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1 
Introduction 

  

1.1. Brief history of modern cryptography 

1.2. Definition 

1.3. State of the art and some research lines 

1.3.1. Chaos-based ciphers 

1.3.2. True Random Number Generators 

1.3.3 Optical Gigabit Ethernet 

1.4. Objectives 

1.5. Thesis organization 

1.6. References 

 

This introduction starts with a brief overview of modern cryptography, pointing out 

some of the greatest achievements carried out in the last century in this field. In 

Section 1.2, a formal definition of cryptography as well as some basic concepts 

that will be used during the whole Thesis are presented. Section 1.3 will cover 

the state of the art as well as some important research lines. This section includes 

some of the issues that current cryptosystems present, and present some of the 

alternatives that have been proposed. Based on the study of the state of the art, 

the objectives will be presented in Section 1.4. Finally, the Thesis organization is 

presented in Section 1.5. 
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 Brief history of modern cryptography 

Traditionally, cryptography has been intimately linked to military and diplomatic 

applications. The usage of cryptography outside of military circles, can be dated 

at the end of World War II. In those years, communications suffered several 

changes, and the encryption and decryption processes had to adapt to those 

changes. In that sense, it can be highlighted that the information started to be 

transmitted in chains of bits instead of words of a certain language. Furthermore, 

with the development of computers, there was a crescent number of people that 

needed to protect the transmitted information, as well as the stored data. 

During the 1970’s decade, cryptography suffered two major public advances. The 

first one was the development of the Data Encryption Standard (DES) and its 

publication as an official Federal Information Processing Standard (FIPS) for the 

United States [NAT77]. This algorithm, became the standard used by most of the 

commercial applications. 

The second advance, was the proposal of a new key-exchange protocol by 

Whitfield Diffie and Martin Hellman [DIF76]. Up to that point, all the ciphers were 

symmetric key algorithms, which needed both transmitter and receiver to share 

the same secret key. This key had to be exchanged between the communicating 

parties in some secure way, such as face-to-face contact or using a secure 

channel. Thanks to Diffie and Hellman’s work keys could be exchanged in a 

secure way and was the precursor of a new class of encryption algorithms: public-

key algorithms. Some of the principal ones are Rivest Shamir Adleman (RSA) 

[RIV78] and ElGamal [ELG85].  

One of the most important contributions of public-key cryptosystems were the 

digital signatures, whose first international standard (ISO/IEC 9796:1991, 

nowadays ISO/IEC 9796-2:2010) was adopted in 1991. 

More recently, in 1997, the National Institute of Standards and Technology (NIST) 

announced the necessity of replacing the DES algorithm with a new one, “an 

unclassified publicly disclosed encryption algorithm capable of protecting 

sensitive government information well into the next century”. After a selection 

process, Rijndael algorithm [DAE98] was chosen, becoming the Advanced 
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Encryption Standard (AES), which is the most commonly used encryption 

algorithm nowadays.  

 Definition 

The main objective of cryptography is to allow two people to communicate over 

an insecure channel but preventing an attacker from obtaining the information 

contended in the message. Often, in cryptography explanations, the person that 

sends the information is called Alice and the person who receives the message 

is called Bob. For the attacker, usually the names Mallory or Eve are used (in this 

Thesis, the name Mallory will be used). The information that Alice wants to send 

to Bob is called plaintext. To prevent Mallory from obtaining the information, Alice 

encrypts the plaintext using a key and sends it to Bob. The encrypted message 

is called ciphertext. This way, even if Mallory manages to eavesdrop the 

communication, she cannot determine what the plaintext was. However, Bob 

knows the key needed to decrypt the message and can reconstruct the plaintext.  

A cryptosystem is the set of algorithms that allows Alice and Bob to exchange 

information confidentially. Usually, cryptosystems consist on 3 algorithms: one 

for key generation, one for encryption and one for decryption. Generally, the term 

cipher is used to refer to the pair of algorithms used for encryption and decryption 

while the term cryptosystem includes everything. However, in many cases it is 

common to use the terms “cipher” and “cryptosystem” [KAT14] interchangeably. 

These ideas can be described mathematically as follows. 

A cryptosystem is a five-tuple (𝒫, 𝒞, 𝒦, ℰ, 𝒟), where the following conditions are 

satisfied [STI05]: 

 𝒫 is a finite set of possible plaintexts. 

 𝒞 is a finite set of possible ciphertexts. 

 𝒦, the keyspace, is a finite set of possible keys. 

 ℰ = {𝑒𝑘 ∶ 𝑘 ∈ 𝒦} is the set of all encryption functions (rules) 𝑒𝑘 ∶  𝒫 →  𝒞. 

 𝒟 = {𝑑𝑘 ∶ 𝑘 ∈ 𝒦} is the set of all decryption functions (rules) 𝑑𝑘 ∶  𝒞 →  𝒫. 

 For each 𝑘 ∈ 𝒦, there is an encryption function 𝑒𝑘 ∈ ℰ and a corresponding 

decryption function 𝑑𝑘 ∈ 𝒟 such that 𝑑𝑘(𝑒𝑘(𝑝)) = 𝑝 for any plaintext element 

𝑝 ∈ 𝒫. 
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Fig. 1.1. Basic scheme of a communication process over an insecure channel. 

With this cryptosystem definition, if Alice and Bob wanted to establish a 

communication over an insecure channel, the process would be as follows:  

 Alice and Bob agree on the communication protocol (the set of encryption 

and decryption rules) and choose a random key 𝑘 ∈ 𝒦. While the encryption 

and decryption rules can be known by anyone, the key should be kept in 

secret. Therefore, the key exchange should be done secretly, when they are 

not being observed by Mallory, or via a secure channel. 

 When Alice wants to send a message to Bob over an insecure channel, Alice 

uses the encryption rule 𝑒𝐾 corresponding to the chosen key 𝑘.  

 Bob receives the ciphertext and decrypts it using the decryption rule 𝑑𝑘 

corresponding to the chosen key 𝑘. 

This process has been illustrated in Fig. 1.1. 

It is clear that the encryption function must be injective (one-to-one) since, 

otherwise, the decryption cannot be accomplished unambiguously, i.e.: 𝑝1 ≠ 𝑝2 ⇒

⇒  𝑒𝑘(𝑝1) ≠ 𝑒𝑘(𝑝1) ∀𝑘 ∈ 𝒦, 𝑝1, 𝑝2 ∈ 𝒫. 

Apart from the encryption and decryption functions, there are other functions that 

can be used in security-related applications. Usually, the term cryptographic 

primitives is used to refer to any low-level algorithm used to build cryptographic 

protocols. This term includes the encryption and decryption algorithms, but there 
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are other important cryptographic functions that will be explained in the next 

chapter. 

 State of the art and research lines 

During the last decades, there has been a great development in the field of 

cryptography, and many encryption algorithms as well as other cryptographic 

functions have been proposed.  

However, despite this development, there has been a great interest in the last 

years in creating new cryptographic primitives or improving the current ones. 

Some of the reasons why it is necessary are the following: 

 First, with the development of the communication technologies, the amount 

of information transmitted is constantly increasing. In this context, there are 

many applications that require to encrypt a high amount of data in real time 

or in a limited amount of time. A simple example, could be high-quality video 

encryption. Unfortunately, most of the current encryption algorithms are not 

able to encrypt high amounts of data at a high speed, while maintaining high 

security standards. 

 Due to the development of computer technology, many algorithms that have 

traditionally been considered secure, can be now brute-forced in a 

reasonable amount of time. As an example, DES was first released with a 

key size of only 56 bits while, for current symmetric cryptographic algorithms, 

NIST recommends that they should have, at least, key sizes of 112 bits 

[BAR11]. On the other hand, there is currently a big amount of research in 

the area of quantum computing and it is expected that, at some point, large-

scale quantum computers will be developed. It has been proven that, some 

of the current encryption algorithms such as RSA could be easily broken by 

quantum computers [SHO94a]. 

 Along with the development of cryptography, there has been a big 

development in the field of mathematical cryptanalysis. Therefore, new 

attacks are constantly being proposed and new vulnerabilities are constantly 

being found in some of the current encryption algorithms. Thus, new 

algorithms robust to all kind of attacks must be proposed to substitute the 

vulnerable ones. On the other hand, the security of some of the most 
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commonly used public-key encryption algorithms such as RSA or ElGamal, 

are based on the assumption that some mathematical problems such as 

factoring the product of two large primes or computing discrete logarithms 

are difficult to solve. However, there is no proof that, in the future, new 

algorithms capable of solving these problems fast (in a polynomial time) could 

be developed. 

 Ideally, the keys used to encrypt data should be randomly generated to be 

as unpredictable as possible. Since the sequences generated by a Pseudo 

Random Number Generator (PRNG) are, in principle, predictable, they are 

potentially vulnerable to cryptanalysis. Therefore, the keys are usually 

generated using True Random Number Generators (TRNGs). Unfortunately, 

typically TRNGs offer slower bit generation rates than PRNGs and usually 

provide sequences with non-ideal statistical properties that need to be 

improved using some kind of post-processing techniques. A poor TRNG can 

compromise the security of a system even if it uses a secure encryption 

algorithm, as it has happened in some cases [BER13]. Finding a TRNG fast 

and with good statistical properties is an important research topic. 

To sum up, it is clear that the field of cryptography is a hot research topic with 

numerous research lines. Since the field of cryptography is too extensive to be 

covered in a Thesis, this work has focused on three particular research lines: the 

design of new TRNGs, the design of new chaos-based synchronous stream 

ciphers for secure fast communications and, finally, the implementation of new 

cryptosystems suitable for Optical Gigabit Ethernet. These last cryptosystems 

should include both a TRNG for generating the keys and a chaos-based ciphering 

algorithm. Below, the antecedents and state of the art in the area of chaos-based 

cryptography, TRNGs and Optical Gigabit Ethernet encryption are presented. 

1.3.1. Chaos-based ciphers 

The origin of synchronizable (analog) chaos-based cryptography starts in 1990, 

when Louis M. Pecora and Thomas L. Carroll proved that certain chaotic systems 

could synchronize with each other by linking them to common signals [PEC90]. 

Soon after this discovery, the usage of chaos for secure communication was 

proposed in numerous papers in the following years [CAR91, PEC92, CUO92a, 



Introduction 
 

7 

CUO92b, KOC92, PAR92, HAL93, WU93]. Some of the first proposed encryption 

techniques were: 

 Chaotic masking [KOC92, WU93, CUO93a, CUO93b]. In this case, in the 

transmitter, the analog message signal, 𝑝(𝑡), is added to a chaotic signal, 

𝑧(𝑡). The masked signal, 𝑐(𝑡) = 𝑝(𝑡) + 𝑧(𝑡) is then sent to the receiver. As 

long as the message signal is much smaller than the chaotic signal (𝑝(𝑡) ≪

𝑧(𝑡)), the receiver can generate an approximate synchronous chaotic signal, 

𝑧′(𝑡) ≈ 𝑧(𝑡). When this synchronous chaotic signal is subtracted from the 

encrypted signal, the message signal is approximately recovered 𝑝′(𝑡) =

𝑐(𝑡) − 𝑧′(𝑡) ≈ 𝑝(𝑡).  

 Chaos shift keying (CSK) [DED93, PAR92]. In this case, each symbol is used 

to choose among several different chaotic circuits (Fig. 1.2a). The symbols 

are then detected at the receiver by using cascaded synchronizable chaotic 

circuits (Fig. 1.2b). Some other methods based on CSK that have been 

proposed are chaos on-off keying (COOK), differential chaos shift keying 

(DCSK) and frequency modulated differential chaos shift keying (FM-DCSK). 

A survey of these methods is presented in [KEN00]. 

 

(a) 

 

(b) 

Fig. 1.2. (a) CSK transmitter. (b) CSK receiver. 
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 Chaotic modulation [HAL93, CUO93a, YAN96]. In this case, the message 

signal, 𝑝(𝑡), is used to modulate a parameter of the chaotic generator. In 

these systems, the receiver can exactly synchronize with the transmitter even 

when the message is incorporated. 

 Chaos control methods [HAY93, HAY94]. The double scroll attractor in 

Chua’s circuit consists of a random-like sequence of positive and negative 

peaks, each peak can be associated to a 1 or a 0. By using small control 

perturbations is it possible to cause the signal to follow an orbit whose binary 

sequence represents the information we wish to communicate. The same 

approach can be used with other chaotic systems [LAI99]. 

 Inverse system approach [FEL96, ZHO97b]. The information signal, 𝑝(𝑡), 

controls a chaotic system, the transmitter. The output of the transmitter, 𝑐(𝑡) 

is the input of a receiver which has to retrieve the information signal. In order 

to do this, the receiver has an input-output relation inverse to that of the 

transmitter.  

Unfortunately, most of these methods were soon proved to be insecure and 

several methods to attack these systems were proposed. The first method that 

was proposed, nonlinear dynamic forecasting (NLD), was capable of extracting 

the carrier signal, 𝑧(𝑡), for the chaotic masking and some chaotic modulation 

schemes [SHO94, SHO96, SHO97, SHO98, PAR01]. The message signal, 𝑝(𝑡),   

could then trivially be recovered by removing the carrier signal, 𝑧(𝑡), from the 

transmitted ciphertext signal, 𝑐(𝑡). 

Other methods could directly extract the message signal. Some of these methods 

were power spectral analysis [YAN98a], return map analysis [PER95, ZHO97], 

[YAN98b], correlation analysis [ZHO97], generalized synchronization technique 

[YAN98c] or short-time period [YAN95]. 

Finally, other methods were proposed to try to estimate the parameters needed 

for decryption [ZHO97, DED97, ZHO99, GED99].  

Despite that many new synchronization-based cryptosystems were proposed in 

the following years to resist these attacks, new attacks were proposed and were 

able to successfully break most of these of systems [LI05, ALV06].  
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Due to this fact, most of the research (including the one in this Thesis) carried out 

nowadays focuses on digital chaos-based cryptosystems. In these systems, the 

chaotic system is digitized and implemented in hardware or software using a finite 

precision. Apart from the fact that they usually offer higher security than 

synchronization-based communication systems, these systems are easier to be 

implemented in current communication standards where the plaintext and 

ciphertext are expected to be digital signals and the most commonly used 

ciphering algorithms (RSA, RC4, Trivium, AES, …) are all digital.  

The first papers that proposed digital ciphers with dynamical systems were based 

on cellular automata and proposed in 1985 and 1987 [WOL85, GUA87]. 

However, the first paper usually cited as the first chaos-based cryptosystem was 

proposed by Robert A. J. Matthews in 1989 [MAT89]. After that paper, digital 

chaotic ciphers attracted the attention of many cryptographers and many papers 

were published in a short period of time, proposing new chaos-based PRNGs 

and stream ciphers [BER90, FOR91, BER91, BIA91], block ciphers [HAB90, 

HAB91, BIH91] and a few public-key ciphers [GUA87, DEL91, FRE93]. Almost at 

the same time, some papers [WHE91a, WHE91b, BIH91, ERD92, AND92] 

proved the vulnerabilities of most of those systems and, since then, the number 

of papers published in this area dropped. 

Despite this fact, new digital chaos-based cryptosystems have been continuously 

being proposed and they have constantly improved in terms of encryption speed, 

power consumption, area and security. Although some chaotic algorithms have 

been proposed to be used in public-key cryptosystems (e.g. public-key ciphering 

based on Chebyshev polynomials [KOC05, KOC11]), this Thesis will focus on 

symmetric algorithms. The main reason is that the ultimate purpose of this Thesis 

is to implement in hardware a chaos-based cryptosystem suitable for Optical 

Gigabit Ethernet communications. For the same reason, this Thesis will only 

focus on hardware oriented algorithms so software oriented algorithms will not be 

considered. 

In this area, several cryptosystems have been proposed and implemented in the 

last years, achieving promising results. As the chaotic encryption algorithms, 

most of them are based on the Logistic Map (LM) although some modifications 

are usually introduced for improving the security. Some of the best performing 
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algorithms based on the LM are [CHE10a, CHE10b, LI10, DAB11, DAB14, LI12, 

PAN13]. Other chaotic algorithms that have been used for designing secure 

cryptosystems are the Rényi Map [ADD07], the Lorenz’s attractor [AZZ09], or 

higher-dimensional chaotic systems (HDDCS) [WAN16a]. In some cases, several 

chaotic algorithms are implemented and compared in the same work. This is the 

case of [DAB12] that compares the implementations of the Logistic Map and the 

Henon map or [GIA12] that compares implementations of the Bernoulli, 

Chebyshev, Tent and Cubic maps. Recently, chaotic iterations have been 

proposed to post-process linear pseudorandom number generators. 

Unfortunately, most of these algorithms are not fast enough for Gigabit Ethernet 

or have not passed a strict security analysis [BAK16, BAK18]. 

1.3.2. True Random Number Generators 

The best and most complete TRNGs solutions that have been proposed in 

literature (and on the market as well) so far, have been designed in ASICs 

[ACO17]. These generators, can be classified according to the source of 

randomness that it is used: 

 Jitter oscillation [TAN14, YAN14, YAN16]. These generators use as a source 

of randomness the deviation of an oscillator output from its true periodicity, 

causing uncertainty in the low-high/high-low transition times. 

 Electronic noise. In this case, the conventional method is to amplify noise 

with a high-gain and high-bandwidth amplifier followed by quantization. Some 

of the common noise sources are thermal noise [PET00], oxide trap noise 

[BRE06], SiN device noise [MAT08] or oxide breakdown noise [LIU11]. 

 Metastability [TOK07, MAT12]. When there are setup or hold time violations 

in flip-flops they enter in a metastable state. These generators exploit the 

unpredictability of the metastable states as a source of randomness.  

 Finally, some generators use several entropy sources such as [BAE17] which 

uses both jitter oscillation and metastability or [KUA14] that uses both 

electronic noise and metastability. 

Besides ASIC design, researchers are exploring the design of TRNGs in 

Programmable Logic Devices (PLDs). Compared to ASICs, PLD-TRNGs present 

a great advantage in terms of cost and versatility. Usually, the sources of 
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randomness used by these systems are the same as the ones explained before: 

thermal noise [DAN09], metastability [DAN09, HAT12] or jitter oscillation [GOL06, 

SUN07, WOL08, WAN16b, LIU17]. Unfortunately, PLD-TRNGs still suffer from a 

lack of trust in information security communities, mainly due to some major 

cryptographic weaknesses found in solutions based on ring oscillators [BAU11, 

RAI15]. 

Finally, there is a possibility of using the noise generated by a sensor to generate 

random numbers. The main advantage of this approach is that it is possible to 

reuse a sensor (temperature, acceleration, pressure, …) that it is already present 

in a device to use it as a TRNG. Although some studies about this possibility have 

been made [VOR11, WAL16] and some sensor-based TRNGs have been 

proposed [HON15, REV17], this approach has been relatively unexplored. 

To sum up, although some quite complete TRNG solutions have been proposed 

for ASIC, in our opinion, the potential of PLDs or sensors for the design of reliable 

and efficient TRNGs is far from being completely explored. Due to the fact that, 

as explained above, both of these approaches present some advantages against 

ASIC-TRNGs, we have decided to focus our research on these kind of 

generators. 

1.3.3. Optical Gigabit Ethernet 

Ethernet has been expanded widely in local area networks (LAN), metropolitan 

area networks (MAN) and wide area networks (WAN). In recent decades, it has 

also been used in industrial control systems and critical infrastructures, replacing 

the traditional communication field buses [SAU11a, DEP08]. 

Optical Ethernet is widely used since it has some advantages over other wired 

methods such as higher bandwidth, less signal losses, and more immunity to 

electromagnetic interference. In addition, due to the fact that it does not emit 

radiation, it is safer than wireless systems that are more exposed to 

eavesdropping.  

However, vulnerability and threat analysis in the physical layer (PHY) of optical 

systems is critical to guarantee secure communications [SKO16, FUR14]. At 

present, low-cost method for intercepting the optical signal through the fiber 

coupling devices and optoelectronic converters are available without the need to 
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perceptibly interfere in communications (splitting attack) [ZAF11]. To avoid or 

detect eavesdropping, encryption and intrusion detection systems have been 

proposed as solutions [SKO16].  

In a layered communication model, encryption methods can be implemented at 

different communication levels, depending on the communication layer where 

confidentiality is needed. In the particular case of industrial Ethernet, solutions 

are usually proposed for network and transport layers (layers 3 and 4), such as 

IPsec or transport layer security protocols [SAU11b, BHA06]. Other solutions are 

proposed for the data link layer (layer 2), such as MACsec standard [LAZ17]. 

Although some protocols have been proposed for physical layer (layer 1) 

encryption in some telecommunication networks [ELK13, JI17, GUA16], as far as 

we know, no solutions have been proposed for optical Ethernet networks. 

An encryption at a physical layer would bring some advantages against 

encryption at other layers such minimum latency and line rate (zero overhead). 

As an example, in IPsec, the inherent overhead introduced during encryption 

reduces the overall throughput between 20% and 90% of the maximum 

achievable [TRO05], so the improvement achieved by an encryption at a physical 

layer would be considerable. Finally, another advantage is that, by performing the 

encryption at a physical layer, obfuscation of customer data traffic patterns can 

be achieved. Since all of these advantages would result in an overall 

improvement over the state of the art, we intend to implement an encryption 

system that works at the physical layer (1000Base-X in the case of 1 Gb Ethernet 

and 10GBase-R in the case of 10 Gb Ethernet). 

As far as we know, no chaos-based cryptosystems have been proposed as an 

Ethernet solution so far. On the other hand, both IPsec [SAU11b] and MACsec 

[LAZ17] protocols indicate the ciphering algorithm as well as the key exchange 

process, but they do not specify how the keys should be generated. Therefore, 

designing a chaos-based cryptosystem that includes a good TRNG used to 

generate the keys would undoubtedly be a significant contribution to the state of 

the art. 
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 Objectives 

It has been seen that most of the chaos-based cryptosystems proposed so far 

cannot achieve enough speed for Gigabit Ethernet communications, require a big 

amount of area for being implemented or lack of a strict security analysis. In 

addition to that, most of the encryption algorithms (both chaotic and non-chaotic) 

proposed so far do not address the key generation process. Ideally, a TRNG 

should be used for key generation. This generator should not only be capable of 

generating random sequences but it should also be fast and robust (i.e., it should 

always present good randomness properties regardless of any external 

interference). However, no complete solutions of TRNGs for PLDs or TRNGs 

based on the noise generated by sensors have been proposed so far, despite the 

advantages that these approaches would present against ASIC-TRNGs. 

The scope of this work is the design of new secure physical layer encryption 

schemes suitable for Optical Gigabit Ethernet traffic. In order to design and 

implement a full communication scheme, we will design new secure chaos-based 

encryption algorithms as well as new TRNGs suitable for key generation. Finally, 

in order to encrypt at a physical layer, the algorithms will have to be adapted to 

preserve the data coding.  

To design new TRNGs suitable for key generation, two possibilities will be 

studied. One consists of the usage of the noise generated by a 

Microelectromechanical (MEMS) accelerometer while, the other one will be 

based on the jitter generated by digital nonlinear oscillators (DNOs). For the last 

case, the proposed structures will be tested using an Arty board, which includes 

an Artix-7 Field Programmable Gate Array (FPGA). This board includes a set of 

ports that will be helpful for measuring the proposed structures. Xilinx Vivado 

Design Suite will be used for the implementations as well as to perform 

behavioral, post-synthesis and post-implementation simulations. Once 

implemented, to carry out the measurements, this FPGA will be connected to a 

computer using a LabVIEW platform. 

The proposed encryption algorithms will be first implemented in a Virtex 7 FPGA, 

which is faster than the Artix 7 FPGA. Once the designs have been implemented 

and tested in the FPGA, we intend to select one of the encryption algorithms and 
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implement it in an Application-Specific Integrated Circuit (ASIC) using Cadence. 

A 0.18-m CMOS process will be used for this implementation.  

For the implementation of the Optical Gigabit Ethernet encryption system, we will 

also use the FPGA. In the setup for test, the FPGA will be connected to two Small 

From-Factor Pluggable (SFP+) modules capable of transmitting at a rate of 

10.3125 Gbps at 850 nm over multimode fiber.  

The concrete objectives of this work are summarized below: 

  Study of the state of the art, including the encryption algorithms that are 

currently being used. This part will analyze the main issues that current 

standard encryption algorithms present and what solutions, if any, have been 

proposed. This study will help us to design new algorithms that overcome 

these issues.  

 Proposal of new TRNGs suitable for key generation. We will explore two 

different possibilities: the usage of the noise generated by a MEMS 

accelerometer and the jitter generated by Digital Nonlinear Oscillators 

(DNOs). Both cases will be analyzed in detail by performing several statistical 

analyses at different sampling frequencies. If necessary, a simple post-

processing algorithm will be proposed and implemented to improve the 

randomness of the generated sequences. Finally, the possible usage of 

these TRNGs as key generators will be discussed.  

 Proposal of new encryption algorithms that are fast, secure and can be 

implemented using a small amount of resources. Among all the possibilities, 

this work will focus on cryptosystems based on chaotic since, thanks to their 

intrinsic properties such as ergodicity or random-like behavior, they can be a 

good alternative to classical encryption. To overcome some of the issues that 

appear when these systems are digitized, several strategies will be studied: 

using a multi-encryption scheme, changing the chaotic control parameters 

and perturbing the chaotic orbits. 

 Implementation of the proposed encryption algorithms. For this purpose, a 

Virtex 7 FPGA and Vivado Design Suite will be used. The different 

implementations will be tested and compared, and some important aspects 

such as their power consumption, area usage, throughput and security will 

be discussed. One of these designs will be selected and implemented in an 
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ASIC using a 0.18-µm technology. Nevertheless, the solutions that we will 

look for will be generic so they will also be able to be implemented in other 

platforms or other technologies. 

 Finally, the proposed algorithms will be adapted and applied to Optical 

Gigabit Ethernet communications and will use one of the proposed TRNG to 

generate the keys. In particular, we intend to implement and analyze 

cryptosystems that work at the physical layer for 1 Gb and 10 Gb Ethernet 

communications. In order to perform the encryption at the physical layer, 

these algorithms will have to be adapted to preserve the data coding, 8b/10b 

in the case of 1 Gb Ethernet and 64b/66b in the case of 10 Gb Ethernet. In 

both cases, the cryptosystems will be implemented on a Virtex 7 FPGA and 

an experimental setup, including two SFP modules capable of transmitting at 

a rate up to 10.3125 Gbps at 850 nm over multimode fiber, will be design. 

With this setup we will check that the encryption systems work correctly and 

synchronously without harming data traffic or link establishment between 

Ethernet interfaces. Furthermore, we will check that the encryption is good 

(i.e., passes all the security tests) and that the data traffic pattern is hidden. 

 Thesis organization 

This Thesis is divided into six chapters, of which the first one is devoted to this 

introduction and the last one presents the general conclusions of the work. The 

remaining four chapters form the core of the work that has been carried out during 

the whole Thesis. 

Chapter 1 is an introduction that includes a brief overview of the field of 

cryptography, the antecedents of this work, its motivation and the main 

objectives. 

Chapter 2 includes an extensive theoretical background with all the concepts and 

definitions needed to understand this work. First, it gives a general overview of 

the whole protocol needed to transmit information confidentially and explains 

some of the most important cryptographic primitives. Second, it explains the most 

important aspects of chaos based cryptography with its advantages and the 

current state of the art. Third, it explains the main aspects of TRNGs and their 

applications in cryptography. Finally, this chapter presents the randomness tests 
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and cryptanalysis that must be used to evaluate the security of both TRNGs and 

the encryption algorithms. 

Chapter 3 explains the basic scheme of a chaos-based stream cipher, its 

advantages, and its drawbacks. Furthermore, it presents several chaos-based 

stream ciphers that have been proposed. All of them are based on simple known 

chaotic maps, such as the Skew Tent Map or the Logistic Map, but include some 

techniques to improve their security. 

Chapter 4 presents two different TRNGs that have been proposed and analyzed 

in this work. The first one, uses the thermal noise produced by a MEMS 

accelerometer at rest while, the second one, consists on a family of TRNGs 

based on nonlinear oscillators that can be implemented in CPLs. 

Chapter 5 applies the proposed encryption algorithms for Optical Gigabit Ethernet 

communications. Both 1 Gb and 10 Gb Ethernet communications systems are 

proposed, implemented and analyzed in this section. 

Finally, in Chapter 6, the conclusions of the work carried out in this Thesis as well 

as possible future research lines are presented.   
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In this chapter, the main concepts and definitions that will be used in this Thesis 

are presented. Section 2.1 explains a general overview of a secure 

communication system, describing the main cryptographic primitives and how 

these can be used to design a secure communication protocol. Section 2.2 will 

focus on chaos-based cryptography, explaining some important properties of 
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chaotic systems and its applications to secure communications. In particular, this 

section will focus on how to design and analyze a chaos-based stream cipher. 

Finally, Section 2.3 provides some of the statistical tests that can be used to 

compare non-ideal random number generators and will present some possible 

post-processing techniques that can be used to improve their statistical 

properties. 

 Overview of a secure communication system 

The purpose of this section is to explain the different types of ciphers (symmetric 

and asymmetric) as well as other important cryptographic primitives. The ultimate 

scope of this section is to explain how these cryptographic primitives can be 

combined to construct a secure communication system. 

2.1.1. Symmetric and asymmetric ciphers 

According to how the keys are distributed, cryptosystems can be divided in two 

different types [MEN97]: 

 Symmetric or private key cryptosystems. 

In these systems, the same key is shared by both the sender and the receiver 

and is used for encryption and decryption. To guarantee the security of these 

systems, before the communication, the sender and the receiver must have 

secretly shared the key. These systems, can be divided in two different types: 

block ciphers and stream ciphers. 

 Asymmetric or public key cryptosystems. 

In these systems, the receiver creates two keys: a public key and a private 

one. The public key is used for encrypting the message and can be known 

by anyone while the private key is used for decrypting the message and can 

be only known by the receiver. To guarantee the security, it should be 

infeasible to obtain the private key from the public key. 

2.1.1.1. Block ciphers 

Within the private key algorithms, block ciphers transform a block (a fixed-length 

group of bits), 𝑃, into another block of the same size, 𝐶, using an encryption 

algorithm, 𝑒𝑘, that depends on a key 𝑘. The decryption algorithm, 𝑑𝑘, performs 

the inverse operation, i.e., 𝑑𝑘(𝑒𝑘)(𝑃) = 𝑃  ∀𝑘 ∈ 𝒦, ∀𝑝 ∈ 𝒫. If we call 𝑛 the size of 
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the block and 𝑙 the size of the key, the block cipher can be specified by an 

encryption function:  

 𝑒𝑘(𝑃) ≔ 𝑒(𝑘, 𝑃) ∶ {0, 1}𝑙 × {0, 1}𝑛 → {0, 1}𝑛 (2.1) 

and a decryption function: 

 𝑒𝑘
−1(𝐶) ≔ 𝑑𝑘(𝐶) = 𝑑(𝑘, 𝐶): {0, 1}𝑙 × {0, 1}𝑛 → {0, 1}𝑛 (2.2) 

Usually, bigger block sizes offer higher security but they also increase the 

complexity of the systems (they are more costly to implement). Typical block 

sizes (𝑛) used in modern cryptosystems are 64, 128, 192, and 256 bits [BUC17]. 

In these systems, it must be pointed out that the set of possible input blocks, P, 

and the set of possible encrypted blocks, C, is usually the same. Furthermore, as 

explained in Section 1.2, different ciphertexts should correspond to different 

plaintexts to avoid any ambiguity. Therefore, each encryption 𝑒𝑘 or decryption 

function 𝑑𝑘 is actually a permutation over the set of input blocks (i.e., a bijective 

mapping). In other words, each key is generated selecting a permutation over the 

(2𝑛)! possible permutations. 

Usually, the sender does not want to encrypt a single block but a variable-length 

message instead. In this case, the message needs to be partitioned first into 

separate blocks. If the length of the message is not a multiple of n, the last block 

needs to be completed with extra bits (padding bits). In the simplest operation 

mode, called Electronic Codebook (ECB), each block is encrypted (Fig. 2.1a) and 

decrypted (Fig. 2.1b) one by one.  

 

(a) 
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(b) 

Fig. 2.1. Electronic Codebook (ECB) mode for (a) encryption and (b) decryption. 

However, this method has the problem that if two blocks of the message are the 

same and are encrypted with the same key, their corresponding ciphertexts will 

be identical so patterns in the message can be detected. A simple example of 

this problem can be seen when a block cipher in ECB mode is used to encrypt a 

bitmap image that uses large areas of uniform color (Fig. 2.2a). While each 

individual color is encrypted, the image can still be recognized since areas of 

uniform color still have a uniform color after encryption (Fig. 2.2b).  

 

(a) 

 

(b) 

 

(c) 

Fig. 2.2. (a) Original Image. (b) Image encrypted with ECB. (c) Image encrypted with CBC. 

 

(a) 
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(b) 

Fig. 2.3. Cipher Block Chaining (CBC) mode for (a) encryption and (b) decryption. 

To prevent this, block ciphers often use more complex modes of operation. 

Basically, these modes of operation randomize the plaintext using an additional 

input value called initialization vector (IV). Some of the most common operation 

modes are: Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output 

Feedback (OFB) and Counter (CTR). A scheme of the CBC operation mode is 

shown in Fig. 2.3, while a full description of these modes of operation as well as 

some recommendations regarding them can be found in [DWO01]. As an 

example, in Fig. 2.2c, it can be seen that CBC can achieve a better encryption 

than ECB. 

2.1.1.2. Stream ciphers 

The other type of symmetric cryptosystems are the stream ciphers. In this case, 

using a key and an encryption algorithm, the sender generates a sequence of 

random bits named keystream. The ciphertext is created by combining each bit 

of the plaintext with its corresponding bit of the keystream. For decrypting the  

 

Fig. 2.4. Synchronous stream cipher. 



Chapter 2 
 

30 

message, the receiver must use the key (that must have been secretly 

exchanged) and the same algorithm to generate an identical keystream. By doing 

the inverse combining operation, the original plaintext is recovered. Stream 

ciphers can also be classified in two types, depending on how they generate the 

keystream. If the keystream only depends on the key, the stream cipher is 

synchronous while, if the ciphertext is also used by the algorithm to generate the 

keystream, the stream cipher is asynchronous. The term synchronous refers to 

the fact that, in order to work properly, the keystreams must be synchronized 

(aligned) between the encrypter and the decrypter. On the other hand, 

asynchronous ciphers do not need this synchronization. 

In general, a synchronous stream cipher (Fig. 2.4) has the form: 

 𝑥𝑖+1 = 𝑓(𝑥𝑖, 𝑘) 

𝑧𝑖 = 𝑔(𝑥𝑖 , 𝑘) 

𝑐𝑖 = ℎ(𝑧𝑖, 𝑝𝑖) 

(2.3) 

where 𝑘 is the key, 𝑥𝑖 is the internal state at the time step 𝑖, 𝑧𝑖 is the 𝑖th bit (or 

symbol) of the keystream, 𝑝𝑖 is the 𝑖th bit (or symbol) of the plaintext, 𝑐𝑖 is the 𝑖th 

bit (or symbol) of the ciphertext, 𝑓 is a feedback function, 𝑔 is the extraction 

function and ℎ is a function that combines the keystream with the plaintext. 

Usually, the ℎ function is an XOR operation (𝑐𝑖 = 𝑧𝑖 ⊕ 𝑝𝑖) and the feedback (𝑓) 

and extraction (𝑔) functions do not depend on the key (𝑥𝑖+1 = 𝑓(𝑥𝑖), 𝑧𝑖 = 𝑔(𝑥𝑖)). 

In these cases the ciphers are called binary additive stream ciphers. Furthermore, 

although 𝑧𝑖 , 𝑝𝑖, 𝑐𝑖, can be a bit, a group of bits, or a more complex symbol (e.g., a 

letter of the alphabet), they are often just a single bit. Therefore, from now on, to 

simplify the writing, we will refer to them as single bits. 

It must be pointed out that synchronous stream ciphers do not guarantee the 

integrity of the message since, if there is a transmission error or a deliberate 

attack and the 𝑖th bit of the ciphertext, 𝑐𝑖, is changed, the 𝑖th bit of the original 

plaintext, 𝑝𝑖, would differ from the 𝑖th bit the plaintext recovered by the receiver, 

𝑝𝑖
′. Since there is a change only in a single bit, this error could easily be unnoticed. 

For example, let’s imagine that the message was an order to transfer 14000€ and 

this amount was represented by a 16-bit number (e.g., 0011011010110000). If 



Important Concepts and Definitions 
 

31 

an attacker knew that the 𝑖th bit of the ciphertext corresponds to the Most 

Significant Bit (MSB) of the amount to transfer, he could change it from ‘0’ to ‘1’, 

so, instead of 14,000 €, the transferred amount would be 46,768 € 

(1011011010110000). This kind of attacks where an attacker change the data 

are called active attacks. Therefore, to transmit information over a noisy channel 

or to prevent this kind of attacks, a certain protocol must be used (a possible 

secure communication protocol will be explained in Section 2.1.3).  

On the other hand, an asynchronous (also called self-synchronizing) stream 

cipher has the form: 

 𝑥𝑖 = (𝑐𝑖−1, … 𝑐𝑖−𝑡) 

𝑧𝑖 = 𝑔(𝑥𝑖 , 𝑘) 

𝑐𝑖 = ℎ(𝑧𝑖, 𝑝𝑖) 

(2.4) 

where 𝑘 is the key, 𝑥𝑖 is the internal state at the time step 𝑖, 𝑧𝑖 is the 𝑖th bit (or 

symbol) of the keystream, 𝑝𝑖 is the 𝑖th bit (or symbol) of the plaintext, 𝑐𝑖 is the 𝑖th 

bit (or symbol) of the ciphertext, 𝑔 is an extraction function and ℎ is a function that 

combines the keystream with the plaintext (see Fig. 2.5). Just like in synchronous 

stream ciphers, in asynchronous stream ciphers ℎ function is usually an XOR 

operation (𝑐𝑖 = 𝑧𝑖 ⊕ 𝑝𝑖) and the extraction function 𝑔 does not depend on the 

key. As it can be seen, in this case the keystream depends on the key, but also 

on a fixed number of preceding ciphertext bits (or symbols). The initial internal 

state, 𝑥0, can be just a randomly chosen set of bits but can also depend on the 

key. 

 

Fig. 2.5. A self-synchronizing stream cipher. 
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Asynchronous stream ciphers can have some advantages over synchronous 

ones: 

 In these systems, if a bit of the ciphertext is changed, the error propagates 

so several bits of the recovered plaintext would also change, often resulting 

in a nonsense message. Therefore, it is easier to detect errors or active 

attacks. 

 If a bit is removed or an extra bit is injected in the ciphertext, only a finite 

number of bits of the recovered plaintext will change before the cipher 

stabilizes again (self-synchronizing property). 

 Since all the bits of the plaintext have influence on the following bits of the 

ciphertext, the statistical properties of the plaintext are dispersed through the 

ciphertext so these systems could be more secure against some attacks 

based on the redundancy in the plaintext. 

Although these properties are useful, an important disadvantage of asynchronous 

stream ciphers is that they are typically harder to design and implement. This is 

due to the fact that, while in synchronous stream ciphers the keystream 

generation process and the encryption process are separated, in asynchronous 

stream ciphers both processes are mixed, making the implementation more 

difficult [KLE13]. Furthermore, due to this separation in the keystream generation 

process and the encryption process, the security analysis of synchronous stream 

ciphers is easier to make, since both processes can be studied independently. 

Therefore, although asynchronous stream ciphers might be more secure, it is 

more difficult to prove it and there is a higher risk that some security holes remain 

undetected after the security analysis. For these reasons, most of the stream 

ciphers used nowadays are synchronous stream ciphers [KLE13].  

2.1.1.3. Block ciphers vs stream ciphers 

The main advantage of block ciphers against stream ciphers is that they are 

better understood than stream ciphers. The main reason is that, in block ciphers, 

it is easy to split the problem in several modules. For example, it is possible to 

study the operation mode without paying attention to the ciphering functions. 

Furthermore, many block ciphers such as DES and AES consist of several 

identical rounds, and in each round several functions are applied consecutively. 
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Therefore, it is possible to study the effects of a particular Almost Perfect 

Nonlinear (APN) function in a certain round. On the other hand, in the case of 

stream ciphers, it is difficult to modularize the problem and sometimes the 

keystream generation interacts with the key scheduling in a complicated way. 

On the other hand, since stream ciphers encrypt each bit individually, they do not 

need to store groups of bits in blocks and they do not need to add padding bits. 

This results in lower memory requirements and higher encryption speeds. 

Therefore, if there are not any special requirements, it is advisable to use a 

standard block cipher such as AES. However, in applications that need to save 

gates or energy or might need to encrypt data at high speed, stream ciphers are 

necessary. 

2.1.1.4. Public-key algorithms 

As it can be seen, in both block ciphers and stream ciphers, before starting the 

communication, both Alice and Bob must have secretly shared a key. This can 

be a big challenge since, often, the sender and the receiver might not be able to 

stablish a face-to-face contact or use a secure channel to share the secret key. 

Asymmetric cryptosystems, also known as public-key cryptosystems, are 

capable of overcoming this problem. As already mentioned at the beginning of 

Section 2.1.1, these cryptosystems use a pair of keys for the communication 

process, both of them generated by the receiver. One of them is public (i.e., 

anyone could know it) and is used to encrypt the plaintext while the other one is 

private (i.e., only known by the receiver) and is needed to decrypt the ciphertext. 

These systems are based on a certain kind of functions called one-way functions. 

A one-way function can be informally described as any function 𝑓 that presents 

these properties [WEI02]: 

 The description of 𝑓 is publicly known and does not require any extra 

information for its operation. 

 Given an 𝑥 in the domain of 𝑓, it is easy to calculate 𝑓(𝑥). 

 Given z an 𝑦 in the range of 𝑓, it is hard to  find an 𝑥 such as 𝑓(𝑥) = 𝑦. 

Note that, in this definition, the terms “easy” and “hard” refer to computational 

time (“easy” when it can be computed fast and “hard” when it is infeasible to be 

computed in a reasonable amount of time). More precisely, an operation is called 
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“easy” when it exists an algorithm that can find the solution in a polynomial time 

(𝑃 problem) and “hard” when it does not exist an algorithm that can find the 

solution in a polynomial time (𝑁𝑃 problem). It must be noted that the existence of 

such functions has not yet been proven. If it was true, it would imply that 𝑃 ≠ 𝑁𝑃, 

which is currently a very important unsolved problem in computer science 

[COO71]. Nevertheless, it is assumed that there exist some one-way functions 

that can be used in the field of cryptography. 

Public-key cryptosystems need a particular kind of one-way functions called 

trapdoor one-way functions {𝑒𝑘: 𝑘 ∈ 𝒦}. These functions have the peculiarity that, 

with some secret information (trapdoor), 𝑘′, it is easy to invert 𝑒𝑘. A public-key 

cryptosystem has the same components (𝒫, 𝒞, 𝒦, ℰ, 𝒟), explained in the general 

definition (Section 1.2) but with these particularities: 

 In this case, 𝒦 is the public-key space, consisting on a finite set of possible 

keys used for encryption. 

 Each encryption rule 𝑒𝑘 is a trapdoor one-way function. 

 There is a procedure for generating a random public key 𝑘 ∈ 𝒦 along with a 

trapdoor 𝑘′ for 𝑒𝑘 and the inverse map 𝑑𝑘 ∶  𝒞 →  𝒫 such that 𝑑𝑘(𝑒𝑘(𝑝)) =

𝑝 ∀𝑝 ∈ 𝒫, ∀𝑘 ∈ 𝒦   

The set of trapdoors, ′ , is the private-key space. Therefore, the communication 

process in public-key cryptosystems consists of the following steps: 

1. The receiver generates a random public key 𝑘 ∈ 𝒦 and its corresponding 

trapdoor 𝑘′ (private key). 

2. The receiver places the encryption function 𝑒𝑘 in a public directory, 

keeping the private key 𝑘′ and the decryption function 𝑑𝑘 for himself. 

3. The sender encrypts the plaintext using the encryption function. Therefore, 

the ciphertext, 𝑐, is given by 𝑐 = 𝑒𝑘(𝑝). 

4. The receiver deciphers the plaintext using the decryption function: 𝑝 =

𝑑𝑘(𝑐) =  𝑑𝑘(𝑒𝑘(𝑝)) 

It must be pointed out that the fact that 𝑒𝑘 is a one-way function implies that it is 

impossible to obtain the private key 𝑘′ from the public key 𝑘. 

These cryptosystems, however, have two important drawbacks: 
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 First, public-key cryptosystems still need to distribute the public keys in a 

reliable way. For example, an attacker could intercept the public key and 

change it for one of his own. Then, the sender would encrypt the plaintext 

with that public key and the attacker would be able to read the message. To 

prevent this from happening, it is necessary a trusted third party, called 

certification authority (explained in Section2.1.2.3) that certifies that the 

public key belongs to the receiver. However, in case that the certification 

authority was compromised, the security of the system would be lost. 

 Typically, the mathematical functions involved in public-key cryptosystems 

are much more complex than the ones used for private-key encryption. 

Therefore, they are much slower (2 or 3 orders of magnitude) [KAT14] and 

require much more hardware or computer resources. 

A common scheme in communications consists of using an asymmetric algorithm 

to exchange the private keys and, then, use a symmetric cryptosystem (a block 

cipher or a stream cipher) to send the information. 

2.1.2. Other cryptographic primitives 

Apart from having a secure encryption algorithm, it is necessary to have a 

communication protocol that makes sure that the messages come from the 

intended sender and that they have not been modified (intentionally or 

accidentally). For this purpose, there are several cryptographic primitives that can 

be used: hash functions, message authentication code (MAC) and digital 

signatures. Each of them, can achieve some of the following security goals: 

 Integrity: this property means that the receiver can assure that the message 

has not been accidentally modified. 

 Authentication: this property means that the receiver can assure that the 

message was sent by the intended sender and has not been altered 

(accidentally or by an attacker). 

 Non-repudiation: this property means that the sender cannot deny to have 

sent the message (if the sender denies it, the receiver or any other third 

person can prove that it was sent by him).  

Table 2.1 shows these primitives as well as the security goal they accomplish 

and the kind of key (if any) that need to accomplish its objective. 
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Table 2.1. Cryptographic primitives and their security goals 

Cryptographic primitive Hash MAC Digital signature 

Security Goal    

Integrity 

Authentication 

Non-repudiation 

Yes 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Kind of keys None Symmetric  Asymmetric 

 

2.1.2.1. Hash functions 

A hash function is a one-way function that maps data of any size into a bit array 

of a fixed size (hash). In order to be suitable for cryptography (cryptographic hash 

function), it must present these properties [RJA08]: 

 It is deterministic, the same message always results in the same hash. 

 Given a message, it is easy to compute its hash. 

 It is difficult to obtain a message from its hash. 

 Similar messages should generate very different hashes. In other words, 

ideally, the hashes corresponding to two messages that differ in a single bit 

should be totally uncorrelated. 

 Since the length of the hash is usually shorter than the typical length of the 

message, there will be some possible messages that have the same hash. 

However, it must be infeasible to find in a reasonable amount of time two 

different messages with the same hash. 

It must be pointed out that, if the message has a short length, even in the case of 

an ideal cryptographic hash function, it is still possible to recover a message from 

its hash using a brute-force search. For example, if an attacker knows that a hash 

has been obtained from an 8-bit message, he can calculate the hash for all 

possible 8-bit messages and check which of them matches with the correct hash. 

In practice, for most common hash functions, other people have already 

calculated the hashes of all short length messages and there are public tables, 

called rainbow tables, with pairs of message/corresponding hash [RAI19].  
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A hash can have multiple applications such as password storage [MIR05], 

randomness extraction [CLI09] or hash tables [LIU14] but, in the context of the 

transmission of a message, it can be used to provide integrity. A possible way to 

accomplish this is to calculate and append the hash of an encrypted message. In 

this case, the transmitted message, 𝑚, would be given by:  

 𝑚 = 𝑒𝑘(𝑝) || ℎ(𝑒𝑘(𝑝)) (2.5) 

where ℎ is the hash function, 𝑒𝑘 the encryption function, 𝑝 the plaintext and || 

denotes the concatenation function. To check that the message has not been 

modified during the transmission, the receiver can compute the hash of the 

encrypted message and check that it matches the transmitted hash. It must be 

noticed that this method only guarantees to detect accidental errors during the 

transmission. An attacker could modify the ciphertext, calculate its new hash, and 

substitute the old hash with the new one. This way, the receiver would not now 

that the ciphertext has been modified. To detect this intentional modifications, 

[KLE13] proposes to calculate the hash of the plaintext and append it to the 

ciphertext: 

 𝑚 = 𝑒𝑘(𝑝)||ℎ(𝑝) (2.6) 

However, this scheme still has some flaws: 

 First, by transmitting the hash of the plaintext, we could be transmitting some 

information about it. In the worst case, as it has been explained before, if the 

plaintext was very short, it could be obtained from its hash using a brute-force 

method or some rainbow table of matched hashes. 

 Second, this scheme is still vulnerable to active attacks in many 

cryptosystems. For example, in the case of an additive stream cipher, the 

ciphertext, 𝑐, is given by 𝑐 = 𝑝 ⊕ 𝑧, where 𝑝 is the plaintext and 𝑧 is the 

keystream. If an attacker could guess the plaintext 𝑝, he could easily change 

it by a new one, 𝑝′. This could be done by calculating a new ciphertext, 𝑐′, as: 

 𝑐′ = 𝑐 ⊕ 𝑝 ⊕ 𝑝′ = 𝑝′ ⊕ 𝑧 (2.7) 

      Then, at the end of the message, the attacker would substitute ℎ(𝑝) by ℎ(𝑝′).  
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To guarantee that a message comes from the intended sender and it has not 

been modified by an attacker (authentication and integrity), a different 

cryptographic primitive, MAC, can be used. 

2.1.2.2. MAC functions 

Similarly to hash functions, MAC functions also transform data of any size into a 

fixed length output (tag). However, in this case, it is necessary to use a secret 

key during compression. Informally, a MAC consists of three algorithms [HAN08]: 

 An algorithm that selects a random key from a key space. 

 An algorithm that, given a key and a message, returns a tag. 

 An algorithm that, given the key and the tag, verifies the authenticity of the 

message. 

It must be noticed that a MAC requires a private key shared by both the sender 

and the receiver. Some of the MAC algorithms can be constructed from hash 

functions (HMAC: hash-based message authentication code) while other MAC 

algorithms can be constructed from block ciphers (CMAC: Cipher-based 

Message Authentication Code). To be secure, it must be infeasible to compute a 

valid tag of a given message without knowing the key, even if the attacker knows 

some pairs of message/HMAC(message). To use a MAC function to provide 

authentication of an unencrypted message, the sender simply has to compute the 

MAC of the message and append it. The receiver will then compute the MAC of 

the message and check that it matches the MAC sent by the transmitter. If the 

sender also wants to encrypt the message, there are three different options to 

assemble the encryption and the MAC function: 

 MAC-then-Encrypt: calculate the MAC of the plaintext, append it to it, and 

encrypt everything. 

 Encrypt-and-MAC: calculate the MAC of the plaintext, encrypt the plaintext 

and append the MAC at the end. 

 Encrypt-then-MAC: encrypt the plaintext, calculate the MAC of the ciphertext 

and append it to the end. 

All these approaches offer different levels of security. Explaining the advantages 

and disadvantages of each method is out of the scope of this work but, in 
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summary, it can be said that the Encrypt-then-MAC offers the highest level of 

security [BEL08].   

It must be pointed out that Mallory could still eavesdrop a MACed and encrypted 

message sent by Alice and send it later, pretending to be her (replay attack) 

[MAL02]. To avoid this, some measures must be taken such as including 

message numbers or timestamps on each message. 

2.1.2.3. Digital Signatures 

Finally, a digital signature is a scheme capable of providing the properties of 

authentication, integrity and non-repudiation. This process can be seen as a sort 

of an asymmetric encryption process where the message is encrypted using a 

private key but is decrypted using a public key. A signature is created by using a 

private key and is verified using a public key. This way, only the holder of the 

private key can sign a message but anyone who knows the public key can verify 

it.  

In order to be reliable, it is necessary to be certain that the public key was indeed 

created by the person who is supposed to have signed the message. For this 

purpose, a trusted third party called Certification Authority (CA) is needed. The 

certification authority must check that the public-key corresponds to the intended 

user and issue a digital certificate that contains the public key and the identity of 

the owner. This certificate is digitally signed by the CA using its private key (Fig. 

2.6). The public keys of the CA are widely known (often, they are included in web 

 

Fig. 2.6. Procedure of obtaining a public key certified by a CA. Bob sends its information and its 
public key to the CA. The CA verifies the identity and signs it with its private key. 
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browsers) and trusted so anyone can be sure that the certificate has been issued 

by the CA and that the user-sign association is valid. 

Certification authorities, also often store public keys suitable for asymmetric 

encryption and the identity of their owners (for example, banks). This way, when 

the sender and the receiver need to start a communication, the certification 

authority can send the receiver’s public key to the sender with a certificate 

indicating that that key belongs to the receiver.  

2.1.3. A possible secure communication protocol 

Finally, let’s suppose that a sender and a receiver want to communicate with each 

other. They want to transmit several messages at a high speed, so they need to 

use a symmetric encryption algorithm. A secure communication protocol, using 

all of the primitives seen so far would be as follows: 

 First, the receiver generates a pair of public-private keys needed for 

asymmetric encryption. 

 The receiver sends the public key to a CA and the CA certifies that the public 

key belongs to the receiver. In practice, the receiver could be a bank and the 

CA could already have several public-private key pairs to distribute the keys 

among different users. 

 The CA sends the public key to the sender with its digital signature and some 

extra information, such as the owner of the key (i.e., the receiver). 

 The sender knows the public key of the CA so she can verify the signature, 

trust the certificate and the public key. 

 The sender generates a key for a symmetric encryption algorithm (could be 

a block cipher or a stream cipher) as well as a key for a MAC. 

 With the public key provided, the sender encrypts a message using a public-

key algorithm. This message includes the keys of the symmetric cipher as 

well of the MAC. 

 The receiver decrypts the message using its private key. This way, now the 

sender and the receiver both share some secret keys. 

 Now the sender adds a timestamp (to prevent reply attacks), encrypts the 

message, calculate its MAC and appends it at the end.  
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 Since only the receiver and the sender know the secret keys (of the cipher 

and the MAC), the receiver is the only one that can decrypt the message and 

also verify that it belongs to the sender and has not been modified.  

 Chaotic cryptography 

In this section, some important concepts used to design the encryption algorithms 

that have been proposed in this Thesis are presented. First, the definition of a 

chaotic system and a brief explanation of its main properties and their relationship 

with some important cryptographic properties is presented. Then, a commonly 

used structure of chaos-based stream ciphers will be presented. Finally, we will 

explain some basic security requirements that these systems must meet. 

2.2.1. Definition and properties of chaotic systems 

Although there is not a universally accepted definition of chaos, the following 

definition proposed by Robert L. Devaney in 1985 [DEV85] is commonly used: 

Definition 2.1. Let 𝑉 be a metric space. A continuous map 𝑓 ∶  𝑉 →  𝑉 is said to 

be chaotic if:  

 𝑓 has sensitive dependence on initial conditions 

 𝑓 is topologically transitive 

 Periodic points are dense in 𝑉 

It must be pointed out that, in 1992, it was proven that, if 𝑓 ∶  𝑉 →  𝑉 is transitive 

and has periodic points, then it has sensitivity dependence on initial conditions 

[BAN92]. However, since the sensitivity on initial conditions is the most 

characteristic property of chaotic systems, Devaney’s definition is most 

commonly used. The definitions of these properties with some brief explanations 

are presented below.  

Definition 2.2. 𝑓 ∶  𝑉 →  𝑉 has sensitive dependence on initial conditions if there 

exists 𝛿 > 0 such that, for any 𝑥 ∈ 𝑉 and any neighborhood 𝑁 of 𝑥, there exists 

𝑦 ∈ 𝑁 and 𝑛 ≥ 0 such that |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| > 𝛿 

Intuitively, a map possesses this property if, for any point 𝑥, there exist other 

points arbitrarily close that separate from it by a distance bigger than 𝛿 after 

iterating 𝑓. It must be pointed out that not all points near 𝑥 separate from it after 
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iterating 𝑓 but there must be at least one such point in every neighborhood of 𝑥. 

As a consequence of this property, the orbits of these systems cannot be 

computed accurately since any small round off errors are magnified upon 

iteration. Therefore, the computed orbit might present not resemblance at all with 

the real orbit. 

To quantify this property, the Lyapunov exponents are commonly used. Given 

two trajectories that start infinitesimally close, with an initial separation |𝛿𝑍0|, after 

some iterations will end up diverging at a rate given by: 

 |𝛿𝑍(𝑡)| ≈ eλt|𝛿𝑍0| (2.8) 

where 𝜆 is the Lyapunov exponent. It must be noticed that, if the phase space 

has several dimensions, there are several Lyapunov exponents (equal in number 

to the dimensionality of the system). In this case, the Maximal Lyapunov 

Exponent (MLE) is usually used, since it determines the sensitivity to initial 

conditions of the dynamical system. 

Definition 2.3. 𝑓 ∶  𝑉 →  𝑉 is topologically transitive if for any pair of open sets 

𝑈, 𝑉 ⊂ 𝑉 there exists 𝑛 > 0 such that 𝑓𝑛(𝑈) ∩ V ≠ ∅ 

This property indicates that there are points that, after iterating 𝑓, move from an 

arbitrarily small neighborhood to any other. Therefore, the system cannot be 

decomposed into two disjoint open sets that are invariant under the map. This 

property is often referred to as the mixing property which corresponds to the 

standard intuition of mixing (for example, the mixing of different fluids). 
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Fig. 2.7. Six consecutive iterations of a set of states [𝑥, 𝑦] passed through the logistic map, 

using the equations: 𝑥𝑖+1 = 4𝑥𝑖(1 − 𝑥𝑖) and 𝑦𝑖+1 = {
𝑥𝑖 + 𝑦𝑖                  𝑥𝑖 + 𝑦𝑖 < 1
𝑥𝑖 + 𝑦𝑖 − 1         𝑥𝑖 + 𝑦𝑖 > 1

 

As an example that illustrates this property, Fig. 2.7 shows how a set of points 

[𝑥, 𝑦] that initially form a circle are scattered through the space after applying 

some iterations using the Logistic Map equations. 

Definition 2.4. A subset 𝐴 of a topological space 𝑉 is dense in 𝑉 if for any point 

𝑥 ∈ 𝑉, any neighbourhood of 𝑥 contains at least one point of 𝐴. 

Therefore, the third property of Devaney’s definition indicates that, given any 

point in the space and given a distance greater than zero, there will be a periodic 

orbit within that distance of the point. It must be pointed out that a chaotic system 
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does not have to have periodic orbits at all. However, if it does, they must have 

this property.  

Beyond this formal definition, chaotic systems present some other features that 

can be related to some cryptographic properties: 

 Deterministic dynamics: the initial condition of the system determines 

unequivocally its evolution. 

 Ergodicity: almost every trajectory tends to an invariant distribution that is 

independent of the initial conditions, and almost every trajectory will 

eventually visit any arbitrary interval of arbitrary size. 

 Structure complexity: although chaotic systems are often determined by 

simple equations, the evolution process presents a very high complexity. 

In 1949, Claude Shannon presented a paper discussing cryptography from the 

point of view of information theory [SHA49]. In that paper, he defined the 

properties of confusion and diffusion that were required by any secure cipher. 

Confusion referred to making the relationship between the ciphertext and the 

plaintext as complex as possible while diffusion referred to the fact that, small 

changes in the input, should produce big changes on the output. 

These requirements along with other cryptographic properties, are tightly related 

to some intrinsic properties of chaotic systems, as explained in several works 

[ALV06, KOC02, KOC11]. In Table 2.2 [ALV06], a comparison between 

cryptographic and chaotic properties is presented.  

2.2.2. Chaos-based stream ciphers 

Due to the close relationship between the properties of chaos-based 

cryptosystems and some cryptographic properties explained in Table 2.2, chaos-

based cryptosystems have been used in all kind of cryptographic primitives such 

as TRNGs [DRU07], public-key ciphers [KOC05, KOC11], hash functions [XIA05, 

AMI09], MAC functions [ARU07, KAN13], digital signatures [CHA13], block 

ciphers [AMI10, FOU14]. However, we have focused our research in chaos-

based synchronous stream ciphers since they can usually provide higher 

encryption speed and, therefore, are more suitable for Gigabit Ethernet 

communications. Most of the proposed chaos based stream ciphers, are based  
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Table 2.2. Comparison between cryptographic and chaotic properties 

Chaotic property Cryptographic property Description 

Ergodicity Confusion The output has the same 

distribution for any input 

Sensitivity to initial 

conditions/control 

parameter 

Diffusion with a small 

change in the plaintext/key 

A small deviation in the 

input causes a big change 

at the output 

Mixing property Diffusion with a small 

change in one plain-block 

of the whole plaintext 

A small deviation in the 

local area can cause a 

large change in the whole 

space 

Deterministic dynamics Deterministic               

pseudo-randomness 

A deterministic process 

can cause a pseudo-

random behavior 

Structure complexity Algorithm (attack 

complexity) 

A simple process has a 

very high complexity 

 

on Chaotic Maps, which are discrete maps that exhibit chaotic behavior. These 

systems are usually defined by the equation: 

 𝑋𝑖+1 = 𝑓(𝑋𝑖, Γ) (2.9) 

where, 𝑋𝑖 is the state at the discrete time 𝑖, that, in general, can be in an n-

dimensional space (𝑋𝑖 = [𝑥𝑖,0, 𝑥𝑖,1, … 𝑥𝑖,𝑛, ]), Γ = [γ0, γ1, … γl] is the set of control 

parameters that determine the behavior of the system and 𝑓 ∶  𝑉 →  𝑉 is a map of 

the state space into itself. The sequence {𝑋𝑖} obtained by applying (2.9) is 

unequivocally determined by the initial state, 𝑋0, and the chosen control 

parameters Γ. If 𝑓 is chaotic, it is expected that the sequence presents a random- 

like behavior. When this system is implemented in a digital system (e.g., ASIC or 

FPGA), a precision must be used to represent each state and each control 

parameter (usually, the same precision n is used for all of them) and an arithmetic 

(e.g., fixed or floating point) must be defined. One may think that the obtained 

(digitized) sequence could be directly used to generate a random keystream and 
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constructing a secure stream cipher. This however, presents three important 

issues: 

 First, when a chaotic map is digitized, the generated sequences become 

periodic (they are not strictly chaotic). This fact can affect the randomness of 

the generated sequences and, also, can cause the sequence to repeat itself 

after a few iterations, becoming a non-secure cipher. 

 Second, if the map is invertible, if one or several states were leaked, an 

attacker could use the equations of the map to obtain the control parameters 

and reveal the whole sequence (reconstruction attack). Even if it is not exactly 

invertible, the attacker could still try different possibilities and still manage to 

reconstruct the map. It must be noticed that in a stream cipher states can be 

easily leaked, for example, when they are XORed with a plaintext consisting 

with all 0’s. 

 Third, since each state is usually obtained from the previous one, using only 

a few operations, it is common that the bits within each 𝑥𝑖 present a high 

correlation. 

To solve the first problem, the algorithms must be modified to prevent the system 

to fall into short period orbits while, for avoiding the reconstruction attack, a one-

way function, 𝑔,  should be used to obtain the keystream from the states of the 

system. This function can also help to improve the randomness of the sequence, 

therefore, solving the last problem (Fig. 2.8). 

 

Fig. 2.8. Example of a secure way of generating a keystream. 
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2.2.3. Basic security requirements of chaos-based stream ciphers 

Stream ciphers, as any other ciphers, can be attacked in many different ways and 

many of the attacks are specific for each algorithm. This means that, often, it is 

difficult to assure that a proposed algorithm is completely secure since, after 

some time, a new effective attack targeting this algorithm could be proposed. 

However, there are some basic tests that can be used to evaluate the security of 

a stream cipher. Failing any of these tests means that the stream cipher is not 

secure. On the other hand, although passing all these test does not guarantee 

that the system is secure, it is often considered as a good indicator of its security. 

The main requirements that a stream cipher must meet are: 

 First, the key size (number of possible keys) should be big enough to prevent 

brute-forcing. Nowadays, according to National Institute of Standards and 

Technology (NIST) [BAR11] and European Union Agency for Network and 

Information Security (ENISA) [ENI14], in order to be secure, the key size 

should be larger than 2112.  

 Second, the system must present a high sensitivity to initial conditions (i.e., 

two keystreams generated by slightly different keys, should be completely 

different). In some cases, when several sub-parameters are used as part of 

the key, knowing some part of the key can reveal partial information about 

the rest of the key, thus reducing the effective key size. This can sometimes 

be achieved by fixing one of the sub-parameters and trying to estimate the 

other ones using a Bit-Error-Rate (BER) attack [WAN04, ALV04]. To avoid 

this, the statistical differences (if any) between the ciphertext and a keystream 

generated using a wrong key should always be the same, except when all 

the sub-parameters that form the key are correct. 

 Third, by knowing the keystream and the algorithm used, it should be 

impossible to reconstruct the map and find the initial parameters in a 

reasonable amount of time. To avoid this, as explained in Section 2.2.2, it is 

important to use a one-way function to obtain the bits of the keystream from 

the internal state of the system.  

 Finally, the keystreams generated by any possible key should be 

indistinguishable from a random sequence. To check if these sequences are 

random, several batteries of tests are commonly used such as NIST SP 800-
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22 battery of tests [RUK10], diehard tests [MAR95] and U01 tests [ECU07]. 

Since it is impossible to assure that a sequence is really random (even an 

ideal PRNG could produce a sequence of all 1’s and fail the tests), these 

tests are defined with a significance level, 𝛼, which indicates the fraction of 

sequences that should fail these test assuming that they were generated by 

an ideal RNG. Therefore, to evaluate if a PRNG is good, several sequences 

(typically 100 is a suitable number) should be subjected to the randomness 

tests and it should be checked that approximately only a fraction 𝛼 of the tests 

fail these tests. 

 TRNGs 

Contrary to PRNGs, TRNGs generate the random numbers from a physical 

process, instead of a deterministic algorithm. Therefore, an ideal TRNG is 

completely unpredictable, which makes it the best choice for generating secure 

cryptographic keys. Unfortunately, sequences generated by TRNGs usually 

present worse statistical properties with respect to sequences generated by 

PRNGs since physical processes often present some correlations and the 

instruments used to measure them, can make the sequences biased. As a 

consequence, these sequences must pass through a process to improve their 

statistical properties called post-processing. On the other hand, standard 

randomness tests suites are not usually a good tool to compare not-perfect 

generators, since they usually provide yes/no answers. 

In this section, some simple statistical tests that can be used to compare the 

randomness of several TRNGs will be presented. Furthermore, we introduce 

some post-processing algorithms that are commonly used.  

2.3.1. Statistical tests 

Before presenting the statistical tests, we will present an example of a simple 

TRNG, to understand the statistical defects that they might present.  

Let’s imagine that we have a physical variable that varies with time according to 

a function 𝑓(𝑡) given by:  

 𝑓(𝑡) = sin(𝑡 + 𝜖(𝑡)) 

𝜖(𝑡) = 𝜖(𝑡 − Δ𝑡) + 𝑟𝑎𝑛𝑑(𝑡) 
(2.10) 
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where 𝑟𝑎𝑛𝑑(𝑡) is an random function that, at each moment of time, gives a 

random value in the range [−0.05, 0.05]. This function is a sine function with some 

phase and frequency noise, as shown in Fig. 2.9.  

A binary signal could be obtained by measuring the value at discrete times 

𝑡0, 𝑡1, … 𝑡𝑛, separated by a fixed amount time, Δ𝑇, i.e. 𝑡𝑗 = 𝑗Δ𝑇. Then, each 

measurement could be compared to 0 to generate a binary sequence 𝐴 =

(𝑎0, 𝑎1, … 𝑎𝑛). If 𝑓(𝑡𝑗) ≥ 0, 𝑎𝑗 = 1 and if 𝑓(𝑡𝑗) < 0, 𝑎𝑗 = 0. 

 

Fig. 2.9. Example of a signal obtained from a physical noise source. 

 

It is clear that, if Δ𝑇 ≪ 2𝜋, we will be sampling through an approximately sine 

curve, and, in most cases each bit would be equal to the previous and the next 

ones. The fact that knowing some bits of the sequence gives you information 

about other bits of the sequence is called statistical dependence.  

However, if the sampling period is increased, the phase noise accumulates and 

the statistical dependence between consecutive bits decreases. Finally, when 

Δ𝑇 ≫ 2𝜋, the sequence will present almost no statistical dependence. 

This pattern is very common in most of the TRNGs. Typically, noise sources have 

some harmonic components that causes a statistical dependence between the 

generated bits. This statistical dependence, however, can be reduced and 

practically eliminated by decreasing the sampling frequency. Therefore, it is 



Chapter 2 
 

50 

relatively easy to design a TRNG that generates independent bits, as long as the 

throughput is not a constraint. 

On the other hand, let’s imagine that the instrument used to measure this physical 

variable is not well calibrated so that if 𝑓(𝑡𝑗) ≥ −0.01, 𝑎𝑘 = 1 and if 𝑓(𝑡𝑗) <

−0.01, 𝑎𝑗 = 0. The generated sequence would probably have more 0’s than 1’s. 

This difference is called bias, and is usually associated with imperfections in the 

measuring equipment. 

This bias is usually constant and cannot be reduced by changing the sampling 

frequency. However, we will show in Section 2.3.2 that there are post-processing 

methods that, assuming that the sequence has no statistical dependence, can 

effectively eliminate this bias.  

To sum up the quality of a TRNG depends on two parameters: the statistical 

dependence and the bias. 

 A sequence presents statistical dependence if knowing some bits of the 

sequence gives you some information that helps you guess other bits of that 

sequence. 

 A sequence is biased if the number of 1’s is considerably different from the 

number of 0’s. 

 An unbiased source with some statistical dependence can generate good 

random numbers by using a low sampling frequency. 

 A biased source with no statistical dependence can generate good random 

numbers if some post-processing methods are used. 

Since both parameters are usually independent, in order to evaluate the 

sequences generated by the proposed TRNGs, we have used statistical tests 

that give information about both of them separately. 

Pattern distribution of bytes 

This test consists of plotting successive bytes (𝑏𝑗 , 𝑏𝑗+1) of a sequence in a plane. 

If the sequence is random, the plotted points should have a uniform distribution 

(Fig. 2.10d).  If instead, there are areas with low density and high density, the 

sequence is clearly not random (Fig. 2.10a, Fig. 2.10b, Fig. 2.10d). In the case 
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that the density of points increases when the points get close to a corner, it is an 

indication that the sequence presents a bias (Fig. 2.10a, Fig. 2.10c). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2.10. Pattern distribution of bytes of a sequence with (a) bias and statistical dependence, 
(b) no bias and statistical dependence, (c) bias and no statistical dependence and (d) no bias 

and no statistical dependence. In each case, for each pair of consecutive bytes, (𝑏𝑗 , 𝑏𝑗+1) in the 

sequence, a point of coordinates (𝑥 = 𝑏𝑗 , 𝑦 = 𝑏𝑗+1) is plotted.  

Normalized autocorrelations 

Definition 2.5. Let 𝐴 = (𝑎0, 𝑎1, … 𝑎𝑛−1), 𝑎𝑖  ∈ {0,1} be a binary sequence with 𝑛 

elements. We define the normalized autocorrelations of 𝐴 as: 

 

𝑅𝑗 =
1

𝑛 − 𝑗
∑ 𝑎𝑖𝑎𝑖+𝑗

𝑛−𝑗−1

𝑖=0

 (2.11) 

The parameter 𝑅𝑗 can be seen as a measurement of how strongly 𝐴 resembles a 

j-times-shifted version of itself, 𝐴′ = (𝑎𝑗 , 𝑎𝑗+1, … 𝑎𝑛−𝑗−1). If 𝑅𝑗 = 1, both sequences 

𝐴 and 𝐴′ have perfect autocorrelation and, if 𝑅𝑗 = 0, they have negative 
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autocorrelation. If the sequence has been generated by an ideal TRNG, the 

probability that a randomly selected bit is 0 (𝑃𝑟 (0)) or 1 (𝑃𝑟 (1)) must be the same. 

In this case (𝑃𝑟 (0) = 𝑃𝑟 (1) = 1/2 ), it can be proved that the values of 𝑅𝑗 are: 

𝑅0 = 0.5, 𝑅𝑗 = 0.25 (𝑗 > 0). On the other hand, if the sequence has a bias 𝑃𝑟 (0) ≠

𝑃𝑟 (1), but no statistical dependence, the values of 𝑅𝑗 are 𝑅0 = 𝑃𝑟 (1), 𝑅𝑗 =

𝑃𝑟2(1) (𝑗 > 0). Finally, it must be noticed that, increasing the value of 𝑗, is usually 

equivalent to decreasing the sampling frequency. Therefore, in case that the 

sequence is not ideally uncorrelated, usually the values of 𝑅𝑗 will approximate to 

the ideal value 𝑃1
2 when the value of 𝑗 is increased, i.e., lim

𝑗→∞
(𝑅𝑗) = 𝑃1

2. As an 

example, Fig. 2.11a shows the correlations of a biased sequence with and without 

correlation and Fig. 2.11b shows the correlations of an unbiased sequence with 

and without correlation. 

Average Shannon Entropy and Redundancy 

The Average Shannon Entropy (ASE), introduced by Information Theory, is a tool 

that can be used to measure how well a TRNG approximates the behavior of an 

ideal unpredictable binary random source. It is defined as: 

 
ASE = lim

𝑛→∞
−

1

𝑛
∑ 𝑃𝑟(𝛽) log2 𝑃𝑟(𝛽)

𝛽∈{0,1}𝑛

                [
bit

 symbol
] (2.12) 

where the summation goes over all the 2𝑛 possible n-tuples 𝛽 = {𝑏0, 𝑏1, … 𝑏𝑛−1},

𝑏𝑖 ∈ {0,1} and 𝑃𝑟(𝛽) is the probability that the tuple 𝛽 is generated. The unit of 

entropy is often expressed as bit/symbol, since it measures how many bits of 

information are being transmitted on average per symbol. If the TRNG is perfect, 

the ASE is maximum and equals 1 bit/time-step and, if the TRNG is completely 

predictable (its output sequences have all 0’s or all 1’s), its ASE is minimum, and 

equals 0 bit/time-step. 
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(a) 

 

 

(b) 

Fig. 2.11. Correlations of (a) biased source, (b) unbiased source. Sequences in yellow are 
statistically independent and sequence in blue present some statistical dependence. The green 

dots represent the values of an ideal random source. 
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(a) 

 

(b) 

Fig. 2.12. ASRn of sequences generated by a TRNG with (a) bias and no statistical 
dependence, (b) no bias and statistical dependence. 

Since the computation of the ASE is unfeasible, an approximation of the ASE can 

be obtained by truncating its expression, obtaining the Partial Average Shannon 

Entropy:  
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ASE𝑛 = −

1

𝑛
∑ 𝑃𝑟(𝛽) log2 𝑃𝑟(𝛽)

𝛽∈{0,1}𝑛

                 [
bit

 symbol
] (2.13) 

The probability of each symbol can be estimated as the number of times that that 

symbol has been observed in the sequence divided by the total number of 

observations.  

This parameter takes into account both the statistical dependence and the bias, 

giving and absolute number that can be used to compare among several TRNGs. 

The higher its value, the more random the sequence is. An alternative parameter 

to be used is the Average Shannon Redundancy, defined as: 

 ASR𝑛 = 1 − ASE𝑛 (2.14) 

This way, sequences with lower redundancies can be considered to be more 

random. The main drawback of both entropy and redundancy is that, from a single 

measurement, it is not possible to determine if the deviation of the ideal value is 

caused by a bias or by a statistical dependence. A possible way to determine it 

is to measure the redundancy of sequences obtained by sampling the noise 

source at different frequencies. If the redundancy does not change with the 

sampling frequency, the TRNG is biased but does not have statistical 

dependence (Fig. 2.12a). If however, for low sampling frequencies the 

redundancy is high but, for high sampling frequencies the redundancy is close to 

0, the TRNG is unbiased but does not have statistical dependence (Fig. 2.12b). 

2.3.2. Post-processing algorithms 

Depending on the non-idealities of the TRNG, different post-processing 

algorithms can be used reduce the bias, the statistical dependence or both of 

them. Here, some of the most common methods will be presented: 

Bias reduction post-processing 

One of the most known methods for reducing a bias of a sequence, is the Von 

Neumann post-processing [VON51]. This method processes the sequence as a 

stream of non-overlapping pairs of consecutive bits and outputs a post-processed 

sequence, following the next rules: 

 If the input is “00” or “11” there is no output. 

 If the input is “01” the output is “0”. 
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 If the input is “10” the output is “1”. 

It can be proved that, if the bits are statistically independent, the bias is 

completely eliminated. However, this method has two important issues. First, the 

throughput of the output sequence is considerably reduced (between 75% and 

100% of the bits are discarded). The second problem is that the throughput is 

variable, which can be a problem depending on the implementation. To solve 

these issues, other post-processing techniques based on this procedure have 

been proposed [ELI72, PER92].  

Finally, although they are not strictly post-processing procedures, we must point 

out that some authors such as Bagini-Bucci [BAG99] or Stipčević [STI04] use an 

analogue signal conditioning stage that can eliminate the bias of the generated 

sequences.  

Statistical dependence reduction 

Any unbiased sequence generated by a TRNG that presents a strong statistical 

dependence can be transformed into a perfectly random sequence if it is correctly 

shuffled (i.e., the order of the bits is randomly changed). 

A common algorithm for generating a random permutation of a finite sequence 

(shuffling) is the Fisher-Yates shuffle, originally proposed by Ronald Fisher and 

Frank Yates and improved by Donald Knuth [KNU69]. Given a sequence 𝐴 =

(𝑎0, 𝑎1, … 𝑎𝑛−1) this shuffling algorithm consists on performing n-1 iterations. In 

the 𝑖th iteration: 

 Generate a random integer 𝑗 such that 0 ≤ 𝑗 ≤ 𝑖 

 Exchange 𝑎𝑗 and 𝑎𝑖 

The main drawback of this system is that it is necessary to use another random 

number generator to do the shuffling. If these random numbers were known, the 

process could be reversible so an attacker could obtain the raw sequence. 

Therefore, this sort of post-processing is rarely used. Instead, other post-

processing techniques that simultaneously improve both the bias and the 

statistical independence of the sequences are commonly used. 
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Techniques to improve both bias and statistical dependence 

One of the simplest methods to improve the statistical quality of a sequence 

generated by a TRNG, consists of XORing 𝑛 bits of the sequence to generate 1 

bit of the output sequence (𝑛 > 1). Similarly to Von Neumann procedure, this 

method reduces the throughput although, in this case, the throughput reduction 

is constant. 

Another common method is to XOR the sequence with another random 

sequence, typically generated by a PRNG. One of the most commonly used 

PRNGs for this purpose are the Linear Feedback Shift Registers (LFSRs) since 

they are very simple to implement and they present good statistical properties. In 

some cases, the sequence and the LFSR are combined so that the output 

random bits are used to feed back the LFSR [DIC07]. 

Finally, other compression methods such as hash functions or MAC functions can 

be used. The National Institute of Standards and Technology gives some 

guidelines about which of these functions can be used and as well as an entropy 

estimation in each case [TUR18]. 

 Conclusions 

In this chapter, the main concepts and definitions that will be used in the rest of 

this Thesis have been introduced. In Section 2.1, the main cryptographic 

primitives and their application in a secure communication protocol have been 

explained. Among them, our research has focused on the design of new ciphers 

(including only the encryption algorithm and the key generation process). From 

this Section, we can deduce that symmetric ciphers and, specially, stream 

ciphers, can offer higher encryption speeds using a smaller area. For this reason, 

in this Thesis we have focused on the design of this kind of ciphers. 

In Section 2.2, the definition and properties of chaotic systems as well as a 

possible way of using them in secure communications have been presented. In 

this Thesis, we have decided to use this approach to design chaos-based stream 

ciphers trying to meet all the security requirements detailed in Section 2.2.3.  

Finally, an introduction to TRNGs, explaining some of the quality tests that can 

be performed to assess their quality have been presented. By comparing these 

tests results for different random sequences (ideal and non-ideal) we have shown 
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that, by analyzing the pattern distribution of bytes, the autocorrelations or the 

ASR, it is possible to determine if a given sequence present bias or statistical 

dependency. On the other hand, some post-processing techniques that can be 

used to improve their randomness have been included. Since the goal of this 

Thesis is to use a very simple post-processing stage, we will use the method 

consisting of combining the generated sequence with a simple pseudo-random 

sequence generated by an LFSR. Therefore, a good way to determine if the 

proposed TRNGs are good will be to see if they can pass the NIST test after 

applying this simple post-processing. 

  



Important Concepts and Definitions 
 

59 

 References 

[ALV06] G. Alvarez, S. Li, “Some Basic Cryptographic Requirements for Chaos-Based 

Cryptosystems,” International Journal of Bifurcation and Chaos, vol. 16, no. 8, pp. 

2129-2151, 2006.  

[AMI09] M. Amin, O. S. Faragallah, A. A. Abd El-Latif, “Chaos-Based Hash Function (CBHF) 

for Cryptographic Applications,” Chaos, Solitons & Fractals, vol. 42, no. 2, pp. 767-

772, 2009. 

[AMI10] M. Amin, O. S. Faragallah, A. A. Abd El-Latif, “A Chaotic Block Cipher Algorithm for 

Image Cryptosystems,” Communications in Nonlinear Science and Numerical 

Simulation, vol. 15, no. 11, pp. 3484-3497, 2010. 

[ARU07] G. Arumugam, V. L. Praba, S. Radhakrishnan, “Study of Chaos Functions for their 

Suitability in Generating Message Authentication Codes,” Applied Soft Computing, 

vol. 7, no. 3, pp. 1064-1071, 2007.  

[AUM02] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, J. P. Seifert, “Fault Attacks on RSA 

with CTR: Concrete Results and Practical Countermeasures,” Proceedings of the 4th 

International Workshop on Cryptographic Hardware and Embedded Systems 

(CHES), vol. 2523, pp. 260-275, 2002.  

[BAG99] V. Gabini, M. Bucci, “A Design of Reliable True Random Number Generator for 

Cryptographic Applications,” Proceedings of the 4th International Workshop on 

Cryptographic Hardware and Embedded Systems 1999 (CHES 1999), pp. 204-218, 

1999. 

[BAN92] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney’s Definition of 

Chaos,” The American Mathematical Monthly, vol. 99, no. 4, pp. 332-334, 1992. 

[BAR11] E. Barker, A. Roginsky, “Transitions: Recommendation for Transitioning the Use of 

Cryptographic Algorithms and Key Lengths,” NIST Special Publication 800-131 A, 

2011. 

[BAT04] L. Batina, P. Buysschaert, E. De Mulder, N. Mentens, S. B. Ors, B. Preneel, G. 

Vandenbosch, I. Verbauwhede, “Side Channel Attacks and Fault Attacks on 

Cryptographic Algorithms,” Revue HF Tijdschrift, 3, pp. 36-45, 2004. 

[BAS17] I. Bashir, “Mastering Blockchain,” Packt Publishing, 2017. 

[BEL08] M. Bellare, C. Namprempre, “Authenticated Encryption: Relations among Notions 

and Analysis of the Generic Composition Paradigm,” Journal of Cryptology, vol. 21, 

no. 4, pp. 469-491, 2008. 

[BER13] D. J. Bernstein, Y. Chang, C. Cheng, L. Chou, N. Heninger, T. Lange, N. van 

Someren, “Factoring RSA Keys from Certified Smart Cards: Coppersmith in the 

Wild,” Advances in Cryptology – ASIACRYPT, pp. 341-360, 2013.  



Chapter 2 
 

60 

[BUC17] W. J. Buchanan, “Cryptography (River Publishers Series in Information Science and 

Technology),” River Publishers, 2017.  

[CHA13] K. Chain, W.-C. Kuo, “A New Digital Signature Scheme Based on Chaotic Maps,” 

Nonlinear Dynamics, vol. 74, no. 4, pp. 1003-1012, 2013.  

[CLI09] Y. Cliff, C. Boyd, J. M. González, “How to Extract and Expand Randomness: a 

Summary and Explanation of Existing Results,” Proceedings of the 7th International 

Conference on Applied Cryptography and Network Security, 2009.  

[COO71] S. Cook, “The Complexity of Theorem Proving Procedures,” Proceedings of the 

Third Annual ACM Symposium on Theory of Computing, pp. 151-158, 1971. 

[DAE98] J. Daemen, V. Rijmen, "AES Proposal: Rijndael," Addison-Wesley, 1985. 

[DEV85] R. L. Devaney, “An Introduction to Chaotic Dynamical Systems," AES submission, 

1998. 

[DIC07] M. Dichtl, “Bad and Good Ways of Post-Processing Biased Physical Random 

Numbers," Proceedings of the Fast Software Encryption, pp. 137-152, 2007. 

[DIF76] W. Diffie, M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on 

Information Theory, vol. it-22, no. 6, pp. 644-654, 1976. 

[DRU07] M. Drutarovsky, P. Galada, “A Robust Chaos-Based True Random Number 

Generator Embedded in Reconfigurable Switched-Capacitor Hardware,” 

Proceedings of the 17th International Conference Radioelektronika, pp. 1-6, 2007. 

[DWO01] M. Dworkin, “Recommendation for Block Cipher Modes of Operation. Methods and 

Techniques,” NIST Special Publication 800-38A, 2001. 

[ECU07] P. L.’Ecuyer, R. Simard, "TestU01: A C Library for Empirical Testing of Random 

Number Generators," ACM Transactions on Mathematical Software, vol. 33, no. 4, 

2007. 

[ELG85] T. ElGamal, "A Public Key Cryptosystem and a Signature Scheme Based on 

Discrete Logarithms," IEEE Transactions on Information Theory, vol. IT-31, pp. 469-

472, 1985. 

[ENI14] ENISA, "Algorithms, Key Size and Parameters Report," Available online: 

www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-

key-size-and-parameters-report-2014 (accessed on 25 February 2019), 2014.  

[FOU14] J. S. A. E. Fouda, J. Y. Effa, S. L. Sabat, M. Ali, "A Fast Chaotic Block Cipher for 

Image Encryption," Communications in Nonlinear Science and Numerical 

Simulation, vol. 19, no. 3, pp. 578-588, 2014. 

[HAN08] H. Handschuh, B. Preneel, “Key-Recovery Attacks on Universal Hash Function 

Based MAC Algorithms,” Advances in Cryptology-CRYPTO 2008 volume 5157 of 

Lecture Notes in Computer Science, pp. 144-161, 2008. 

http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014


Important Concepts and Definitions 
 

61 

[KAN13] A. Kanso, M. Ghebleh, “A Fast and Efficient Chaos-Based Keyed Hash Function,” 

Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 1, pp. 

109-123, 2013. 

[KAT14] J. Katz, Y. Lindell, “Introduction to Modern Cryptography,” Chapman & Hall/CRC, 

2014. 

[KLE13] A. Klein, “Stream Ciphers,” Springer-Verlag, 2013. 

[KNU69] D. E. Knuth, “Seminumerical algorithms. The Art of Computer Programming,” 

Addison-Wesley, pp. 139-140, 1969. 

[KOC02] L. Kocarev, “Chaos-based cryptography: A brief overview,” IEEE Circuits and 

Systems Magazine, vol. 1, no. 3, pp. 6-21, 2002. 

[KOC05] L. J. Kocarev, J. Makraduli, “Public-key Encryption Based on Chebyshev 

Polynomials,” Circuits, Systems Signal Processing, vol. 24, no. 5, pp. 497-517, 2005.  

[KOC11] L. Kocarev, S. Lian, “Chaos-based cryptography: Theory, Algorithms and 

Applications,” Springer, Berlin, 2011. 

[LIU14] D. Liu, Z. Cui, S. Xu, H. Liu, “An Empirical Study on the Performance of Hash Table,” 

Proceedings of the 13th International Conference on Computer and Information 

Science (ICIS), 2014. 

[MAL02] S. Malladi, J. Alves-Foss, R. B. Heckendorn, “On Preventing Replay Attacks on 

Secure Protocols,” Proceedings of the 7th International Conference on Security and 

Management, pp. 77-83, 2002. 

[MAR95] G. Marsaglia, “The Marsaglia Random Number CD-ROM Including the Diehard 

Battery of Tests of Randomness,”, 1995. 

[MEN97] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, “Handbook of Applied 

Cryptography,” CRC Press, 1997. 

[MIR05] I. Mironov, “Hash functions: Theory, Attacks, and Applications,” Microsoft Research, 

Silicon Valley Campus, 2005.  

[NAT77]  National Bureau of Standards (U.S), Federal Information Processing Standards 

Publication 46, “Data Encryption Standard (DES),” 1977. 

[RAI19]  RainbowCrack Project, “List of Rainbow Tables,” 2019. Available at: https://project-

rainbowcrack.com/table.htm. 

[RIV78] R. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures and 

Public Key Cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120-

126, 1978. 

[RJA08] M. Rjasko, “Properties of Cryptographic Hash Functions,” Cryptology ePrint Archive, 

Report 2008/527, 2008. 



Chapter 2 
 

62 

[RUK10] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. 

Vangel, D. Banks, A. Heckert, “A Statistical Test Suite for Random and 

Pseudorandom Number Generators for Cryptographic Applications,” NIST Special 

Publication 800-22 Rev.1.a, 2010. 

[SHA49] C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell System 

Technical Journal, vol. 28, pp. 656-715, 1949.  

[STI04] M. Stipčević, “Fast Nondeterministic Random Bit Generator Based on Weakly 

Correlated Physical Events,” Review of Scientific Instruments, vol. 75, no. 4442, 

2004.  

[STI05] D. Stinson, “Cryptography: Theory and practice,” CRC Press, Boca Raton, 3th 

edition, 2005.  

[TIL07] S. Tillich, C. Herbst, S. Mangard, “Protecting AES Software Implementations on 32-

Bit Processors Against Power analysis,” Applied Cryptography and Network 

Security, pp. 141-157, 2007. 

[TIR04] K. Tiri, I. Verbauwhede, “A Logic Level Design Methodology for a Secure DPA 

Resistant ASIC or FPGA Implementation,” Proceedings of the Conference on 

Design, Automation and Test in Europe, vol. 1, pp. 10246, 2004. 

[TUR18] M. S. Turan, E. Barker, J. Kelsey, K. A. Mcay, M. L. Basish, M. Boile, 

“Recommendation for the Entropy Sources Used for Random Bit Generation,” NIST 

Special Publication 800-90B, 2018. 

[VON51] J. Von Neumann, “Various Techniques used in Connection with Random Digits,” 

National Bureau of Standards Applied Mathematical Series, vol. 12, pp. 36-38, 1951. 

[WEI02] E. W. Weisstein, “CRC Concise Encyclopedia of Mathematics,” Chapman & 

Hall/CRC, 2002. 

[XIA05] D. Xiao, X. Liao, S. Deng, “One-Way Hash Function Construction Based on the 

Chaotic Map with Changeable-Parameter,” Chaos, Solitons & Fractals, vol. 24, no. 

1, pp. 65-71, 2005.



 

63 
 

3 
Design of New Chaos-Based Stream 

Ciphers 

 

3.1. Simple maps: Logistic Map and Skew Tent Map 

3.2. Digital implementation of chaotic maps 

3.3. Using a multi-encryption scheme based on DWRR 

3.3.1. Implementation results 

3.3.2. Security analysis 

3.4. Changing the chaotic control parameter dynamically 

3.4.1. Fixed value of sequence partition k 

3.4.2. Dynamically changed value of sequence partition k 

3.4.3. Implementation results 

3.4.4. Security analysis 

3.5. Using an LFSR to perturb the chaotic orbits 

3.5.1. Implementation results 

3.5.2. Security analysis 

3.6. Comparison and final implementation 

3.7. Conclusions 

3.8. References 



Chapter 3 
 

64 

In this chapter, several proposals of chaos-based stream ciphers are presented. 

In Section 3.1, the Logistic Map and the Skew Tent Map are introduced. Due to 

their implementation simplicity and good properties, all of the proposed stream 

ciphers have been based on one of these maps.  

In Section 3.2, some of the problems that arise when a chaotic map is digitized 

are explained. In order to overcome these problems, several strategies have 

been proposed in the following sections: 3.3, 3.4, and 3.5. In each of these 

sections, one of these strategies is explained in detail and several stream ciphers 

based on this strategy are implemented in a Virtex 7 FPGA. Each of these 

Sections includes a subsection where the implementation results of the proposed 

algorithms are presented and a subsection where the NIST randomness tests 

results as well as other security-related aspects are discussed to determine if any 

of the proposed algorithms are secure.  

In Section 3.6 the proposed stream ciphers implemented in the previous sections 

are compared in terms of throughput, FPGA resources and security. Based on 

this comparison, the best of the algorithms have been implemented in an ASIC, 

using a Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-m 

technology. The implementation results including the area and the power 

consumption are presented in this section. 

 Simple maps: Logistic Map and Skew Tent Map 

As explained in Section 2.2.2, the most common model of chaos-based stream 

ciphers consists on a digitization of a chaotic map of the form shown in (2.9). 

Often, stream ciphers are used in applications that require a high throughput 

while using a relatively small amount of resources. In these cases, it is ideal to 

use very simple maps. In our work, we have restricted to one-dimensional chaotic 

maps that depend on a single control parameter (𝛾): 

 𝑥𝑖+1 = 𝑓(𝑥𝑖, γ) (3.1) 

One of these systems that has been widely used in cryptography applications is 

the Logistic Map (LM), where the sequence is generated using the following 

equation: 

 𝑥𝑖+1 = 𝑓(𝑥𝑖) = 𝛾𝑥𝑖(1 − 𝑥𝑖) (3.2) 
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where 𝑥𝑖 ∈ [0, 1] and 𝛾 ∈ [0, 4]. 

Unfortunately, this map along with other simple chaotic maps can often present 

periodic windows (i.e., certain initial conditions that lead to periodic orbits). As an 

example, Fig. 3.1 shows a bifurcation diagram of the LM, which represents 

several consecutive values of 𝑥𝑖 as a function of the control parameter 𝛾. As it 

can be seen, for small values of 𝛾, the orbits stay at a fixed point. By increasing 

its value, orbits of period 2, 4, 8, … are generated until for values of 𝛾 > 3.57, the 

system starts to exhibit a chaotic behavior. However, even for values of 𝛾 > 3.57, 

it can be seen in Fig. 3.1 that there are still some white regions, which means that 

there are still some values of 𝛾 that lead to periodic (non-chaotic) orbits. Even in 

the regions that in the figure appear to be chaotic, it has been proven that there 

exist an infinite number of initial conditions that lead to periodic orbits [FEL12]. 

Although some methods have been proposed to find this initial conditions that 

lead to non-chaotic behavior, the whole set of parameters that lead to non-chaotic 

behavior is yet unknown [TUC09, GAL15]. This can be an important issue if an 

LM is directly used in a cryptosystem because the key space (that is given by the 

possible control parameters) can be difficult to define to avoid choosing unsecure 

keys (control parameters that lead to periodic windows).  

 

Fig. 3.1. Bifurcation diagram of the LM. 
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Fig. 3.2. Bifurcation diagram of the STM. 

To avoid this problem, it is advisable to use chaotic maps where it is possible to 

find a continuous interval of initial parameters where any chosen value generates 

a chaotic orbit. This way, any key chosen in this range can be considered secure. 

One of these maps is the Skew Tent Map (STM), given by: 

 
𝑓(𝑥𝑖) = 𝑥𝑖+1 = {

𝑥𝑖/𝛾                                𝑥𝑖 ∈ [0, 𝛾]

(1 − 𝑥𝑖)/(1 − 𝛾)           𝑥𝑖 ∈ (𝛾, 1]  
 (3.3) 

where 𝛾, 𝑥0 ∈ (0, 1). This map exhibits a chaotic behavior for any value of 𝑥0 and 

𝛾 [BAR95]. This can be seen by representing several consecutive values of 𝑥𝑖 

generated by different values of 𝛾 (Fig. 3.2). In opposition to Fig. 3.1, (LM) where 

a bifurcation diagram could be seen, in Fig. 3.2, for almost all values of 𝛾, the 

orbits are chaotic and are approximately uniformly distributed in the interval (0, 1). 

However, even if the orbits are not periodic, the STM along with other maps are 

often far from being ideal random functions and not all the possible values of 𝑥𝑖 

are generated with the exact same probability. As a consequence, statistical 

relationships between the ciphertext and the plaintext can be leaked (see the 

cryptanalyses in [ALV03, ALV04, LI07]). 

 

 



Design of New Chaos-Based Stream Ciphers 
 

67 

 Digital implementation of chaotic maps 

To meet the throughput and resource requirements, apart from using simple 

chaotic systems they must be digitized using a precision of not too many bits. 

Under these conditions, due to round-off and truncation errors, the behavior of 

these systems differs from the ideal one [KOC06, OTE07, GAL13]. Although the 

shadowing lemma [BOW75] proofed that, in some chaotic systems, a pseudo-

orbit (orbit generated using a finite precision) stays uniformly close to a true 

chaotic orbit [OTT93, PHA95], it has been shown later that the dynamics of a 

chaotic system are degraded to some degree [PER12, LI19]. 

The main consequence of the digitation is that, due to the fact that there is a finite 

number of different possible values for each element 𝑥𝑖 and each 𝑥𝑖 univocally 

determines the next element, 𝑥𝑖+1,  the generated orbits have a maximum period 

of 2𝑛, where 𝑛 is the precision used (number of bits used to represent each 𝑥𝑖). 

Furthermore, the typical periods of the generated orbits are much smaller than 

the maximum possible value. If 𝑓 is a perfect random map, it was proofed in 

[HAR60] that the mean period of the generated orbits scales with the precision 

as �̅�~2𝑛/2. In 1988, a similar result was obtained assuming that 𝑓 was an Ikeda 

map (chaotic): �̅�~2𝑛𝑑/2, where 𝑑 is the dimension of the map [GRE88]. Moreover, 

in both [HAR60] and [GRE88] it was shown that most of the periods are much 

shorter than �̅�. In general, although it has not been strictly proven, it can be 

assumed that, since the chaotic systems are considered to have random-like 

behaviors, their average periods will have a similar distribution as the one shown 

for an ideal random map in [HAR60]. 

As shown by these results, typical precisions used such as 32 or 64 bits cause 

that the generated sequences have short average periods. As a consequence, 

the sequences generated by these maps fail the randomness tests, regardless of 

the algorithm used. As an example to illustrate this, the NIST randomness tests 

for a sequence generated by a 32-bit STM using the LSB of each 𝑥𝑖 is shown in 

Fig. 3.3. The list of applied tests with their numeration is detailed in Appendix A: 

Moreover, regardless of the randomness tests results, it is clear that, in order to 

be secure, the keystream generated by a stream cipher should not repeat itself. 

However, a sequence of period 232 transmitted at a speed of 1 Gbps would repeat 

itself after only 4 seconds. 
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Fig. 3.3. NIST tests for a sequence generated by a 32-bit STM, extracting the LSB of each 𝑥𝑖.  

A common approach to minimize this problem consists of using longer digital 

words. For example, [MAC17] uses a precision of 500 bits. However, this strategy 

supposes to increase the complexity of the system considerably and does not 

guarantee that all the generated sequences have long enough periods. Since, as 

explained before, it is our purpose to design stream ciphers that can achieve high 

encryption speeds using a small amount of resources, we have proposed several 

solutions that use different strategies to increase the periods and randomness of 

the sequences generated by simple chaotic algorithms: one strategy consists of 

combining several sequences using a Deficit Weighted Round Robin (DWRR) 

algorithm; other strategy consists of changing the control parameter 𝛾 

dynamically; the last strategy consists of using an LFSR to perturb the chaotic 

orbits. In the next sections all these approaches will be explained and several 

stream ciphers based on these strategies will be proposed.  

 Using a multi-encryption scheme based on DWRR 

This strategy consists of using a multi-encryption system where different parts of 

the same data stream are encrypted by different stream ciphers. A bandwidth 

percentage of the plaintext stream is assigned to different cipher modules, so that 

the final encrypted data stream is a mixture of different ciphertexts. This way, 

possible uncertainty about the nature of the encryption system is introduced to 
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the attacker, making it more difficult to extract statistical information on the final 

ciphertext.  

The final system consists of three different parts: a scheduling module, a bank of 

stream cipher modules and an aggregator of the streams generated by the 

ciphers (Fig. 3.4b). Traditionally, a scheduler is a generic structure that can be 

used to process several information flows in communication systems (Fig. 3.4a). 

In this work, the scheduler module (S block in Fig. 3.4b) is responsible of 

distributing the information among each cipher according to the percentage of 

bandwidth that has been configured. 

Both the transmitter and the receiver share the same information about bandwidth 

distribution and their allocation algorithm works with the same policy. The system 

is prepared for receiving a discontinuous stream of data, where data is grouped 

in frames of different bit size. According to the bandwidth distribution, frames are 

scheduled to the different cipher modules inside the cipher bank. This behavior 

could make this system well suited for encrypting purposes in packet switched 

networks. 

 

(a) 

 

(b) 

Fig. 3.4. (a) Traditional use of a scheduler in a communication system. (b) Proposed multi-
encryption system with n cipher modules (𝐾𝑖), a scheduler and an aggregator block. 
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The allocation algorithm is based on a DWRR algorithm [SHR96] as it is suitable 

for distributing traffic bandwidth among several entities, in this case, cipher 

modules. For this purpose, a fixed quantum 𝑄𝑖 and a variable deficit counter 𝐷𝐶𝑖 

are assigned to each module. The algorithm goes over each module sequentially. 

If the size of a frame, 𝐿𝑖, is smaller than 𝐷𝐶𝑖, that frame is ciphered by the 𝑖th 

module and an amount 𝐿𝑖, is subtracted from its deficit counter (𝐷𝐶𝑖
′ = 𝐷𝐶𝑖 − 𝐿𝑖). 

Then, the size of the next frame is compared to the updated deficit counter 𝐷𝐶𝑖
′ 

and the same procedure is repeated until the size of a new arrival frame is bigger 

than the 𝑖th deficit counter. When this condition happens, the deficit counter is 

increased by an amount 𝑄𝑖 (𝐷𝐶𝑖
′ = 𝐷𝐶𝑖 + 𝑄𝑖)  and the size of the frame is 

compared to the deficit counter of the next module, 𝐷𝐶𝑖+1. This process is applied 

sequentially to each cipher module in a round-robin fashion. 

The resulting bandwidth percentage assigned to each module, 𝐵𝑊𝑖, will be 

proportional to its quantum value 𝑄𝑖. Therefore, bandwidth can be distributed in 

terms of percentage depending on the quantum values assigned to each module 

by the scheduler. 

After the scheduler has distributed different frames to the different stream ciphers 

in the cipher bank (𝐾1, 𝐾2, … 𝐾𝑛, in Fig. 3.4b), and they have been encrypted, all 

the streams are combined by the aggregator (A block in Fig. 3.4b), giving as a 

result the final ciphertext.  

At the receiver side, the scheduler works in the same way as in the transmitter, 

frames are distributed in the same way, and they are decrypted by the correct 

decipher. As bandwidth information must be known by the transmitter and the 

receiver, not only the keys of each stream cipher must be shared but also their 

quantum values. 

3.3.1. Implementation results 

In order to test the utility of the proposed multi-encryption scheme, a stream 

cipher composed by eight modules has been proposed and implemented in a 

Xilinx Virtex 7 FPGA [GAR17a, GAR18a]. Each module consists of a 32-bit STM-

based stream cipher where only the least significant bit (LSB) of each 𝑥𝑖  (𝑥𝑖
0) is 

used to form the keystream (Fig. 3.6). Each module has different initial 
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parameters 𝛾, 𝑥0. To obtain a better mixing, small frame sizes have been chosen 

and similar quantum values have been assigned to each module. 

In this case, since all the ciphering modules use the same state update function 

(STM), part of the hardware can be reused, so that the required amount of area 

is not multiplied by the number of modules. For that purpose, the state and the 

key of each cipher are saved using memory resources, which in an FPGA can be 

RAM blocks or registers (Fig. 3.5). In our implementation, a RAM block configured 

 

Fig. 3.5. Proposed dynamically configurable cipher structure when all the cipher modules use 
the same encryption algorithm. 

 

Fig. 3.6. Block diagram of a Skew Tent Map generator. 
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as First In First Out (FIFO) shift register was used in prevision of a substantial 

increment in the number of ciphers in future implementations. The general 

scheme of the optimized implementation of this system is shown in Fig. 3.7, 

where, in this case, the stream cipher feedback and output functions are the same 

as in Fig. 3.6. 

As shown in Fig. 3.7, in the proposed structure it is possible to reload both 

registers (state and key) depending on which cipher is being used by the 

scheduler module. The ciphering profile for each cipher is composed of the pair 

state/key and is stored in a FIFO block that works as a circular buffer. When a 

scheduler needs to change the cipher module, load enable, read enable and write 

 

 

Fig. 3.7. Proposed configurable cipher structure. 
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enable inputs are asserted to load the new ciphering profile (state/key of the next 

cipher) and to store the current state/key of the last cipher in the circular buffer. 

This way, due to the fact that this cipher module can be dynamically configured, 

a single keystream is generated. Therefore, an aggregator block is not needed in 

this implementation, saving resources. In order to do the initial configuration of 

each cipher, ciphering profile FIFO can be written sequentially using config data 

word as input, asserting write enable and de-asserting load enable inputs. This 

action is taken by the scheduler when the user wants to change ciphering profiles. 

Table 3.1 compares the resources used by the implementation of a single STM 

stream cipher, a cipher bank of eight STM generators and the proposed 

dynamically configurable STM generator. Moreover, the resources used by the 

scheduler separately are included in the last column. Since the purpose of the 

work published in [GAR17a, GAR18a] was to study the randomness 

enhancement of this strategy, the stream ciphers were not synthetized at the 

maximum possible frequency. In order to have a fair comparison with the rest of 

the proposed stream ciphers in the next sections, the same operating frequency 

Table 3.1. Implementation results in a Virtex 7 FPGA 

Configuration Single STM 8 STM 
8 STM 

Configurable 
Scheduler 

Number of 

stream ciphers 
1 8 1 - 

LUTs 369 2952 459 342 

Registers 39 312 39 399 

Slices* 98 777 119 136 

Total DSPs 11 752 16 0 

RAM blocks 0 0 1 1 

Frequency (MHz) 134 134 134 134 

Encryption rate 

(Mbps) 
134 134 134 - 

Mbps/slice 1.367 0.172 1.126 - 

*The number of slices has been estimated from the number of registers and LUTs assuming 
unrelated logic 
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of 134 MHz has been included in all the implementations. As it can be seen, by 

using one RAM block to save the states and the keys (𝑥𝑖 , 𝛾) of each module, most 

of the hardware is reused, so there is only a small increase in the number of 

Lookup Tables (LUTs). While ciphering the last bit of the current frame, the 

configurable cipher updates its next state to be ready to cipher the next bit frame 

so that the throughput is the same. Unfortunately, the throughput of this stream 

cipher is not high enough for Gigabit Ethernet Communications.  

3.3.2. Security analysis 

With the proposed encryption system, 20 sequences of 1 million bits have been 

generated and have been subjected to the NIST randomness tests [RUK10] with 

a significance level of 𝛼 = 0.01. Ten of them have passed all these tests while 

the rest of them have failed one or more tests (see Fig. 3.8). In an ideal random 

sequence, the probability of passing each test would be 99% so the probability 

that a sequence passes all 17 test (assuming that the tests are independent) 

would be 0.9917 ≈ 0.84. Although the randomness improvement is considerable 

with respect to using a single 32-bit STM (Fig. 3.3), the percentage of sequences 

passing all the tests is a bit lower than this theoretical value. Moreover, by 

increasing the frame sizes, we have found that the percentage of sequences 

passing all the tests gradually decreases. 

 

Fig. 3.8. NIST test results for a keystream generated by 8 STM modules combined with a 
DWRR algorithm. 
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The key size in this case is given by the total possible initial parameters 𝑥𝑜, control 

parameters 𝛾 and the quantums 𝑄𝑖. In this case, where 8 modules have been 

used and all the parameters have been implemented using 32 bits, the size would 

be: 𝜅 = 232∗8 × 232∗8 × 232∗8 = 2768. This size is much bigger than the minimum 

recommended size, 2112 [BAR11, ENI14]. 

Unfortunately, the sensitivity of the system on the key is not very high. Since the 

final keystream is composed by several independent keystreams, if only the 

parameters of one module are changed, only part of the keystream will change. 

Furthermore, if the quantum values were obtained by an attacker, it could be 

possible to determine which portion of the keystream has been encrypted by each 

module. Since each module independently is unsecure, the attacker could divide 

the problem into attacking 8 independent vulnerable modules. 

In summary, the non-ideal randomness results, combined with the lack of high 

sensitivity on the key and the fact that the keystream could be separated into 

independent unsecure keystreams, makes us believe that, although this strategy 

undoubtedly improves the security of the systems, it does not guarantee full 

security.  

 Changing the chaotic control parameter dynamically 

Let’s consider that we have a stream cipher that, in order to generate the 

keystream, uses a chaotic map of the form (3.1). We propose to use, instead of 

a single value of 𝛾, a set of l different values of 𝛾: 𝛾1, 𝛾2, … 𝛾𝑙. In order to generate 

the sequence {𝑥𝑖}, the value of 𝛾 used is continuously changing in a circular way, 

according to a predefined sequence partition {𝑠𝑖}. This way, the first 𝑠1 elements 

of the sequence are generated as 𝑥𝑖 = 𝑓(𝑥𝑖−1, 𝛾1), the next 𝑠2 elements are 

obtained as 𝑥𝑖 = 𝑓(𝑥𝑖−1, 𝛾2) and so on. When all 𝛾𝑖 have been used, and a total 

of ∑ 𝑠𝑖
𝑙
𝑖=1  elements have been generated, the first value of 𝛾, 𝛾1 is used again and 

the process keeps going in a circular fashion. 

In the following subsections, we propose and analyze different approaches of 

choosing the values of l and {𝑠𝑖} in order to optimize the performance of the 

system. 
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3.4.1. Fixed value of sequence partition s 

The first approach consists of generating the same number of elements using 

each 𝛾𝑖, i. e., 𝑠1 = 𝑠2 = ⋯ 𝑠𝑙 = 𝑠. In the simplest case, where only a single value 

of 𝛾 is used, 𝑙 = 1, we have that, for each value of 𝑥𝑖 we always end up in one of 

the 2𝑛 possible values of 𝑥𝑖+1 so, as explained in Section 3.2, the maximum 

period is 𝑇 = 2𝑛. However, if several values of 𝛾 are used, we can end up in l 

different values of 𝑥𝑖+1 (one for each 𝛾𝑖). This way, the theoretical maximum 

period of the generated sequences using this method is increased by a factor of 

l, 𝑇(𝑙) = 𝑙2𝑛. Along this increment, it can be found experimentally that there is a 

considerable increment in the mean period length. 

The main problem of this approach is that, by using always a fixed value of s and 

l, there is always a possibility that the sequences stay in a stable short period 

orbit. In order to avoid this problem, a possible alternative consists on changing 

constantly the values of 𝑠𝑖 (Section 3.4.2). 

3.4.2. Dynamically changed value of sequence partition s 

In this case, a variable number of 𝑠𝑖 is generated within a range 𝑠𝑖 ± Δ𝑠𝑖 and is 

used to encrypt the message. When all the values of 𝛾𝑖 have been used, a new 

value of 𝑠1 is generated. This way, the sequences will conserve the characteristic 

properties of the chaotic map (ergodicity, high sensitivity to the initial conditions, 

…), but they will not stay at a stable orbit.  

Since what is relevant in this method is to introduce small variations in the values 

of 𝑠𝑖, it is not necessary to use a perfect random number generator. Therefore, 

any random number generator, or even a simple algorithm that uses some parts 

of the plaintext or other parameters of the traffic could be used. For example, in 

a packed stream, the interframe gap or the packet size could be used. 

3.4.3. Implementation results 

To do a first test of this system, a 32-bit STM has been used as the state update 

function and only the LSB of each 𝑥𝑖  (𝑥𝑖
0) has been used to generate the 

keystream (Fig. 3.6) [GAR18b, GAR18c, GAR18d]. This map has been chosen 

because, as explained in Section 3.1, it is a simple system that presents a chaotic 

behavior for any initial value of  𝑥0 and 𝛾 (i.e., it does not present periodic 
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windows) and it can produce values of 𝑥𝑖 that are uniformly distributed in the 

interval (0,1). Therefore, after implementing this system on the FPGA, most of 

the problems of the generated sequences will be caused by the digitization of the 

system and not by the intrinsic properties of the chaotic map. Therefore, by 

proving that this method is capable of improving the randomness of the 

sequences generated by an STM-based algorithm, it is possible to extrapolate 

the results to other chaotic cryptosystems.  

In order to test our proposed method, we have generated the sequences using 

different values of l (number of 𝛾𝑖) and 𝑠𝑖 (number of bits encrypted with each 𝛾𝑖). 

A scheme of the complete implementation of the enhanced stream cipher that 

uses our randomness improvement technique and the STM generator is shown 

in Fig. 3.9. 

First, we have started using fixed values of 𝑠𝑖 (𝑠1 = 𝑠2 = ⋯ = 𝑠). In order to test 

the randomness of the sequences generated for each case, 100 sequences have 

been generated and have been subjected to the NIST randomness tests with a 

 

Fig. 3.9. Scheme of the proposed enhanced stream cipher. The values of 𝛾𝑖 are stored in a 
FIFO that works as a circular buffer. The control module performs the gamma change every 

time an amount of bits equal to the configured packet size plus a percentage is transmitted. This 
bit number limit is set thanks to the LIMIT value, which corresponds to the sum of the packet 

size value configured in FRAME CFG REG plus a pseudorandom value generated by the 
PRBS. 
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significance level of 0.01. To easily compare the results among different systems, 

the passing rates for each test (fraction of sequences that have passed each test) 

have been calculated and, after that, we have calculated the average of all of 

them. Results are shown in Table 3.2. For comparison purposes, the table also 

includes the results obtained by a system using only one value of 𝛾 (𝑙 = 1) but 

32-bit (single) and 64-bit (double) precision. 

As it can be seen, increasing l improves the randomness of the generated 

sequences. This can be explained by the fact that, by increasing the value of l, 

the maximum and the mean period of the sequences increases. This effect is 

especially noticeable for small values of l, since the effect of the increment of the 

period lengths of the sequences in the randomness test performance is bigger 

for small periods.  

Table 3.2. NIST test results for fixed values of the partition sequence s 

s 10 100 1000 

l    

1 (32-bit) 0.317 0.317 0.317 

1 (64-bit) 0.989 0.989 0.989 

2 0.512 0.659 0.750 

4 0.552 0.720 0.845 

8 0.568 0.777 0.856 

16 0.581 0.786 0.869 

 

Table 3.3. NIST test results for variable values of the partition sequence s 

s 9-11 90-110 900-1100 

l    

1 (32-bit) 0.317 0.317 0.317 

1 (64-bit) 0.989 0.989 0.989 

2 0.938 0.935 0.857 

4 0.971 0.932 0.910 

8 0.964 0.944 0.929 

16 0.955 0.937 0.901 
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On the other hand, by increasing the value of s, the randomness of the sequences 

also improves. This could be explained by the fact that, when a small value of s 

is used, groups of bits generated using the same value of 𝛾 are separated by a 

small distance inside the keystream. Therefore, the NIST tests might find some 

correlations among them. However, for bigger values of s, bits generated using 

the same 𝛾 are more separated so it becomes harder to find those correlations.  

It can be noticed that, although the randomness improvement is significant, with 

the significance level of 0.01, 99% of the sequences should pass the randomness 

tests. Therefore, the sequences generated using this method are far from 

random. Although the results could be improved using bigger values of l and s, it 

would involve an increment of the hardware resources used. 

In the second case, we have used the same values of 𝛾𝑖 as before but each 𝑠𝑖 is 

a random integer generated within a certain range. To generate these random 

integers, a simple linear congruential algorithm has been used. Table 3.3 shows 

the results for different ranges. In this table, we have also included the results 

obtained by a system using only one value of 𝛾 (𝑙 = 1) but 32-bit (single) and 64-

bit (double) precision. 

As it can be seen, the randomness tests results are much better than for the fixed-

s case since, as it has been mentioned before, this method helps the system to 

avoid stable orbits.  

In the best case, for 𝑙 = 4 and 𝑠𝑖 ∈ [9, 11], the randomness improvement is very 

similar to the improvement obtained by using a 64-bit precision. However, 

implementing the STM using a 64-bit precision requires far more hardware than 

implementing the 32-bit precision STM with the proposed randomness 

enhancement technique (Table 3.4). 

Finally, to check that this randomness-improvement technique is valid in other 

chaotic maps, the same strategy has been tested but using the LM instead of the 

STM (also with a 32-bit precision and using only 𝑥𝑖
0 to generate the keystream) 

[GAR18e]. In this case, by using values of 𝑙 = 8 and 𝑠𝑖 ∈ [9, 11] a NIST average 

passing rate of 0.989 has been obtained. 

To summarize the results, a comparison in terms of resources and NIST average 

passing rate of stream ciphers based on the LM and the STM with and without 
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the proposed strategy is presented in Table 3.4. Like as before, the main goal of 

the works published in [GAR18a, GAR18b, GAR18c, GAR18d, GAR18e] was to 

show the randomness improvement. Therefore, the operating frequencies 

presented in Table 3.4 have been adapted to 134 MHz to have a fair comparison 

with the other proposed stream ciphers. As it can be seen, the enhanced stream 

ciphers can obtain high security using a relatively small amount of resources. 

Unfortunately, the throughput is not high enough for Gigabit Ethernet 

communications. A possible way to improve the throughput could be to use a 64-

bit implementation and transmit several bits of each 𝑥𝑖 per cycle. In order to 

achieve a high throughput enough for 1 Gigabit Ethernet, the 8 LSBs of each 𝑥𝑖 

(𝑥𝑖
0, 𝑥𝑖

1, … 𝑥𝑖
7) could be transmitted. However, we have checked by simulations 

that, with this approach, the generated sequences fail the NIST tests. 

3.4.4. Security analysis 

As explained in Section 3.4.3, using this proposed random-enhancement 

technique, the NIST average passing rate is considerably increased, from 0.317 

to 0.971 in the case of the STM and from 0.252 to 0.989 in the case of the LM. 

Therefore, in both cases the randomness improvement is very high and the 

resulting enhanced stream cipher is able to generate almost ideal sequences. 

In this case, the key space size would be given by all the possible values for the 

initial element of the sequence, 𝑥0, all possible values of the chaotic parameters 

𝛾1, 𝛾2, … 𝛾𝑙 and, finally, all the possible sequence partitions, 𝑛{𝑠𝑖}. We do not 

provide a concrete value for 𝑛{𝑠𝑖} since it may vary depending on the 

implementation. Therefore, the key space in this case, 𝜅𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑, would be given 

by: 𝜅𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝑛{𝑠𝑖} × 232(𝑙+1) > 232(𝑙+1). 

It is clear that, by using several values of 𝛾, the key space size is considerably 

increased. Providing that 𝑙 > 4, the key space size would be  𝜅𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 > 2112 

which would be secure against brute-force attacks. 
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On the other hand, as long as the control parameters are chosen so that the 

system works in a chaotic regime, this system will present a high sensitivity in the 

key. It must be pointed out that, contrary to the strategy proposed in Section 3.3, 

with this strategy a change in a single parameter 𝛾𝑖 would affect the whole 

sequence since each element is obtained as a function of the previous one. 

Finally, this strategy can be useful in chaotic maps where the key space is not 

well defined (the exact parameters that lead to chaotic behavior are not fully 

known). To prove this, let’s call 𝑃𝑟𝑐 the probability that a value of 𝛾 randomly 

chosen is “good” (i.e., an orbit generated by that 𝛾 exhibits a chaotic behavior) 

and 𝑃𝑟𝑝 = 1 − 𝑃𝑟𝑐 the probability that the value of 𝛾 is “bad” (i.e., an orbit 

generated by that 𝛾 exhibits a periodic behavior). Usually, the probability of 

choosing an unsuitable value of 𝛾 will be very small (i.e., 𝑃𝑟𝑝 ≪ 𝑃𝑟𝑐). However, 

when this happens, the behavior of the cryptosystem will be very poor. Using this 

technique, since we are using l different values of 𝛾, the probability of having j 

unsuitable values of 𝛾 among them will be: 

 
𝑃𝑟(𝑙, 𝑗) = (

𝑙
𝑗
) 𝑃𝑟𝑝

𝑗
(1 − 𝑃𝑟𝑝)

𝑙−𝑗
≈ (

𝑙
𝑗
) 𝑃𝑟𝑝

𝑗
(1 + (𝑗 − 𝑙)𝑃𝑟𝑝) (3.4) 

It can be seen that, by using this strategy, the probability of having at least one 

“bad” value of 𝛾 is increased. 

 
∑ 𝑃𝑟(𝑙, 𝑗)

𝑙

𝑗=1

= 1 − 𝑃𝑟(𝑙, 0) = 1 − (1 − 𝑃𝑟𝑝)
𝑙

> 𝑃𝑟𝑝 (3.5) 

However, from (3.4) it can be seen that the probability of having j “bad” values of 

𝛾 decreases very fast when increasing j. Therefore, even if one or some of the 

chosen values of 𝛾 are “bad”, most of them will probably be good. Therefore, the 

overall behavior of the system will most likely not be as bad as in the case of 

using the chaotic map without this randomness enhancement technique. 

In other words, in chaotic maps where the key space is not well defined, by using 

this technique, the probability of generating a non-ideal keystream (i.e., with at 

least one “bad” value of 𝛾) would be higher, but the probability of generating a 

very poor keystream (i. e., with most of the chosen values of 𝛾 “bad”) would be 

lower.  
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In conclusion, this strategy considerably increases the security of stream ciphers 

based on chaotic maps and, if the values of 𝑙 and {𝑠𝑖} are chosen properly, it can 

be used to design perfectly secure cryptosystems. The best performing 

implemented stream ciphers (32-bit enhanced STM with 𝑙 = 4, 𝑠 ∈ [9,11] and 32-

bit enhanced LM with 𝑙 = 8, 𝑠 ∈ [9,11]) are capable of generating sequences with 

very good statistical properties and can be considered secure. However, as seen 

in Table 3.4, the LM requires a bit more resources to be implemented and, since 

not all possible values of 𝛾 are “good”, there is still a small possibility that all the 

chosen parameters of 𝛾 are bad so the resulting sequence is not random. 

Therefore, the 32-bit enhanced STM is a better solution. 

 Using an LFSR to perturb the chaotic orbits 

This strategy consists of introducing small perturbations after each iteration of the 

map to increase the mean period and improve the randomness of the generated, 

sequences. After each iteration, the values of each 𝑥𝑖 are changed (𝑥𝑖 → �̃�𝑖) and 

these modified values, �̃�𝑖, are used to obtain the next values of the sequence as 

𝑥𝑖+1 = 𝑓(�̃�𝑖). In this proposal, the values of �̃�𝑖 are obtained by XORing the least 

significant bit (LSB) of each 𝑥𝑖, 𝑥𝑖
0, with the least significant bit of an LFSR, 𝑦𝑖

0. 

Using this method, the period of the sequence can be set up to be above a given 

value using the following proposition, proven in [SAN98, KOC11]. 

Proposition 3.1. Given the binary sequences 𝐴1(𝑛), 𝐴2(𝑛) and 𝐴3(𝑛) = 𝐴1(𝑛) ⊕

𝐴2(𝑛), for 𝑛 ∈ ℕ and 𝑇1, 𝑇2 and 𝑇3 their respective periods. If 𝑇2 is prime, then 

𝑇3 ≥ 𝑙𝑇2 with 𝑙 ≥ 1. 

Therefore, if we consider 𝐴3(𝑛) as the LSB of �̃�𝑖, �̃�𝑖
0, 𝐴1(𝑛) as the LSB of 𝑥𝑖, 𝑥𝑖

0, 

and 𝐴2(𝑛) as the output bits, 𝑦𝑖
0, of an LFSR with a prime period 𝑇2, the period of 

the {�̃�𝑖} sequence will be 𝑇3 ≥ 𝑇2. In our work, a 61-order LFSR has been used, 

which gives us a period of, at least, 261. This choice guarantees that the period 

is big enough for our purposes (a sequence with a period of 261 transmitted at a 

speed of 1 Gbps would take more than 73 years to repeat itself). 

3.5.1. Implementation results 

To test this strategy, 32-bit STM and LM functions have been implemented on a 

Virtex 7 FPGA and we have seen that, if only the LSB of each 𝑥𝑖, 𝑥𝑖
0, is used to 
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form the sequences, the NIST tests are passed proving that the strategy 

considerably improves the randomness of the generated sequences [GAR16a, 

GAR16b, GAR17c, GAR17d]. 

Unfortunately, similarly to the previous stream ciphers, the obtained throughput 

is still too low to be used in Gigabit Ethernet communications. To obtain a higher 

throughput we have tried to combine several bits of each 𝑥𝑖 with the LFSR and 

use several bits of each 𝑥𝑖 to form the keystream but, unfortunately, in these 

cases the NIST test are failed. To be able to obtain a higher throughput, we 

propose to use a 64-bit STM and using the 8 least significant bits of each �̃�𝑖 

(�̃�𝑖
0, �̃�𝑖

1, … , �̃�𝑖
7) to form the keystream (Fig. 3.10a) [GAR17b]. 

 

(a) 

 

(b) 

Fig. 3.10. Proposed 64-bit STM-LFSR stream cipher. Version 1 (a) and version 2 (b). 
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Table 3.5. Implementation results of the 64-bit STM-LFSR 

Algorithm 64-bit STM-LFSR (V1) 64-bit STM-LFSR (V2) 

LUTs 810 817 

Registers 135 135 

Slices* 220 222 

Total DSPs 16 16 

RAM blocks 0 0 

Frequency (MHz) 134 134 

bits/cycle 8 8 

Encryption rate (Mbps) 1072 1072 

Mbps/slice 4.873 4.829 

NIST average passing rate 0.985 0.989 

 

This way, we have managed to pass the NIST test while obtaining a high 

throughput, as shown in Table 3.5. Since the NIST average passing rate is a bit 

lower than the theoretical value (0.99), an alternative version (64-bit STM-LFSR 

(V2)) has also been implemented where the last 8 LSBs of each 𝑥𝑖 are XORed 

with the last 8 bits of the LFSR (Fig. 3.10b) [GAR19a, GAR19b]. As it can be 

seen, the NIST average passing rate is slightly better by just using a small amount 

of extra resources. It must be noticed that this approach (transmitting the 8 LSBs 

instead 1 and using a 64-bit implementation) has not worked with the previous 

strategies proposed in Sections 3.3 and 3.4 since their resulting sequences have 

failed the NIST tests. 

3.5.2. Security analysis 

As explained in Section 3.5.1, the proposed stream ciphers have been able to 

pass the NIST randomness, showing average passing rates very close to the 

ideal one. Therefore, the generated sequences are practically undistinguishable 

from truly random sequences.  

The key space in this system is given by the total possible values of the control 

parameter 𝛾 and the initial states 𝑥0 and 𝑦0. Since a 64-bit implementation and a 

61-order LFSR have been used, the total key space size is: 𝜅 = 264+64+61 = 2189. 
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Similarly as in the case of the stream ciphers proposed in previous Sections, the 

key size is also bigger than 2112. 

Finally, as explained in Section 3.1 the STM presents a chaotic behavior for any 

chosen value of 𝑥0, 𝛾. Furthermore, due to this chaotic behavior, by slightly 

changing the initial state of the LFSR the resulting orbits are completely different. 

Therefore, we can conclude that the system presents a high sensitivity on the 

key. 

All the proposed stream ciphers proposed in the previous sections have been 

compared with this one in terms of resources, throughput and security. A 

comparison of the best stream ciphers implemented using each strategy is 

presented in Table 3.6. The 32-bit and 64-bit STM implementations are also 

included in the table to highlight the improvements that the proposed strategies 

have achieved. The security has been qualitatively addressed as “high”, 

“medium”, or “low” based on the NIST tests results along with the other 

considerations made in the “Security analysis” sections. 

As it can be seen, the stream cipher implemented using this last method can 

clearly achieve a higher encryption rate per slice (Mbps/slice) while maintaining 

a high level of security. 
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 Final implementation 

Finally, after determining that the last stream cipher offered the best performance 

in terms of security and throughput per slice, several implementation strategies 

have been tried in Vivado to obtain the best possible performance. The final 

implementation results are presented in Table 3.7 along with the implementation 

results of other chaotic stream ciphers found in the literature [PER19]. To have a 

fair comparison the configuration registers and LUTs have not been considered 

as part of the encryption algorithm, obtaining a considerable reduction with 

respect to the implementation shown in Section 3.5.1. 

Table 3.7. Implementation results and comparison with other chaotic stream ciphers 

Reference [DAB11] [DAB12]  [PAN13] [FRA17] 
This 

work 

Main chaotic 

algorithm 
LM 

Bernoulli 

Map 
LM 

Hénon 

map 
STM 

LUTs 129 575 643 1600 734 

Registers 64 108 160 64 65 

Slices* 41 342 181 408 192 

Total DSPs 16 9 16 16 16 

Frequency 

(MHz) 
26.9 36.9 93 25.7 174 

Bits/cycle 1 0.2 16 1 8 

Encryption 

rate (Mbps) 
26.9 7.38 1488 25.7 1392 

Mbps/slice 0.656 0.022 8.22 0.063 7.25 

*The number of slices has been estimated from the number of registers and LUTs assuming 
unrelated logic. 

As it can be seen, the proposed stream cipher clearly achieves a better 

performance in terms of throughput per slice than the ones presented in [DAB11, 

DAB12, FRA17]. Although the work presented in [PAN13] achieves a slightly 

higher throughput per slice, it transmits 16 bits of the internal state each cycle, 

which can result in a lower level of security. 

 



Design of New Chaos-Based Stream Ciphers 
 

89 

Table 3.8. ASIC implementation of the 64-bit STM-LFSR algorithm 

Algorithm 64-bit STM-LFSR (V2) 

Technology (nm) 180 

Area (mm2) 0.19682 

Gate equivalent (2-NAND) 19,682 

Frequency (MHz) 125 

bits/cycle 8 

Encryption rate (Mbps) 1000 

kbps/gate 50.8 

Power at 125 MHz (mW) 24.1 

Security high 

 

Finally, the proposed stream cipher has been implemented in a 0.18 m CMOS 

technology with six metal layers provided by TSMC fed at 1.8 V (core) and 3.3 V 

(I/O). Some major constraints of the design were a maximum clock period of 14 

ns, load ranging from 0.01 to 1.0 pf at outputs and drive up to 0.4 k at inputs. 

This set of constraints have proven to be enough for this technology to 

satisfactorily implement the cipher, achieving an encryption speed of 1 Gbps 

using a total area of 0.197 mm2 or (~20,000-NAND equivalent gates using an 

equivalence of 10 m per 2-NAND [ART01]). At the maximum frequency of 

operation, its power consumption has been 24.1 mW (24.1 pJ/bit). This result is 

lower than typical implementations of AES such as the ones presented in [FEL05] 

and [HAM06]. The full implementation results are shown in Table 3.8. 

These implementation results have been compared to other ASIC 

implementations of previously proposed chaotic stream ciphers in Table 3.9. 

Since other works do not provide information about some of the parameters in 

Table 3.8 (e.g., power consumption or area), Table 3.9 only focuses on 2-NAND 

equivalent gates and throughput. As it can be seen, the proposed algorithm 

performs slightly better than the works presented in [CHE10] and [CHA12] in 

terms of throughput/gate and achieved higher encryption speeds. Although a 

work improving the algorithm proposed in [CHA12] was presented in [LI12], this 

result has not been included in the table since it has not been implemented. 
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Table 3.9. Comparison with other chaotic stream ciphers implemented in ASIC 

System [CHE10] [CHA12] This Work 

Technology (nm) 180 180 180 

Gate equivalent (2-NAND) 9,622 10,218 19,682 

Encryption rate (Mbps) 200 250 1000 

kbps/gate 20.8 24.5 50.8 

 

To characterize experimentally this chip, a development board Zybo has been 

used to feed the chip with the clock and reset signals through Pmod ports (Fig. 

3.11) and a DSAV334A Infiium V-Series Oscilloscope has been used to capture 

the generated signals. As an example, a sample signal obtained at a clock 

frequency of 250 kHz is shown in Fig. 3.12. The captured signals have been later 

post-processed to extract the binary sequences and we have checked that, for 

different initial parameters (𝑥0, 𝛾, 𝑦0) and different clock frequencies, the obtained 

sequences match with the theoretical ones. 

 

 

 

Fig. 3.11. PCB for the ASIC test setup connected to the Zybo board used to feed the clock and 
the reset signals. PMOD ports have been used for the connection. 
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Fig. 3.12. Output signal at a clock frequency of 250 kHz. 

This way, we have checked that the system works properly at all the measured 

frequencies up to 125 MHz, which is the maximum clock frequency that the FPGA 

was capable of supplying. Since with the chosen algorithm 8 bits are transmitted 

per cycle, the throughput is at least 1 Gbps and, therefore, the system could be 

suitable for 1 Gigabit Ethernet. 

 Conclusions 

In this chapter, several stream ciphers based on chaotic maps have been 

proposed, implemented and analyzed in terms of throughput and security. These 

stream ciphers can be divided into three different groups depending on the 

strategy used to mitigate the digitization effects: using a multi-encryption scheme 

based on a DWRR, changing the chaotic parameter dynamically and using an 

LFSR to perturb the orbits. Among them, the stream ciphers that used this last 

strategy achieved better results. In particular, by implementing a 64-bit STM with 

a 61-order LFSR and extracting the 8 LSBs after each iteration, a high throughput 

and high security has been achieved. 

This last algorithm has been implemented in a Virtex 7 FPGA achieving a 

throughput of 1392 Mbps (7.25 Mbps/slice), which is a considerable improvement 

with respect to other chaos-based stream ciphers implemented in FPGAs. 
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Furthermore, an ASIC implementation using a 0.18 m CMOS technology has 

been made and tested. The system has worked perfectly at all clock frequencies 

up to 125 MHz (1 Gbps throughput), which is the maximum clock frequency that 

we could supply with the used FPGA board (Zybo board). Again, a comparison 

with other chaotic stream ciphers implemented in ASIC show that the proposed 

algorithm is a considerable improvement with respect to the state of the art. 
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As explained in Section 1.3.2, there are two alternatives to ASIC TRNGs that 

have not been studied as much. The first alternative, consists of using the noise 

generated by a sensor (temperature, accelerometer, pressure, …) to generate 

random numbers. The other alternative consists of designing TRNGs for PLDs, 

using the thermal noise, jitter or metastability as random sources. In this chapter, 

these two alternatives have been studied. In Section 4.1, a proposal and analysis 
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of a TRNG based on MEMs accelerometer is presented. In Section 4.2, three 

different TRNGs based on Digital Nonlinear Oscillators (DNOs) have been 

implemented, analyzed and compared. The first one, was based on a ring 

oscillator, the second one was an architecture proposed by Golić in [GOL06] and 

the third one is a new proposed architecture that have been presented in [ADD18 

and ADD19]. Finally, in Section 4.3, a comparison among the two different 

approaches (using sensor-based or  DNOs-based TRNGs) is presented, stating 

the strong and weak points of each option. 

 TRNG based on a MEMS accelerometer 

Although the idea of using a sensor as a seed generator is not novel [VOR11, 

HON15, WAL16, REV17], as far as we know, there are not commercially 

available sensor-based TRNGs. Among all the possible sensors, in this work we 

have studied the usage of a MEMS accelerometer as a source of noise. The main 

reason is that these sensors are cheap and are ubiquitously present in many 

wireless devices (such as smartphones, wearable devices, laptops, drones, etc.) 

so, in many cases, it can be possible to reuse a component that is already 

available in the device. 

4.1.1. Noise signal analysis 

To generate random numbers, the noise signal produced by means of the 

evaluation board EVAL-ADXL335Z has been used. This board contains a small 

low-energy three-axis accelerometer, ADXL335 [ANA09]. This sensor is 

composed by a polysilicon surface-micromachined capacitive sensor and a 

conditioning electronic stage that implements an open-loop measurement 

architecture. Acceleration deflects the moving mass and unbalances the 

differential capacitor resulting in a sensor output whose voltage amplitude is 

proportional to acceleration. The phase-sensitive demodulation technique is then 

used to determine the magnitude and direction of the acceleration. Some of its 

typical applications, such as mobile systems or sports and health devices, are 

strongly related with Internet of Things (IoT). 

The evaluation board has been supplied with batteries to avoid coupling 50 Hz or 

60 Hz harmonics from the power supply network. AC signal of the measurements  



Design of New TRNGs 
 

99 

 

Fig. 4.1. Sample random data signal generated by the accelerometer at rest, measured using a 
sampling frequency of 25 kHz. 

 

 

Fig. 4.2. Conceptual block diagram of the processing performed 

of the acceleration in the X axis have been acquired by an oscilloscope at several 

sampling frequencies, 250, 25, 2.5, 0.25 and 0.1 kHz using a dynamic range of 

±8 mV and 8-bit resolution. An example of noise signal, obtained using a 

sampling frequency of 25 kHz is shown in Fig. 4.1. To minimize the correlated 

common noise, signals generated by the X and Y sensors have been subtracted. 

4.1.2. Bitstream generation and post-processing 

After sampling the signal noise, the DC level has been eliminated and a sign 

detection has been applied in order to generate a raw bitstream (Fig. 4.2). Once 

the raw bitstream for key generation has been obtained, its viability as a source 

of random numbers has been analyzed. For this purpose, several bitstreams of 
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1 million bits obtained with different sampling frequencies have been subjected 

to the statistical tests explained in Section 2.3.1: pattern distribution of bytes, 

correlation coefficients and Average Shannon Redundancy (Figs. 4.3, 4.4, 4.5).  

 

  

Fig. 4.3. Pattern distribution of bytes at sampling frequencies of 250 kHz, 25 kHz, 2.5 kHz, 250 
Hz and 100 Hz. Some areas with a too big or too low concentration of dots can be found in the 

figures obtained 250 kHz and 25 kHz, indicating that those sequences are not random.  

 

Fig. 4.4. Partial Average Shannon Redundancy at all sampling frequencies. Lines at 2.5 kHz, 
250 Hz and 100 Hz are overlapped. 



Design of New TRNGs 
 

101 

 

Fig. 4.5. Autocorrelation coefficients at all sampling frequencies. Lines at 2.5 kHz, 250 Hz and 
100 Hz are almost the same. 

As it can be seen from Fig. 4.5, the first correlation coefficient in all cases is very 

close to 0.5, indicating that the sequences present almost no bias. On the other 

hand, from Fig. 4.3 and Fig. 4.4, It can be seen that, although the samples 

acquired at 250 kHz and 25 kHz are clearly not random, the sequences obtained 

at 2.5, 0.25 and 0.1 kHz all present very similar results and they look like truly 

random sequences.  

To check if, indeed, these sequences are random, they have been subjected to 

the NIST randomness test. The results of these tests are shown in Table 4.1. The 

list of applied tests with their numeration is the same as the one used in Fig. 3.3 

in Section 3.2. 

As it can be seen, none of these sequences pass all the NIST tests proving the 

high sensitivity of these tests. On the other hand, it can be seen that the number 

of tests passed increases by decreasing the sampling frequency. This result is 

consistent with the theory explained in Section 2.3 since, by decreasing the 

sampling frequency, the sequences present a lower statistical dependency. 

From these results it can be seen that, to pass all the NIST tests, it is necessary 

to post-process the sequences. Among all the possible post-processing 

techniques, the Secure Hash Algorithm 512 (SHA-512) [DWO15] algorithm was  
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Table 4.1. NIST test results for the raw bitstreams (106 bits) obtained at different sampling 

frequencies 

Sampling 
Frequency (kHz) 

250 25 2.5 0.25 0.1 

NIST Test      

1 x x x x x 

2 x x √ x √ 

3 x x x √ √ 

4 x x √ √ √ 

5 √ √ √ √ √ 

6 x x √ √ √ 

7 x x x √ x 

8 x x √ √ √ 

9 x x √ √ √ 

10 √ x √ √ √ 

11 x x √ √ √ 

12 x x √ x √ 

13 x x x x x 

14 √ √ √ √ √ 

15 √ x √ √ √ 

16 x x x x x 

17 x x √ √ √ 

 

originally used in the work presented in [GAR17]. The main reason for choosing 

this algorithm was that, according to NIST recommendations [TUR18], it is a valid 

post-processing function. Furthermore, since it is a commonly used function, 

there are multiple available implementations in software libraries or hardware IPs 

that can be easily accessed. A problem of using this function is that its 

implementation requires more resources than other simpler post-processing 

functions. Furthermore, almost any sequence post-processed by SHA-512 will 

pass the NIST tests so that it is not ideal to compare among different generators. 

For this reason, for this Thesis we have post-processed those sequences by 

using a simpler algorithm, consisting on XORing the sequences with a sequence 

generated by a 4-order LFSR. This post-processing algorithm has been also used 

in the TRNG proposed in the next section so that both generators can be easily 

compared. The NIST tests results for the sequences post-processed using this 

method are shown in Table 4.2. As it can be seen, the sequences obtained at a 

sampling frequencies of 250 kHz and 25 kHz, fail a few NIST tests. However, for 
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Table 4.2. NIST test results for the post-processed bitstreams (106 bits) obtained at different 

sampling frequencies 

Sampling 
Frequency (kHz) 

250 25 2.5 0.25 0.1 

NIST Test      

1 √ √ √ √ √ 

2 √ √ √ √ √ 

3 √ x √ √ √ 

4 √ √ √ √ √ 

5 √ √ √ √ √ 

6 √ √ √ √ √ 

7 √ √ √ √ √ 

8 √ √ √ √ √ 

9 √ √ √ √ √ 

10 √ √ √ √ √ 

11 x x √ √ √ 

12 x x √ √ √ 

13 √ √ √ √ √ 

14 √ √ √ √ √ 

15 √ √ √ √ √ 

16 √ √ √ √ √ 

17 √ x √ √ √ 

 

all the smaller sampling frequencies, the tests are passed so, with this simple 

post-processing, it is possible to generate good random sequences at 

frequencies up to 2.5 kHz. 

 

4.1.3. Mechanical response of the accelerometer 

Although all the measurements have been made with the accelerometer at rest, 

the mechanical response of the accelerometer in an IoT device can often surpass 

the noise signal. However, this problem could be solved using some of the 

following methods: 

 First, since it is not necessary to generate the keys constantly, the system 

can generate keys only when the accelerometer is at rest. Currently, some 

algorithms exist that can detect when the accelerometer is at rest. Although 

these algorithms are usually used to put the device in sleep mode, they could 

also be used to activate the key generation process [TUC10]. 
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 Second, signal acquisition in inertial MEMS (such as an accelerometer) is 

usually based on the synchronous demodulation technique, which requires 

an output low-pass filter to demodulate the output signal and reduce the high 

frequency noise. Similarly, another path with a high-pass filter could be 

included. This way, when the device was in a normal operation mode, the 

low-pass filter path would be used while the system would switch to the patch 

with the high-pass filter in order to generate the keys. 

 Third, most of the accelerometers include a self-test pin that, when set at a 

certain voltage, the accelerometer presents a null response. Therefore, this 

feature could be used to stop the accelerometer from generating the keys. 

For example, capacitive accelerometers use the force-feedback technique to 

force the proof mass back to its rest position. 

 Finally, a combination of these solutions could be used. Further study is 

needed in order to determine the best solution for each application. 

 TRNG based on Digital Nonlinear Oscillators 

The design of new TRNGs for Programmable Logic Devices (PLDs) has been a 

hot topic in the last years [TSO03, DIT07, SUN07, WOL08, DAN09, GÜL10, 

HAT12, MAR15, RAI15]. Compared to ASICs the PLDs present a huge 

advantage in terms of cost and versatility. Unfortunately, PLD-TRNGs still suffer 

from a lack of trust in the information security communities, mainly due to some 

major cryptographic weaknesses found in solutions based on ring oscillators 

[BAU11, AMA13, RAI15, YAN16]. 

In this Thesis, we have focus on the design of TRNGs for PLDs, in particular, 

TRNGs based on Digital Nonlinear Oscillators. To introduce this topic, we provide 

first an informal definition of Digital Nonlinear Oscillators. 

Definition 2.3. A Digital Nonlinear Oscillator (DNO) is a network of electronic 

circuits, each one originally designed to behave as a digital logic gate, 

implementing an autonomous nonlinear dynamical system exhibiting oscillations 

in the continuous domain. 

The term nonlinear in this case refers to the intrinsic nonlinear nature of electronic 

circuits implementing digital logic gates, using transistors as switches, at a “large 

signal” operation scale, providing the saturation of their output voltages toward 
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either the power supply or ground levels. The behavior of a DNO may have little 

to share with the logic operation on its original gates since it is an analog system, 

even if implemented in a digital device.  

In presence of electronic noise, DNOs may be affected by phase noise and jitter, 

which can be used as a source of randomness [ACO17]. Some examples of this 

kind of systems are the ring oscillators [MAN10], the circuits presented by Golić 

in [GOL06, DIC07] and a novel class of systems proposed in this Thesis [ADD18, 

ADD19]. In this work, these three approaches have been implemented, analyzed 

and compared.  

4.2.1. Ring oscillator 

A ring oscillator is composed by an odd number of cascaded inverters connected 

in a close loop chain (Fig. 4.6). Ideally, its output oscillates between two levels 

(high and low) with a period that depends on the number of inverters as well as 

the propagation delay in each stage. If the number of inverters is 𝑛 and the delay 

of each inverter is 𝜏𝑑, this period is given by: 𝑇 = 2 𝜏𝑑𝑛. However, in presence of 

electronic noise, this period variates in a random manner (jitter). This jitter 

accumulates over time and, therefore, by using a large sampling period, Δ𝑇 > 𝑇, 

the measured value will be unpredictable so this system can be used as a TRNG. 

Several techniques to improve the performance of these TRNGs such as 

combining several ring oscillators have been proposed in the literature [FIS08, 

SUN06].  

It must be pointed out that, typically, the jitter can depend on the temperature 

and, when implemented in a PLD, it can also depend in the routing so it can be 

difficult to assess the security of these TRNGs. 

 

Fig. 4.6. Scheme of a ring oscillator. The number of inverters must be odd. 
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4.2.2. Golić system 

In 2006, J. D. Golić proposed a novel class of TRNGs based on the structure of 

ring oscillators but, instead of using a single circular feedback, they use a more 

complex feedback incorporating XOR gates in an analogous way to the Fibonacci 

and Galois configurations of an LFSR (Fig. 4.7). The idea behind this proposal is 

to combine the pseudo-randomness properties of the LFSRs with the true 

randomness properties of ring oscillators due to oscillation jitter. For both 

Fibonacci and Galois configurations, the feedback connections are specified by 

the binary coefficients 𝑓𝑖 and, therefore, the configuration can be defined using a 

binary polynomial 𝑓(𝑥) = ∑ 𝑓𝑖𝑥
𝑖𝑛

𝑖=0 , 𝑓0 = 𝑓1 = 1 called the feedback polynomial.  

Golić analyzed these structures as synchronous finite state machines, identifying 

theoretical conditions to avoid fixed points and to achieve maximum period 

systems. This way, only certain feedback polynomials were allowed. However, 

although the analysis of logical fixed points could be useful, the discrete algebra 

analysis cannot say much about the dynamics of the implemented circuit since it 

is far from being a finite state machine.  

In this work, we have focused on the TRNGs based on a Galois configuration. Its 

structure is similar to the structure of a ring oscillator (as shown in Fig. 4.6) but it 

includes some extra feedback connections. The inverters as well as the feedback 

coefficients are indexed from right to left. The input to the first inverter is always 

directly defined by the feedback function. If 𝑓𝑖 = 0, the input of the 𝑖th inverter is 

directly defined by the output of the (𝑖 + 1)th inverter and, if 𝑓𝑖 = 1, the input of 

the 𝑖th inverter is formed by XORing the output of the (𝑖 + 1)th inverter with the 

feedback signal. This structure is shown in Fig. 4.7b were the possible feedbacks 

are determined by switches that are closed if 𝑓𝑖 = 1 and open if 𝑓𝑖 = 0 (in practice, 

in this case, the XOR gate is not present). One advantage of using Galois 

configurations over Fibonacci configurations is that, given a primitive polynomial 

of order 𝑛, it is possible to implement it in an FPGA using exactly 𝑛 LUTs. If 

coefficient 𝑓𝑖 = 1, the implemented function in the 𝑖th LUT is a NOT operation 

and, if 𝑓𝑖 = 0, the implemented function in the 𝑖th LUT is an XNOR operation. 

According to Xilinx specifications [XIL16], the LUT propagation delay does not 

depend on the function implemented so the total time-delay will only depend on 

the order of the primitive polynomial. 
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(a) 

 

(b) 

Fig. 4.7. Scheme of a (a) Fibonacci ring oscillator and (b) Galois ring oscillator. 

4.2.3. A novel class of DNOs 

Starting with the hypothesis that the fundamental principle of Golić’s system is 

that, by adding some feedbacks to an oscillator, it can present much complex 

dynamics, we have proposed to implement a system similar to Golić’s Galois Ring 

Oscillator, but using delays instead of inverters. As long as the system is 

oscillating, similar complex dynamics can be expected. To avoid having any 

stable points, the system is fed with a 3-inverters ring oscillator. The scheme of 

this structures is shown in Fig. 4.8. Analogously to the previous case, the 

feedback connections can be specified by a feedback polynomial and the number 

of LUTs (and thus the total delay) only depends on the order of this polynomial 

(when 𝑓𝑖 = 1 the function implemented in the 𝑖th LUT is an XOR and, when 𝑓𝑖 = 0 

the implemented function in the 𝑖th LUT is an identity operation (𝑥 → 𝑥). 
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Fig. 4.8. Scheme of the proposed novel class of DNOs. Δ symbol represents a delay operation 

(the implemented function is 𝑥 → 𝑥). 

4.2.4. Comparison among the three different structures 

To compare among these structures, we have implemented 3 different TRNGs, 

all of them using the same number of LUTs implemented in the exact same 

location within the FPGA but each of them using a different structure. To 

implement these kind of systems, special directives from Xilinx to avoid 

combinational loop errors or the deletion of some design blocks have been used. 

Furthermore, to have a fair comparison, we have put additional constraints in the 

RTL code so that the 𝑖th LUT of each structure is implemented in the exact same 

position within the FPGA.  

The implemented structures are shown in Fig. 4.9. To measure the random bits, 

an extra inverter (for avoiding possible period couplings) followed by a D-Flip Flop 

has been used. The flip-flop is fed with a clock signal with different frequencies, 

which allow as to study the behavior of the systems at different sampling 

frequencies. The collected data is sent to a computer and stored in binary files 

using a Labview project. The scheme of the whole measuring system is shown in 

Fig. 4.10. As seen in the figure, a controller block chooses a sampling frequency 

to collect the random bits. The collected bits are stored in a shift register and, 

when a full byte is stored, it is sent to the controller along a “ready” signal. The 

controller then selects a RAM address and writes the collected byte in a RAM 

block. This process is repeated until 125000 bytes are collected. After that, the 

controller sends a signal to the transmitter block which starts to send all the bytes 

to a computer, where they are saved in a binary file using a Labview project. 

When all the bytes have been transmitted, the controller sends a signal to the 

frequency selector to select a different sampling frequency. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.9. Implemented TRNGs. (a) Ring oscillator, (b) Golić’s structure, (c) Proposed structure. 

 

Fig. 4.10. Scheme of the measuring system.  

The random sequences generated by these systems at different sampling 

frequencies have been subjected to several statistical tests. The most important 

tests, are summarized in Fig. 4.11, Fig. 4.12 and Fig. 4.13. As it can be seen, the 
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proposed DNO outperforms the DNO proposed by Golić approximately in one 

order of magnitude and the ring oscillator in 2 orders of magnitude in the sampling 

frequency.  

Ring Oscillator Galois Ring Oscillator Proposed System 

   

   

   

Fig. 4.11. Pattern distributions of successive generated bytes on the plane for the three DNOs 
considered in this work, for sampling frequencies of 10 MHz, 1MHz and 100 kHz. 
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Fig. 4.12. Autocorrelation coefficients for the three DNOs considered in this work, for sampling 
frequencies of 10 MHz, 1MHz and 100 kHz. 

 

Fig. 4.13. Partial Average Shannon Redundancy for the three DNOs considered in this work, for 
sampling frequencies of 10 MHz, 1MHz and 100 kHz. 

This figures, however, can be misleading since previous works such as [DIC15] 

have shown that the random behavior of the Golić’s systems can strongly depend 

on the chosen polynomial as well as the location where the system is 

implemented. A similar result has been observed in our experiments for all 
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TRNGs, especially Golić’s TRNGs as well as the novel proposed TRNGs. 

Therefore, by choosing different polynomials or locations, Golić’s system could 

outperform the proposed system. To take this in consideration, a statistical 

analysis implementing all three DNO’s structures in several locations and in 

different FPGA’s is being made. The preliminary results have been published in 

[ADD19] and they show that, on average, the proposed system is quite better 

than Golić’s system and much better than the ring oscillator.  

4.2.5. Post processing 

Finally, by using the same post-processing as proposed in Section 4.1.2 (XORing 

the sequences with a sequence generated by a 4-order LFSR), we have 

managed to pass the NIST tests (using a sequence of 106 bits) at a sampling 

frequency of 2 MHz. Therefore, the proposed TRNG based on a DNO is clearly 

capable of outperforming the proposed TRNG based on a MEMS-accelerometer 

in terms of speed.  

An alternative implementation XORing two identical 7-nodes DNOs has also 

been testing. By using the same post-processing, has been able to pass the 

severe NIST tests (100 sequences of 106 bits) at a sampling frequency of 5 MHz. 

Thus, by using just 21 LUTs (8 for each TRNG 1 for the XOR and 4 for the LFSR), 

the system is capable of generating true random sequences at a very high speed. 

 Analysis and comparison of the proposed systems 

As we have seen, both systems (MEMS-based and DNO-based TRNGs) have 

proven to be good sources of entropy although, in order to pass the NIST tests, 

they need a post-processing stage. Since, in each case, different sampling 

frequencies have been used, it is not possible to make a straight up comparison. 

However, it can be clearly seen that the TRNG based on the proposed DNO can 

generate higher entropies at higher sampling frequencies. For example, in Fig. 

4.14, it can be seen that, in terms of randomness, the sequence obtained with 

the MEMS-based TRNG at 250 kHz looks “more random” than the sequence 

obtained by DNO-TRNG at 10 MHz but “less random” than the sequence 

obtained at 5 MHz. On the other hand, by post-processing the sequences using 

the 4-order LFSR to pass the NIST test, in the case of the MEMS-based TRNG 

a sampling frequency of 2.5 kHz or lower is needed while in the DNO-based  



Design of New TRNGs 
 

113 

   

(a) (b) (c) 

Fig. 4.14. Pattern distributions of successive generated bytes on the plane for (a) the proposed 
DNO-based TRNG at 5 MHz (b) the MEMS-based TRNG at 250 kHz and (c) the proposed 

DNO-based TRNG at a 10 MHz. 

TRNG sampling frequencies up to 2 MHz can be used. Therefore, we can 

conclude that the DNO-based TRNG is much more efficient. However, it must be 

pointed out that the speed of the TRNG is not often a key factor in several 

applications such as keys generation. Furthermore, as explained before, using a 

MEMS accelerometer can have an added value of reusing a sensor that is 

present on the device. Therefore, depending on the application it could be a more 

suitable option.  

 Conclusions 

In this chapter, two different approaches to create new TRNGs have been 

studied. The first approach consisted of using the noise generated by a sensor 

as a source of entropy while the second one consisted of using the jitter that is 

present in DNOs. Both approaches have been tested experimentally by 

comparing the output random sequences. To compare the quality of all the 

collected sequences, the statistical tests explained in Section 2.3.1 have been 

used. 

In the first case, a TRNG that samples the signal generated by a MEMS 

accelerometer at rest have been tested. For this purpose, sequences of 1 million 

bits have been collected at sampling frequencies of 250 kHz, 25 kHz, 2.5 kHz, 

250 Hz and 100 Hz. The statistical tests have shown that, for these last three 

sampling frequencies, the graphs obtained (pattern distribution of bytes, 

correlation coefficients and ASR) were very similar to the graphs generated by 

an ideal truly random sequence. Although these sequences were not able to pass 
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all the NIST randomness tests, by applying a simple post-processing technique 

consisting of XORing the sequences with a sequence generated by a 4-order 

LFSR, all the NIST tests were passed (for sampling frequencies of 2.5 kHz, 250 

Hz and 100 Hz). 

In the second case, three different DNO structures have been implemented in an 

FPGA, each of them using the same number of logic blocks in the exact same 

location within the FPGA. The first structure was based on a ring oscillator, the 

second structure was based on chain of inverters with XOR feedback loops 

(Golić’s system) while the first structure was a novel proposed structure 

consisting of a chain of delays with XOR feedback loops. In each case, 1 million 

sequences have been obtained by sampling the systems at different frequencies. 

By comparing the implemented systems, we have concluded that the sequences 

generated by the proposed system offered better results in terms of randomness. 

Among the implemented systems, we have seen that, for the same sampling 

frequencies, the sequences generated by the proposed structure present the best 

statistical properties. By using the same post-processing technique as the one 

used in the previous approach, the proposed system has been capable of passing 

the NIST test using a sampling frequency of 2 MHz. 

In summary, with both approaches, we have been capable of generating true 

random sequences capable of passing the NIST test using a simple post-

processing. The DNO-based TRNGs (specially the new proposed structure) have 

generated good random sequences at higher sampling frequencies than the 

MEMS-based TRNG although the MEMS-based TRNG present some 

advantages such as the possibility of reusing a sensor that is present on the 

device. 

 
  



Design of New TRNGs 
 

115 

 References 

 

[ACO17] A. Acosta, T. Addabbo, E. Tena-Sanchez, “Embedded Electronic Circuits for 

Cryptography, Hardware Security and True Random Number Generation: an 

Overview,” International Journal of Circuit Theory and Applications, vol. 45, no. 2, 

pp. 145-169, 2017. 

[ADD18] T. Addabbo, A. Fort, M. Mugnaini, V. Vignoli, M. Garcia-Bosque “Digital Nonlinear 

Oscillators in PLDs: Pitfalls and Open Perspectives for a Novel Class of True 

Random Number Generators,” Proceedings of the 2019 International Symposium on 

Circuits and Systems (ISCAS 2018), pp. 1-5, 2018. 

[ADD19] T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, V. Vignoli, M. Garcia-Bosque 

“Lightweight True Random Bit Generators in PLDs: Figures of Merit and 

Performance Comparison,” Proceedings of the 2019 International Symposium on 

Circuits and Systems (ISCAS 2019), pp. 1-5, 2019. 

[AMA13] T. Amaki, M. Hashimoto, Y. Mitsuyama, T. Onoye, “A Worst-Case-Aware Design 

Methodology for Noise-Tolerant Oscillator-Based True Random Number Generator 

with Stochastic Behavior Modeling,” IEEE Transactions on Information Forensics 

and Security, vol. 8, no. 8, pp. 1331-1342, 2013. 

[ANA09] Analog Devices, “ADXL35,” Available online: 

https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf (accessed 19 

May 2019), 2009. 

[BAU11] M. Baudet, D. Lubicz, J. Micolod, A. Tassiaux, “On the Security of Oscillator-Based 

Random Number Generators,” Journal of Cryptology, vol. 24, no. 2, pp. 398-425, 

2011. 

[DAN09] J. L. Danger, S. Guilley, P. Hoogvorst, “High Speed True Random Number 

Generator Based on Open Loop Structures in FPGAs,” Microelectronics Journal, vol. 

40, no. 11, pp. 1650-1656, 2009. 

[DIC07] M. Dichtl, J. D. Golić, “High-Speed True Random Number Generation with Logic 

Gates Only,” Proceedings of the 9th International Workshop on Cryptographic 

Hardware and Embedded Systems (CHES 07), pp. 45-62, 2007. 

[DIC15] M. Dichtl, “Fibonacci Ring Oscillators as True Random Number Generators – A 

Security Risk,” IACR Cryptology ePrint Archive, pp. 270, 2015. 

[DWO15] M. Dworkin, “SHA-3 Standard: Permutation-Based Hash and Extendable Output 

Functions,” NIST FIPS-202, 2018. 

https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf


Chapter 4 
 

116 

[GAR17] M. Garcia-Bosque, A. Pérez-Resa, C. Sánchez-Azqueta, S. Celma, “Application of 

a MEMS-Based TRNG in a Chaotic Stream Cipher,” MDPI Sensors, vol. 17, no. 3, 

pp. 1-15, 2017. 

[GOL06] J. D. Golić, “New Methods for Digital Generation and Postprocessing of Random 

Data,” IEEE Transactions on Computers, vol. 55, no. 10, pp. 1217-1229, 2006. 

[GÜL10] U. Güller, S. Ergün, G. Dündar, “A Digital IC Random Number Generator with Logic 

Gates Only,” 2010 17th IEEE International Conference on Electronics Circuits and 

Systems, pp. 239-242, 2010. 

[HAT12] H. Hata, S. Ichikawa, "FPGA Implementation of Metastability-Based True Random 

Number Generators," IEICE Transactions on Information and Systems, vol. E95.D, 

no. 2, pp. 426-436, 2012. 

[HON15] S. L. Hong, C. Liu, "Sensor-Based Random Number Generator Seeding," IEEE 

Access, vol. 3, pp. 562-568, 2015. 

[MAN10] M. K. Mandal, B. C. Sarkar, “Ring Oscillators: Characteristics and Applications,” 

Indian Journal of Pure & Applied Physics, vol. 48, pp. 136-145, 2010. 

[MAR15] H. Martn, T. Korak, E. S. Milln and M. Hutter, “Fault Attacks on STRNGs: Impact of 

Glitches, Temperature and Underpowering on Randomness,” IEEE Transactions on 

Information Forensics and Security, vol. 10, no. 2, pp.  266-277, 2015. 

[RAI15] M. Raitza, M. Vogt, C. Hochberger, T. Pionteck, “Raw 2014: Random Number 

Generators on FPGAs,” ACM Transactions on Reconfigurable Technolology and 

Systems (TRETS), vol. 9, no. 2, pp. 15:1-15:21, 2015. 

[REV17] G. Revadigar, C. Javali, W. Xu, A. V. Vasilakos, W. Hu, S. Jha, “Accelerometer and 

Fuzzy Vault-Based Secure Group Key Generation and Sharing Protocol for Smart 

Wearables,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 

10, pp. 2467-2482, 2017. 

[SUN07] B. Sunar, W. J. Martin, D. R. Stinson, “A Provably Secure True Random Number 

Generator with Built-in Tolerance to Active Attacks,” IEEE Transactions on 

Copmuters, vol. 56, no. 1, pp. 109-119, 2007. 

[TSO03] K. H. Tsoi, K. H. Leung, P. H. W. Leong, “Compact FPGA-Based True and Pseudo 

Random Number Generators,” Proceedings of the 11th Annual IEEE Symposium on 

Field-Programmable Custom Computing Machines (FCCM 2003), pp. 51-61, 2003. 

[TUC10] K. Tuck, “Low Power Modes and Auto-Wake/Sleep Using the MMA8450Q,” 

Freescale Semiconductor Inc.  Available online: 

https://www.nxp.com/assets/documents/data/en/application-notes/AN3921.pdf 

(accessed 19 May 2019), 2010. 

https://www.nxp.com/assets/documents/data/en/application-notes/AN3921.pdf


Design of New TRNGs 
 

117 

[TUR18] M. S. Turan, E. Barker, J. Kelsey, K. A. Mcay, M. L. Basish, M. Boile, 

“Recommendation for the Entropy Sources Used for Random Bit Generation,” NIST 

Special Publication 800-90B, 2018. 

[VOR11] J. Voris, D. Saxena, T. Halevi, “Accelerometers and Randomness: Perfect together,” 

Proceedings of the 4th ACM Conference on Wireless Network Security, pp. 115-126, 

2011. 

[WAL16] K. Wallace, K. Moran, E. Novak, G. Zhou, K. Sun, “Toward Sensor-Based Random 

Number Generation for Mobile and IoT Devices,” IEEE Internet of Things Journal, 

vol. 3, no. 6, pp. 1189-1201, 2016.  

[WOL08] K. Wold, C. H. Tan, “Analysis and Enhancement of Random Number Generator in 

FPGA Based on Oscillators Rings,” 2008 International Conference on 

Reconfigurable Computing and FPGAs, pp. 385-390, 2008.  

[XIL16] Xilinx, “7 Series FPGAs Configurable Logic Block User Guide,” Available online: 

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.p

df (accesed 29 May 2019), 2016. 

[YAN16] J. Yang, Y. Ma, T. Chen, J. Lin, J. Jing, “Extracting More Entropy for TRNGs Based 

on Coherent Sampling,” International Conference on Security and Privacy in 

Communication Systems, pp. 694-709, 2016.  





 

119 
 

5 
Applications for Ethernet 

Communications 

 

5.1. 1 Gb Optical Ethernet encryption 

5.2. 1 Gb Optical Ethernet encryption 

5.2.1. Overall communication system 

5.2.2. Encryption algorithm 

5.2.3. Implementation results 

5.2.3. Security analysis 

5.3. 10 Gb Optical Ethernet encryption 

5.3.1. Overall communication system 

5.3.2. Encryption algorithm 

5.3.3. Implementation results 

5.3.4. Security analysis 

5.4. Conclusions 

5.5. References 

 

In this chapter, two new encryption methods for the physical layer (PHY) for 1 Gb 

and 10 Gb Optical Gigabit Ethernet communications have been proposed and 

implemented in an FPGA. We have named them PHYsec and 10G-PHYsec 
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respectively. In Section 5.1, a general introduction to the physical layer will be 

presented. Then, in Section 5.2, the PHYsec encryption method will be presented 

while, in Section 5.3, the 10G-PHYsec will be presented. In both cases, the 

overall structure of the physical layer used in each standard (1000Base-X for 1 

Gb Ethernet and 10GBase-R for 10 Gb Ethernet) will be introduced along with 

the proposed modifications to perform the encryption. Then, the encryption 

algorithms compatible with each standard will be presented in each case. Finally, 

in both cases the implementation results as well as the security analysis will be 

presented. 

 Introduction to the physical layer 

The physical layer (PHY) is responsible for carrying out the lower level functions 

in the transmission. It defines the electrical, mechanical and functional 

specifications to activate, maintain and deactivate the physical link. In the case 

of Ethernet standards, the physical layer is usually divided into three sublayers 

with different functionalities: Physical Coding Sublayer (PCS), Physical Medium 

Attachment (PMA), and Physical Medium Dependent (PMD). Among them, the 

PCS layer performs functions such as autonegotiation, link establishment, clock 

rate adaptation, symbol synchronization and data encoding. 

Usually, in high speed baseband serial data standards such as Ethernet, the 

clock signal is not sent in a separate line. Instead, the receiver must use Clock 

and Data Recovery (CDR) circuits to extract the clock signal from the data 

bitstream itself, using its bit transitions. 

To facilitate the work of the CDR circuits, the transmitted bitstreams must be 

encoded in a way such that DC-balance, high transition density and short run 

length are achieved. Block line encoders group input bits into 𝑛-bit blocks and 

map them into 𝑛′-bit blocks, where 𝑛′ > 𝑛. Thanks to this redundancy introduced 

in the data, the encoders can achieve these properties [SMI04]. 

In this Thesis, we have proposed and implemented two encryption systems (one 

for 1 Gb and one for 10 Gb) that perform the encryption at the physical layer. An 

obvious challenge of these encryption systems is that, to guarantee the 

previously mentioned properties (DC-balance, high transition density and short 

run length), they must preserve the coding properties. On the other hand, 
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encryption in the physical layer can present some advantages against other layer 

encryption standards that operate at upper layers such as MACsec [LAZ17] or 

IPsec [SAU11b]: 

 Both IPsec and MACsec encryption standards need to introduce additional 

overhead to secure each packet, which results in an increase of the network 

latency and a decrease in the effective throughput [XEN06]. As an example, 

according to [TRO05], the overhead introduced during IPsec encryption 

reduces the effective throughput between 20% and 90% of the maximum 

achievable, depending on the packet size. For example, for a 64-byte packet 

size, IPsec can result in up to 40% wasted bandwidth and incremental 

latencies on the order of 125 ms. For larger packet sizes, the throughput 

increases but the latency also increases approaching values of the order of 

350 ms for 1420-byte packet sizes [MAR13, MIC16]. By performing the 

encryption at the physical layer, it is possible to avoid introducing overhead, 

achieving a line rate and minimum latency. 

 In the physical layer, extra control bytes or ordered sets such as packet start, 

packet end or idle of bytes are introduced to facilitate the communication 

process. However, with this information, an attacker can know if a 

communication is taking place. By performing the encryption in the physical 

layer, it is possible to encrypt those bytes, making them undistinguishable 

from the information bytes so that an attacker cannot obtain any information 

about the state of the communication. This is not possible to achieve by 

performing the encryption in upper layers since they only work with 

information bytes.  

Finally, it must be noticed that, by performing the encryption preserving the 

coding properties and maintaining the rest of physical layer features untouched, 

the physical layer encryption maintains compatibility with the subsequent 

hardware elements or medium-dependent circuitry. For example, commercial 

optical modules such as Small Form-Factor Pluggable (SFPs) and electronic 

circuits such as CDR or Serializer/Deserializer (SERDES) for 1000Base-X 

standard are also compatible with the proposed encryption methods. 
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 1 Gb Optical Ethernet encryption 

In 1 Gb Optical Ethernet, a 1000Base-X standard, which implements an 8b/10b 

encoding in the physical layer, is used. In this coding, each input symbol consists 

of 9 bits: 8 of them determine the value of the symbol while the other one (flag) 

indicates weather it is a data symbol or a control symbol. This symbol is then 

mapped to a 10-bit symbol to achieve the properties of DC-balance, high 

transition density and short run length. As explained in Section 5.1, these 

properties are necessary to facilitate the operation of the remote Clock and Data 

Recovery (CDR) circuit. The receiver then transforms each 10-bit symbol into the 

original 9-bit symbol. In this coding, the data set is limited: while the data symbols 

can take any of the 256 possible values, the control symbols can only take 12 

possible values. One of these control symbols is not used for standard data 

communication [IEE18] so it will not be considered in this Thesis. Therefore, out 

of the 512 existing 9-bit words, only 267 constitute a valid symbol, which adds 

some difficulty in the encryption process.  

Indeed, if the encryption is performed before the encoding, the encrypted chain 

of symbols should only contain these 267 possible symbols to perform the coding 

with no errors. Therefore, to encrypt a symbol, it is not possible to directly XOR it 

with a random 9-bit keystream since it could generate a non-valid symbol. On the 

other hand, if the encryption process is performed after the encoding, XOR-ing 

the 10-bit symbols with random 10-bit keystreams would not guarantee that the 

resulting chain of bits meets the intended requirements of the 8b/10b coding (DC-

balance, high transition density and short run length). Therefore, it would also be 

necessary to assure that each encrypted value is a valid 10-bit symbol. However, 

even in this case, an additional issue would arise: in the 8b/10b encoding, for 

each input 9-bit symbol, there are two possible 10-bit output symbols, one is the 

negated of the other one. The standard choses one of them to achieve a perfect 

balance of the transmitted chain. If the encryption was performed after the 

encoding, by randomly mapping each 10-bit symbol to any valid 10-bit symbol, 

this perfect balance would not be guaranteed. The only possibility would be to 

design an encryption algorithm that mapped each symbol to another symbol that 

shared the same parity. Due to these issues, in this Thesis, we have decided to 

perform the encryption before the encoding. 



Applications for Ethernet Communications 
 

123 

5.2.1. Overall structure of the encryption system 

As explained in Section 5.1, the physical layer is usually divided into three other 

sublayers with different functionalities: Physical Coding Sublayer (PCS), Physical 

Medium Attachment (PMA), and Physical Medium Dependent (PMD). The 

proposed encryption and decryption will also be performed in the PCS sublayer. 

The basic structure of the PCS sublayer, including the encryption/decryption 

blocks, and its interface with the Medium Access Control (MAC) layer (layer 2) 

and the PMA sublayer are shown in Fig. 5.1. The coding function is separated in 

Encoder and Decoder blocks while the rest of the functions of the PCS layer 

reside in the RX_PCS_CTRL and TX_PCS_CTRL modules.  

Unlike other encryption mechanisms such as IPsec or MACsec, where the data 

packets are encrypted individually, in this work, the 8b/10b symbol flow is directly 

and continuously encrypted. This encryption method has been named PHYsec. 

The encryption/decryption infrastructure in Fig. 5.1 is shown with more detail in 

Fig. 5.2. The MANAGEMENT module implements the initial synchronization and 

collects the alarms relative to the synchronization status. This way, in case of a 

mismatch between the encryption status (e.g., one PCS is encrypting but the 

other one is not decrypting) or a bad synchronization status (misaligned 

keystream generators), several alarms are triggered by the MANAGEMENT 

module and reported to the used thanks to the FPGA debug system. After this  

 

Fig. 5.1. PCS structure with the proposed encryption function PHYsec included. 



Chapter 5 
 

124 

 

Fig. 5.2. Encryption infrastructure for PHYsec function. 

notification, the user can stop the keystream generators and restart the 

encryption synchronization procedure. 

To achieve encryption synchronization with a stream cipher it is necessary that 

the keystream sequence generated at the receiver (RX) side is exactly aligned 

with the incoming keystream sequence embedded into the ciphertext and 

generated at the transmitter (TX) side. For that purpose, MANAGEMENT module 

in Fig. 5.2 performs the insertion a control sequence into the 8b/10b symbol 

stream to indicate when to start or stop the encryption and the decryption 

processes.  

The basic operation of this procedure is shown in Fig. 5.3. In the transmitter (Fig. 

5.3a), the CIPHER_OP_TX module, responsible for performing the encryption 

operation, is initially disabled, allowing the 8b/10b symbols to be transparently 

passed from the TX_PCS_CTRL to the 8b/10b encoder. In order to start 

encrypting the 8b/10b symbol stream, the MANAGEMENT module acts on the 

INSERT block to introduce a /X/ encryption start message in the 8b/10b symbol 

flow. This message is formed by a set of four special symbols and are introduced 

in the symbol stream by replacing four idle symbols (in 1000Base-X standard, 

when no communication is happening, idle symbols are continuously being 

transmitted). Before passing through the CIPHER_OP_TX module, /X/ message 
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is detected by the CAPTURE module. Then, the CAPTURE module enables the 

CIPHER_OP_TX module and the keystream generator module 

(KEYSTREAM_GENERATOR TX), which initiates the encryption process after 

/X/ has been transmitted. As shown in Fig. 5.3a, at the output of the 

CIPHER_OP_TX module, every 8b/10b symbol after /X/ is encrypted. 

 

 

(a) 

 

(b) 

Fig. 5.3. Initial synchronization procedure, based on the proposed /X/ ordered set, (a) 
transmission, (b) reception. 
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At the receiver (Fig. 5.3b), the module CIPHER_OP_RX is in charge of 

performing the decryption operation. Just like the transmitter, it is initially inactive, 

enabling 8b/10b symbols to be transparently passed from the 8b/10b decoder to 

the controller RX_PCS_CTRL. When the CAPTURE module detects the /X/ 

message, the decipher module (CIPHER_OP_RX) and the keystream generator 

(KEYSTREAM_GENERATOR RX) are enabled, starting to decrypt the 8b/10b 

stream after the /X/ set. Subsequently, the control message /X/ is extracted from 

the data stream in the EXTRACT module, which replaces it with idle ordered sets 

in the 8b/10b symbol flow (reverse operation of the INSERT module). 

To disable the encryption and the decryption, the MANAGEMENT module 

introduces again a control message /X/ in the symbol flow, replacing four 8b/10b 

idle symbols. In the transmitter, the CAPTURE module detects the /X/ message 

and disables the encryption. In the receiver, when the CAPTURE module detects 

the /X/ message, the decryption is disabled and the extract block replaces the       

/X/ message with idle symbols. 

5.2.2. Encryption algorithm 

To encrypt the symbols while preserving the coding properties, each 9-bit symbol 

is first mapped to an integer value in the range of 0 to 266. After the mapping, the 

stream cipher operation is performed. This operation consists of a modulo-267 

addition between the mapped symbols and the keystream, which also takes 

values uniformly distributed between 0 and 266. Once the cipher operation is 

done, the resulting values are reverse-mapped to the corresponding new 9-bit 

symbols. For both the mapping and the de-mapping, a (public) bijective (one-to-

one) map needs to have been defined first. In the decryption process, the same 

keystream is subtracted from the encrypted mapped symbol and the modulo-267 

operation is performed (for negative numbers, if 𝑛 ∈ [−266, −1], 𝑛 (mod 267) =

267 + 𝑛 ). Then, this integer value is reverse-mapped to the corresponding 9-bit 

symbol. This approach for preserving the coding properties has been proposed 

and presented in [PER18a, PER18b, PER19a, PER19b]. The structure of the 

ciphering/deciphering modulo (CIPHER_OP_TX/ CIPHER_OP_RX) is shown in 

Fig. 5.4. 
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Fig. 5.4. Stream cipher operation performed in CIPHER_OP module next to one of the 
keystream generators (RX or TX). 

To generate a keystream that takes a value between 0 and 266, it is possible to 

generate a pseudorandom bitstream (with any of the algorithms proposed in 

Section 3) with a width of 9 or more bits, and perform the modulo-267 operation. 

Unfortunately, when doing this operation, even if the original words are perfectly 

random, a bias is introduced in the resulting keystreams. According to the NIST 

recommendations [BAR15], in order to make this bias negligible, the input width 

of the modulo-267 operation shall be at least 64 bits longer than the output. Since 

in our case 9-bit numbers are necessary, the input of the modulo-267 operation 

generated by the pseudorandom bitstream generator must have a size of at least 

73 bits.  

The implementation of the modulo-267 operation has been based on [BUT11], 

which presents a high-speed hardware implementation for a generic operation 

‘𝑥 𝑚𝑜𝑑 𝑧’ that can be fragmented into a pipeline of 𝑛 − 𝑚 + 1 stages, where 𝑥 is 

represented by 𝑛 bits and 𝑧 by 𝑚 bits. In our case, 𝑧 has been taken as a constant 

value equal to 267. According to this, the resulting hardware structure should 

have 65 stages as shown in Fig. 5.5. 
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Fig. 5.5. Modulo-267 hardware. 

As the pseudorandom bitstream generator, we have chosen the algorithm 

proposed in Section 3.5 (64 bit STM-LFSR V2), consisting of a 64-bits STM, 

where each 𝑥𝑖 is perturbed by combining the 8 LSBs with the last 8 bits of a 61 

order LFSR and those 8 bits are used to form the output bitstream (Fig. 

3.10b).The reason for this choice is that, as it has been previously proven, this 

algorithm is capable of generating bitstreams at a high speed (more than 1 Gbps) 

while maintaining a high level of security. Since, in this application, a total of 73 

random bits must be generated for each modulo-267 operation, a bank of 

bitstream generators has been built. The bank consists of eight 8-bit width 

generators (each of these identical as the one shown in Fig. 3.10b) and one 9-bit 

width generator. Their outputs are concatenated to give a 73-bit output. The final 

structure for the keystream generator is shown in Fig. 5.6. 

 

Fig. 5.6. Keystream generator. 
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5.2.3. Implementation results 

The complete system has been implemented in a Xilinx Virtex 7 FPGA [PER18a, 

PER18b, PER19a]. Regarding the resources used by this encryption system, the 

main contribution for each block inside each keystream generator (KEYSTREAM 

GEN) is shown in Table 5.1. As it can be seen, modulo-267 (MOD-267) operation 

and keystream generator bank (STM_BANK) take up the largest amount of FPGA 

resources. 

In the setup for test, the FPGA has been connected to two Small Form-Factor 

Pluggable (SFP) modules capable of transmitting at a rate up to 10.3125 Gbps 

at 850 nm over multimode fiber. In this case, these modules have been 

configured to work at a rate of 1.25 Gbps which is the necessary rate to achieve 

a net data transmission of 1 Gbps. The FPGA design consists of two Ethernet 

interfaces with PHYsec function and two Ethernet frame generator modules 

connected to them (Fig. 5.7). Each Ethernet interface contains the MAC module 

and the PHY (PCS and PMA blocks) including the encryption system explained 

in this work. In Fig. 5.8, a photo of the test setup is also shown. 

Table 5.1. FPGA resources used in the keystream generator submodules 

MODULE Slice LUTs Slice Registers DSPs 

KEYSTREAM_GEN* 10943 3629 144 

LFSR 210 195 0 

STM_BANK 6606 589 144 

MOD-267 4127 2845 0 

*KEYSTREAM_GEN refers to the hardware resources of the Keystream Generator, including 
LFSR, STM_BANK and MOD-267 operation. 

 

 

Fig. 5.7. Test setup scheme. 
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Fig. 5.8. Test setup photo. 

The PHY is connected directly to the SFP modules thanks to the FPGA Serializer-

Deserializer (SERDES) circuit. In the MAC side, the Ethernet Interface is 

connected to the Ethernet frame generator to test the encrypted link with real 

traffic and verify that no frames are lost and no Cyclic Redundancy Check (CRC) 

errors are produced during encryption. 

With this test setup, we have checked that the encryption and decryption work 

correctly and synchronously without harming data traffic or link establishment 

between Ethernet interfaces. Thanks to the frame and CRC counters inside the 

Ethernet frame generators, we have checked that the maximum data rate is 

achieved without frame losses or CRC errors. In particular, several traffic bursts 

of 106 frames, each of them with a 1500-byte length have been tested. The 

throughput of the traffic has been configured between 10% and 98%1 of the 

maximum line rate. 

It is important to remark that the initial PCS structure of this work (without the 

encryption mechanism) parts from an implementation compatible with the 

standard. The PHYsec functionality has been developed and incorporated to this 

initial PCS sublayer.  

                                            
1 A 100% of the line rate is not possible since, between packages there must be some idle symbols. 
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Moreover, the final PCS structure, including PHYsec functionality, introduces an 

extra latency in the 8b/10b TX datapath of 192 ns, with respect to the baseline 

implementation, and approximately the same in the RX datapath. This extra 

latency is due to the new hardware modules added in the PCS sublayer as shown 

in Fig. 5.2. For example, in the TX direction, 8b/10b symbols have to go through 

the INSERT and CIPHER_OP_TX modules before being encoded. In the 

INSERT module, a latency of 18 clock cycles is introduced while, in the 

CIPHER_OP_TX module, the operations (mapping, modulo-267 addition and de-

mapping) and delays take 6 clock cycles. Therefore, the total latency introduced 

in the TX datapath is 24 cycles. Since the frequency of operation of the system 

is 125 MHz (8 ns period) the total latency in the TX datapath is 192 ns.  

5.2.4. Security analysis 

As explained before, by performing the encryption at the physical layer, we intend 

to achieve two objectives: encrypt the information data (like in any other 

encryption system) and hide the traffic pattern, so that an attacker cannot know 

if a communication is taking place.  

Regarding the data encryption, although the encryption algorithm based on a 

STM and an LFSR was proved to be secure in Section 3.5, since the modulo-

operation has been added, new statistical tests must be made to check that the 

sequences are still secure. In order to see that the generated keystreams are 

uniformly distributed between 0 and 266, some histograms for different 

sequences have been obtained. In Fig. 5.9, the histograms for two sequences of 

1,310,720 values are shown. In one of them (Fig. 5.9a), only a 9-bit width input 

has been used in the module operation while, in the other one (Fig. 5.9b), a 73-

bit width input has been used in the module operation following the NIST 

recommendation [BAR15]. As it can be seen, a strong bias can be clearly noticed 

in the first case while, in the second case, which is the one used in this work, this 

bias seems negligible. To check that, indeed, this keystream is uniformly 

distributed between 0 and 266, a Chi-Square Goodness Fit [BAL13] test has been 

applied. This test has not rejected this hypothesis with a 5% significance level. 

However, it must be noticed that this kind of test does not guarantee the 

randomness for the final keystream, so other randomness tests must be applied. 
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(a) 

 

(b) 

Fig. 5.9. Histogram of the output keystream (without applying the NIST recommendation and (b) 
applying the NIST recommendation. 

Since the NIST battery of tests [RUK10] is not applicable to non-binary data that 

are not a power of two, some other randomness tests suitable for non-binary 

sources described in [KNU81] have been used: frequency test, serial test and 

poker test. For the frequency and serial test, the Chi-Square Goodness of fit test 

was successfully passed to sequences of 3 and 15 millions of tuples respectively. 

Regarding the poker test, also the Chi-Square Goodness of fit test was carried 

out by using the five categories described by Knuth in [KNU81]. 

Finally, by doing a similar analysis to the one presented in Section 3.5.2, it is easy 

to conclude that this algorithm also meets the other security requirements such 

as: key space size, sensitivity on the key and robustness against reconstruction 

attacks.  

Regarding the second objective, as explained before, each symbol has a flag bit 

(𝐹) that determines if the symbol is a control symbol or a data symbol. Therefore, 

the control flag 𝐹 can give information about the transmission state. This can be 

seen in Fig. 5.10. When no frames are being transmitted (Fig. 5.10a), idle ordered 

sets composed by a control symbol and a data symbol are continuously being 

transmitted. In this case, the 𝐹 pattern is a signal that is continuously switching 

between ‘0’ and ‘1’. On the other hand, when transmitting Ethernet frames  
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(a) 

 

(b) 

 

(c) 

Fig. 5.10. (a) 𝐹 flag pattern before encryption when transmitting an Ethenet frame burst, (b) 𝐹 

pattern before encryption when no Ethernet frame is transmitted and (c) 𝐹 pattern after 
encryption regardless of the transmission or nontransmission of Ethernet frames. 

(Fig. 5.10b), 𝐹 follows a burst pattern, as idle transmission only occurs in the 

Interframe Gap (IFG) periods and only data symbols are transmitted between 

frame boundaries (setting 𝐹 to zero). Therefore, if no encryption is used or if the 

encryption is performed at higher layers (e. g., MACsec or IPsec) it is possible to 

know if there is Ethernet traffic being transmitted. However with the proposed 

encryption system at the physical layer, 𝐹 flag pattern seems completely random 

in both situations, with or without Ethernet traffic being transmitted (Fig. 5.10c). 

Therefore, the data traffic pattern is completely hidden. 

 10 Gb Optical Ethernet encryption 

In 10 Gb Optical Ethernet communications, the 10GBase-R standard is 

commonly used. In this coding, a 64-bit input block is converted into a 66-bit block 

composed by a 2-bit synchronization header and a 64-bit payload. The 

synchronization header can only take two possible values: ‘10’ in case of a control 

block and ‘01’ in case of a data block. The purpose of this header is to distinguish 

between data and control blocks but also to assure that there is at least a bit 

transition every 66 bits to guarantee the 66-bit block alignment and to limit the  
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Table 5.2. 64b/66b block formats in 10GBase-R standard 

 

 

maximum run length to 66 bits. In case of the control bytes, some of the bits of 

the payload determine the block type (Table 5.2).  

While in the 1000BaseX standard, the coding achieves the properties of DC-

balance, high transition density and short run length, the 64b/66b coding used in 

10GBase-R standard does not achieve these properties. To statistically achieve 

them, a scrambler that randomize the 64-bit payload is used after the coding. It 

must be noticed that the only purpose of this scrambler is to randomize the 

bitstream so it does not provide any security.  

In a similar manner as in the 1 Gb case, other security protocols such as MACsec 

only encrypt the data blocks so that, by seeing the headers pattern, it is possible 

to know if a communication is taking place. In the proposed encryption function,  
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Fig. 5.11. PCS structure in 10GBase-R standard including the proposed encryption function. 

10G-PHYsec, by encrypting the headers as well as the payload, it is possible to 

hide the data traffic pattern [PER18c, PER19d]. Furthermore, like the PHYsec, 

the 10G-PHYsec achieves minimum latency and zero overhead. 

5.3.1. Overall structure of the encryption system 

The basic structure of the PCS sublayer in 10GBase-R standard, including the 

proposed encryption/decryption function (10G-PHYsec) is shown in Fig. 5.11. In 

the proposed scheme, the encryption has been performed between the encoding 

and the scrambling while the decryption has been performed between the 

descrambling and the decoding. 

The encryption/decryption infrastructure is shown with more detail in Fig. 5.12. 

The MANAGEMENT module implements the initial synchronization by 

introducing two control sequences into the 64b/66b block stream. One of these 

sequences is used for the encryption activation and the other one for deactivation. 

In order to maintain the concordance with the standard, the format of the 

implemented control sequence is equivalent to that of an ordered set. Among the 

available 64b/66b block types, the one selected for this work is 0x55. As shown 

in Table 5.2, inside this block type two consecutive ordered sets, each formed by 

a control header byte and 3 content data bytes, can be transmitted. The possible 

values for the content of the ordered sets established in the standard are between 

values 0x00 and 0x03 and they are used for link fault signaling. Since values 

above 0x03 are out of use and are reserved for future standardization, in this 
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work, values of 0x04 and 0x05 have been used for activate and deactivate the 

encryption and encryption blocks (Cipher On and Cipher Off in Table 5.3). 

The final encryption sequence for enabling the encryption consists of the 0x55 

block type filled with two consecutive ‘Cipher ON’ ordered sets. In this work this 

block is called ‘Cipher_ON block’. For disabling encryption the sequence is the 

same but using two ‘Cipher OFF’ ordered sets and the resulting block is called 

‘Cipher_OFF block’. 

Table 5.3. Link fault signaling ordered sets and new proposed ordered sets. 

 

 

 

Fig. 5.12. Encryption infrastructure for 10G-PHYsec function. 
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For carrying out the insertion of these new control sequences the structure shown 

in Fig. 5.12 is used. The CIPHER_OP_TX module is responsible for implementing 

the encryption operation. Initially, it is disabled, allowing the 64b/66b blocks to be 

transparently passed from the encoder to the scrambler. To start the encryption 

of the 64b/66b block stream, the MANAGEMENT module acts on the INSERT 

module to send the encryption start message. This message is introduced into 

the 64b/66b block stream by replacing one 0x1e type block filled with IDLE control 

characters with the new Cipher_ON block. When CAPTURE module detects the 

presence of a Cipher_ON block it enables the CIPHER_OP_TX module and TX 

keystream generators (KEYSTREAM TX SYNC and KEYSTREAM TX DATA in 

Fig. 5.12), which starts the encryption process after Cipher_ON block has been 

transmitted. 

In the receiver, the module CIPHER_OP_RX is in charge of performing the 

decryption operation. Like the transmitter, it is initially inactive, enabling 64b/66b 

blocks to be transparently passed from the descrambler to the decoder. When 

the CAPTURE module receives the Cipher_ON block, CIPHER_OP_RX module 

and RX keystream generator modules (KEYSTREAM RX SYNC and 

KEYSTREAM RX DATA in Fig. 5.12) are enabled, starting to decrypt the 64b/66b 

data flow after Cipher_ON block. Subsequently, the control sequence Cipher_ON 

is extracted from the data stream in the EXTRACT module, which replaces it with 

a 0x1e type block filled with control characters (reverse operation of the INSERT 

module). Thanks to this procedure, the keystream generators in TX and RX are 

synchronized and data can be deciphered correctly.  

In order to disable the encryption, the same process is used, but sending 

Cipher_OFF blocks instead of Cipher_ON. 

5.3.2. Encryption algorithm 

As explained before, the encoded blocks are composed by a 2-bit 

synchronization header plus a 64-bit payload, forming a 66-bit block. The 

synchronization header always has a bit transition (‘01’ or ‘10’) to guarantee the 

66-bit block alignment and limiting the run length to 66 bits. To keep these 

properties, it is necessary that the encryption also preserves a bit transition. 
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Fig. 5.13. Stream cipher operation. 

The stream cipher operation is shown in Fig. 5.13. Both modules 

CIPHER_OP_TX and CIPHER_OP_RX perform the same operation. Firstly, the 

66-bit block, D_IN, is split in two parts, the synchronization header and the block 

payload. The block payload is directly encrypted by performing an XOR operation 

between its 64 bits and a 64-bit keystream data sequence, called ‘keystream 

data’ in Fig. 5.13. The 2-bit synchronization header is mapped to values ‘0’ or ‘1’ 

depending, respectively, on whether it is equal to ‘01’ or ‘10’. Then, the mapped 

value is encrypted performing an XOR operation with a 1-bit keystream sequence 

called ‘keystream sync’. After encryption, this new value is reverse mapped 

resulting in a new header ‘01’ or ‘10’ depending on whether it is ‘0’ or ‘1’. In this 

way, the transition between ‘0’ and ‘1’ every 66 bits is guaranteed. Finally, the 

new synchronization header is concatenated with the encrypted block payload 

resulting in the output D_OUT, which is sent to the scrambler when encrypting or 

to the 64b/66b decoder when decrypting. 

As the keystream generator, we have chosen the algorithm proposed in Section 

3.5 and used in Section 5.2.2 but, in this case, the 16 LSBs of each 𝑥𝑖 have been 

used to form the keystream (Fig. 5.14). The reason for using the 16 LSBs (instead 

of 8) was to double the throughput of each chaotic cell, although it could affect 

the security of the system. Since, for the payload encryption, a 64-bit keystream 

sequence is necessary, a bank consisting of four 16-bit generators whose outputs 

are concatenated to give a 64-bit output has been built (Fig. 5.15). 

For the synchronization header encryption, since only a 1-bit keystream 

sequence is needed, the basic STM cell in Fig. 5.14 has been used, but taking 

only the LSB of each 𝑥𝑖 as output. 
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Fig. 5.14. Proposed keystream generator. The 189-bit key is the concatenation of the three 

parameters (𝑦0 , 𝑥0, 𝛾). 

 

Fig. 5.15. 64-bit keystream generator for the 64-bit payload. 

5.3.3. Implementation results 

The complete system has been implemented in a Xilinx Virtex 7 FPGA [PER18c, 

PER19d]. Regarding the resources used by this encryption system, the main 

contribution for each block inside each keystream generator (KEYSTREAM GEN) 

is shown in Table 5.4. As it can be seen, the keystream generator bank used for 

the payload encryption (STM_BANK) takes up the largest amount of FPGA 

resources. 

The test set up is similar as the one presented in the 1 Gb case (Fig. 5.7 and Fig. 

5.8). The PHY, including the proposed 10G-PHYsec function is connected 

directly to the SFP+ modules thanks to the FPGA SERDES circuit while, in the 

MAC side, Ethernet Interface is connected to the Ethernet Frame Generator to  
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Table 5.4. FPGA resources in the keystream generator submodules 

MODULE Slice LUTs Slice Registers DSPs 

KEYSTREAM_GEN* 4680 2271 80 

LFSR 202 186 0 

STM_BANK 3534 1569 64 

STM_1BIT 948 516 16 

*KEYSTREAM_GEN refers to the hardware resources of the Keystream Generator, including 
LFSR, STM_BANK and STM_1BIT. 

test the encrypted link with real traffic. The PHY is connected directly to the SFP 

modules thanks to the FPGA SERDES circuit. In the MAC side, the Ethernet 

Interface is connected to the Ethernet frame generator to test the encrypted link 

with real traffic and verify that no frames are lost and no Cyclic Redundancy 

Check (CRC) errors are produced during encryption. 

With this setup, we have checked that the system is capable of encrypting and 

decrypting Ethernet frames properly, without harming the data traffic or link 

establishment between the transmitter and receiver interfaces. For this purpose, 

several traffic bursts of 106 frames, each of them with a 1024-byte length, have 

been tested. In this case, the throughput has also been configured between 10% 

and 98% of the maximum line rate. Thanks to the CRC counters we have checked 

that there are no frame losses or CRC errors. 

5.3.4. Security analysis 

As explained before, by performing the encryption at the physical layer, we intend 

to achieve two objectives: encrypt the information data (like in any other 

encryption system) and hide the traffic pattern, so that an attacker cannot know 

if a communication is taking place.  

Regarding the data encryption, although the encryption algorithm based on the 

STM and the LFSR has been proven to be secure when the 8 LSBs are used to 

form the keystream (Section 3.5), in this case, the 16 LSBs are used to form the 

keystream to encrypt the payload. To see how this issue can affect the security 

of the system, several sequences have been generated and subjected to the 

NIST randomness tests. The measured average passing rate has been 0.901, 

which is lower than the ideal one (0.99) and the one obtained by using only the 8  
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Fig. 5.16. Synchronization headers and payloads after performing the proposed encryption. 

LSBs (0.989). Therefore, we can conclude that the security level in this case is 

lower than the ideal one. To solve this issue, in a future implementation, it could 

be possible to use a bank of 8 chaotic cells (instead of 4), each of them using 

only the 8 LSBs to form the keystream. This way, the security would be increased 

at a cost of increasing the implementation area.  

Regarding the synchronization header encryption, since a chaotic cell that uses 

only the LSB is being used, we can conclude that those bits are properly 

encrypted. 

Finally, in Fig. 5.16, it can be seen how, with the proposed encryption method, 

the synchronization headers are randomized so that it is not possible for an 

attacker to know if communication is taking place. 

 Conclusions 

In this chapter, the chaotic algorithm proposed in Section 3.5 have been applied 

to encrypt 1 Gb and 10 Gb Optical Ethernet communications at the physical layer. 

Since in the physical layer the coding and decoding is performed (8b/10b in 1 Gb 

and 64b/66b in 10 Gb), the encryption algorithm has been adapted to preserve 

the coding. 

In the case of the 8b/10b coding, since there are only 267 possible input symbols, 

a modulo-267 operation has been applied to a 73-bit pseudorandom bitstream to 

obtain an integer uniformly distributed between 0 and 266. To generate this 73-

bit bitstream, a bank of ciphers as the one proposed in Section 3.5 has been 

used.  

In the case of the 64b/66b coding, to encrypt the synchronization header, it has 

been mapped to a single bit, XORed with a pseudorandom bit, and de-mapped 

to obtain an encrypted header. To encrypt the 64-bit payload, it has been XORed 

with a 64-bit pseudorandom bitstream. In this case, to generate the 
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pseudorandom bitstream, the same chaotic algorithm has been used but 

extracting the 16 LSBs instead of the 8 LSBs. 

The proposed encryption systems have been implemented in a Xilinx Virtex 7 

FPGA and tested with real Ethernet traffic. In both cases, the encryption and the 

decryption have worked properly, achieving a maximum line rate and adding a 

very low latency. Regarding the extra resources needed to implement the 

encryption functions, in the case of 1 Gb, the keystream generator have added 

10943 LUTs, 3629 registers and 144 DSPs in the transmitter while, in the case 

of 10 Gb, the keystream generator has added a total of 4680 LUTs, 2271 registers 

and 80 DSPs. It must be noticed that the keystream generator used in the 10 Gb 

case uses almost 50% less resources than the one used in the 1 Gb case despite 

achieving 10 times more throughput. This is due to two factors: first, in the 10 Gb 

case the 16 LSB of each chaotic cell are used; second, in the case of a 64b/66b 

coding, it is not necessary to use a modulo operation so a huge amount of 

resources is saved (not only because of the modulo operation but also because 

it is not necessary to add 64 extra bits in the input to prevent the bias after 

performing this operation). 

By analyzing the security of these systems we have concluded that the encryption 

system proposed for 1 Gb communications is secure and that the modulo 267 

operation does not add any significant bias. In the case of 10 Gb, we have 

measured that, due to the fact that the 16 LSBs have been used as part of the 

output, the average NIST passing rate is 0.901 so the security could be 

compromised. To solve this problem in future implementations it could be 

possible to use more chaotic cells and using only the 8 LSBs in each case. This 

way, the system would be secure at a cost of approximately doubling the 

implementation area. 

Finally, in both cases, we have checked that, by encrypting not only the data 

symbols but also the control symbols and the flag bits or synchronization headers, 

the data traffic is completely hidden so that it is not possible for an attacker to 

know if a communication is taking place. This property adds extra security to the 

system and it is a considerable improvement with respect to other Ethernet 

encryption standards such as IPsec or MACsec.  
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6 
Conclusions 

 

6.1. General conclusions 

6.2. Future research lines 

 

In the four chapters that form the core of this Thesis, the most relevant 

conclusions concerning each chapter have been abridged. Finally, this last 

chapter summarizes the general conclusions, clarifying the main results and 

highlighting its novelties and contributions to the state of the art in the fields of 

chaos-based cryptography, true random number generation and Optical Ethernet 

encryption.  

This chapter is divided in two sections. First, the degree of fulfillment of the 

objectives described in Chapter 1 is reviewed and general conclusions are 

described. Then, future research lines derived from the general conclusions are 

pointed out. These future lines are questions not considered in this Thesis that 

could enhance the reported results and a development of other questions that 

have already been addressed.  

 General conclusions 

As explained in the introduction, most of the chaos-based cryptosystems that had 

been proposed so far could not achieve enough speed for Gigabit Ethernet 

Communications required a big amount of area to be implemented, lacked a strict 

security analysis or did not address the key generation process. 
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The main goal of this Thesis was to design a new secure physical layer encryption 

scheme for Gigabit Ethernet. To implement the full communication scheme, it 

was necessary to design new encryption algorithms as well as new TRNG’s 

suitable for key generation. Finally, to perform the encryption at the physical layer, 

the algorithms had to be adapted to preserve the data coding. By reviewing the 

initial objectives, we have seen that, overall, they have been fulfilled: 

 A study of the state of the art has been made, determining that, although the 

chaotic ciphers can be a good alternative to classic encryption, they present 

some problems, mainly due to the digitization process, that need to be 

addressed in order to use them in secure communication schemes.  

 With the purpose of designing new encryption algorithms fast, secure, and 

implementable with a small amount of resources, we have focused on chaos 

based stream ciphers. This choice has been made because chaotic systems 

have some intrinsic properties such as ergodicity and random-like behavior 

that are closely related with the cryptographic properties of confusion and 

diffusion. To overcome the issues that arise when chaotic maps are digitized, 

several strategies have been proposed and tested in two simple chaotic 

maps: STM and LM. The first strategy has consisted of using a multi-

encryption scheme based on a DWRR, the second one has consisted of 

changing the chaotic parameter dynamically and the third one has consisted 

of using an LFSR to perturb the chaotic orbits. In each case, several stream 

ciphers have been implemented and compared changing some parameters 

such as: the underlying chaotic map (STM or LM), precision (32 or 64 bits), 

number of bits of each state used as the output, etc. After testing several 

designs we have concluded that, with the last strategy, the best results can 

be obtained in terms of area, speed and security.  

 A final implementation of a stream cipher based on a 64-bit STM that uses 

an LFSR to perturb the orbits have been made in a Virtex 7 FPGA. The 

stream cipher has achieved a throughput of 1392 Mbps using 192 slices (7.25 

Mbps/slice) and 16 DSPs. This algorithm has also been implemented in an 

ASIC using a 0.18-µm technology and has achieved encryption speeds of at 

least 1 Gbps using approximately 20,000 2-NAND equivalent gates. In both 

cases, the implementation results have been compared with other proposed 
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chaos-based encryption algorithms implemented in similar platforms (FPGA 

or ASIC). With this comparison, we have determined that the proposed 

encryption algorithm obtain better results in terms of encryption speed per 

area (approximately a factor of 2 in the ASIC implementation), which implies 

a significant improvement with respect to the state of the art. 

 In order to use a TRNG for key generation, two approaches have been 

studied: using the noise generated by a sensor and using the jitter that is 

typically present in DNOs. In the first case, the signal generated by a MEMS 

accelerometer at rest have been sampled at different frequencies and used 

to generate a binary bitstream by eliminating the DC level and applying a sign 

detection. In the second case, three different DNO-based TRNGs have been 

implemented in an Arty board (which includes an Artix 7 FPGA): the first one 

was based on a simple ring oscillator, the second one consisted on a Galois 

ring oscillator proposed by Golić and the third one was a novel structure 

similar as the second one, but using delays instead of inverters. To evaluate 

and compare the quality of all of the tested generators, some statistical tests 

have been applied. This way we have checked that all of them are good 

entropy sources and, therefore, can be used for true random number 

generation as long as the sampling frequency is low enough. For the same 

sampling frequency, the DNO-based TRNGs have been capable of 

generating sequences with higher entropy than the MEMS-based TRNGs 

and, among the DNOs, the proposed structure seems to be the best entropy 

source. Due to the bias present in these generators, neither of them have 

been capable of passing the NIST test. Therefore, a simple post-processing 

stage have been included consisting on XORing the sequences with 

sequences generated by a 4-order linear feedback shift register. This way, 

the MEMS-based TRNG have passed the NIST tests for sampling 

frequencies equal or lower than 2.5 kHz while, the DNO-based TRNG using 

the proposed structure have passed the NIST tests for sampling frequencies 

equal or lower than 2 MHz. 

 Finally, the previously proposed encryption algorithm has been adapted to be 

used in 1 Gb and 10 Gb Optical Ethernet communications. In both cases, an 

encryption system that works at the physical layer preserving the coding 

(8b/10b or 64b/66b) has been implemented in a Virtex 7 FPGA. The 
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cryptosystems have been tested with real Ethernet traffic by using two SFP 

modules and have been capable of encrypting Ethernet packages at line rate 

introducing a very low latency. The proposed encryption systems encrypt 

both the data and the control symbols so, apart from the standard security 

that can be expected from an encryption algorithm, these cryptosystems can 

also hide the data traffic so that a possible attacker cannot know if a 

communication is taking place. As far as we know, there are not currently any 

encryption algorithms for Optical Gigabit Ethernet that achieve this property 

so this work is a significant contribution to the state of the art.   

It must be noticed that additional aspects have been developed during this Thesis 

that have contributed to the successful achievements of the reported results. 

First, the statistical tests (pattern distribution of bytes, correlation coefficients and 

ASR) used to evaluate the quality of the proposed TRNGs have allowed as to 

easily compare visually the randomness (including both the bias and the 

statistical independency) of the generated sequences. This way, we have 

obtained more information about each generator than what we would have 

obtained if we had only used the NIST randomness tests. Second, for 

implementing the DNOs in FPGAs it has been necessary to learn how to force 

the synthesizer to maintain the hierarchy (for example, prevent the synthesizer 

from synthetizing an odd number of inverter as simply one inverter) as well as to 

change the design rules to allow the implementation of combinational loops. 

Furthermore, in this case, the locations of the LUTs and registers have been 

fixed. To achieve this, LUT primitives as well as special Xilinx instructions have 

been used to force the location of each LUT or register within the FPGA. 

 Future research lines 

In this Thesis, we have not used a TRNG for key generation in the final 

cryptosystems implemented for Optical Gigabit Ethernet communications in 

Chapter 5. Therefore, regarding the future research lines, we plan to include it in 

a future implementation once we have determined which of the proposals is better 

considering some aspects such as generation speed, randomness of the 

generated sequences or robustness of the system. Furthermore, in the case of 

10 Gb Ethernet, an alternative implementation where only 8 LSBs (instead of 16) 

are used to generate the keystream could be made to achieve a higher level of 
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security. This way, an average NIST passing rate of approximately 0.99 (instead 

of the previous 0.901) could be obtain at a cost of approximately, dividing the 

throughput per area by a factor of 2. 

In the case of the proposed stream cipher, although a cryptanalysis has been 

made and it is apparently secure, this cryptanalysis has focused only on the 

encryption algorithm, without taking into account its implementation. Therefore, it 

could be vulnerable against side channel attacks, consisting of extracting 

information of the system by analyzing some parameters such as its power 

consumption, execution time or electromagnetic radiation. In a similar manner, it 

could also be vulnerable against fault attacks, consisting of introducing erroneous 

calculations leading to the exposure of the key. Therefore, the security of the 

implemented algorithms against these attacks should be evaluated and, in case 

that they are vulnerable, some countermeasures should be taken such as 

modifying the implementation of the algorithm or even modifying the algorithm. 

On the other hand, although the encryption algorithm seems to be secure, new 

attacks are constantly being proposed so, in the future, some vulnerabilities might 

be found. It is crucial to keep analyzing this algorithm trying to find some possible 

vulnerabilities and fixed them if it is possible. 

Another research line would be to study the possibility of implementing the 

proposed stream cipher in IoT devices. In this case, it might be convenient to 

modify the algorithm to reduce its power consumption by reducing the encryption 

rate. If it is not possible, a future research line would be to design new encryption 

algorithms (not necessarily chaotic) that are secure and suitable for IoT 

applications. 

Regarding the TRNGs, it would be interesting to continue the study of DNO-

based TRNGs. This study could include some aspects such as their behavior 

depending on the temperature, the FPGA where they have been implemented or 

their location within the FPGA. Furthermore, new structures that achieve better 

randomness or are more robust could be proposed. A good parameter to evaluate 

the quality of each structure would be their minimum entropy. To find good 

structures, a possible option would be to find a way of modeling these systems 

so that they can be simulated accurately. This way, many possible topologies 

(changing the number of LUTs, the feedbacks or the functions used) could be 
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simulated until a topology that obtains good results is found. On the other hand, 

it would also be convenient to construct and stochastic model of these kind of 

systems, capable of estimating their entropy.  

Finally, a topic that is tightly related to this Thesis is the design of Physically 

Unclonable Functions (PUFs). While these functions can have several 

applications such as device authentication, in this work they could be used as an 

alternative to TRNG for secure key generation and storage. 
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A 
NIST Statistical Test Suite 

 

The NIST statistical test suite consists of a software provided by the National 

Institute of Standards and Technology which applies a set of statistical tests to a 

given set of sequences to determine if they are random [RUK10]. 

The list of applied tests with a brief description are presented below: 

1. Frequency (Monobits Test) 

This tests determine whether the number of ones and zeros in a sequence are 

approximately the same as would be expected in a truly random sequences. 

2. Test for Frequency within a Block 

This test measures the proportion of zeroes and ones within M-bit blocks. The 

purpose of this test is to determine whether the frequency of ones in each block 

is approximately M/2. 

3. Runs Tests 

This test analyzes the runs of zeros and ones in the entire sequence, where a 

run is an uninterrupted sequence of identical bits. The purpose of this tests is to 

determine if the number of runs of ones and zeroes of various lengths is as 

expected for a random sequence. 

4. Test for the Longest Run of Ones in a Block 

This test measures the longest run of ones within M-bit blocks to determine if they 

are consistent with the length of the longest run of ones that would be expected 

in a random sequence. 
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5. Random Binary Matrix Rank Test 

This test calculates the rank of disjoint sub-matrices of the sequence to check for 

linear dependence among fixed length substrings. 

6. Discrete Fourier Transform (Spectral) Test 

This test calculates the peak heights in the discrete Fast Fourier Transform. This 

test is used to detect periodic features in the sequence. 

7. Non-Overlapping (Aperiodic) Template Machine Test 

This test measures the number of occurrences of some pre-defined target 

substrings. If there are too many occurrences of some patterns, the sequence is 

considered to be non-random. For this test, an m-bit window is used to search for 

a specific m-bit pattern. If the pattern is not found, the window slides one bit 

position. When the pattern is found, the window is reset to the bit after the found 

pattern and the search resumes. 

8. Overlapping (Periodic) Template Matching Test 

This test also measures the number of occurrences of some pre-defined target 

substrings. The difference between this test and the previous one is that when 

the pattern is found, the window slides only one bit before resuming the search.  

9. Maurer’s Universal Statistical Test 

This test determines if the sequence can be significantly compressed without loss 

of information. A compressible sequence is considered not random. 

10. Linear Complexity Test 

This test measures the length of a generating feedback register. Random 

sequences are characterized by a longer generating feedback register. 

11. Serial Test 

This test measures the frequency of all possible overlapping m-bit patterns across 

the entire sequence. If the sequence is random, the number of occurrences of 

each one of the 2m m-bit patterns should be approximately the same. For m=1 

this test is equivalent to the Frequency Test. 
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12. Approximate Entropy Test 

This test also focuses on all possible overlapping m-bit patterns across the entire 

sequence. The purpose of the test is to compare the frequency of overlapping 

blocks of two consecutive/adjacent lengths (m and m+1) against the expected 

result for a random sequence. 

13. Cumulative Sum Test 

This test transforms the ‘0’ digits into -1 and perform the cumulative sums of 

partial sequences and determines if it is too large or too small compared to the 

expected behavior of that cumulative sum for random sequences. 

14. Random Excursion Test 

This test focuses on the number of cycles having exactly K visits in a cumulative 

sum random walk. A cycle of a random walk consists of a sequence of steps of 

unit length taken at random that begin at and return to the origin. This test 

determines if the number of visits to a particular state within a cycle deviates from 

what one would expect from a random sequence. 

15. Random Excursion Variant Test 

This test focuses on the total number of times that a particular state is visited 

(occurs) in a cumulative sum random walk and determines if it deviates from what 

one would expect from a random sequence. 

16. Cumulative Sum Test Reverse 

Is the same as test 13 but working in reverse mode. If each value of the sequence 

(with the ‘0’ digits transformed to -1) is 𝑋𝑘, in test 13, the cumulative sums are 

calculated as 𝑆𝑘 = 𝑆𝑘−1 + 𝑋𝑘 (with 𝑆1 = 𝑋1) while in this test the cumulative sums 

and are calculated as 𝑆𝑘 = 𝑆𝑘−1 + 𝑋𝑛−𝑘+1 (with 𝑆1 = 𝑋𝑛). 

17. Lempel-Ziv Compression Test2 

This test measures the number of cumulatively distinct patterns (words) in a 

sequence to determine how far the sequence can be compressed. If it can be 

significantly compressed, the sequence is considered to be non-random. 

                                            
2 This Test was removed from the Statistical Test Suite in revision 2008 and has not been incorporated since then. 
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B 
TSMC 0.18 m CMOS Logic or 

MS/RF, General Purpose 1.8V/3.3V 

 

TSMC 0.18-m technology is a single poly, six metal layer process with low-k 

dielectrics. 

The main property of the process is the option of using copper interconnects in 

the top two metal layers instead of aluminum ones. This way, it is possible to 

reduce interconnect resistance and make higher speeds possible. 

Another feature of this process is the Shallow Trench Isolation (STI), which 

improves surface planarity, compared to older isolation techniques, making it 

possible to achieve high-reliability metallization. STI also reduces capacitive 

coupling between adjacent transistors, increasing circuit density and reducing 

power consumption. 

Some major constraints of the design presented in Section 3.6 were a maximum 

clock period of 14 ns, load ranging from 0.01 to 1.0 pf at outputs, and drive up to 

0.4 k at inputs. This set of constraints was enough to implement satisfactorily 

the proposed cipher. 

The main process characteristics for the TSMC 0.18 m technology are shown 

in the following table: 
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Table B.1. Technology characteristics 

Feature Physical property 

Metal layers 3 to 6 

Contacted metal pitch M1 0.46 m, M2-5 0.56 m, M6 0.90 m 

Core voltage 1.8 V 

I/O voltage option 3.3 V 

Temperature range -40 ºC to 125 ºC 

Interconnect material AlCu 

Interconnect dielectric FSG (low-k) 

Isolation Shallow Trench Isolation (STI) 

6T SRAM Cell 4.65 m2  

 

For the digital design proposed in Section 3.6, the TCB018GBWP7T library has 

been used. This library contains 568 different cells, including all the 

combinational, storage and other special cells necessary to complete the digital 

design. As an example, the main parameters of a 2-NAND gate are shown in the 

table below 

Table B.2. 2-NAND gate information 

Cell Name 
Gate 

Count 

Width 

(m) 

Leakage (nW) 
Propagation Delay 

(Worst Case) Min. Ave. Max 

ND2D0BWP7T 1 2.24 0.04451 0.1243 0.21569 0.0857+8.799*Cload 

ND2D1BWP7T 1 2.24 0.08034 0.2191 0.37188 0.0806+4.3015*Cload 

ND2D1P5BWP7T 2 3.92 0.12145 0.3394 0.58757 0.0799+2.8893*Cload 

ND2D2BWP7T 2 3.92 0.15887 0.4369 0.74375 0.0767+2.1557*Cload 

ND2D2P5BWP7T 3 5.04 0.20208 0.5591 0.95944 0.0795+1.7289*Cload 

ND2D3BWP7T 3 5.04 0.23907 0.6559 1.11562 0.0801+1.4343*Cload 

ND2D4BWP7T 4 6.72 0.31831 0.8743 1.4875 0.0804+1.0761*Cload 

ND2D5BWP7T 5 8.4 0.39775 1.093 1.85937 0.0791+0.8615*Cload 

ND2D6BWP7T 6 9.52 0.47698 1.311 2.23125 0.0809+0.7173*Cload 

ND2D8BWP7T 8 12.32 0.63563 1.748 2.975 0.0802+0.5379*Cload 
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C 
Xilinx 7 Series FPGAs 

 

Xilinx 7 Series FPGA comprise four FPGA families ranging from low cost, small 

form factor, cost-sensitive, high volume applications to ultra high-end connectivity 

bandwidth, logic capacity and signal processing capability for the most 

demanding high-performance applications [XIL18a]. The four families are: 

Spartan 7: Optimize for low cost, lower power and high I/O performance. 

Artix 7: Optimized for low power applications requiring serial transceivers and 

high DSP and logic throughput. 

Kintex 7: Optimized for best price-performance with a 2X improvement 

compared to previous generations. 

Virtex 7: Optimized for highest system performance and capacity with a 2X 

improvement in system performance. 

Zynq 7: These System on Chips integrate the software programmability of an 

ARM-based processor with the hardware programmability of an FPGA (Artix, 

Kintex or Virtex) [XIL18b]. 

During this Thesis, three different boards have been used, each of them including 

a different FPGA: 

Zybo board: This board includes a Zynq 7000 series FPGA, XC7Z010, formed 

by an ARM processor and an Artix 7 based programmable logic. 

Arty board: This board includes an FPGA from the Artix 7 family, XC7A35T. 

Virtex 7 VC707 Evaluation Kit: This board includes an FPGA of the Virtex 7 

family, XC7VX485T. 
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Each FPGA is organized as an array of Configurable Logic Blocks (CLBs). In the 

used FPGAs, each CLB contains two slices and each slice contains 4 6-input 

LUTs and 8 flip-flops. Some of these slices, can use their LUTs as distributed 

RAM or Shift Register Lookup Tables (SRLs). In addition to this, the used FPGAs 

contain Block RAM blocks and Digital Signal Processing (DSP) slices, each of 

them containing a pre-adder, a 25x18 multiplier, an adder and an accumulator. 

To summarize the main features of the used FPGAs are presented below: 

Table C.9.1. Mean features of Arty, Zybo and VC707 boards 

Board name Arty Zybo VC707 

FPGA family Artix 7 Zynq 7000 Virtex 7 

Device XC7A35T XC7Z010 XC7VX485T 

Logic Cells 33,280 28,000 485,760 

Slices 5,200 4,400 75,900 

LUTs 20,800 17,600 303,600 

Flip-Flops 41,600 35,200 607,200 

Max Distributed RAM (Kb) 400 375 8,175 

DSP slices 90 80 2,800 

Block RAM Blocks (18 Kb) 100 120 2,060 

Block RAM Blocks (36 Kb) 50 60 1,030 

Maximum Block Ram (Kb) 1,800 2,160 37,080 

 

[XIL18a] Xilinx, “7 Series FPGAs Data Sheet: Overview,” 2018. Available at: 

https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overvi

ew.pdf, accessed June 2019. 

[XIL18b] Xilinx, “Zynq-7000 SoC Data Sheet: Overview,” 2018. Available at: 

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-

Overview.pdf, accessed June 2018. 
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