Computer-aided diagnosis of multiple sclerosis using a support vector machine and optical coherence tomography features
Resumen: The purpose of this paper is to evaluate the feasibility of diagnosing multiple sclerosis (MS) using optical coherence tomography (OCT) data and a support vector machine (SVM) as an automatic classifier. Forty-eight MS patients without symptoms of optic neuritis and forty-eight healthy control subjects were selected. Swept-source optical coherence tomography (SS-OCT) was performed using a DRI (deep-range imaging) Triton OCT device (Topcon Corp., Tokyo, Japan). Mean values (right and left eye) for macular thickness (retinal and choroidal layers) and peripapillary area (retinal nerve fibre layer, retinal, ganglion cell layer—GCL, and choroidal layers) were compared between both groups. Based on the analysis of the area under the receiver operator characteristic curve (AUC), the 3 variables with the greatest discriminant capacity were selected to form the feature vector. A SVM was used as an automatic classifier, obtaining the confusion matrix using leave-one-out cross-validation. Classification performance was assessed with Matthew’s correlation coefficient (MCC) and the AUCCLASSIFIER. The most discriminant variables were found to be the total GCL++ thickness (between inner limiting membrane to inner nuclear layer boundaries), evaluated in the peripapillary area and macular retina thickness in the nasal quadrant of the outer and inner rings. Using the SVM classifier, we obtained the following values: MCC = 0.81, sensitivity = 0.89, specificity = 0.92, accuracy = 0.91, and AUCCLASSIFIER = 0.97. Our findings suggest that it is possible to classify control subjects and MS patients without previous optic neuritis by applying machine-learning techniques to study the structural neurodegeneration in the retina.
Idioma: Inglés
DOI: 10.3390/s19235323
Año: 2019
Publicado en: Sensors (Switzerland) 19, 23 (2019), 5323 [17 pp.]
ISSN: 1424-8220

Factor impacto JCR: 3.275 (2019)
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 22 / 86 = 0.256 (2019) - Q2 - T1
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 15 / 64 = 0.234 (2019) - Q1 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 77 / 266 = 0.289 (2019) - Q2 - T1

Factor impacto SCIMAGO: 0.653 - Instrumentation (Q1) - Atomic and Molecular Physics, and Optics (Q2) - Medicine (miscellaneous) (Q2) - Information Systems (Q2) - Analytical Chemistry (Q2) - Electrical and Electronic Engineering (Q2) - Biochemistry (Q3)

Financiación: info:eu-repo/grantAgreement/ES/ISCIII/PI17-01726
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/RETICS-RD16-0008-020
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/RETICS-RD16-0008-029
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2017-88438-R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Oftalmología (Dpto. Cirugía,Ginecol.Obstetr.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2020-07-16-09:42:02)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-02-04, última modificación el 2020-07-16


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)