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A 1D numerical model for the simulation of unsteady
and highly erosive flows in rivers

S. Martinez-Aranda*, J. Murillo, P. Garcia-Navarro

LIFTEC-CSIC, University of Zaragoza, Spain

Abstract

This work is focused on a numerical finite volume'sehieme for the coupled
shallow water-Exner system in 1D applications with azbitrary geometry. The
mathematical expressions modeling the hydrodynamic and morphodynamic
components of the physical phenomenon are treated t6 deal with cross-section
shape variations and empirical solid discharge estimations. The resulting
coupled equations can be rewritten as @men-conservative hyperbolic system
with three moving waves and one stationary wave to account for the source
terms discretization. Moreover, the wave celerities for the coupled morpho-
hydrodyamical system depend on the erosion-deposition mechanism selected
to update the channel cross-section, profile. This influence is incorporated
into the system solution by means of a new parameter related to the channel
bottom variation celerity. WSpécial interest is put to show that, even for
the simplest solid transports models as the Grass law, to find a linearized
Jacobian matrix 6f the system can be a challenge in presence of arbitrary
shape channels#In this paper a numerical finite volume scheme is proposed,
based on an‘augmented Roe solver, first order accurate in time and space,
dealing with solid transport flux variations caused by the channel geometry
changes. Channel cross-section variations lead to the appearance of a new
solid/ flux source term which should be discretized properly. The stability
regionnis_eontrolled by wave celerities together with a proper reconstruction
of the approximate local Riemann problem solution, enforcing positive values
forsthe intermediate states of the conserved variables. Comparison of the
numerical results for several analytical and experimental cases demonstrates
the effectiveness, exact well-balancedness and accuracy of the scheme.
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1. Introduction

Sediment transport processes in rivers are broadly classified into twe dif-
ferent types, bed load movement and suspended material transport, and they
are basically caused by the gravity and friction forces at the river bedlevel [1].
Bed load transport takes into account the sediment movementsithat occur
without the solid grain losing contact with the river bed+(tolling, sliding and
saltation motion mechanisms), whereas suspension transpont considers both
the solid mass which is transported by the flow as @solu#€. Both transport
processes occur simultaneously and to identify ‘a,threshold between them is
an open research topic. Sediment transport precessés are usually modelled
by means of a set of equations which includes hydrodynamic and morpho-
dynamic components. The hydrodynamie, partican be described by the shal-
low water equations (SW), commonly uséd to study water movements in
rivers and channels. On the other hand,jthe morphodynamical component
is commonly represented by a s¥Stenyof equations modelling the solid mass
conservation property.

The relation between e actual solid transport flux and the flow dynamic
features has become oné ofgthe major uncertainty sources for sediment trans-
port modellers. The fraditional approach is based on the assumption that the
actual solid trangport rate” adapts immediately to the hydrodynamic prop-
erties (capacityser equilibrium approach). Sediment transport capacity can
be understool ag/the maximum amount of sediment that can be transported
by a flowsin a“particular steady state. Models based on this assumption
have beemypTopdsed to compute many experimental and real-scale sediment
trangport preblems [2-6]. Nevertheless, in the two last decades, a new ap-
proach acgounting for the time and space lag between the actual solid fluxes
and the local hydrodynamic properties has received increasing attention [7].
Nensc¢apacity or non-equilibrium models have been reported by many authors
f8=13] for both bed load and suspended load sediment transport processes.
Although physically the non-capacity assumption seems to be always justi-
fied, especially when dealing with highly erosive and unsteady flows, capacity
models have demonstrated to be applicable for bed load transport processes
in uniform sediment beds and high-magnitude flow conditions [10, 11, 14, 15].

3



The capacity assumption for the bed load sediment transport leads to re-
ductions on both the number of equations involved (four and three equations
for 1D non-capacity and capacity models, respectively) and on the number
of closure relations (adaptation lenght and net solid flux between active afid
non-active sediment layers are not necessary). Capacity models formulage the
solid mass conservation by means of the well-known Exner equationgl16]and
only need a closure relation for the capacity transport rate. Different dmpir-
ical equations can be found in literature to determine the bed-ldad transport
capacity (see [17] for a brief summary), being this one of theun@jer uncer-
tainty sources for equilibrium models. In most of them, the sediment move-
ment is controlled by the critical shear stress, a physical parameter which is
experimentally determined. The reduction on the nimb@rof equations and
closure relations implies a decreased computational cest fescapacity bed load
models, allowing a better efficiency in long-terifinreal-seale cases.

Two-dimensional models have been commonly reported to simulate flow
and sediment transport, together with a fine Tepresentation of topography
and local hydraulic effects [6, 18, 19]¢wHowever, their application to real
river cases is still restricted due to the.€omputational time required and
the amount of field data needed for the model calibration. Therefore, two-
dimensional models have been “mainly applied to reach-scale domain cases
with short event time duration. Hewever, the latest improvements in their
computational efficiency ghanks to the use of GPU implementation [20] or
local-time-step approagh [21] are widening the applicability of 2D models.
On the other hand, one-dimensional models require less field data and offer a
higher computatienal efficiency. Although 1D models are not able to capture
all the complex two=dimensional features of an unsteady flow in arbitrary
topographies; they may become a useful tool for engineers in order to predict
flood episedes and their consequences, where computation time is a key factor
in order. toavoid material damages and human losses.

The hydrodynamic and morphodynamic equations that describe the bed-
load transport phenomena constitute a coupled system of conservation laws.
Although the numerical modeling of free-surface flows with bed evolution
involves transient water flow and movable bed boundaries, decoupled meth-
ods have been commonly reported to evaluate the bed morphodynamics in
1D realistic application [22-25]. In these works, shallow water and sediment
equations are independently solved. The decoupling approaches have been
successfully applied to test cases with weak interactions and slow geometrical
evolutions. However, when the two physical components of the system have
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relatively strong interactions, the decoupling strategy can create spurious
oscillations [26].

Coupling bed-load transport into the hydrodynamic shallow water sys-
tem is a more challenging topic since it leads to a more complicated eigéen-
structure. From a mathematical point of view, coupling the morphodyunamie
model with SW equations allows us to apply a stable hyperbolic solyer with
a dynamic time step based on a CFL stability condition in order to%avoid
nonphysical oscillations and deal with geometrical discontinuitiés potentially
formed during the bed evolution process. So far, coupled models/reported in
literature were only developed for unit-width formulations, hindering their
application to complex 1D geometry models [4, 5, 27-31],, Therefore, a nu-
merical 1D coupled model able to simulate complex _geometries efficiently
and demonstrate its performance in realistic applications.is still required.

In [32] a capacity Exner-based coupled model for two-dimensional tran-
sient flows over erodible beds on triangular unstruetured meshes was pro-
posed using a special coupling strategy to imcorporate the bed slope source
term to the flux Jacobian matrix. This«efficient method was later used by
[18, 33] to develop numerical schemes for.the SW-Exner coupled system. In
the present work, this procedure is extended to incorporate the bed slope
component to the cross-section averaged fluxes for a one-dimensional model,
allowing to develop a coupled scheme based on the Augmented Roe’s solver
which is able to deal with/mon prismatic channels, preserving the solid mass
conservation property ahdthe stability region.

This paper is structired as follows: In Section 2 the governing equa-
tions are presented, identifying clearly flux variations and source terms only
depending on the geometrical changes. The resulting system allows us to
write a numetical scheme able to handle variable cross-sections, which is de-
scribed infSection 3. In this section we also report proper numerical fixes
to deal with non-movable bed conditions and to ensure not excessive time
step reductions. A set of analytical, experimental and real-scale field tests
aremused to compare with the numerical results in Section 4, in order to re-
port the model capability to handle cross-section changes. The performance
insnen-movable bed conditions and their accuracy using different empirical
elesure formulae for the solid discharge are also evaluated. Finally, conclu-
sions are highlighted in Section 5. Additionally, explicit expressions for wave
and source terms strengths needed to complete the numerical scheme, and
an analytical solution for erosive steady state in a variable-width rectangular
channel are reported in the appendix sections.
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2. Mathematical model

2.1. Governing equations

Free-surface flow movement in one-dimensional practical applicati
considering a complex cross-sectional shape channel, can be modeled
Saint-Venant equations for the mass and momentum conservation |
temporal evolution of the conserved flow variables depends on K

variation of the hydrodynamic fluxes as follows:

oA dQ _

E—{_d:r_o (1)
0Q d [Q?
a—?+%(%+gh>=g(b+A (2)

where A(z,t) is the wetted cross-sectional
g is the acceleration of gravity, S is the be d Sy is the friction slope.

I; represents the hydrostatic pressure t in a section of maximum
water depth h and I, accounts for, the pressure force due to longitudinal
g. 1

E

e, 4) o (z,n)
/O (h(z, A) —n) oy dn

oV dF(x,V) 5, -
— 4+ ——"~=R(x,V 3
QY Feehomy g
ing / the conserved variables, F' the conservative fluxes vector and R
the™vector accounting for the source terms. Note that the consideration
of 'domains with complex tophography, such as rivers, leads to the total
spatial variation of the cross-section averaged fluxes involved in Saint-Venant

equations cannot be directly expressed only in terms of conserved variables
derivatives as they also depend on the geometrical changes in the domain,
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Figure 1: Arbitrary cross-section geometrical de tion.

that is F = ﬁ(az, ‘7) This issue could lead to pro order to design
an efficient numerical scheme which representsithe conservative fluxes by
means of a Jacobian matrix defined as the partial*derivative of the fluxes
respect to the flow variables [35]. Focusing momentum equation and

using Leibnitz’s rule, it is possible to pression for the total spatial
derivative of I in which variations,dep@ading purely on the cross-sectional

geometry (A = const) are separate mithe component only related to the
conserved flow variables (z = ¢ =37).

dl, 0l 0A oh AdA

dx 8117 x=const ( ’ - ) ( )

. % ar or) " Bdv
idth at the water surface. Replacing (4) in (2):
2) AdA oh

st
being B(x, A) the
9 —N = | +9g=— = gASy — gAS; — gA— (5)
de \ A ) 9By ~ 900 I

ox

The wewconservative flux on the left side of (5) depends on the con-
serve les exclusively, avoiding the numerical computation of I; and I,
additional

1 , it is important to stress that the discrete increments §/dz of the

nction h required by the numerical scheme actually approach the total

d tive instead of the partial derivative 0h/Ox. For this reason partial

ivatives should be avoided in the mathematical formulation leading to
the numerical discretization [36]. From h = h(z, A):

dh_ o
dr  Ox

+%8_A —@+i% (6)
0A Ox - 9r Bdx

A=const r=const
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Therefore, replacing the partial derivative 0h/0z in (5) by its expres-
sion deduced from (6), the second hydrodynamic conservation law could be
expressed in terms of total derivatives as follows:

dh 1dA

— gASy — gAS; — gA (— — ——) (7)

00 4 (@), Ada
dr Bdx

o T\ A) T IB

Note that this formulation does not include the hydrostatie¢pressure inte-
grals any more, so it is no longer necessary to compute them. “The presence
of the bottom force gASy, which can lead to inaccuratel evaluations of the
pressure force in sections with very irregular shapes over steep/slopes [38], is
balanced here by the new term gA(% — %3—;‘), that has been carefully for-
mulated to avoid partial derivatives [35, 37]. Therefore, thanks to the above
algebraic manipulations, the resulting formulation is/as robust as the ones
reported in [39] or [38], where computation.of Iinand o was included. It is
worth to note that the computation of the pressure integrals can be a dif-
ficult task in very irregular geometries, henge this formulation improves the
computational efficiency of the model without causes inaccurate evaluations
of the integral force in complex cross-sections.

On the other hand, bed-load mass-¢onservation is modelled here by means
of the Exner continuity equation [16], which has the following expression for

an arbitrary channel cross-section:

0As dQs(z, A, Q)
ot e dx
where A,(z,t)Asthe'solid area, Q (z, A, Q) the total solid discharge at the

cross-section and ¢ = 1/(1 — p), being p the bed load layer porosity. A, and
Qs are defined as;

~0 (8)

Zr(x)—ZRg(x)
A t) = / w(z,¢) — oz, 0)] d¢
" B(z,A) (9>
Qu(, A, Q) = / 0(A, Q) dy

where ¢5(A, Q) is the solid discharge per unit width and w(z, ¢) is the erodible
domain width. As a first hypothesis, the total bed load discharge can be
defined considering a constant bed load transport rate per unit width applied
to the whole cross-section [25, 40].



Qs(x, A, Q) = B(z,A) q5(A, Q) (10)

Note again that the total derivative of the total sediment solid discharge
at the channel cross-section Q(x, A, Q) can be written in the following way:

1Q,(#,4,Q) 90, 0Q, 04 0Q.0Q
dr 00 |ngn | DA O " 9Q )

=const z,Q=const x,Azconst

Therefore, from (10), the partial derivatives in (11) are/expressed as:

0Qs(r,4,Q) _ 9B(x, A)

o 5y (4, Q)
0625(;::1, Q) _ aBgZi A) qS(A, Q) + B(m7 A)% (12>
0Q:(1, 4,Q) _ 04.(4. Q)
T o B(x>A)T

Replacing (12) in (11) and reordering ferms, an expression for the total
derivative of the solid discharge, which could be used in arbitrary cross-
section channels, can be obtained.

AQ. _ (08 OBOAY, | on0A | 00.0Q _
de  \ 0z <€ 0A9x ) O0A Ox oQ oxr

dB dqs dA 0qs dQ

¥ oA TPaQ

Taking into.account (13), the Exner continuity equation can be written so
that the consérvative solid flux only depends on the conserved flow variables.

Furthermetre, amew source term appears which represents the solid discharge
variation related to the cross-sectional changes.

DA, dgs A 0g,dQ
o o8 (aA dr 90 dw)

(13)

B

d
= _£QS% (14)

2.2Coupled system of equations
Combining equations (1), (7) and (14), the coupled hydro-
morphodynamical system is written in vector form:

%—Z + J(x, ﬁ)d—U = S(z,0) (15)



— — 0 1 0
J = M = | =u? 2u 0

W L% B3 0
o - [ dh 1dA dB
S(iE,U)Z <07gA SO_Sf_ (%_§%>:| é gs )

The conservative fluxes are on the left side of equatlons, represented
by means of the Jacobian matrix J(z, U ). Fluxes purely caused by cross-
sectional variations are included as source terms on the Tight side of equa-
tions. U (x t) is the vector of conserved variables, J(z¢0) Is the Jacobian

matrix, S(z,U) is the source terms vector, u = Q4 isarean flow velocity
and ¢ = /g A/B is the celerity of the infinitesimal surface wave.

Notice that the Jacobian matrix of the system JF(z, /) is singular, since
it does not depend on the third component of the conserved variables vector
Ag. This should create difficulties to implement a numerical scheme for this
formulation. To overcome this problem,.the total bed level can be decom-
posed into two contributions: a fixed, reference level which does not vary
with time Zi and, above that, a‘layer of erodible sediments with a thickness
€, at the lowest point of the wetted perimeter b, which coincides with the
minimum sediment layer depth: Therefore, the bed slope source term can be
rewritten as follows:

1
dzx dx dzx (16)

where Zp =%p(#) and ¢, = ¢,(x, A,). Therefore, the total derivative of the
erodible layer minimum thickness is again expressed as:

d dZr d
gASy= gA {__(ZR + 6b):| =—gA < < ﬁ)

@ ~ Og Oe, 0A, B % N Oe, dA,
dr  Ox 0A, Ox - Or  0A, dx

Replacing (17) in (16) the bed slope source term can be rewritten as:

(17)

Ag=const r=const

o dA
gASy = —c} o + gAS| (18)
being:
aEb dZR afb
A f =
994, 5 <d7 * 0T>
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The first term on the right hand side of (18) can be considered a new
non-conservative momentum flux depending on the solid area changes and it
is added to the left side of the momentum equation. The second term on the
right hand side of (18) remains as a modified bed slope source term. The
coefficient ¢, in the non-conservative flux component has velocity dimeuSions
[L/T] and hence it can be considered as a celerity related to the evolfition of
the lowest point of the bed at each cross-section. This celerity depends on
the erosion-deposition mechanism over the channel cross-section, which will
be further analyzed in the next sections.

On the other hand, a new partial derivative appears in the medified bed
slope source term gAS], (18). Following the same proeedure used in (7) to
properly evaluate the partial derivative of the maxinmum*water depth h [36]
and taking into account that de,/0A, = ci/(gA), the.modified bed slope
source term can be rewritten in terms of total derivatives.

dZR 665 dZR dGb Cl% dAs
AS = —gA | —+ — | = —gAY—— - = — 1
945 g (dx * 0.75) g {dw +(dx gA dx (19)

The coupled system (17) can be now expressed in the following non-
conservative form:

oU - dU R

E—FJ(.T,U)%—FH(SU,U)%—S(SE,U) (20)
U= (A, Q4"

0 1 0 00 0

J(zU) &= e —uv® 2u 0 HzU)=|0 0 ¢

EBGL EBSE 0 00 0

0
S ) = | —gA e+ (- 5 ) + 5+ (2 - 58]
_§QSZ_B

H(z,U) is the non-conservative flux matrix and §'(z,U) the modified
source terms vector. Furthermore, (20) allows us to express the three equa-
tions governing the hydro-morphodynamic phenomenon as a reduced system:

11



—

ou

— +M(z,U)— = 95" (z,U
gy + M@ U = 5@ ) (21)
M(z,U) =J(z,U)+ H(z,U)
The friction source term is evaluated using the Manning law:
n?|ulu
Sy = R (22)

being n the Manning roughness coefficient and R, = A/# the hydraulic
radius of the cross-section with P the wetted perimeter.

Finally, there only remains the evaluation of thé unit, solid discharge
derivatives (J¢s/0A and 0qs/0Q) and the bed variatien celerity c,. There-
fore, it is necessary to define both the expression for the"solid transport rate
per unit width (Section 2.3) and the physical mechanism for the cross-section
shape actualization (Section 2.4), in order to obtain complete expressions for
the governing equations.

2.3. Bed load transport rate

Most of the capacity numerical'models that can be found in literature
use the Grass law [41] to modelithe bed load transport rate per unit width
qs(A, Q). For the Grass model, g, only depends on the hydrodynamical
conserved variables A and’() obeying the following expression:

4:(40Q) = Ajul*u = Aju? (23)
where A, [s*/m]ds,a coéfficient which takes into account the kinematic vis-
cosity and thesgrain diameter and is experimentally obtained for each case.
Grass modgltallews us to obtain an explicit expression for the approximate
Roe’s mafrixgasseciated to each local Riemann problem. Following the pro-
cedure-developed by [32] and extended by [17], the Grass model can be easily
adapted tordifferent empirical closure formulae, as Meyer-Peter-Miiller model
[42]; Smart model [43] or Nielsen model [44].

From (23), it is possible to evaluate the third row components of the
méttix J(z,U) in system (20) as follows:

500 ou® 3u?
dqs BA ou? BA 3u? p (24)
JgQ_&BaQ_f gaQ_f QA -
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2.4. FErosion-deposition mechanism at the cross-section

There is some freedom in the choice of the erosion-deposition mecha-
nism at every cross-section. Three different methods to compute the crosg-
sectional distribution of the updated solid mass are reported in this sectin.
None of them include information about the streamwise channel curyature;
which may be a limitation in meandering rivers. Nevertheless, the proposed
methods are enough to approximate the cross-sectional bed evolution in many
real-scale morphodynamical flows [11].

As a first and simple approximation, the material of Ag.cansbe assumed
to change following horizontal layers [option Al:

. 8eb A
[Option A] IA. 1/By = gE (25)
or uniformly at the whole wetted perimeter [option BJ:
. Oe A
[Option B] 8Ab =1/P ¢ = 9p = gRy, (26)

where By(z, As) is the channel width at the bed level.

However, a more complex mechanism is the evaluation of the bed variation
at each point of the cross-section,aswa function of the boundary shear stress
distribution. Following a modified version of the approach reported by [11],
the temporal variation of the sediment layer thickness at a partition j of
width 0y in the channel cross-section (A¢;) can be evaluated as:

AGj = KJ%

oy
being AA,.the temporal variation of solid area at the whole cross-section
and K asweighting coefficient calculated as a function of the boundary shear
stress.at the partition j (Fig. 2). Coefficients K; for each point of the
cross=section are calculated as follows:

(27)

1. Erosion (AA; < 0)

o )3/2 RS

Kj — (’77_] 7—mm) with: N = Pwd h| f’
Z(’YT] - Tmin)3/2 Tmin

j
2. Deposition (AA; > 0)

(28)
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Figure 2: Sketch for the stress cross-section weighted updating mechanism.

— o~ )32
K. — (Tmaa 771) with: W ngRh’Sﬂ

T Z(Tma:t - 77—]’)3/2 Tmax
J

(29)

where 7; is the boundary shear stress module at'partition j, 7,.:, and 7,4, are
the minimum and maximum (in module).boundary shear stress at the cross-
section, respectively. The parameter v ensures that all the bed points located
under the water surface level will be moved upward or downward depending
on erosion or deposition taking place and avoiding that K; becomes nil. The
computation of 7; can be performed in different ways [45-47]. For the type
of problems considered in/this'work, 7; can be calculated as 7; = p,,gh;|Sy|
[45].

From expressions'(28) and (29) evaluated at the lowest point b of the
cross-section K;(j = b) = K,, the bed variation celerity ¢, at the cross-
section can be_calculated as:

861, - ﬁ
0A, Oy

[Option C] c; = gA— (30)

oy

3. Numerical scheme

The system of equations (21) is solved according to a finite volume
method. The domain is divided in computational cells of constant size
0% = %4172 — Ti—1/2. The coupled system is integrated in each cell and,
applying Gauss theorem:

d [tz . . i+1/2
—_ Udx + Ei_,_l/g — Ei_l/g = / S'dx (31)
dt Ji—1)2 i—1/2

14



where E¢+1 /2 represents the intercell fluxes at the cell face i+1 /2. We indicate

the cell-average value of the solution U(z,t) for the cell i at time ¢ as U”,
defined as:

- 1 [z
gn— L / 0 (x, ") dz (32)
ox i—1/2

Therefore, assuming a piecewise representation of the conserved wariables
and fluxes, the first order Godunov’s method provides a way'to update the
averaged values of the solution [Z” to the next time step™#" ™. The local
Riemann problem associated to each cell face is solved indepéndently and
the resulting values for the conserved variables should'be cell=averaged again
to obtain the updated solution U **:

n+1 n At nl 7l /2 &l n
g+t = g — 20 [5E]i+1/2—5E\i_1/2] ALy S t)de (33)

ox i—1/2

being 6 E liv1/2 = EfH - Ef the difference of the fluxes at the neighbour-
ing cells, including both conservative and non-conservative fluxes. Since the
source terms are not necessarily eonstant, we assume the following lineariza-
tion:

+1
Shafe= [ St (34)
The numerical scheme could be rewritten as:
a1 n At - al - al
O Nr - [(5]3 — SAD) i1 — (OF — S’Am)|i_1/2] (35)

Thedefinition of the numerical scheme in the Godunov’s method must be
completed by the definition of an approximate solver for the local Riemann
problem.governed by the fluxes (£ and E7, ) and the source terms.

34=Roe’s approzimate solver for the classical Grass model (A, = const)

The solution at the next time U (z,t""1) is approximated by cell-averaging
the solution of an equivalent linearized Riemann problem associated to each
cell face. The integral of the approximate solution U (x,t) over a suitable
control volume must be equal to the integral of the exact solution over the

15



same control volume (Consistency Condition). For each edge i + 1/2, sepa-
rating cells 7 and 7+ 1, a linearised local RP can be defined, described by the
following hyperbolic system of equations:

U |~ - dU 3 -
I + M(U;, Urr) = S'(U;,Uis1)
M(U;,Uy) = J(Uy, Uppr) + H(U;, Uyyy) (36)

ZL‘, = g .
Uy ifz>0

—~ -

Therefore, two proper linearized matrices J ([7“ (7”1) and.H (U}, Uii1) are
required, with the following Roe’s averaged components:

- 0 10 . 00 0
J(U;,Uppa) = | @ —7* 2u 0 HT;0mm)= |0 0 g* | (37)
—ud d 0 00 O

The approximated matrices J and H should agree with the main prop-
erties for each local Riemann problem:

0F|iy1/2 = J(U:, Uz+1) U |41/ Tplivr/2 = H(U; 1) 0U i41/2
J(Uu Uz+1) J(Ui) (Uza UH—l) ( )

(38)
being §F lit1/20and T;)\Hl /2 the conservative fluxes jump and the non-
conservativedluxvectors, respectively, at the interface i + 1/2. Application
of conditiens (38) leads to the Roe’s averaged quantities for the velocity u,

the infinitesimal waves celerity ¢ and the solid discharge derivative d.

s gAi + Ai o WV Ai +uiv/ A

VA + VA
VA Aisr + Aiv/Ai

d= EBAG(uf + ufyy + uitiir)

being B = (B; + Bi11)/2.
On the other hand, it is possible to approximate the non-conservative flux
vector at the intercell edge i + 1/2 in the following way:

16
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S T
- — Oe
Tyliv1/2 = <0, 9A8—1£5As|i+1/27 0) (40)

Considering again the set of conditions (38), the definition of an explici
expression for the averaged value of the bed variation celerity ¢, is s ht

t
forward:
~ - 8eb \
Cp = gAaAS Q (41)

with A = (Ai + Ai1)/2 and aa:fi = [(5_2) Tt (gjll;

— =

Therefore, by simply rewriting M (Ui, Uis1)
the complete linearized matrix for the couple
solved at each intercell edge, can be obtai

Although similar Roe’s averagéd quantities were reported by [30] for a 1D
unit-width coupled schemgf this is the first time —to the authors knowledge—
that these analytical e @ s have been obtained for cross-section aver-

aged models.

3.1.1. Ez'genstm&
The anal the eigenstructure of the matrix M is of interest. Previ-

s sense and dealing with bed load and suspended load were

|. [2] and [3] proposed expressions to approximate the hy-

perbglic sy eigenvalues for the 1D erosive bed load problem, but they did

not_densider irregular topography neither the influence of the cross-section
pdate mechanism on the characteristic wave celerities.

The eigenvalues of the hyperbolic system (36), describing each local Rie-
Wnn problem, are the roots of the characteristic polynomial of matrix

Uia) + H(U,, Ui)
36), which should be

(42)

((71-, Ui“), defined as:

P(3) = M — M| = —X | (@ — X)? —52] v (-0 =0  (43)
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Therefore, the roots of Pj;(A) could be understood as the intersection of
a cubic polynomial fi(A) = X |(@ — X)2 — EQ] (related to the hydrodynamic

component of the coupled system) with the straight line f2(X) = &2d (A—af),
related to the morphodynamic component. As [50] and [26] pointed
lic

the particular case of unit width rectangular channels, this kind of hy;
systems has always two eigenvalues of the same sign as the flow V& and

another one with opposite sign (Fig. 3), regardless of the flow ? )

NV
v

Figure 3: Eigenvalues ssc e for the linearized coupled system: (top left) subcritical
righ tical regime and (bottom) supercritical regime. Flow av-
is considered positive u > 0.

hand, the roots of P37(A) could also be calculated by the

O formula, considering the complete form of the characteristic
(M)

‘ , Pﬁ(?\'):_i3+2a§2+(Eﬂ—u“”z+c~b2cf>5—f%2ﬂ67=0

23 + alﬁ)?2 + agx +a3=0 (44)

E with: a1 =-2U0 ay=u—F—&%d a3 =3 ud
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A =2V—=L cos(0/3) — a1 /3
Xy = 2v/—L cos(0/3 + 21/3) — a1 /3
X3 = 2v/—L cos(0/3 + 47/3) — a1 /3

3az — ap R 9ayay — 27ape2a3
where : L = o2 — &y 0 = acos R— 102 as a;
9 V=L 51

The system is strictly hyperbolic if L3 + R? > 0. For edses with g,
evaluated by the classical Grass model (A, = const), that isyalways true.
For cases with ¢, evaluated by other empirical models, the.only condition
necessary to ensure the hyperbolicity is |u| < 6¢ [26].

Moreover, the influence of the cross-section updating mechanism (see Sec-
tion 2.4) on the hydro-morphological model issinéerporated by means of the
bed variation celerity ¢, into the coupled censervative system solution. The
selection of a specific mechanism modifies the averaged waves celerity and
the whole eigenstructure of the local RPpllig. 4-left shows a comparison
of the coupled eigenvalues Ay, Ay and A3 with the common values for the
fixed-bed shallow water problem (w,—¢ and u + ¢). The influence of the
morphodynamical updating critégid=n the coupled eigenstructure increases
for the stress weighted erosien mechanism and is less marked for the stress
weighted deposition (both option C). Moreover, this influence also increases

as the Froude numbes”ingreagés, separating the coupled eigenvalues Xl and
A3 from those chapactefisti¢” of the shallow water system, regardless of the
cross-section chafige critéfion adopted (see Fig. 4-left). This fact affects the
stability regiof ofytheproblem and hence the model efficiency. Deposition in
horizontal Jayexs(option A) and uniform erosion-deposition (option B) show
an intermiedidte Wehaviour between those reported for the option C.

Furthermore, the bed variation celerity does not depend on the flow fea-
tures, even! for the mechanism C. This proves that ¢, is a geometrical param-
eter related to the cross-sectional shape, regardless of the erosion-deposition
mechanism selected (Fig. 4-right).

The right eigenvectors basis €, for the system can be calculated as:

Mé,, = Ao (45)
By setting e, = 1, one can obtain the values for the second component
€2 and the third component €2, of the right eigenvectors:
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Figure 4: (Left) Eigenvalues of the coupled system A1, A2 and A and (right) bed variation
celerity ¢, as a function of the Froude number for & trapezeidal cross-section,
depending on the cross-section updating mechanism:.

~ T
~ ~ (A —Wr=c?
Cm = (1,/\m, — (46)

Finally, conserved variable differences sU i1 /2 and source term integrals

S Az|;y1/2 at the intercell edge 74*1/2 are projected on the elgenvector basis
em in order to obtain the wawe and seurce strengths, «,,, and Bm respectively.

6[7|i+1/2 = Zamgm
£ M - (47)
S/Ax’iJrl/Q - Zﬁmgm

A completerdescription of the explicit expressions obtained for the wave
and soutee Strengths can be found in Appendix A, together with other
aspegts related to the averaged source terms computation.

Therefore, it is possible to express the flux differences and the source
terms integral at the intercell edge i + 1/2 as their projection onto the right
eigenvector basis of the approximate Jacobian matrix of the hyperbolic sys-
tem (36):

(OF = F82) 12 = 3 (i — B ) & (48)

i
m l+/
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Finally, the augmented Roe’s upwind scheme considering A, = cte
through the intercell edge is written as:

. LAt - N~ . NS
U'n_H =U"— — (>\+ ~m - m) _)m <)\_ ~m - m) _’m
¢ O Ax ; m¢ b ) € i-1/2 + ; m® fm) & ir1/2
with: A= —/\m £ [Am]
: - 5
(49)

3.2. Roe’s approximate solver for empirical models (Ag% const)

In realistic applications, the solid transport rate.is evaluated as a function
of the bottom shear stress 7. To estimate a value for the"solid transport rate
per unit width, any of the experimental models published in literature could
be considered. [32] and [17] reported a method te,adjust the Grass model to
these empirical formulae. The method simply modifies the Grass coefficient
value as a function, leading to different ‘Gzass coefficients A, in the cells ¢
and 7 + 1. In these cases, and following([32], it is possible to evaluate the
solid discharge at each side of the eell face considering an averaged Grass
coefficient A, ;11 /2

- Agi + Ay
Agliviye = ngH
Qsi = Qs(Ag‘i—b—l/Qa l?l) Qsi+1 = Qs(Ag‘i—i-l/Qa ﬁi—&-l) (50>

—

Qu= QA U)  Quir = Qu(Agi1,Uits)

Therefore; the total flux differences at the intercell i+ 1/2 can be written
as:

0Qs)iv1/2 = 5@3‘@'4—1/2 +0(Qs — Qs)|i+1/2 (51)
with:

5Qs|i+1/2 = Qsi+1 - Qsi

5§?s|i+1/2 = Qsi-‘rl - sz ~ (52>
5(@5 - QS)‘i+1/2 = (Qsi—‘rl - Qsi—i—lz_ (Qsz - Qszl
Ceﬁri-i-l C?aﬁi

21



Therefore, 6Qs|i+1 /2 is evaluated by the Roe’s method considering a non-
conservative Jacobian matrix, leading to the scheme (49). However, to ensure
bed load conservation, the solid flux difference 6(Qs — Q)lis1 /2 should be
included by means of a new cellwise contribution which does not require any
splitting [32].

Tl — i o )”L <X*~ 4 ~m> £
U Ui ; < m&m = Cm i—1/2 + %: mCm & O ) € i+1/2
At _
- Az i—1/2 i+1/2
(53)
being:
5ﬁz‘* , = [0, 0, €Bi‘ui’2ui(*’4gi —Ag\zel/Q)]T
" (54)
ity T g 9

Following [32], from now on, theiupdating numerical scheme (53) will be
referred as Conservative Coupled Medel (CCM) to clearly distinguish it from
the numerical scheme (49), which will be called as NCCM (Non-Conservative
Coupled Model).

3.83. Numerical fixes

3.3.1. Wetted area, positivity

The cell ayeraging,process could lead to unphysical negative wetted area
values due toythe local Riemann problem linearization process at the cell
interfaces'[51). This problem can be avoided by enforcing positivity on the
wettedsarea valties of the RP intermediate states. Following the formulation
in [37], theywetted area intermediate values considering right flow direction
(@> 0).can be expressed as:
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A=At (@ -2
A1

ATt = AT — <a3 . ﬁ”) (55)

As
Affy = A3 - (a2 - @>
Az

being Xl < 0 and Xg,}v\g > 0.

Positive values of the wetted area intermediate states (A*yA**, A**) are
enforced by a proper reconstruction of the source strength [, values. This
limitation is only applied to wet-wet walls since, in dry=wet walls the appear-
ance of negatives values of A*; A**, A*** in the approximate solution is helpful
to provide a correct tracking of the flood advance.

Unlike fixed bed cases, with movable bed ‘there always exists a wave mov-
ing upstream. The advantage is that the numerical method does not require
the usual entropy correction. The drawback is that the cell averaging process
does not ensure positivity of the solution in supercritical cases. Therefore the
intermediate states positivity controlis also needed in supercritical regimes.

Enforcing A*, A**, A*** 2«0, minimum values for the corresponding source
strengths f3,, can be derived:

Bihin = — AP M| — [N ]d
ﬁ3min = _A?Jrl)\l’) + )\3623 (56>
Bomin = —A1A2 + Aoty

In the case AT < 0, the new value of 51 is redefined as gmm- To ensure
conservationyf, and 3 should be redefined according to:

El + 52 + /5;3 =0
Elg:f + 5253 + 5353 = S'3Ax

This lead to new values for all source strengths:

(57)
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gl = Elmm

= SAr— Bi(& - &)

e (58)
Ez = —(51 + Es)

It is necessary to check that Eg > Egmm and 53 > Bgmm to ensurethat
Arr, and AST remain also positive. This procedure could besextended in a
similar way to the cases A7}, < 0 and Aj}7] < 0.

3.3.2. Reduction to non-movable bed flow

During a dynamical erosive event, it is possible that erosion-deposition
is not active in some intercell edges. Therefore, for'these cases the numer-
ical scheme should reduce to the shallow water‘flow over non-movable bed
solution. Basically this is a consequence of thesshear stress on the channel
bottom 7 in two consecutive cells being lowerithan the threshold 7., hence the
solid discharge does not exist through the.edgerconnecting these two cells.

In this case, the Grass coefficient at’both cells is set to zero (A, =

Agyiy1 = 0) and the solid discharge derivative cﬂiH /2 is nil. Considering u > 0
the Roe’s averaged eigenvalues at,the intercell edge i + 1/2 evolve as follows:

1. Subcritical case:
N =tu—¢<0 Xy =0 Xs=u+¢>0
~ - ~2 _2\T _
€ = (17&/_’5’ O)T €y = <1707 u) €3 = (La_‘_E? O)T
(59)
2. Supercritical case:
A =0 Xa=U—¢>0 Xs=U+¢>0
= 2-2\" = ~ T ~ =T
51:(1>0,~—2) 52:(1’u_070) 53:(1au+c’0>
Cp
(60)

Therefore, one of the original genuinely non-linear characteristic fields of
the coupled system evolves to a linearly degenerated field (A, for subcritical

cases and Xl for supercritical cases), appearing a contact wave caused by the
non-conservative flux included in the Jacobian Roe’s matrix [52].
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In cases where a rarefaction wave with a critical point exists, the flow
changes from subcritical to supercritical regime at cells ¢ and 7 + 1, respec-
tively (Fig. 5). In this situation, transonic rarefaction phenomena could not
be evaluated by the numerical scheme properly without an entropy-preserving
redistribution of the affected waves.

Figure 5: Wave orientation at cells and intercell edge for a trans-sonic rarefaction wave
case with non-movable bed: (left) subcriticaliedge case and (right) supercritical
edge case.

In the particular case when rarefagtion wave appears at any intercell edge
with a bed discontinuity, the implementation of the classical [53] entropy
fix has been found not tosbe directly applicable due to the presence of two
overlapping contact waves;ione generated by the source terms and one caused
by the non-conservative fltix agsociated to a bed discontinuity [52]. Therefore,
in these cases a correctionfon the wave and source strengths must be done,
restoring the non-conservative flux to the bed slope source term.

Considering the subcritical case (A2 = 0), the corrected values of o’ and
B’ are computed,in the following way:

2¢(u —¢) 2¢(u+¢) (61)
~2 ~9
~ ~ G 0A, ~ ~ ~ G 0A,
"W =B+ 7 By =0 B's = B3 — 7

Finally, an efficient entropy-preserving correction could be computed by
affecting the waves celerity and source strengths as follows:
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M=y —c; <0 Me=0 Ny =u;+¢; >0

)\{% =0 )\§ = Ujt+1 — Ci+1 > 0 )\? = Ujq1 + Cigd > 0
PV N — A\
A= AFl2 2 Ny = AL T
PV EDY: SRSV Y
(62)

So that A = A1 + Ay, being:
~ X X #0
N — M 1 A 7"é (63)
Ao if Ay #0
Concerning the source strength, the new redistributed values can be ex-
pressed as follows:

B=pr+p;  with: ] Br=0 (64)
being:
= ZA N 70
L' if Ay £ 0
The wave with the subscript [ affects the left cell (A\; < 0), whereas the
wave with the subscript’ Jiaffects to right cell (A; > 0).

3.4. Stability region

For each intercelbhedge i+1/2, the time step should be dynamically limited
to ensure that there is no interaction of waves from neighboring Riemann
problems. #'1f ‘the positivity of all wetted area values in the intermediate
states of the solution is guaranteed (see Section 3.3.1) Af > 0, A™ > 0 and
A 2 0, invorder to construct an updated cell average solution [Z»”“, it is
only necessary that the edge values U (x,t) remain constant in time over the
entire ¢ime step. This unique requirement allows us to define an upper limit
for the time step depending only on the characteristic waves celerity and the
spatial cell size. In consequence, the stability region at the intercell edge k
is defined as:

Az

At < AP, A, = ~
max (| Am|)

(65)
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Therefore, the global time step for the updated solution calculation is
obtained applying a CFL condition:

N ~
At = CFL rglj?(AtA\k) (66)

where CFL < 1 and N is the total number of local RP which should be
solved at each time calculation.

4. Numerical tests

4.1. Performance of the model in non-movable bed conditions

In non-movable bed conditions, the numerical scheme should reduce to
the common shallow water solution for variable cross-section channels [37].
The performance of the model in these conditions,was tested by means of two
ideal dam-break flows over a rigid bed step. The,Grass coefficient A, was set
nil at the whole domain. Initial conditions are summarized in Table 1. The
domain was a prismatic rectangular crogsssection channel with B, = 1 m and
30 m length. The solution was evolyed to.a final time t = 1 s with CFL = 1.

Test 1 3.5 1.5 0 0 1.5 1.0

Test | hy (m) hrp (m) wgsan/s) wr (m/s) er (m) &g (m) | A,
0
Test 2 | 15.5 1.5 0 0 2.0 1.0 0

Table 1: Summary of the, dam-break over non-movable bed step test cases.

Figure 6: Free-surface level (left) and eigenvalues at t = 1 s (right) for subcritical dam-
break with non-movable bed conditions.

27



In Test 1 (Fig. 6) the unsteady flow remains always subcritical and the
erosive coupled model eigenvalues A1 and Xg reduce to the common wave
celerities for the shallow water scheme, u — ¢ and u + ¢, whereas the second
eigenvalue s remains nil for all the simulated times.

Figure 7: Free-surface level (left) and eigenvalues @teti=_14s (right) for supercritical dam-
break with non-movable bed conditions.

However, for Test 2 (Fig. 7), the flow regime changes from subcritical
upstream to supercritical downstream ‘the bed step. At the subcritical flow
reach, the first eigenvalue \; = u'% ¢'and the second one is nil. Nevertheless,
at the supercritical reach Xdsw= u = ¢ and A; becomes nil. Therefore, an
entropy fix is needed to keep a; physically proper numerical solution at the
bed step. The third eigenvalue is A\3 = u + ¢, regardless of the flow regime.
Moreover, the free-surface level predicted by the CCM model agrees perfectly
with the original’shallow"water scheme in both subcritical and supercritical
cases. Therefotre, the €CM model is able to reduce accurately to the original
shallow waterimodel for intercell edges in which erosion phenomena do not
exist.

4.2. [Equilibrium slopes for steady flow regimes

Theraim of these test cases is to assess the ability of the proposed method
to converge to the exact solution in erosive steady flow regimes, behaving
in a well-balanced form. The geometry for test A and B is a rectangular
channel with constant width B, = 1 m (Fig. 8). The inlet discharge is
constant (Qry = 1 m?/s) and the bed layer thickness at the inlet is set to
ep(x = 0) = 2 m. The initial flow conditions correspond to a uniform regime
with @ = 1 m3/s, Sy = 0.002 and n = 0.02sm~'/3. The water depth at
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the channel outlet is set to h(x = 100) = 0.943 m, corresponding to the
constant water depth above the uniform regime. The equilibrium bed slope
for uniform flow in prismatic rectangular channels (Sy = Sy) is considered
here as exact solution. The simulation was evolved until it reached the steady
state with a constant Grass coefficient A, = 0.01 in all the test cases:, All
the simulations were made with CFL =1, Ax =1 m.

Test D -

Test A -B Test C /

By,=0.5m
—_ By,=1m —>» (B,=1m —>» |B,=1m B,=3m

\_

Figure 8: Width variation scheme for (left) tests A and\B, (eenter) test C and (right) test
D.

In test A (Fig. 9-left), the initial bed, slope was set to Sy = 0.007,
higher than the equilibrium slope imwuniferm regime. The numerical solution
progressively adapts the bed leyvel by sediment deposition until the steady
state for Sy = 0.002 is reacheds “Initest B (Fig. 9-right) the numerical
method also moves the bedwlevel progressively by an erosion mechanism,
from an initial flat bottom to the equilibrium exact solution.

Figure 9: Numerical results and exact solution for steady states in prismatic rectangular
cross-section channels: (left) Test A with bed deposition and (right) Test B with
bed erosion.

The geometry for variable cross-section cases was a rectangular channel
with linearly variable width from B, =1 m at x = 20 m to B, = 0.5 m (Test
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C) and B, = 3.0 m (Test D) at = 80 m (Fig. 8). Discharge and bed level
at the inlet were set to 1 m3/s and 2 m, respectively. The initial bed slope
was set to Sy = 0.002 in both cases. The goal of these tests is to evaluate
the influence of the width variation on the bed level evolution respect to a
stable state for a prismatic rectangular cross-section channel. Initial"flow
conditions were the same as in tests A and B and the output water depth

boundary condition was that corresponding to a uniform flow in ayprismatic
channel of B, = 0.5 m (Test C) and B, = 3 m (Test D).

Figure 10/ Nwmnerical results and exact solution for steady states in channels with rectan-
gular ¢ross-section and width variation: (left) Test C with progressive longitu-
dinal contraction and (right) Test D with progressive longitudinal expansion.

The numerical bed evolution in Case C (Fig. 10-left) shows a bed erosion
dewnstream caused by an increase in the solid transport rate per unit width
@s» On the other hand, the width expansion (Test D) leads to a progressively
lower solid discharge gs, hence the bed level increases downstream (Fig. 10-
right). However, the total solid discharge @5 in the channel remains constant
for both cases, indicating that the steady state is reached. Numerical results
for the bed level agree perfectly with the exact solution derived from imposing
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steady conditions in a rectangular channel of variable width (67). Deduction
of this exact solution is detailed in Appendix B. The equilibrium bed slope
for prismatic rectangular channels of width 1 m, 0.5 m and 3 m are also
depicted in Fig. 10, showing a perfect agreement with those numerically
calculated at x < 20 m and x > 80 m.

1h
S():Sf—gg(FT2+2)

dB
T (67)

4.3. Dam-break with analytical solution

Three test problems with exact solution presented in [32] are reported
in this section. The tests are one-dimensional Riemann problem for mov-
able bed, in which the friction shear stress term has“been neglected in the
momentum equation. Features and initial condition*for*the three problems
are summarized in Table 2. All the simulations‘were, made with CFL = 1,
Ax = 0.01 m and sediment layer porosity p.= 0:4. Results predicted by the
CCM model are presented for a final simulation time t = 2 s.

Test | hy (m) hg (m) ur (m/s) wur'(m/s) er (m) egr (m) | Ay (dim)
DAS1 2.0 2.0 0.25495 2.3251 3.0 2.846848 0.01
DAS2 2.25 1.18868612 042050 2.4322 5.0 5.124685 0.01
DAS3 6.0 5.2 0.30037" 15.16725 3.0 4.631165 | 0.01/h

Table 2: Summaryfof the dam-break test cases with exact solution.

Cases DAS1 and DAS2Prove the performance of the numerical scheme to
converge to thesexact, solution of both Riemann problems. The CCM model
correctly reptoduces the rarefaction waves involved in these two problems.
The contact and shock waves were also captured accurately, in terms of
strength and position, for all the conserved variables. Results for cases DAS1
and DAS2_at the final simulation time are depicted in figures 11 and 12
respectively, together with the exact solution for both problems. For a more
complex description of the wave structure involved in each problem see [32].

Test DAS3 assumes that the Grass coefficient is not constant but it varies
as,a function of the water depth. To clarify the influence of the cellwise
flux term in the numerical formulation when A, is not constant through the
local Riemann problem, results for DAS3 with the conservative and non-
conservative schemes are depicted in figure 13, together with the exact solu-
tion for the last simulated time. The CCM model is able to describe properly
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Figure 11: Numerical and exact selution at ¢ = 2 s for the test case DASI.

the solution structuresfor all the conserved variables and all the waves were
captured accurately. Furthermore, with the NCCM model the numerical so-
lution degeneratesiclearly due to the lack of conservation of the solid bed
material volunie.

4.4. Damrbreak over bed step and cross-section change

Thevaim of this section is to assess the performance of the numerical
scheme to deal with transient flow through cross-section shape changes. A
dam-break case with hy = 2.5 m and hg = 0.7 m is simulated over a bed
step (& = 1.5 m and ¢,z = 1.0 m) for different cross-section shapes both
upstream and downstream. A progressive linear cross-section transition oc-
curs between x = —1 m and © = +1 m]. Upstream and downstream this
transition region, the channel is prismatic, with the cross-sections indicated
in Table 3. The discontinuity in the water surface and the bed step are
located at z = 0.
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Figure 12: Numerical and exact selution at ¢ = 2 s for the test case DAS2.

All the cases weresimulated with CFL = 1, Az = 0.05 m and sediment
layer porosity p =.0.6.+/The’ Manning coefficient was n = 0.025sm ™"/ and
the solid dischargeiper unit width was estimated by the Meyer-Peter-Miiller
model. The solution was evolved with the horizontal layer erosion-deposition
mechanismy(Option A) until a final simulation time ¢ = 3.0 s.

The mumerical model is able to handle the solid discharge variations
causedby Sudden expansions and contractions in rectangular channels (Fig.
14). [ An expansion downstream leads to higher erosion upstream the bed
step. “Qn’the contrary, a contraction downstream caused a lower erosion
upstream the bed step.

Finally, the ability of the scheme to handle cross-section shape changes
is'evaluated by Test 4 and Test 5. Results for a prismatic rectangular (Test
1) and prismatic trapezoidal (Test 6) channels were selected as reference.
Results depicted in Fig. 15 show the influence of the cross-section shape
change over the erosion on the bed step, leading to marked differences with
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Figure 13: Numerical and exact selution at ¢ = 2 s for the test case DAS3.

respect to the case inswhieh only the width varies but the shape remains
rectangular.

4.5. FExperimental dam-break in rectangular channel

The aim of this section is to assess the performance of the CCM model by
comparing the obtained numerical results with experimental measurements
for a set ‘of labératory dam-breaks over a sand bed. For these cases, the
Grass§ coefficiént is assumed variable and evaluated by an empirical law. The
experiments was performed by [54] in a rectangular cross-section flume of
6,3 mylength on both sides of a central gate and 25 cm width. The bed
was.formed by a uniform coarse sand of median diameter d,, = 1.82mm,
density p, = 2683 kg/m?, friction angle ¢ = 30°, negligible cohesion and
porosity p = 0.47. The Manning roughness coefficient was estimated as
n = 0.0165 sm=1/3.

Two different experimental dam-break cases have been reproduced, vary-
ing the water depth upstream and downstream the central gate. Table 4
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Test | Up-shape By (m) tgyp Down-shape B (m) tgy A,
1 Rectangular 1.0 Rectangular 1.0 MPM

0 0
Rectangular 1.0 0  Rectangular 1.25 0 | MPM
Rectangular 1.0 0  Rectangular 0.75 0 | MPM
Rectangular 1.0 0 Trapezoidal 1.25 0.2 | MP.
Trapezoidal 1.25 0.2  Rectangular 1.0 0
Trapezoidal 1.25 0.2  Trapezoidal 1.25 0.2

Table 3: Summary of the geometrical features for the hypothetical d cases.

&’

(=23 B NI U R )

Figure 14: Dam-breaks in rectangular channels with variable width: (top left) free-surface
level, (top right) bed level at the transition region and (bottom) solid discharge
per unit width g,.
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shows the features of the simulated dam-breaks. All the simulations were
performed with CFL = 1 and Az = 0.01 m and cross-section updating
mechanism A. The solid discharge per unit width was approximated by the
modified Smart formula proposed by [17]. No boundary conditions e
imposed at the downstream ending section.

Test | hy (cm) hg (cm) ez (cm)  egr (cm) g
ED1 25 10 10 0 Smart CEB
ED2 25 0 10 0 Smart G

Table 4: Summary of the experimental dam-break tests. Null v:
thickness indicates the reference level.

Experimental and numerical results for theqtwo cases ED1 and ED2 at
times t = 0.5 s,t =1.0 s and t = 1.5 s are plagtéd, it Fig. 16 and 17. The

computed bed level evolves correctly for ases and with the same
velocity observed in the experiments. Eurthemmore, the free-surface level is
also reasonably well predicted, event at stages after the gate opening,
and the progress of the dam-break shock wave agrees with the measured data,
regardless of dry or wet conditi tream the central gate.

Finally, it is worth noting tha is a widely extended benchmark case
which has been used to te er 1D numerical models reported in litera-

ture, most of them fai t the earliest stages after the gate opening
[24]. Moreover, the
model did not sho

and connected with an upstream reservoir (2.44 x 2.39m). Down-

Veam the gate (2.92m long), an uniform erodible material was set with a

semi-trapezoidal cross-section. The bed thickness was 8 cm above the non-
erodible channel floor and the bank crosswise slope was 50°. There was no
slope along the longitudinal direction. Upstream the gate (2.76 m long) a
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s, (top right) t = 1.0 s and (bottom) ¢ = 1.5 s.
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s, (top right) t = 1.0 s and (bottom) ¢ = 1.5 s.
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and computed free-surface and bed levels for case ED2 at (top left)
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rigid bank with the same cross-section as the erodible reach was set to mini-
mize two-dimensional flow phenomena. A scheme of the experimental setup
is shown in Fig. 18. The erodible material was a coarse uniform sand of me-
dian diameter d,, = 1.8mm, a density p = 2615 kg/m?, and a bed porogity

&

Figure 18: Sketch of the experimental setup [55]: (left) viewnand (right) section A-A’.

An initial water depth hg = 15cm ab ed was set upstream the
gate. Downstream the gate, the bed materialwas initially saturated. Then
the gate was suddenly open, releasing a reak wave which rapidly prop-
agated along the erodible reach. T ighly erosive flow attacked the toe of
the bank, triggering a series of 4 ibtent bank failures. Thus, the desta-
bilized material was transported tream by the flow. The erodible bed

evolution was measured a ferent cross-sections downstream the gate by a
laser-sheet imaging techaie pproximately 10 seconds after the gate open-

over, the ‘nce of bank failure forces to incorporate a mechanism in the
numeric ¢ to reproduce properly the embankment stability. There-
ative numerical procedure is introduced in the cross-section

¢ stability angle of 28° is estimated for the cross-section submerged
Manning’s roughness coefficient n = 0.016 stn~'/3 is estimated for the

ible material by means of the Strickler formula n = ﬁdééﬁ (Strickler,

0
%2). The Manning’s coefficient of the flume rigid material is also set to
n = 0.01sm~'/3. The domain is discretized in 525 cells in the longitudinal
direction, with a variable cell size dx which was minimum at the near-field of
the gate (02, = 2mm), and 101 panels at the cross direction with constant
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panel size (dy = 5mm).
Fig. 19 depicts the two-dimensional map of erosion-deposition patterns
downstream the gate at ¢ = 10s for three different experimental closure
transport rate relations and cross-section updating mechanism B. Erosi
zones are marked with warm colors, whereas deposition is represen
cold colors. The erosion-deposition distribution is quite similar f
and Nielsen transport rates, with a sediment accumulation at th

bank caused by the stability failures. The highest erosion is p t the
embankment head, whereas slight erosion occurs at the ch - With
the Smart-CFBS formulation some differences can be d but the

global erosion-deposition distribution follows the sa as with the
previous closure relations.

v

Figure 19: 2D on—deposition patterns with cross-section updating mechanism
yer—Peter—Muller Nielsen and Smart-CFBS transport rate formula

rthe , the experimental cross-section evolution at x = 0.25m,

r = 0.95m and x = 1.50m downstream the gate is shown

r fi dlﬂerent times after the gate opening in Fig. 20 (t = 1s, t = 33,

) and Fig. 21 ((t = 10s, t = 15s). The predicted cross-sections at

same instants are also plotted for the Nielsen closure relation and cross-

section updating mechanisms B (uniform) and C (stress weighted erosion and

deposition). Moreover, two-dimensional fields of erosion-deposition patterns
(Nielsen with mechanism B) are also depicted for each time.

The highest differences between computed and measured elevations can
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be observed in the near-field of the gate (profile x = 0.25m) for the first
moments after the gate opening (t = 1s, t = 3s). The dam-break wave
attacks the toe of the bank close to the gate, the bank fails and big portions of
the embankment are incorporated to the submerged channel bed. Upstr
the gate, the bank is rigid and hence it can not be eroded by the flow, 1
to the appearance of a marked two-dimensional flow close to the g
contributes to increase the bank erosion. As the dam-break wave fro
the flow becomes more one-dimensional and the measured and xd
elevations start to show a better agreement.

Despite this 2D phenomenon close to the gate, experi
cross-section profiles generally show a good agreeme
simulations performed with the updating mechanis
deposition). The mechanism C (stress weighted eroSion

predicted
ecially with the
niform erosion-
osition) tends to

overestimate the material removed from erodi ed 1 the near-field of the
gate (see especially the profile z = 0.25m close.t e vertical flume side).
On the other hand, both erosion-deposition offer quite similar results
for the embankment regions, suggesti atWthe bank failure phenomena

controlled the cross-section degrad thése regions.

! (1996)

4.7. Dyke-break wave in the Ri

a real-scale high-erosive flé 1 1996 (July 19-21), the River HalHa! (Que-
bec, Canada) underweut lagge morphological changes due to the failure of a
secondary earth dyké, insthe T.ake Ha!Ha!. The water level overtopped the
dyke head, erod annel to the river thalweg and caused the lake

370 m AMS 2 hours and released a drainage hydrograph with a peak
1000m3/s. The flood wave progressed along the HalHa!

alHa! valley, extracted from [56].
r bed resulted largely modified by the flood event from the lake to
r mouth [57, 58]. High erosion patterns were observed downstream the
KO0-PK2.5), at the ’Chute-a-Perron’ reach (PK20-PK23.5) and down-
am the 'Rocheux-et-d’'Hamel’ tributary ("Lower Canyon’ reach, PK28-
PK32). Marked sediment accumulation was observed at the 'Eaux-mortes’
reach (PK23.5-PK27), where the material eroded in 'Chute-a-Perron’ was
partially deposed. Finally, channel widening was observed in the near reach
to the river mouth (PK32-PK36). This is a widely extended morphodynamic
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Figure 20: Map of erosion-deposition patterns and comparison of measured and predicted
cross-sectional profiles for t =1.0 s, t = 3.0 s and t = 5.0 s.
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Fi @ap of erosion-deposition patterns and comparison of measured and predicted

cross-sectional profiles for ¢ = 10.0 s and t = 15.0 s.
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O Figure 22: HalHa! valley sketch, extracted from [56].
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benchmarking test, initally proposed by [59]. A complete description of the
case, including hydrological data and a detailed topography characterization
pre- (1994) and post-flood (1996) were reported by [56]. Moreover, previ-
ous numerical studies of this benchmarking test using 1D morphodynamié€al
models have been reported by [11, 24, 39, 60-62].

Field observations showed that both soft sand and gravel, a @ as
bedrock, were exposed along the valley. [60] characterized the now-coligsive
material of the riverbed downstream the dyke: median di m

50 —

0.5 mm with standard deviation 2.7 mm, density ps = 2650 porosity
p = 0.4 and internal friction angle 35°. These values hav; tained for
the whole domain since additional information does 11] adopted

a smaller diameter (0.1mm) for the sediment acum n the 'Chute-a-
Perron’ reach. Location of the exposed outcrops weré ified in [57, 58] and
a complete reconstruction of the bedrock elevation wasjprovided in [56]. The
inlet hydrograph condition was reconstructed e lake level and area
drops [57, 59] and showed a peak dischar m?3/s (Fig. 23). A null
sediment discharge condition was also % at the inlet section. For the

downstream outlet condition, the water t the HalHa! Bay was set to a
constant value of 7m AMSL. A glo alwe for the Manning’s roughness co-
efficient in Ha!Ha! valley was es etween 0.036 sm /3 to 0.043 sm /3
[58]. However, [11, 24] adopted a‘global value n = 0.067 sm~'/?, more ap-

This friction coefficientvalue is
of the global Manni goeflicient adopted for the whole domain. The initial
conditions were e edby the previous simulation of the fixed-bed steady
state along thesgi

In ord obtain a quantitative comparison of the different setups, the
isgdivided into seven reaches, depending on the characteristic bed
volution observed after the flood:

v . Reach 1 (Cut-away dyke), from PKO to PK2.5: Erosion of a new chan-
2

nel.
. Reach 2 (Upper Boilleau), from PK2.5 to PK8: Aggradation in the
valley bottom.
3. Reach 3 (Lower Boilleau), from PK8 to PK20: Slight riverbed erosion.
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Figure 23: Inlet

K
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n (sm=1/3)

Mech. (Ero-Dep)

R1
R2
R3

R6

Smart-CBFS
'mart-CBFS

0.036 (1) - 0.067 (2)
0.036 (1) - 0.067 (2)
0.036 (1) - 0.067 (2)
0.036 (1) - 0.067 (2)
0.036 (1) - 0.067 (2)
0.036 (1) - 0.067 (2)

A (Uniform-Layers)
B (Uniform-Uniform)
C (Weighted-Weighted)
A (Uniform-Layers)
B (Uniform-Uniform)
C (Weighted-Weighted)

Table 5: Summary of simulation setup for the twelve runs tested.
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4. Reach 4 (Chute-a-Perron), from PK20 to PK23.5: Severe erosion of the
valley.

5. Reach 5 (Eaux-mortes), from PK23.5 to PK28: Aggradation in the
riverbed.

6. Reach 6 (Lower Canyon), from PK28 to PK32: Moderate bed ezésio

7. Reach 7 (River mouth), from PK28 to PK36.5: Major WideQnd

deepening of the channel. \
The thalweg elevation (lowest point at each cross—sectio along
a

the river valley before and after the dyke breaking were ed from the
2D DTM field data. Moreover, estimations of the m umfwater levels
reached during the flood at 42 point downstream t re performed
by the INRS-Eau in 1997. These estimations wer surveys of the
valley residents and field assessment of the local hi ater marks.

In order to estimate the performance of t the BSS index (Brier
Skill Score) [63] for the thalweg elevation igh water marks is com-
puted for each reach separately. The BSS in have been used as a criteria
to determine the performance of morp ic numerical models in com-

plex real field applications [63, 64]. @omparison of the model results is made
against a baseline prediction, which is work is assumed to be the initial
bed topography. Then, the BSS is calculated as:

@:Ei) tend)meas - Z(II?i, tend)sim)2
BSS Z (68)

(Z(I]Zi, tend)meas - Z(.’L’i, 0>sim)2

being z(» @ Ymeas and z(x;, tena) sim the observed and predicted data in
i nal time, respectively; z(x;,0) the initial data at the point
ber of measurements. Reasonable agreement between field
cted results is considered for BSS values 0.3-0.6, whereas BSS
v, bove 0.6 indicate good agreement [64]. On the other hand, BSS

@aelow 0.3 are obtained for poor fit with the observed data.
le 6 shows the two best BSS results for the thalweg elevation obtained
ach reach and the corresponding simulation setup. In general, simula-
tions with the cross-section updating mechanism C (stress weighted erosion
and deposition) perform better than with the other two option considered.

The best thalweg BSS values are obtained for simulations performed with
erosion-deposition mechanism type C in four of the seven considered reaches

M=

i=1

Sy
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(1:Cut-away dyke, 2:Upper Boilleau, 4:Chute-a-Perron and 6:Lower Canyon),
whereas a simulation sets up with the cross-section updating procedure A
offers the best BSS value in the reach 5:Eaux-mortes. Furthermore, simu-

roughness value, with the exception of reach 6:Lower Canyon. Co
the transport rate closure relation, Smart-CBFS formulation see

observed. However, all the simulations result in poor es in the
reaches 3:Lower Boilleau and 7:River mouth, where ortant channel
widening was observed.

5 Reach 6 Reach 7
558781  0.855746 <0.1

Reach 1 Reach 2 Reach 3 Reach
1%t BSS | 0.561955 0.45103 <0.1 0.

R6-1 R6-1 - R R1-1 R6-2 -
274 BSS | 0.527114  0.418707 <0.1 0.519807  0.807235 <0.1
R6-2 R6-2 - R1-2 R5-2 -

Table 6: Summary of the m values obtained for each reach.

ion trends are reasonably well predicted, important quantitative
ces can be found in the incision created by the flood in the river valley

ong the reach 4:Chute-a-Perron.
Regarding the high water marks predicted by the numerical model, the

computed results were interpolated to the experimental data locations. In
Table 7 the mean absolute difference between observed high marks and the
predicted ones at the same location have been tabulated for all the simula-
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Figure 24: Thalweg elevation profiles in (left) reach 4:Chute-a- nd/(right) 6:Lower
Canyon. Simulation were performed with: (le -CFBS and n =
0.036 sm~'/3; (right) MPM and n = 0.067 sm~

ations with Manning’s
roughness coefficient n = 0.067 sm~'/% (m iation ~ 0.40m) than in
those with n = 0.036 sm ™/ (mean def@ion 2 1.5m), although it is worth

mentioning that the observed data as assessed around 2 m and hence
both values can be considered reaso air

Run 1 (n=0.036) 2 (n=0.067)

R1 1.49 0.35

R2 1.50 0.38

R3 1.52 0.36
Table 7: Mean abso e between observed high water marks and predicted max-

imum w Is for all the simulation setups tested.
Furt orey the most remarkable absolute differences for the maximum

v the dyke-break wave along the river valley tend to appear

um absolute difference always remains below 8 meters (Fig. 25). The
st remarkable trend which can be observed along the river valley is that
simulations performed with the lowest Manning’s coefficient (1) offered un-
derestimated maximum water levels, whereas using a higher Manning’s coef-
ficient leads to predicted maximum water levels above those were observed.
Finally, Figures 26 and 27 show the observed riverbed evolution at seven
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Figure 25: Absolute difference between observed high water, marks and numerical maxi-
mum levels predicted along the Ha!Ha! valley for ions R6-1 and R6-2.

different cross-section (one in each reach i re representative of the
erosion-deposition behavior caused by ghe fload. Results of the simulations
R4-2, R5-2 and R6-2 are also depicte der to show the influence of
the cross-section updating mechan inythe riverbed shape evolution. All

the numerical profiles were obt@i h the Smart-CBFS transport rate
~1/3

relation and n = 0.067 sm

marked and ‘@‘

able accupécy.

topograp
poseg ke-break wave caused a slight general erosion in this reach
0 al wvalley, limited by the presence of the outcrops. Following

criteria, the model fails in this reach, regardless of the simulation
ipsselected. Nevertheless, global thalweg elevation along the reach and
predicted maximum water levels do not deviate excessively from the ones
observed.
Reach 4 was one of the most modified by the flood. A new channel was
excavated in the fine sediment of the flood plains creating a high erosive phe-
nomenon which is difficult to capture for one-dimensional morphodynamical
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Figu 26%d and predicted cross-section evolution at (top) PKO.1 - reach 1:Cut-
O ay dyke, (center) PK3.8 - reach 2:Upper Boilleau and (bottom) PK8.3 -

reach 3: Lower Boilleau.
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Observed and predicted cross-section evolution at (first row) PK22.1 - reach
4:Chute-a-Perron, (second row) PK23.6 - reach 5:Eaux-mortes and (third row)
PK29.1 - reach 6: Lower canyon and (fourth row) PK35.3 - reach 7:River
mouth.
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models. However, the presented coupled model is able to predict the erosion-
deposition trends along the reach with an acceptable accuracy. Nevertheless,
the simulated thalweg elevations remain higher than those measured after
the flood (see 27). Most of the sediment eroded from the upstream redCh
were deposited in reach 5, leading to the riverbed aggradation which is welk
captured by the model. In reach 6 moderate-high erosion was obseryed after
the flood and some bedrock region were exposed creating news out@ropsy, The
numerical results in this reach show a good agreement with tHe¥ield data,
regardless of the selected simulation setup. Near the river mouth (reach 7),
a strongly channel widening phenomena dominated the giverbed,evolution.
The model is not able to capture this widening in a preper way (regardless
of the simulation setup) and predicts the cross-sectidn a@gradation in order
to achieve a higher active width.

Finally, it is worth mentioning that all théf\simulations have been per-
formed with a CFL = 0.5, leading to a minimunm™time step of 2.5 sec ap-
proximately and guarantying fluid and solidandss=<onservation. [11] reported
numerical stability problems in this besehmarking test for a similar Courant
number, therefore the model has demonstséted to offer enough robustness to
perform real-scale field cases.

5. Conclusions

A new finite volume seheme has been proposed for the coupled system
of shallow water and Exner ‘equations which is applicable to 1D channels
with arbitrary geometry, Phis allows the model to be applied to complex to-
pography domains, such as rivers. The equations have been treated to deal
with cross-se¢tion shape variations by distinguishing the intercell conserva-
tive fluxes/due €0 geometry variations from that caused by the flow features.
The resulting coupled system of equations has been rewritten as a non-
conservativeshyperbolic system with three non-linear characteristic fields.
Three, different cross-section updating mechanisms have been proposed to
evaluate the cross-section shape evolution in non-rectangular channels. The
influence of the selected mechanism in the morpho-hydrodynamical coupled
system solution is incorporated into the mathematical model by means of a
new geometrical parameter ¢, which considers the bottom change celerity de-
pending on the solid area temporal evolution. An upwind augmented Roe’s
scheme has been formulated, including the solid discharge evaluated by both
the Grass law and other empirical closure relations. Moreover, numerical
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fixes have been proposed to avoid unphysical negative wetted areas and to
ensure entropy-preserving approximate solutions in case of transitions fixed-
movable bed condition. The proposed scheme emphasizes the necessity of
well formulated approximate eigenvalues to ensure positivity and numerical
stability in all situations with dynamical time step control solely baséd on
the CFL condition.

Firstly, the proposed scheme has been validated against analyticalisolu-
tions for both erosive steady flows including width variationss/nd for dam-
break over movable bed in rectangular channels. Also the numerical*scheme
behavior has been compared for hypothetical unsteady gases censisting of
dam-break flows in channels with shape variations. Numerical/ results show
that the scheme is able to describe properly the exaet” solution structure
for the conserved variables in all the cases tested. Furthermore, we remark
that the ability of the model to handle cross-section shape changes is also
proved. The importance of the selected cross-section updating mechanism
has also been analyzed, since it determines not only the uncoupled solid area
distribution at the cross-section but alge.the waves celerity of the morpho-
hydrodynamical system.

For a more advanced evaluation; the model has also been tested against
two set of laboratory unsteady benchmarking erosive cases. They consist
of dambreak flows over erodible bed involving a bed step and cross-section
degradation respectively. An the first one, the proposed model demonstrates
its capability to deal with highly erosive unsteady flow, being able to predict
the bed elevation and. free surface position reasonably well, even for the first
stages after the gate opening. In the second laboratory benchmarking test,
the coupled schemetis able to correctly estimate the cross-section changes
produced in ttapezoidal erodible channel by a dam-break flow. The numerical
results for” bothylaboratory experiments show a good agreement with the
measuredidata that can be considered better than the results that other 1D
modégls obtain for these empirical tests.

Finally, the proposed coupled model has been faced to a real-scale field
case. Simulating the 1996 flood in the Ha!Ha! river is one of the most chal-
lenginig benchmarking tests for 1D erosive models. The HalHa! flood case
imyolves a complex bed bathymetry with high gradients, bed rock chutes and
very irregular cross-sections, a highly variable discharge inlet condition and
considerably fast changes in the bed elevation with new main channel appear-
ance. Therefore, one of the demanded features to reproduce this test case is
the ability of the numerical scheme to deal with abrupt cross-section changes
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and to adapt to different flow regimes. Despite the intrinsic limitations of
1D models to properly predict secondary flows in complex cross-sections, as
the Ha!Ha! river, the numerical results computed with the proposed model
shows a fairly acceptable agreement with the bed variation field datadin
most of the river reaches. The dike breaking and the thalweg evolution in
highly eroded reaches are well approximated. Nevertheless, important /dis-
crepancies appear in the reaches involving low deposition rates in‘@ompound
cross-section and channel widening, especially at the low valley/reaches. The
predicted morphological adjustment of the river in response toythepstream
discharge boundary condition depends strongly on the mgchanism chosen to
update the cross-section and on the empirical closuresrelation/for the solid
transport rate determination. The stress-weighted meghanism proposed in
this work seems to offer the most accurate results, altheugh probably using
a more complex method to compute the local Beundary shear stress at the
cross-section can lead to improve the numerical prédictions of the model.
However, as concluding remark, it is worthy of*mention that the proposed
numerical discretization of the coupledsShallow water-Exner model demon-
strates a good performance, efficiency andsobustness for this extremely com-
plex case, where previous works of other authors reported numerical stability
problems in presence of time stepgrof the same size as those used in this work.
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Appendix A. Wave and source strengths for the augmented Roe’s
solver

Wave strength

Conserved variable spatial increments at each edge i + 1/2 can bespro-
jected onto the right eigenvector base, obtaining the wave strengths’ «a,, at
that edge:

5ﬁ|i+1/2 = Z a771;;771

(EQ -~ 1 Xk) v (ﬁ > X’“) SR ()

& — k#m k#m
A (xm_ Zn) R
k#m k#*m

Source terms discretization

Source terms are integrated over a suitable control volume for each local
Riemann problem. Then, the result is projected onto the right eigenvectors
basis as a function of the Roe’s average quantities at the cell edge.

gle|i+1/2 £ Z Emgm

<2ﬂ b Z Xk> §/2A$ + @2§/3Al’

k#m
/Bm > z
A ()\m—Z)\k> + T M
0
~ ~2
With? SAz= | —gA [523 + (5@, - %5&) + 5Ac + (6h - %Ml)}
g
—£q; 0B

(A.2)
Furthermore, the value g, should also balance the total solid flux at each
edge, agreeing (13):
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£ 0Qslip1/2 = —EJ5A|1'+1/2 + 56Q|i+1/2 +&qs 6Bliy1/2

1 s 3 (A.3)
4s = §Ag(“i + ujyy)
The friction slope S; is evaluated as follows:
~ n2|fl|17 - Az + A,’+1
St =—7~ ith: Rp=—— A4
TR T R R w-4)

Appendix B. Equilibrium bed slope in rectangular channels with
variable width

Considering a rectangular cross-section channéhof B width and steady
flow, temporal derivatives are nil and the wetted and solid discharge total
derivative become:

Q _ a0,

dr dx
Therefore, the momentum equation reduces to:

~0 (B.1)

Q2
EECZHVA = gA(So — S¢) + gl

QdAS N[ B2 dB h?
2 Bt A\ By ) =94 =S +o -

- dB h?dB dh h?dB
9@ (B +h—> +g (—— + Bh— ) = gA(So — Sp) + g——

A2 de dz 2 d dx 2 dx
(B.2)
Reordering terms:
dh dB
A— u?h— = gA(S, — B.
(9A—w2B) T —u*h"Z = gA(S, - §y) (B.3)

On the other hand, the total derivative of the solid discharge ()5 can be
deeemposed into:

dQs dB dgs

= g + B-2 =0 B.4
dx a dx * dx (B4)
Considering a solid discharge per unit width ¢, evaluated by means of the

Grass model (g5 = Ayu® with A, = cte) allows us to express:
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ACCEPTED MANUSCRIPT

dgs /@d@f Q*dA Q*( _dh  dB
dzx =34 A3 dx 3AgA4 de 3A9A4 Bdac +hdm

Replacing (B.5) into (B.4): Q
B _ 3§Agu3 (B@ hﬁ) =0 \
0

“ T °A dr Vi
2
48 _,B°dh ,BhdB _ (B.6)
dx A dx A dx
dh  —2hdB
dz 3B dz
Therefore, considering (B.3) and (B.6) we c@&ss:
?E(QA—U B)—— —uh (So = Sf)
—2
(?gh2 33U A(So = Sf) (B.7)
—2h
—_—— - — =5 -5
< 2n -
Finally, one can expres§ a relation between bed slope and the friction
slope involving width yaria 5 as follows;
z 1h dB
=Sy — —=(Fr*+2)— B.8
iw ~ 3t g (B:8)
being Fr = e Froude number.
For a prismatic rectangular cross-section channel, this expression reduced
to the nown equilibrium slope condition Sy = 5.
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