the second
eigenvalue λ̃2 remains nil for all the simulated times.

Figure 7: Free-surface level (left) and eigenvalues at t = 1 s (right) for supercritical dam-
break with non-movable bed conditions.

However, for Test 2 (Fig. 7), the flow regime changes from subcritical
upstream to supercritical downstream the bed step. At the subcritical flow
reach, the first eigenvalue λ̃1 = ũ− c̃ and the second one is nil. Nevertheless,
at the supercritical reach λ̃2 = ũ − c̃ and λ1 becomes nil. Therefore, an
entropy fix is needed to keep a physically proper numerical solution at the
bed step. The third eigenvalue is λ̃3 = ũ + c̃, regardless of the flow regime.
Moreover, the free-surface level predicted by the CCM model agrees perfectly
with the original shallow water scheme in both subcritical and supercritical
cases. Therefore, the CCM model is able to reduce accurately to the original
shallow water model for intercell edges in which erosion phenomena do not
exist.

4.2. Equilibrium slopes for steady flow regimes

The aim of these test cases is to assess the ability of the proposed method
to converge to the exact solution in erosive steady flow regimes, behaving
in a well-balanced form. The geometry for test A and B is a rectangular
channel with constant width Bb = 1 m (Fig. 8). The inlet discharge is
constant (QIN = 1 m3/s) and the bed layer thickness at the inlet is set to
εb(x = 0) = 2 m. The initial flow conditions correspond to a uniform regime
with Q = 1 m3/s, S0 = 0.002 and n = 0.02sm−1/3. The water depth at

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the channel outlet is set to h(x = 100) = 0.943 m, corresponding to the
constant water depth above the uniform regime. The equilibrium bed slope
for uniform flow in prismatic rectangular channels (S0 = Sf ) is considered
here as exact solution. The simulation was evolved until it reached the steady
state with a constant Grass coefficient Ag = 0.01 in all the test cases. All
the simulations were made with CFL = 1, ∆x = 1 m.

Figure 8: Width variation scheme for (left) tests A and B, (center) test C and (right) test
D.

In test A (Fig. 9-left), the initial bed slope was set to S0 = 0.007,
higher than the equilibrium slope in uniform regime. The numerical solution
progressively adapts the bed level by sediment deposition until the steady
state for S0 = 0.002 is reached. In test B (Fig. 9-right) the numerical
method also moves the bed level progressively by an erosion mechanism,
from an initial flat bottom to the equilibrium exact solution.

Figure 9: Numerical results and exact solution for steady states in prismatic rectangular
cross-section channels: (left) Test A with bed deposition and (right) Test B with
bed erosion.

The geometry for variable cross-section cases was a rectangular channel
with linearly variable width from Bb = 1 m at x = 20 m to Bb = 0.5 m (Test
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C) and Bb = 3.0 m (Test D) at x = 80 m (Fig. 8). Discharge and bed level
at the inlet were set to 1 m3/s and 2 m, respectively. The initial bed slope
was set to S0 = 0.002 in both cases. The goal of these tests is to evaluate
the influence of the width variation on the bed level evolution respect to a
stable state for a prismatic rectangular cross-section channel. Initial flow
conditions were the same as in tests A and B and the output water depth
boundary condition was that corresponding to a uniform flow in a prismatic
channel of Bb = 0.5 m (Test C) and Bb = 3 m (Test D).

Figure 10: Numerical results and exact solution for steady states in channels with rectan-
gular cross-section and width variation: (left) Test C with progressive longitu-
dinal contraction and (right) Test D with progressive longitudinal expansion.

The numerical bed evolution in Case C (Fig. 10-left) shows a bed erosion
downstream caused by an increase in the solid transport rate per unit width
qs. On the other hand, the width expansion (Test D) leads to a progressively
lower solid discharge qs, hence the bed level increases downstream (Fig. 10-
right). However, the total solid discharge Qs in the channel remains constant
for both cases, indicating that the steady state is reached. Numerical results
for the bed level agree perfectly with the exact solution derived from imposing
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steady conditions in a rectangular channel of variable width (67). Deduction
of this exact solution is detailed in Appendix B. The equilibrium bed slope
for prismatic rectangular channels of width 1 m, 0.5 m and 3 m are also
depicted in Fig. 10, showing a perfect agreement with those numerically
calculated at x < 20 m and x > 80 m.

S0 = Sf −
1

3

h

B
(Fr2 + 2)

dB

dx
(67)

4.3. Dam-break with analytical solution

Three test problems with exact solution presented in [32] are reported
in this section. The tests are one-dimensional Riemann problem for mov-
able bed, in which the friction shear stress term has been neglected in the
momentum equation. Features and initial condition for the three problems
are summarized in Table 2. All the simulations were made with CFL = 1,
∆x = 0.01 m and sediment layer porosity p = 0.4. Results predicted by the
CCM model are presented for a final simulation time t = 2 s.

Test hL (m) hR (m) uL (m/s) uR (m/s) εbL (m) εbR (m) Ag (dim)
DAS1 2.0 2.0 0.25495 2.3251 3.0 2.846848 0.01
DAS2 2.25 1.18868612 0.2050 2.4322 5.0 5.124685 0.01
DAS3 6.0 5.2 0.30037 15.16725 3.0 4.631165 0.01/h

Table 2: Summary of the dam-break test cases with exact solution.

Cases DAS1 and DAS2 prove the performance of the numerical scheme to
converge to the exact solution of both Riemann problems. The CCM model
correctly reproduces the rarefaction waves involved in these two problems.
The contact and shock waves were also captured accurately, in terms of
strength and position, for all the conserved variables. Results for cases DAS1
and DAS2 at the final simulation time are depicted in figures 11 and 12
respectively, together with the exact solution for both problems. For a more
complex description of the wave structure involved in each problem see [32].

Test DAS3 assumes that the Grass coefficient is not constant but it varies
as a function of the water depth. To clarify the influence of the cellwise
flux term in the numerical formulation when Ag is not constant through the
local Riemann problem, results for DAS3 with the conservative and non-
conservative schemes are depicted in figure 13, together with the exact solu-
tion for the last simulated time. The CCM model is able to describe properly
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Figure 11: Numerical and exact solution at t = 2 s for the test case DAS1.

the solution structure for all the conserved variables and all the waves were
captured accurately. Furthermore, with the NCCM model the numerical so-
lution degenerates clearly due to the lack of conservation of the solid bed
material volume.

4.4. Dam-break over bed step and cross-section change

The aim of this section is to assess the performance of the numerical
scheme to deal with transient flow through cross-section shape changes. A
dam-break case with hL = 2.5 m and hR = 0.7 m is simulated over a bed
step (εbL = 1.5 m and εbR = 1.0 m) for different cross-section shapes both
upstream and downstream. A progressive linear cross-section transition oc-
curs between x = −1 m and x = +1 m]. Upstream and downstream this
transition region, the channel is prismatic, with the cross-sections indicated
in Table 3. The discontinuity in the water surface and the bed step are
located at x = 0.
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Figure 12: Numerical and exact solution at t = 2 s for the test case DAS2.

All the cases were simulated with CFL = 1, ∆x = 0.05 m and sediment
layer porosity p = 0.6. The Manning coefficient was n = 0.025sm−1/3 and
the solid discharge per unit width was estimated by the Meyer-Peter-Müller
model. The solution was evolved with the horizontal layer erosion-deposition
mechanism (Option A) until a final simulation time t = 3.0 s.

The numerical model is able to handle the solid discharge variations
caused by sudden expansions and contractions in rectangular channels (Fig.
14). An expansion downstream leads to higher erosion upstream the bed
step. On the contrary, a contraction downstream caused a lower erosion
upstream the bed step.

Finally, the ability of the scheme to handle cross-section shape changes
is evaluated by Test 4 and Test 5. Results for a prismatic rectangular (Test
1) and prismatic trapezoidal (Test 6) channels were selected as reference.
Results depicted in Fig. 15 show the influence of the cross-section shape
change over the erosion on the bed step, leading to marked differences with
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Figure 13: Numerical and exact solution at t = 2 s for the test case DAS3.

respect to the case in which only the width varies but the shape remains
rectangular.

4.5. Experimental dam-break in rectangular channel

The aim of this section is to assess the performance of the CCM model by
comparing the obtained numerical results with experimental measurements
for a set of laboratory dam-breaks over a sand bed. For these cases, the
Grass coefficient is assumed variable and evaluated by an empirical law. The
experiments was performed by [54] in a rectangular cross-section flume of
6,3 m length on both sides of a central gate and 25 cm width. The bed
was formed by a uniform coarse sand of median diameter dm = 1.82mm,
density ρs = 2683 kg/m3, friction angle ϕ = 30◦, negligible cohesion and
porosity p = 0.47. The Manning roughness coefficient was estimated as
n = 0.0165 sm−1/3.

Two different experimental dam-break cases have been reproduced, vary-
ing the water depth upstream and downstream the central gate. Table 4
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Test Up-shape Bb (m) tgψ Down-shape Bb (m) tgψ Ag

1 Rectangular 1.0 0 Rectangular 1.0 0 MPM
2 Rectangular 1.0 0 Rectangular 1.25 0 MPM
3 Rectangular 1.0 0 Rectangular 0.75 0 MPM
4 Rectangular 1.0 0 Trapezoidal 1.25 0.2 MPM
5 Trapezoidal 1.25 0.2 Rectangular 1.0 0 MPM
6 Trapezoidal 1.25 0.2 Trapezoidal 1.25 0.2 MPM

Table 3: Summary of the geometrical features for the hypothetical dam-breaks cases.

Figure 14: Dam-breaks in rectangular channels with variable width: (top left) free-surface
level, (top right) bed level at the transition region and (bottom) solid discharge
per unit width qs.
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Figure 15: Dam-breaks in channels with cross-section shape changes: (top left) free-surface
level, (top right) bed level at the transition region and (bottom) solid discharge
per unit width qs.
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shows the features of the simulated dam-breaks. All the simulations were
performed with CFL = 1 and ∆x = 0.01 m and cross-section updating
mechanism A. The solid discharge per unit width was approximated by the
modified Smart formula proposed by [17]. No boundary conditions were
imposed at the downstream ending section.

Test hL (cm) hR (cm) εbL (cm) εbR (cm) Ag

ED1 25 10 10 0 Smart CFBS
ED2 25 0 10 0 Smart CFBS

Table 4: Summary of the experimental dam-break tests. Null value for the bed layer
thickness indicates the reference level.

Experimental and numerical results for the two cases ED1 and ED2 at
times t = 0.5 s, t = 1.0 s and t = 1.5 s are plotted in Fig. 16 and 17. The
computed bed level evolves correctly for the two cases and with the same
velocity observed in the experiments. Furthermore, the free-surface level is
also reasonably well predicted, event at the first stages after the gate opening,
and the progress of the dam-break shock wave agrees with the measured data,
regardless of dry or wet condition downstream the central gate.

Finally, it is worth noting that this is a widely extended benchmark case
which has been used to test other 1D numerical models reported in litera-
ture, most of them fail to predict the earliest stages after the gate opening
[24]. Moreover, the bed and free surfaces computed by the presented coupled
model did not show the numerical oscillations which are common with un-
coupled models for this test case, demonstrating the stability and robustness
of the numerical scheme.

4.6. Experimental dam-break with cross-section degradation

An idealized experimental dam-break over a partially erodible bed was
carried out at the Civil Engineering Laboratory of the UCL (Louvain, Bel-
gium) [55]. A channel 0.495m wide and 5.68m long was divided in half by
a gate and connected with an upstream reservoir (2.44 × 2.39m). Down-
stream the gate (2.92m long), an uniform erodible material was set with a
semi-trapezoidal cross-section. The bed thickness was 8 cm above the non-
erodible channel floor and the bank crosswise slope was 50◦. There was no
slope along the longitudinal direction. Upstream the gate (2.76m long) a

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 16: Measured and computed free-surface and bed levels for case ED1 at (top left)
t = 0.5 s, (top right) t = 1.0 s and (bottom) t = 1.5 s.
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Figure 17: Measured and computed free-surface and bed levels for case ED2 at (top left)
t = 0.5 s, (top right) t = 1.0 s and (bottom) t = 1.5 s.
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rigid bank with the same cross-section as the erodible reach was set to mini-
mize two-dimensional flow phenomena. A scheme of the experimental setup
is shown in Fig. 18. The erodible material was a coarse uniform sand of me-
dian diameter dm = 1.8mm, a density ρ = 2615 kg/m3, and a bed porosity
p = 0.405.

Figure 18: Sketch of the experimental setup [55]: (left) top view and (right) section A-A’.

An initial water depth h0 = 15 cm above the bed was set upstream the
gate. Downstream the gate, the bed material was initially saturated. Then
the gate was suddenly open, releasing a dam-break wave which rapidly prop-
agated along the erodible reach. The highly erosive flow attacked the toe of
the bank, triggering a series of intermittent bank failures. Thus, the desta-
bilized material was transported downstream by the flow. The erodible bed
evolution was measured at different cross-sections downstream the gate by a
laser-sheet imaging technique. Approximately 10 seconds after the gate open-
ing most of the morphological change had occurred, although experimental
measurements were reported until 15 seconds after the wave releasing.

This is a challenging benchmark test for 1D erosive models since marked
two-dimensional flow phenomena occur in the near-field of the gate. More-
over, the occurrence of bank failure forces to incorporate a mechanism in the
numerical scheme to reproduce properly the embankment stability. There-
fore, a conservative numerical procedure is introduced in the cross-section
updating step of the numerical scheme to correctly predict the bank failures.
A dynamic stability angle of 28◦ is estimated for the cross-section submerged
bed. A Manning’s roughness coefficient n = 0.016 sm−1/3 is estimated for the
erodible material by means of the Strickler formula n = 1

21.1
d
1/6
50 (Strickler,

1932). The Manning’s coefficient of the flume rigid material is also set to
n = 0.01 sm−1/3. The domain is discretized in 525 cells in the longitudinal
direction, with a variable cell size δx which was minimum at the near-field of
the gate (δxmin = 2mm), and 101 panels at the cross direction with constant
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panel size (δy = 5mm).
Fig. 19 depicts the two-dimensional map of erosion-deposition patterns

downstream the gate at t = 10 s for three different experimental closure
transport rate relations and cross-section updating mechanism B. Erosion
zones are marked with warm colors, whereas deposition is represented by
cold colors. The erosion-deposition distribution is quite similar for MPM
and Nielsen transport rates, with a sediment accumulation at the toe of the
bank caused by the stability failures. The highest erosion is predicted at the
embankment head, whereas slight erosion occurs at the channel bed. With
the Smart-CFBS formulation some differences can be appreciated but the
global erosion-deposition distribution follows the same pattern as with the
previous closure relations.

Figure 19: 2D map of erosion-deposition patterns with cross-section updating mechanism
B and Meyer-Peter-Müller, Nielsen and Smart-CFBS transport rate formula
for t = 10.0 s.

Furthermore, the experimental cross-section evolution at x = 0.25m,
x = 0.50m, x = 0.95m and x = 1.50m downstream the gate is shown
for five different times after the gate opening in Fig. 20 (t = 1 s, t = 3 s,
t = 5 s) and Fig. 21 ((t = 10 s, t = 15 s). The predicted cross-sections at
the same instants are also plotted for the Nielsen closure relation and cross-
section updating mechanisms B (uniform) and C (stress weighted erosion and
deposition). Moreover, two-dimensional fields of erosion-deposition patterns
(Nielsen with mechanism B) are also depicted for each time.

The highest differences between computed and measured elevations can
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be observed in the near-field of the gate (profile x = 0.25m) for the first
moments after the gate opening (t = 1 s, t = 3 s). The dam-break wave
attacks the toe of the bank close to the gate, the bank fails and big portions of
the embankment are incorporated to the submerged channel bed. Upstream
the gate, the bank is rigid and hence it can not be eroded by the flow, leading
to the appearance of a marked two-dimensional flow close to the gate which
contributes to increase the bank erosion. As the dam-break wave progresses,
the flow becomes more one-dimensional and the measured and computed bed
elevations start to show a better agreement.

Despite this 2D phenomenon close to the gate, experimental and predicted
cross-section profiles generally show a good agreement, especially with the
simulations performed with the updating mechanism B (uniform erosion-
deposition). The mechanism C (stress weighted erosion-deposition) tends to
overestimate the material removed from erodible bed in the near-field of the
gate (see especially the profile x = 0.25m close to the vertical flume side).
On the other hand, both erosion-deposition options offer quite similar results
for the embankment regions, suggesting that the bank failure phenomena
controlled the cross-section degradation at these regions.

4.7. Dyke-break wave in the River Ha!Ha! (1996)

The aim of this numerical case is to test the model performance against
a real-scale high-erosive flow. In 1996 (July 19–21), the River Ha!Ha! (Que-
bec, Canada) underwent large morphological changes due to the failure of a
secondary earth dyke in the Lake Ha!Ha!. The water level overtopped the
dyke head, eroded a new channel to the river thalweg and caused the lake
drainage. The free-surface level in the lake dropped from 381m AMSL to
370m AMSL in 72 hours and released a drainage hydrograph with a peak
discharge around 1000m3/s. The flood wave progressed along the Ha!Ha!
valley (36Km) until it reached the Ha!Ha! Bay. Fig. 22 shows a general
sketch of the Ha!Ha! valley, extracted from [56].

The river bed resulted largely modified by the flood event from the lake to
the river mouth [57, 58]. High erosion patterns were observed downstream the
dyke (PK0-PK2.5), at the ’Chute-à-Perron’ reach (PK20-PK23.5) and down-
stream the ’Rocheux-et-d’Hamel’ tributary (’Lower Canyon’ reach, PK28-
PK32). Marked sediment accumulation was observed at the ’Eaux-mortes’
reach (PK23.5-PK27), where the material eroded in ’Chute-à-Perron’ was
partially deposed. Finally, channel widening was observed in the near reach
to the river mouth (PK32-PK36). This is a widely extended morphodynamic

42



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 20: Map of erosion-deposition patterns and comparison of measured and predicted
cross-sectional profiles for t = 1.0 s, t = 3.0 s and t = 5.0 s.
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Figure 21: Map of erosion-deposition patterns and comparison of measured and predicted
cross-sectional profiles for t = 10.0 s and t = 15.0 s.
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Figure 22: Ha!Ha! valley sketch, extracted from [56].
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benchmarking test, initally proposed by [59]. A complete description of the
case, including hydrological data and a detailed topography characterization
pre- (1994) and post-flood (1996) were reported by [56]. Moreover, previ-
ous numerical studies of this benchmarking test using 1D morphodynamical
models have been reported by [11, 24, 39, 60–62].

Field observations showed that both soft sand and gravel, as well as
bedrock, were exposed along the valley. [60] characterized the non-cohesive
material of the riverbed downstream the dyke: median diameter d50 =
0.5mm with standard deviation 2.7mm, density ρs = 2650 kg/m3, porosity
p = 0.4 and internal friction angle 35◦. These values have been retained for
the whole domain since additional information does not exist. [11] adopted
a smaller diameter (0.1mm) for the sediment acumulation in the ’Chute-à-
Perron’ reach. Location of the exposed outcrops were identified in [57, 58] and
a complete reconstruction of the bedrock elevation was provided in [56]. The
inlet hydrograph condition was reconstructed from the lake level and area
drops [57, 59] and showed a peak discharge of 910m3/s (Fig. 23). A null
sediment discharge condition was also imposed at the inlet section. For the
downstream outlet condition, the water level at the Ha!Ha! Bay was set to a
constant value of 7m AMSL. A global value for the Manning’s roughness co-
efficient in Ha!Ha! valley was estimated between 0.036 sm−1/3 to 0.043 sm−1/3

[58]. However, [11, 24] adopted a global value n = 0.067 sm−1/3, more ap-
propriate for domains with vegetation, obstructions and exposed bedrock.
This friction coefficient value is retained for the outcrop regions, regardless
of the global Manning’s coefficient adopted for the whole domain. The initial
conditions were estimated by the previous simulation of the fixed-bed steady
state along the river with a constant inlet discharge of 35m3/s, following
[61].

Twelve different simulation setup were tested. The main parameters are
summarized in Table 5:

In order to obtain a quantitative comparison of the different setups, the
domain is divided into seven reaches, depending on the characteristic bed
evolution observed after the flood:

1. Reach 1 (Cut-away dyke), from PK0 to PK2.5: Erosion of a new chan-
nel.

2. Reach 2 (Upper Boilleau), from PK2.5 to PK8: Aggradation in the
valley bottom.

3. Reach 3 (Lower Boilleau), from PK8 to PK20: Slight riverbed erosion.

46



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 23: Inlet hydrograph [57].

Run Ag d50 (mm) n (sm−1/3) Mech. (Ero-Dep)
R1 MPM 0.5 0.036 (1) - 0.067 (2) A (Uniform-Layers)
R2 MPM 0.5 0.036 (1) - 0.067 (2) B (Uniform-Uniform)
R3 MPM 0.5 0.036 (1) - 0.067 (2) C (Weighted-Weighted)
R4 Smart-CBFS 0.5 0.036 (1) - 0.067 (2) A (Uniform-Layers)
R5 Smart-CBFS 0.5 0.036 (1) - 0.067 (2) B (Uniform-Uniform)
R6 Smart-CBFS 0.5 0.036 (1) - 0.067 (2) C (Weighted-Weighted)

Table 5: Summary of simulation setup for the twelve runs tested.
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4. Reach 4 (Chute-à-Perron), from PK20 to PK23.5: Severe erosion of the
valley.

5. Reach 5 (Eaux-mortes), from PK23.5 to PK28: Aggradation in the
riverbed.

6. Reach 6 (Lower Canyon), from PK28 to PK32: Moderate bed erosion.

7. Reach 7 (River mouth), from PK28 to PK36.5: Major widening and
deepening of the channel.

The thalweg elevation (lowest point at each cross-section) profile along
the river valley before and after the dyke breaking were extracted from the
2D DTM field data. Moreover, estimations of the maximum water levels
reached during the flood at 42 point downstream the dyke were performed
by the INRS-Eau in 1997. These estimations were based on surveys of the
valley residents and field assessment of the local high water marks.

In order to estimate the performance of the model, the BSS index (Brier
Skill Score) [63] for the thalweg elevation and the high water marks is com-
puted for each reach separately. The BSS index have been used as a criteria
to determine the performance of morphodynamic numerical models in com-
plex real field applications [63, 64]. Comparison of the model results is made
against a baseline prediction, which in this work is assumed to be the initial
bed topography. Then, the BSS index is calculated as:

BSS = 1−

N∑
i=1

(z(xi, tend)meas − z(xi, tend)sim)2

N∑
i=1

(z(xi, tend)meas − z(xi, 0)sim)2
(68)

being z(xi, tend)meas and z(xi, tend)sim the observed and predicted data in
the point i at final time, respectively; z(xi, 0) the initial data at the point
i and N the number of measurements. Reasonable agreement between field
data and predicted results is considered for BSS values 0.3-0.6, whereas BSS
values above 0.6 indicate good agreement [64]. On the other hand, BSS
values below 0.3 are obtained for poor fit with the observed data.

Table 6 shows the two best BSS results for the thalweg elevation obtained
in each reach and the corresponding simulation setup. In general, simula-
tions with the cross-section updating mechanism C (stress weighted erosion
and deposition) perform better than with the other two option considered.
The best thalweg BSS values are obtained for simulations performed with
erosion-deposition mechanism type C in four of the seven considered reaches
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(1:Cut-away dyke, 2:Upper Boilleau, 4:Chute-à-Perron and 6:Lower Canyon),
whereas a simulation sets up with the cross-section updating procedure A
offers the best BSS value in the reach 5:Eaux-mortes. Furthermore, simu-
lations set up with a global Manning’s coefficient n = 0.036 sm−1/3 offer a
better fit with the thalweg elevation field data than simulations with a higher
roughness value, with the exception of reach 6:Lower Canyon. Concerning
the transport rate closure relation, Smart-CBFS formulation seems to offer
a better agreement in the upper valley, whereas the MPM relation performs
better in the near field of reach 4:Chute-à-Perron, where a high erosion was
observed. However, all the simulations result in poor BSS values in the
reaches 3:Lower Boilleau and 7:River mouth, where an important channel
widening was observed.

Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 Reach 6 Reach 7
1st BSS 0.561955 0.45103 <0.1 0.651193 0.558781 0.855746 <0.1

R6-1 R6-1 - R3-1 R1-1 R6-2 -
2nd BSS 0.527114 0.418707 <0.1 0.581139 0.519807 0.807235 <0.1

R6-2 R6-2 - R3-2 R1-2 R5-2 -

Table 6: Summary of the maximum BSS values obtained for each reach.

Fig. 24 shows a comparison of the thalweg elevation computed with the
three different options considered for the erosion-deposition mechanism (A, B
and C) in the reaches 4 and 6, where the highest erosive events were observed.
The depicted results were obtained using Smart-CFBS formulation and the
Manning’s coefficient n = 0.036 sm−1/3 for the reach 4:Chute-à-Perron (R1-
1, R2-1 and R3-1), and with MPM and n = 0.067 sm−1/3 for the reach
6:Lower Canyon, corresponding to the best setup for each reach (see Table
6). Cross-section updating configuration type C offers the best result at these
high-eroded reaches for the thalweg elevation profile. However, although the
bed evolution trends are reasonably well predicted, important quantitative
differences can be found in the incision created by the flood in the river valley
along the reach 4:Chute-à-Perron.

Regarding the high water marks predicted by the numerical model, the
computed results were interpolated to the experimental data locations. In
Table 7 the mean absolute difference between observed high marks and the
predicted ones at the same location have been tabulated for all the simula-
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Figure 24: Thalweg elevation profiles in (left) reach 4:Chute-à-Perron and (right) 6:Lower
Canyon. Simulation were performed with: (left) Smart-CFBS and n =
0.036 sm−1/3; (right) MPM and n = 0.067 sm−1/3.

tion setups. A better agreement is obtained in simulations with Manning’s
roughness coefficient n = 0.067 sm−1/3 (mean deviation ≈ 0.40m) than in
those with n = 0.036 sm−1/3 (mean deviation ≈ 1.5m), although it is worth
mentioning that the observed data error was assessed around 2 m and hence
both values can be considered reasonably fair.

Run 1 (n = 0.036) 2 (n = 0.067) Run 1 (n = 0.036) 2 (n = 0.067)
R1 1.60 0.45 R4 1.49 0.35
R2 1.64 0.40 R5 1.50 0.38
R3 1.69 0.66 R6 1.52 0.36

Table 7: Mean absolute difference between observed high water marks and predicted max-
imum water levels for all the simulation setups tested.

Furthermore, the most remarkable absolute differences for the maximum
levels reached by the dyke-break wave along the river valley tend to appear
in the last reach (7:River mouth), as well as in the reach 4:Chute-à-Perron
because of the large deviations on the predicted thalweg. Nevertheless, the
maximum absolute difference always remains below 8 meters (Fig. 25). The
most remarkable trend which can be observed along the river valley is that
simulations performed with the lowest Manning’s coefficient (1) offered un-
derestimated maximum water levels, whereas using a higher Manning’s coef-
ficient leads to predicted maximum water levels above those were observed.

Finally, Figures 26 and 27 show the observed riverbed evolution at seven
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Figure 25: Absolute difference between observed high water marks and numerical maxi-
mum levels predicted along the Ha!Ha! valley for simulations R6-1 and R6-2.

different cross-section (one in each reach) which are representative of the
erosion-deposition behavior caused by the flood. Results of the simulations
R4-2, R5-2 and R6-2 are also depicted in order to show the influence of
the cross-section updating mechanism in the riverbed shape evolution. All
the numerical profiles were obtained with the Smart-CBFS transport rate
relation and n = 0.067 sm−1/3.

Downstream the dyke (reach 1), the model is able to predict reasonably
well the excavation of the new channel, regardless of the cross-section up-
dating option (see Fig. 26). Erosion-deposition configurations A and B lead
to wider channels, whereas option C causes a deeper incision in the valley
floodplains. In reach 2 the influence of the erosion deposition option is less
marked and the model predicted the river bed aggradation with an accept-
able accuracy. Reach 3 is one of the most challenging due to the complex
topography and the presence of various outcrops where the bedrock was ex-
posed. The dyke-break wave caused a slight general erosion in this reach
of the Ha!Ha! valley, limited by the presence of the outcrops. Following
the BSS criteria, the model fails in this reach, regardless of the simulation
setup selected. Nevertheless, global thalweg elevation along the reach and
the predicted maximum water levels do not deviate excessively from the ones
observed.

Reach 4 was one of the most modified by the flood. A new channel was
excavated in the fine sediment of the flood plains creating a high erosive phe-
nomenon which is difficult to capture for one-dimensional morphodynamical
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Figure 26: Observed and predicted cross-section evolution at (top) PK0.1 - reach 1:Cut-
away dyke, (center) PK3.8 - reach 2:Upper Boilleau and (bottom) PK8.3 -
reach 3: Lower Boilleau.

52



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 27: Observed and predicted cross-section evolution at (first row) PK22.1 - reach
4:Chute-à-Perron, (second row) PK23.6 - reach 5:Eaux-mortes and (third row)
PK29.1 - reach 6: Lower canyon and (fourth row) PK35.3 - reach 7:River
mouth.
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models. However, the presented coupled model is able to predict the erosion-
deposition trends along the reach with an acceptable accuracy. Nevertheless,
the simulated thalweg elevations remain higher than those measured after
the flood (see 27). Most of the sediment eroded from the upstream reach
were deposited in reach 5, leading to the riverbed aggradation which is well
captured by the model. In reach 6 moderate-high erosion was observed after
the flood and some bedrock region were exposed creating news outcrops. The
numerical results in this reach show a good agreement with the field data,
regardless of the selected simulation setup. Near the river mouth (reach 7),
a strongly channel widening phenomena dominated the riverbed evolution.
The model is not able to capture this widening in a proper way (regardless
of the simulation setup) and predicts the cross-section aggradation in order
to achieve a higher active width.

Finally, it is worth mentioning that all the simulations have been per-
formed with a CFL = 0.5, leading to a minimum time step of 2.5 sec ap-
proximately and guarantying fluid and solid mass conservation. [11] reported
numerical stability problems in this benchmarking test for a similar Courant
number, therefore the model has demonstrated to offer enough robustness to
perform real-scale field cases.

5. Conclusions

A new finite volume scheme has been proposed for the coupled system
of shallow water and Exner equations which is applicable to 1D channels
with arbitrary geometry. This allows the model to be applied to complex to-
pography domains, such as rivers. The equations have been treated to deal
with cross-section shape variations by distinguishing the intercell conserva-
tive fluxes due to geometry variations from that caused by the flow features.
The resulting coupled system of equations has been rewritten as a non-
conservative hyperbolic system with three non-linear characteristic fields.
Three different cross-section updating mechanisms have been proposed to
evaluate the cross-section shape evolution in non-rectangular channels. The
influence of the selected mechanism in the morpho-hydrodynamical coupled
system solution is incorporated into the mathematical model by means of a
new geometrical parameter cb which considers the bottom change celerity de-
pending on the solid area temporal evolution. An upwind augmented Roe’s
scheme has been formulated, including the solid discharge evaluated by both
the Grass law and other empirical closure relations. Moreover, numerical
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fixes have been proposed to avoid unphysical negative wetted areas and to
ensure entropy-preserving approximate solutions in case of transitions fixed-
movable bed condition. The proposed scheme emphasizes the necessity of
well formulated approximate eigenvalues to ensure positivity and numerical
stability in all situations with dynamical time step control solely based on
the CFL condition.

Firstly, the proposed scheme has been validated against analytical solu-
tions for both erosive steady flows including width variations and for dam-
break over movable bed in rectangular channels. Also the numerical scheme
behavior has been compared for hypothetical unsteady cases consisting of
dam-break flows in channels with shape variations. Numerical results show
that the scheme is able to describe properly the exact solution structure
for the conserved variables in all the cases tested. Furthermore, we remark
that the ability of the model to handle cross-section shape changes is also
proved. The importance of the selected cross-section updating mechanism
has also been analyzed, since it determines not only the uncoupled solid area
distribution at the cross-section but also the waves celerity of the morpho-
hydrodynamical system.

For a more advanced evaluation, the model has also been tested against
two set of laboratory unsteady benchmarking erosive cases. They consist
of dambreak flows over erodible bed involving a bed step and cross-section
degradation respectively. In the first one, the proposed model demonstrates
its capability to deal with highly erosive unsteady flow, being able to predict
the bed elevation and free surface position reasonably well, even for the first
stages after the gate opening. In the second laboratory benchmarking test,
the coupled scheme is able to correctly estimate the cross-section changes
produced in trapezoidal erodible channel by a dam-break flow. The numerical
results for both laboratory experiments show a good agreement with the
measured data that can be considered better than the results that other 1D
models obtain for these empirical tests.

Finally, the proposed coupled model has been faced to a real-scale field
case. Simulating the 1996 flood in the Ha!Ha! river is one of the most chal-
lenging benchmarking tests for 1D erosive models. The Ha!Ha! flood case
involves a complex bed bathymetry with high gradients, bed rock chutes and
very irregular cross-sections, a highly variable discharge inlet condition and
considerably fast changes in the bed elevation with new main channel appear-
ance. Therefore, one of the demanded features to reproduce this test case is
the ability of the numerical scheme to deal with abrupt cross-section changes
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and to adapt to different flow regimes. Despite the intrinsic limitations of
1D models to properly predict secondary flows in complex cross-sections, as
the Ha!Ha! river, the numerical results computed with the proposed model
shows a fairly acceptable agreement with the bed variation field data in
most of the river reaches. The dike breaking and the thalweg evolution in
highly eroded reaches are well approximated. Nevertheless, important dis-
crepancies appear in the reaches involving low deposition rates in compound
cross-section and channel widening, especially at the low valley reaches. The
predicted morphological adjustment of the river in response to the upstream
discharge boundary condition depends strongly on the mechanism chosen to
update the cross-section and on the empirical closure relation for the solid
transport rate determination. The stress-weighted mechanism proposed in
this work seems to offer the most accurate results, although probably using
a more complex method to compute the local boundary shear stress at the
cross-section can lead to improve the numerical predictions of the model.
However, as concluding remark, it is worthy of mention that the proposed
numerical discretization of the coupled Shallow water-Exner model demon-
strates a good performance, efficiency and robustness for this extremely com-
plex case, where previous works of other authors reported numerical stability
problems in presence of time steps of the same size as those used in this work.
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Flüssen: Gedr. mit Unterstützg aus d. Jerome u. Margaret Stonborough-
Fonds, Akademie der Wissenschaften, Wien, 1925.

[17] C. Juez, J. Murillo, P. Garcia-Navarro, Numerical assessment of bed-
load discharge formulations for transient flow in 1D and 2D situations,
Journal of Hydroinformatics 15 (4) (2013) 1234–1257.

[18] X. Liu, A. Beljadid, A coupled numerical model for water flow, sediment
transport and bed erosion, Computers & Fluids 154 (2017) 273 – 284.

[19] A. Hosseinzadeh-Tabrizi, M. Ghaeini-Hessaroeyeh, Modelling of dam
failure-induced flows over movable beds considering turbulence effects,
Computers & Fluids 161 (2018) 199 – 210.

[20] A. Lacasta, M. Morales-Hernández, J. Murillo, P. Garćıa-Navarro, An
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Appendix A. Wave and source strengths for the augmented Roe’s
solver

Wave strength

Conserved variable spatial increments at each edge i + 1/2 can be pro-
jected onto the right eigenvector base, obtaining the wave strengths α̃m at
that edge:

δ~U |i+1/2 =
∑

m

α̃m~̃em

α̃m =

(
c̃2 − ũ2 +

∏

k 6=m
λ̃k

)
δA+

(
2ũ−

∑

k 6=m
λ̃k

)
δQ+ c̃b

2δAs

λ̃m

(
λ̃m −

∑

k 6=m
λ̃k

)
+
∏

k 6=m
λ̃k

(A.1)

Source terms discretization

Source terms are integrated over a suitable control volume for each local
Riemann problem. Then, the result is projected onto the right eigenvectors
basis as a function of the Roe’s average quantities at the cell edge.

~̃S ′∆x|i+1/2 =
∑

m

β̃m~̃em

β̃m =
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∑

k 6=m
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(
λ̃m −

∑

k 6=m
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+
∏

k 6=m
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with: ~̃S ′∆x =
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[
δZR +
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δεb −

c̃b
2

gĀ
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)
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(
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B̄
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)]

−ξq̃s δB




(A.2)
Furthermore, the value q̃s should also balance the total solid flux at each

edge, agreeing (13):
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ξ δQs|i+1/2 = −ũd̃ δA|i+1/2 + d̃ δQ|i+1/2 + ξq̃s δB|i+1/2

q̃s =
1

2
Ag(u

3
i + u3i+1)

(A.3)

The friction slope S̄f is evaluated as follows:

S̃f =
n2|ũ|ũ
R̄h

4/3
with: R̄h =

Ai + Ai+1

Pi + Pi+1

(A.4)

Appendix B. Equilibrium bed slope in rectangular channels with
variable width

Considering a rectangular cross-section channel of B width and steady
flow, temporal derivatives are nil and the wetted and solid discharge total
derivative become:

dQ

dx
= 0

dQs

dx
= 0 (B.1)

Therefore, the momentum equation reduces to:

d

dx

(
Q2

A
+ gI1
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= gA(S0 − Sf ) + gI2

−Q
2

A2

dA

dx
+ g

d

dx

(
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h2

2

)
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dB

dx
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2

−Q
2
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(
B
dh

dx
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dB
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+ g

(
h2

2

dB

dx
+Bh

dh

dx

)
= gA(S0 − Sf ) + g

h2

2

dB

dx
(B.2)

Reordering terms:

(gA− u2B)
dh

dx
− u2hdB

dx
= gA(S0 − Sf ) (B.3)

On the other hand, the total derivative of the solid discharge Qs can be
decomposed into:

dQs

dx
= qs

dB

dx
+B

dqs
dx

= 0 (B.4)

Considering a solid discharge per unit width qs evaluated by means of the
Grass model (qs = Agu

3 with Ag = cte) allows us to express:
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(B.5)

Replacing (B.5) into (B.4):
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dx
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(B.6)

Therefore, considering (B.3) and (B.6) we can express:
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(−2

3
gh2 − 1

3
u2h

)
dB

dx
= gA(S0 − Sf)
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3
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B
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3
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)
dB
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(B.7)

Finally, one can expressed a relation between bed slope and the friction
slope involving width variations as follows;

S0 =
−dz
dx

= Sf −
1

3

h

B
(Fr2 + 2)

dB

dx
(B.8)

being Fr = u/c the Froude number.
For a prismatic rectangular cross-section channel, this expression reduced

to the well-known equilibrium slope condition S0 = Sf .
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