

ANEXOS

Desarrollo y validación de un método de análisis de compuestos de interés en el aroma del vino.

Development and validation of a method of analysis of compounds of interest in the aroma of wine.

Autor

Ana Isabel Gracia Izquierdo

Director

Ricardo López Gómez

Facultad

Facultad de ciencias / Grado en Química

Año

2018-201

Anexo 1. Cálculos realizados para la preparación de la disolución patrón de SO₂.

Como se ha explicado en la memoria el SO₂ se encuentra presente en los vinos mediante la adición del reactivo sólido Na₂S₂O₅. Todas las disoluciones preparadas en el laboratorio se realizaron a partir de la disolución patrón de 2000 mg/L. Para esto había que pesar 59,4 mg de Na₂S₂O₅ y llevarlos a un volumen de 20 mL con vino modelo.

Para calcular la concentración real se utilizaba la siguiente formula:

$$concentracion\left(\frac{mg}{L}\right) = \frac{peso(mg)x\ 2\ x\ 64\ mg/mmol}{190,07\frac{mg}{mmol}x0,02L}$$

Cuando se obtenía la concentración del patrón mediante la relación **M** x V=**M** x V se obtenía el resto de concentraciones. Por ejemplo, si queríamos preparar 100 mL de 30 mg/L de SO₂, los cálculos realizados eran:

$$2000 \text{ mg/L x V} = 30 \text{ mg/L x } 100 \text{ mL donde V} = 1.5 \text{ mL}.$$

Es decir, teníamos que coger 1,5 mL y llevarlos a un matraz de 100 mL con vino modelo. Este mismo procedimiento se realizaba todos los días, variando las cantidades y las concentraciones.

Anexo 2. Cálculos realizados para hallar la cantidad de acetaldehído que hay que introducir para que reaccione con todo el SO₂ disuelto en proporción 1:1.

Los cálculos se realizaron suponiendo que la especie que se combina es SO_2 , aunque se conoce que realmente es HSO_3^{-1} la que se combina. Esto es porque al acidificar las muestras, se supone que se está desplazando el equilibrio ácido base en su totalidad, y que la especie SO_2 es mayoritaria.

$$H_2SO_3 \Leftrightarrow H_2O + SO_2$$

SO₂ + acetaldehído → Aducto

$$\frac{30*10^{-3}\frac{\mathrm{g}}{\mathrm{L}}\deg\mathrm{SO}_{2}\ge0,1\ \mathrm{L}}{64,066\ g/mol}=46,82*10^{-6}mol$$

Se sabe que tiene que haber el mismo numero de moles de $\mathbf{SO_2}$ que de acetaldehído. Se prepararon 100 mL de disolución

$$46,82*10^{-6} mol~de~acetaldehido* \\ \frac{44,05~g}{mol} = 2,062*10^{-3}g \\ \frac{2,062*10^{-3}g}{0.1L} = 0,02~g/L = 20,62~mg/L$$

Se partió de una disolución patrón de 5000 mg/L preparada previamente y según **M x V=M x V**:

$$5000 \text{ mg/L} * V = 0.1 \text{ L} * 20.62 \text{ mg/L}$$

V=4,124*10⁻⁴L \rightarrow 412,4 μ L de acetaldehído para conseguir una relación 1:1 con el sulfuroso.