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a.1 tabla de horas dedicadas

Tabla 1: Horas dedicadas al proyecto

Tarea Horas

Estudio del framework LightGBM y entrenamiento de árboles 9

Tratamiento de datos para su utilización en la FPGA! 27

Diseño e implementación del circuito 63

Diseño e implementación en C (Simulador e Interacción con FPGA!) 9

Implementación del módulo de depuración 53

Depuración del circuito 45

Redacción de la memoria 57

Redacción del artículo HiPEAC 11

Reuniónes con el director 7

Experimentación 11

Total 292

a.2 diagrama de gantt del proyecto

Figura 1: Diagrama de gantt
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Abstract. A decision tree is a well-known machine learning technique.
Recently their popularity has increased due to the powerful Gradient
Boosting ensemble method that allows to gradually increasing accuracy
at the cost of executing a large number of decision trees. In this paper
we present an initial architecture to accelerate the execution of these
trees while reducing the energy consumption. We have implemented it
in an ARM-based System-On-Chip that includes an FPGA, and we have
tested it with a relevant case-study: pixel classification of hyperspectral
images. In our experiment both execution time and energy consumption
are reduced by a factor of ten.
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1 Introduction

Decision trees are a very light and efficient machine learning technique that
have proved their effectiveness in several classification problems. In the context
of embedded systems, energy efficiency is as much important as accuracy, so it is
necessary to search for efficient algorithms liable to be accelerated. This makes
the decision trees a perfect target to develop an FPGA accelerator.

A single decision tree is frequently not very accurate for complicated tasks
but, thanks to ensemble methods, it is possible to combine several trees in or-
der to deal with complex problems. Gradient Boosting is an ensemble method
that allows to gradually increasing accuracy by adding new trees along several
iterations with very simple operations.

In this paper we present an initial version of an accelerator for Gradient
Boosting Decision Trees (GBDT). To demonstrate its potential we have im-
plemented it in a Zynq-7000 evaluation board [10] which includes an FPGA
embedded in an ARM-based System-On-Chip (SOC), and we have used it for a
relevant case study: pixel classification of hyperspectral images. We have mea-
sured the execution time and power consumption of our accelerator and compare
it to an equivalent C code executed in one of the ARM processors of the SoC.
Our design requires one order of magnitude fewer time than the execution of the
C algorithm compiled with the highest level of optimization of the gcc compiler,
while the power overhead of the accelerator is almost negligible. Hence, it also
reduces one order of magnitude the energy consumption.
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2 Related work

Decision Trees are a well-known algorithm that can achieve good results for re-
gression and classification problems with a very small amount of calculations.
One of its advantages is that it demands less data preprocessing than other
machine learning solutions, since it does not combine the different input param-
eters [3]. Furthermore, recent software solutions specialized on Decision Trees
are arising, combining ensemble methods such as Gradient Boosting with new
powerful training techniques that reduce training time while increasing accuracy.
LightGBM is one of these algorithms optimized for efficiency [4], and they also
provide an specialized framework with Python interface that allows very fast
and light experimentation [6]. In this work we present an accelerator that can
execute the GBDT trained with LightGBM.

There are also some previous works about FPGA acceleration of Decision
Trees [7,5,8]. [7] focuses on the training processes. In our case we assume that
training is carried out offline and we want to focus on inference, which must be
computed online. [5] propose to use a high-level synthesis approach to design an
FPGA accelerator. They focus on Random Forest, which is an ensemble tech-
nique that combines the output of many trees trained with different input data
to generate a more accurate and robust final output. We have decided to focus
on GBDT instead of Random Forest since recently GBDT have demonstrated
and enormous potential [4]. Moreover we prefer to design a custom architecture
instead of using a high-level synthesis approach in order to fully control the final
architecture. [8] presented a custom pipelined architecture which demonstrated
the potential of an accelerator for decision trees. However they do not support
GBDT and they apply their techniques only to simple case studies.

3 Gradient Boosting Decision Trees

A Decision Tree is a decision algorithm based on a series of comparisons con-
nected between them as in a binary tree structure, so that the node comparisons
lead the search to one of the child nodes, and so on, until reaching a leaf node
that contains the result of the prediction [3]. Figure 1 shows the operation of
a Decision Tree on a series of feature inputs with a toy example. In the first
place, this tree takes feature 3 of the input and compares its value with 14300;
as the input value is lower it continues on the left child, and keeps with the same
procedure until it reaches the leaf with 0.15 as output value.

One of the benefits of using Decision Trees over other techniques is that
they do not need any input preprocessing such as data normalization, scaling
or centering. They work with the input data as it is [3]. The reason is that
features are never mixed. As can be seen in Figure 1, in each comparison the trees
compare the value of an input feature with another value of the same feature.
Hence, several features can have different scales. In other Machine Learning
models, features are mixed to generate a single value, therefore, if their values
belong to different orders of magnitude, some features will initially dominate
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Fig. 1. Decision Tree example.

the result. This can be compensated during the training process, but in general
normalization will be needed to speed up training and improve the results.

Besides, the size of the input data does not affect the size of the model, so
dimensionality reduction techniques such as Principal Component Analysis are
not needed to reduce the model size, which substantially reduces the amount of
calculation needed at inference. During training the most meaningful features are
selected and used for the comparisons in the tree. Hence the features that contain
more information will be used more frequently for the comparison, whether those
that do not provide useful information for the classification problem will simply
be ignored. This is an interesting property of this algorithm since, based on the
same decisions made during training to choose features, we can easily determine
the feature importance. This means that Decision Trees can be used to find
out which features carry the main information load, and that information can
be used to train even smaller models keeping most of the information with less
memory impact.

Nevertheless, a single Decision Tree does not provide accurate results for
complex classification tasks. The solution is to use an ensemble method that
combines the results of several trees in order to improve the accuracy levels.
Gradient Boosting is an ensemble method that combines the results of different
predictors in such a way that each tree attempts to improve the results of the
previous ones. Specifically, the gradient boosting method consists in training
predictors sequentially so each new iteration try to correct the residual error
generated in the previous one. That is, each predictor is trained to correct the
residual error of its predecessor. Once the trees are trained, they can be used for
prediction by simply adding the results of all the trees [3].

The GBDT model also allows designers to trade off accuracy for computation
and model size. For example, if a GBDT is trained for 100 iterations, it will
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generate 100 trees for each class. Afterwards, the designer can decide whether to
use all of them, or to discard the final ones. It is possible to find similar trade-off
with other ML models, for instance reducing the number of convolutional layers
in a CNN. However, in that case, each possible design must be trained again,
whereas in GBDT only one train is needed, and afterwards the designer can
simply evaluate the results when using different number of trees and generate a
Pareto curve with the different trade-offs.

4 Hyperspectral image classification as testing target

Hyperspectral images consist of hundreds of spectral bands, where each band
captures the responses of ground objects at a particular wavelength. Therefore,
each pixel of the image can be considered as a spectral signature. Machine learn-
ing techniques have proven good results for hyperspectral pixel classification [1].
Nevertheless, the size of hyperspectral images makes it a very computationally
intensive task, so in on-board systems with very limited resources it is not pos-
sible to use these solutions. These make it a perfect target for our accelerator.
Moreover, due to the characteristics of the hyperspectral images classification
problem, the calculations of the decision trees during inference only need integer
operands, while most of the machine learning techniques are based on floating
point operations.

In hyperspectral images pixel classification, the input is a single pixel com-
posed of a series of features, where each feature is a 16-bit integer. Each node of
the tree only uses one of these features, meaning that, at the time of inference,
one particular node performs a single comparison between its trained value and
the value of the corresponding feature. Since the feature values of hyperspectral
images are 16-bit integers, each node just need an integer comparison to made
their decision; i.e. left or right child. This is a very important feature. In most
ML models the inputs are multiplied by a floating-point value, hence even when
the input model is an integer, as happens in image processing, all the compu-
tations will be floating point. However, a tree only need to know whether the
input is smaller or greater than a given value, and if the input is an integer, the
comparison value can also be an integer without any accuracy loss. LightGBM
follows a one-vs-all strategy for classification problems that consists in training
a different estimator for each class, so each one of them predicts the probability
of belonging to that class. With this approach each class has their own trees, so
we just need to add the results of the trees of each class separately, as shown in
Figure 2. This can be done in parallel.

So in the case of hyperspectral images pixel classification, this technique
behaves exceptionally in terms of computation. As we explained, GBDT only
need a few comparisons and some final accumulations, and for the hyperspectral
images we only need integer arithmetic. For these reasons, FPGAs are a perfect
target to accelerate GBDT for on-board processing.
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Fig. 2. GBDT results accumulation with one-vs-all approach.

5 FPGA implementation

A full binary tree can be easily represented in memory without pointers, following
an in-order, pre-order or post-order traversal. Nevertheless, GBDT binary trees
do not need to be full, so it is necessary to define a node structure that points
to their children locations. Figure 3 shows the non-leaf node structure which
contains the feature to compare with, the threshold value and the addresses
of their left and right children. Figure 4 shows the leaf node structure which
contains the result of the prediction, a flag that indicates if it is the last tree
and, if needed, the address of the next tree. Both of them have a flag to indicate
whether they are leaves or not. In this first approximation we decided to maintain
a size of 64b and a fixed structure for leaf and non-leaf nodes even if there are
some unused space, so we can directly map each part as signals in our design.

Fig. 3. Non-leaf node representation

As we use one-vs-all approach, trees are grouped by classes, so each group
of trees predicts the probability of belonging to that class. The accelerator is
composed of N modules working in parallel, each one of them dedicated to a
different class, i.e. dedicated to the group of trees that predict the probability
of that class. Figure 5 depicts the main structures and communications. Each
module executes the trees adding their predictions, so at the end it gets the final
value of the probability of belonging to that class. Once every module finishes,
we just need to check which one of them reached the highest value to find the
predicted class.



6 Vlad Teletin, Adrián Alcolea, and Javier Resano

Fig. 4. Leaf node representation

The AXI block manages the communications between the ARM processor
(an ARM Cortex-A9 [10]) and the FPGA using the ARM Advanced Extensible
Interface (AXI) [9]. In particular in includes an AXI-lite interface that defines a
set of registers that are visible to the ARM processor, and a AXI-stream interface
that uses a Direct Memory Access (DMA) controller to send the data to process
from the main memory to the accelerator. The Debug and the Checksum blocks
allow to check that the trees are properly loaded in the accelerator in order to
detect any communication error.

Fig. 5. Accelerator diagram

The operation of each node is depicted in 6. All the trees of the class are
mapped into a RAM memory local to the module. When a non-leaf node is
found, it performs the comparison of the input feature value with the node
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threshold to select between left and right children. When a leaf node is found,
its value is accumulated in the output register. If it is not the final tree of the
class, then the root of the next tree is loaded. Once all the modules reach the
final tree, the argmax function is applied to find the selected class, as shown in
5.

Fig. 6. Class diagram

The entire FPGA design require 2961 Flip-Flops (3% of the FPGA resources)
and 17533 LUTs (30% of the FPGA resources). An important detail to consider
on this design is that the local RAM memories have been directly mapped into
LUTs, without using the BRAM blocks available in the FPGA. Actually, 13110
of the 17533 LUTs are used as memory, while only 4423 are used as logic for the
design. In the next design iteration we will use the BRAM blocks provided in
the FPGA, which are faster and more energy efficient for large memories.

6 Experimental results

For the experiments we trained a GBDT model on the Salinas-A Hyperspectral
scene [2]. We use the 15% of the pixels of each class for training and we divide the
rest into validation and testing sets, so at the end we keep 2276 pixels for testing.
We trained our model for 100 iterations using the LightGBM framework [4] that
generated 100 trees for each class. With this setup the classification accuracy
was 99%. We compared the execution time and the energy consumption during
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inference between the algorithm in C code running in the ARM Cortex A9 CPU
and the FPGA implementation of the described design.

These experiments have been realized in the CPU and the FPGA of the SoC
XC7Z020 of the Xilinx Zynq-7000 evaluation board [10]. For the CPU measures
we tried different gcc compiler optimization levels. The CPU clock runs at its
maximum frequency: 667MHz, while the FPGA design is clocked at 100MHz,
which is the frequency of the communication lines with the CPU. Table 1 shows
the total time consumed for the inference process of the complete test set in each
case. As can be seen, the FPGA achieves a 8.8 speedup when compared with the
-O3 execution of the CPU. In the case of the FPGA, the measure includes the
time needed to send the input data form the main memory (512 MB DDR3) to
the FPGA. 7.479ms of the total 15.277ms are due to the communication latency,
while the remaining 7.798ms are the execution time of the computations. As this
is a preliminary approach, we started with a very simple sequential design. In the
next iteration, the logical evolution will be a pipelined architecture that allows
to send the data of the next pixel while the current one is being processed.

Table 1. Comparison of execution time and energy consumption.

CPU(-O0) CPU(-O1) CPU(-O2) CPU(-O3) FPGA

Time (ms) 806.910 189.942 134.001 133.980 15.277
Power (W) 1.436 1.436 1.436 1.436 1.453
Energy (J) 1.159 0.273 0.192 0.192 0.022

The energy consumption has been measured with the Digital Power Meter
Yokogawa WT210 [11]. First, we measured the average static power of the eval-
uation board (3.1 W in our setup), so the power measures in table 1 correspond
to the average dynamic power consumption. i.e. the average power consumption
measurements after removing this 3.1 W. We can observe that FPGA and CPU
executions have a very similar power consumption, so the energy savings of the
FPGA design are proportional to the time savings, i.e. the energy is reduced by
a factor of 8.7 compared to the -O3 execution of the CPU.

7 Conclusions

We have presented a preliminary version of an accelerator for GBDT inference.
We have evaluated our design with a relevant case study and the results demon-
strate that FPGAs are a suitable architecture for our accelerator since it achieves
a x8.8 speedup and reduce the energy consumed during the data processing also
by a similar factor when compared to an optimized C version executed in a ARM
Cortex A9 processor in the same SoC.

We believe that this is a fair comparison since both, the FPGA and the
processor, are implemented in the same technology and use the same memory
resources. However, there is clearly room for improvement. First, our design uses
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the LUT resources to store the trees information, but the FPGA includes specific
RAM blocks (BRAMs) that are faster and more energy efficient, hence in the
next version we will use them for our memory blocks. Second, we compute all
the classes in parallel but all the trees in the same class (100 in our experiments)
are executed sequentially. However it is also possible to execute these trees in
parallel. In the next version we will explore this level of parallelism. Finally,
half of the time consumed by our accelerator was due to the communication
latency. If we add an additional input buffer it will be possible to overlap the
communications of the next pixel with the computations of the current one.
With these optimizations we expect to significantly improve the results in a
future version.
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