Universidad de Zaragoza Custodiado por la Biblioteca de la Universidad de Zaragoza Premis-plugin for CDSInvenio, developed by Miguel Martín Miguel Martín González
oai:zaguan.unizar.es:8740 2015-03-25
spa Montaner García, Santiago Velázquez Campoy, Luis Fernando Teoría de polinomios ortogonales y teoría espectral http://zaguan.unizar.es/record/8740/files/TAZ-TFM-2012-693.pdf En este trabajo se estudia la relación existente entre la teoría espectral de operadores acotados autoadjuntos y la teoría de polinomios ortogonales en la recta real (PORR) a través de las llamadas matrices de Jacobi. Hay dos resultados clásicos en teoría espectral que se demuestran en este trabajo y que son de gran utilidad aquí: el criterio de Weyl, que sirve para caracterizar el espectro esencial de un operador autoadjunto; y el teorema de Weyl, que arma que las perturbaciones compactas de un operador autoadjunto conservan el espectro esencial. De la teoría de PORR se demuestran dos resultados básicos: la relación de recurrencia a tres términos y el teorema de Favard, que dada un relación de recurrencia a tres términos entre polinomios, asegura la existencia de una medida conocida como medida de ortogonalidad. Además, se estudian los polinomios de Chebychev de primera especie, que resultan de interés porque pueden modicarse con facilidad para obtener resultados de cierta generalidad. Finalmente, se establece la relación que hay entre las dos teorías introducidas previamente. La clave de esta conexión son los operadores de Jacobi, que pueden representarse mediante matrices tridiagonales simétricas y que están estrechamente relacionadas con la relación de recurrencia de las sucesiones de polinomios ortogonales. En este trabajo, la conexión que existe entre la teoría de polinomios ortogonales y la teoría espectral de operadores se explota para obtener información sobre los puntos de acumulación del soporte de la medida de ortogonalidad de una sucesión de polinomios ortogonales, siendo el teorema de Krein que se demuestra en esta memoria uno de los resultados más ilustrativos del enfoque adoptado en este trabajo. 2014-11-27
8740 20150325140119.0 TAZ-TFM-2012-693 spa Montaner García, Santiago Teoría de polinomios ortogonales y teoría espectral Zaragoza Universidad de Zaragoza 2012 by-nc-sa Creative Commons 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ En este trabajo se estudia la relación existente entre la teoría espectral de operadores acotados autoadjuntos y la teoría de polinomios ortogonales en la recta real (PORR) a través de las llamadas matrices de Jacobi. Hay dos resultados clásicos en teoría espectral que se demuestran en este trabajo y que son de gran utilidad aquí: el criterio de Weyl, que sirve para caracterizar el espectro esencial de un operador autoadjunto; y el teorema de Weyl, que arma que las perturbaciones compactas de un operador autoadjunto conservan el espectro esencial. De la teoría de PORR se demuestran dos resultados básicos: la relación de recurrencia a tres términos y el teorema de Favard, que dada un relación de recurrencia a tres términos entre polinomios, asegura la existencia de una medida conocida como medida de ortogonalidad. Además, se estudian los polinomios de Chebychev de primera especie, que resultan de interés porque pueden modicarse con facilidad para obtener resultados de cierta generalidad. Finalmente, se establece la relación que hay entre las dos teorías introducidas previamente. La clave de esta conexión son los operadores de Jacobi, que pueden representarse mediante matrices tridiagonales simétricas y que están estrechamente relacionadas con la relación de recurrencia de las sucesiones de polinomios ortogonales. En este trabajo, la conexión que existe entre la teoría de polinomios ortogonales y la teoría espectral de operadores se explota para obtener información sobre los puntos de acumulación del soporte de la medida de ortogonalidad de una sucesión de polinomios ortogonales, siendo el teorema de Krein que se demuestra en esta memoria uno de los resultados más ilustrativos del enfoque adoptado en este trabajo. Máster en Iniciación a la Investigación en Matemáticas Derechos regulados por licencia Creative Commons polinomios ortogonales espectral operadores jacobi krein chebychev espectro esencial medida ortogonalidad Velázquez Campoy, Luis Fernando dir. Universidad de Zaragoza Matemáticas Análisis Matemático 564062@celes.unizar.es 500345 http://zaguan.unizar.es/record/8740/files/TAZ-TFM-2012-693.pdf Memoria (spa) oai:zaguan.unizar.es:8740 driver trabajos-fin-master TAZ TFM CIEN URI http://zaguan.unizar.es/record/8740 SUPPORTED 0 MD5 http://zaguan.unizar.es/record/8740/files/TAZ-TFM-2012-693.md5 0 image/x.djvu 6 http://djvu.sourceforge.net/abstract.html DJVU/6 Profile information Lizardtech Document Express Enterprise 5.1 0 URI http://zaguan.unizar.es/record/8740/files/TAZ-TFM-2012-693.pdf disk Minimum View Print Visualization of DJVU requires specific software, like DjVu Browser Plugin URI http://creativecommons.org/licenses/by-nc/3.0 URI http://creativecommons.org/licenses/by-nc/3.0 license URI http://creativecommons.org/licenses/by-nc/3.0 You are free to adapt, copy, transmite or distribute the work under the following conditions: (1) You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). (2) You may not use this work for commercial purposes (3) For any reuse or distribution, you must make clear to others the license terms of this work (4) Any of the above conditions can be waived if you get permission from the copyright holder (5) Nothing in this license impairs or restricts the author's moral rights This object is licensed under Creative Common Attribution-NonCommercial 3.0 (further details: http://creativecommons.org/licenses/by-nc/3.0/). Universidad de Zaragoza Automatizacion de Bibliotecas Edif. Matematicas, Pedro Cerbuna 12, 50009 Zaragoza auto.buz@unizar.es