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Abstract 

The study aimed at assessing effects of freeze-dried Japanese quince fruit (FJQF; 0-9%) 

added to cookies to improve their antioxidant attributes during storage, sensory and volatile 

characteristics and acceptability by consumers. Cookies containing FJQF had 2-3.5-fold higher 

radical scavenging activity and exhubited less secondary lipid oxidation products compared with 

the control cookies. Enriched cookies had higher contents of volatile hexanal, heptanal, octanal, 

2-heptenal, (E) than control cookies. Acetic acid dominated in the volatile profile of enriched 

cookies (ranging 7.05 – 23.37%), hence intensities of acidic and citrus aroma were scored high. 

Cookies stored for 16-weeks showed increased amounts of hydrocarbons as compared with fresh 

cookies and new hydrocarbons were also generated, which were not detected in fresh cookies. 

The consumer panel indicated a higher preference for cookies containing 1.0 and 1.5% FJQF 

than those containing 6.0 and 9.0%. 

 

Keywords: Freeze-dried Japanese quince, Cookies, Antioxidative properties, Volatile 

compounds, Lipid oxidation products 

 

Introduction 

Many fruits are gaining attention due to attractive flavour, as well as to diverse antioxidant, 

anticarcinogenic and antimutagenic substances they contain. Among them is the Japanese quince 

fruit (JQF; Chaenomeles japonica), whose fruits have a specific flavor, thus being well suited for 

industrial processing (Antoniewska, Rutkowska, & Adamska, 2017; Lesinska, Przybylski, & 

Eskin, 1988); JQF is acid in taste due to high content of malic, quinic and succinic acids (about 

3.5% equivalent of malic acid), and has high antioxidant capacity due to a high content of 

vitamin C and about 20 polyphenolic compounds (Ros, Laencina, Hellin, Jordán, Vila, & 

Rumpunen, 2004), among them there were five representative compounds: chlorogenic acid, 
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catechin, procyanidin B1, epicatechin, and procyanidin B2 (Du et al., 2013). Also, JQF is rich in 

dietary fibre (32 g/100 g dry fruit) with substantial pectin content, as high as that of apple 

(Thomas, Guillemin, Guillon, & Thibault, 2003). Dry matter content in such fruits depends on 

weather conditions and ranges 13–18%. 

Strugała et al. (2016) reported that JQF extract protected membrane lipids of erythrocytes 

and liposomes from oxidation induced by physicochemical factors. Moreover, JQF extract 

proved to be a more potent inhibitor of inflammatory enzymes than nonsteroidal anti-

inflammatory drugs: indomethacin and ibuprofen. 

The unique sensory properties of JQF make it widely applicable in the food industry, e.g. 

in producing juices, jams, liquors, puree, smoothies and candied fruits. Moreover, it is added to 

teas, yogurts, lemonades, ice cream, cottage cheese, and confectionery in order to improve 

sensory properties thereof (Nawirska-Olszańska, Kucharska, Sokół-Łętowska, & Biesiada, 2010; 

Nowicka, Wojdyło, Teleszko, & Samoticha, 2016). Due to its characteristics and composition, 

quince fruit juice should be useful for the food industry, especially as an acidulant with high 

antioxidant properties (Ros et al., 2004). The uses of JQF were markedly improved by freeze-

drying, a popular technique of prolonging the shelf life of fruits (Agudelo, Barros, Santos-

Buelga, Martinez-Navarrete, & Ferreira, 2017).  

In bakery and in cookies industry, antimicrobials, antioxidants and antibrowning additives 

are commonly used to preserve products for longer time. However, possible toxic  properties of 

synthetic additives urge to search natural and safe alternatives. Many papers were devoted on 

using in cookie manufacturing ingredients deriving from fruits like black currant powder, papaya 

pulp flour, chokeberry extract, grape marc extract and sour cherry pomace extract, not only as a 

source of polyphenols and other nutritive compounds, but also as an effective antioxidant 

(Bialek, Rutkowska, Bialek, & Adamska, 2016; Molnar, Brnčić, Vujić, Gyimes, & Krisch, 2015; 
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Pasqualone, Bianco, Paradiso, Summo, Gambacorta, & Caponio, 2014a; Šaponjac et al., 2016; 

Varastegani, Zzaman, & Yang, 2015). 

In this study, various additions of freeze-dried Japanese quince (Chaenomeles japonica 

(Thunb.) Lindl. ex Spach) fruits were applied to obtain functional cookies with promising 

antioxidant attributes ensuring safety during storage, unique sensory and volatile characteristic 

and a high acceptability by consumers.  

2. Materials and Methods 

2.1. Preparation of freeze-dried Japanese quince fruits  

Japanese quince (Chaenomeles japonica [Thunb.] Lindl. ex Spach) fruits were obtained from the 

Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in 

Powsin (Warsaw, Poland). Harvesting was done manually when the fruits reached full maturity 

(September 2017). The collected fruits were surface-cleaned with a clean and dry cotton cloth 

and then washing in water; seed nests were manually removed, and fruits were freeze-dried using 

Christ Alpha 1-2 LDplus lyophilizer (Martin Christ Gefriertrocknungsanlagen GmbH, 

Germany). The freeze-dried Japanese quince fruits (FJQF) were ground to powder (mean particle 

size at around 280 m) using a household grinder and used to prepare cookies in relative 

amounts appropriate to the recipe.  

2.2. Preparation of cookies 

Cookies were prepared in seven variants differing in FJQF content. Control cookie samples (C-

cookies, C-samples) were prepared without FJQF (0%), whereas enriched cookies contained 0.5, 

1.0, 1.5, 3.0, 6.0 or 9.0% of FJQF. Ingredients for cookie manufacturing were purchased from a 

local market (Warsaw, Poland).  

The cookie making process consisted of mixing refined wheat flour (608 g) containing 0.4 g/100 

g ash, margarine (133 g) and powdered sugar (117 g), using a mixer (Zelmer ZFP1100C, Poland) 

for 5 min, adding egg yolks (142 g) and mixing for 3 min again. For preparing other 6 variants of 
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dough, the amounts of wheat flour were reduced according to FJQF addition to obtain enriched 

cookies.  

The dough was cooled down in a refrigerator (1 h at 4 °C), then cut into slices 5 mm thick, from 

which circular shapes, 50 mm wide, were cut. Baking was carried out at 170 °C for 17 min in an 

electric oven (Hendi 225516, The Netherlands). After cooling (24 h from baking), the cookies 

were packed in ecological cellulose film (20 μm thickness, permeability to: water vapour – 20 

g/m2. 24 h, oxygen – 5 cc/m2. 24 h) packages, eight cookies each. Next, packages with cookies 

were put into cardboard box without access of light, and kept at 20 ± 1°C for 16 weeks.  

2.3. Chromatographic analysis of vitamin C  

Vitamin C was extracted with meta-phosphoric acid and perchloric acid solution. The mixture 

was centrifuged at 5000 rpm for 5 min and filtered through filter paper (POCH, S.A., Poland). 

The chromatographic separation was performed on HPLC apparatus (Waters Corporation, USA) 

equipped with a column (Symmetry RP C18; 150 mm, ID 4.6 mm, dp 5 μm). Vitamin C was 

detected using a DAD detector (Waters 2487, Waters Corporation, USA) at 245 nm wavelength. 

The mobile phase was a mixture of aqueous solutions of (NH4)H2PO4 (80/20, v/v) and meta-

phosphoric acid, the flow rate amounting to 0.8 mL/min. The injection volume of the sample 

uploaded to HPLC was 10 L. The sum of ascorbic and dehydroascorbic acids (vitamin C 

content) was determined after reduction of dehydroascorbic acid to ascorbic acid using 

dithiothreitol. 

2.4. Determination of carotenoids and chlorophylls 

Carotenoids were extracted from FJQF with hexane/ethyl ether 1:1 (v/v). Unsaponificable 

matters (UM) were isolated by saponification of extracted lipids overnight at room temperature 

using 0.5 N NaOH in methanol. The UM were extracted from soap solutions three times with 

hexane/ethyl ether 1:1 (v/v). The solvents were removed on a rotary evaporator at 40 °C. 
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Chlorophylls were extracted as follows: 3g of FJQF was mixed in a mortar with anhydrous 

sodium sulfate. The powder was placed on the filter paper and flushed with 20 ml of ethyl ether 

twice. Than the filtrate was transferred to a round bottom flask and densified using a rotary 

evaporator. 

Total carotenoids and chlorophylls were determined spectrophotometrically using a Specord 40 

(Analytik Jena AG, Germany) device. Light absorbance at 668 nm (chlorophylls) and at 442 nm 

(carotenoids) was measured. 

2.5. Chromatographic analysis of polyphenol compounds 

Polyphenols were extracted from FJQF with 30% methanol acidified with 1% acetic acid and 

containing 1% ascorbic acid. The extraction was performed by incubation for 20 min under 

sonication (Sonic 6D, Polsonic, Warsaw, Poland). The details of sample preparation were 

presented elsewhere (Kolniak-Ostek & Oszmiański, 2015). 

Analysis of polyphenols was carried out using an ACQUITY Ultra Performance LC system 

(UPLC) equipped with a photodiode array detector (PAD) and with a binary solvent manager 

(Waters Corporation, Milford, USA), coupled with a quadrupole time-of- flight (Q-TOF) micro 

Mass Spectrometer (MS; Waters, Manchester, UK) with an electrospray ionization (ESI) source 

operating in negative and positive modes. Separation of individual polyphenols was carried out 

using a UPLC BEH C18 column (1.7 μm, 2.1 mm x 50 mm, Waters Corporation, Milford, MA, 

USA). The mobile phase consisted of aqueous 0.1 % formic acid and 100 % acetonitrile. 

Samples (10 μl) were eluted according to the linear gradient described previously by 

Oszmiański, Kolniak-Ostek and Biernat (2015). Detection wavelengths were set to 280 nm 

(flavan-3-ols and hydroquinones), 320 nm (phenolic acids), 340 nm (flavones) and 360 nm 

(flavonols). 

The conditions of MS were: a source block temperature of 130°C, desolvation temperature of 

350 °C, capillary voltage of 2.5 kV, cone voltage of 30 V and a desolvation gas (nitrogen) flow 
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rate of 300 l/h. Calibration curves were prepared according to Kolniak-Ostek (2016). All 

experiments were done in triplicate. The results were expressed in milligrams per 100 g of dry 

matter. 

2.6. Determination of antioxidative properties of FJQF and cookies 

Ethanolic extracts of FJQF and cookies for determining radical scavenging activity and total 

phenolic content were prepared as previously reported (Antoniewska, Rutkowska, Martinez 

Pineda, & Adamska, 2018). Total phenolic content (TPC) was analyzed using Folin-Ciocalteu’s 

reagent at 725 nm with gallic acid as the standard, according to Singleton and Rossi (1965) 

procedure with modifications (Antoniewska et al., 2018). Radical scavenging activity of 

examined extracts on 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH) was analyzed according to 

the modified method of Sanchez-Moreno, Larrauri, and Saura-Calixto (1998) presented in detail 

by Antoniewska et al. (2018) using the Specord 40 (Analytik Jena AG, Germany) device. 

The antioxidant activity was expressed as percent capacity of scavenging the DPPH radical 

according to the following equation: 

% DPPH = (ADPPH – At)/ADPPH x 100  

where ADPPH – absorbance of the blank sample, At – absorbance of the analysed sample. 

2.7. Determination of lipid oxidation products in cookies  

Fat was extracted from cookies according to Folch, Lees, and Sloane-Stanley (1957), using a 2:1 

chloroform/methanol (v/v) mixture. Stability of the lipid fraction of cookies was analyzed at 

two-week intervals.  The hydroperoxide value (PV) as the content of primary products of lipid 

oxidation was determined by a standard titration method (ISO 3960, 2012) and the PV was 

expressed as mEq O/kg of fat. Anisidine value (AnV) as the content of carbonyl compounds was 

determined spectrophotometrically (Specord 40, Analytik Jena AG, Germany) at 350 nm 

according to ISO 6885 (2008). 

2.8. Microbiological analysis of cookies 
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The numbers of mold and yeast colonies were determined according to PN-ISO 21527-2 (2009) 

and to previously reported procedure (Antoniewska et al., 2018). 

2.9. Determination of volatile compounds  

Volatile compounds of FJQF and of cookies were determined by headspace solid phase micro-

extraction (SPME) coupled with gas chromatography/mass spectrometry (GC/MS) (6890N GC, 

5975 MS Agilent, USA). Before analysis, the SPME fiber 50/30 μm coated with 

Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) (Supelco, Bellefonte, PA, 

USA) was conditioned by heating in a GC injection port at 270 °C.  

Samples (5 g) were placed in 20 mL vials, closed with silicone-teflone sealing cap and 

heated at 40 °C for 30 min to stabilize concentrations of volatiles in the headspace. The 

extraction of volatile compounds was carried out by exposing SPME fiber in the headspace of 

the sample at 40 °C for 40 min. Then, the SPME fiber was quickly transferred to the GC 

injection port operating in the split-less mode.  

Volatile compounds were separated on a HP-5MS column (30 m × 0.25 mm × 0.25 μm film 

thickness, 5%-diphenyl-95%-polydimethylsiloxan; Agilent, USA). Helium was used as the 

carrier gas with a linear velocity of 0.9 mL/min. Chromatographic separation was conducted as 

follows: oven temperature was held for 10 min at 38 °C, then increased up to 200oC (4°C/min 

gradient) and held for 2 min, than raised to 250°C at 20°C/min, and that final temperature was 

held for 7 min. The MS was programmed as follows: interface 150°C, source 230°C, ionization 

energy 70 eV with a multiplier voltage of 1670 V, and scanning range 33-350 m/z (amu). Data 

were acquired using MSD ChemStation program (Agilent, USA). Individual peak identification 

was based on the comparison of their mass spectra with the reference mass spectra of National 

Institute of Standards and Technology (NIST 08) and Wiley 8th Ed. libraries. Mass spectra of 

respective volatiles were affirmed by comparing linear retention indices (LRI) calculated (using 

Automated Mass Spectral Deconvolution and Identification System software, USA) relatively to 
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a series of standard alkanes (alkane standard solution C8-C20, Sigma-Aldrich) with NIST 08 

library LRI database. The quantities of volatile compounds were expressed as percentages of the 

total identified signal. The analyses were carried out in triplicates. 

2.10. Sensory evaluation of cookies  

The sensory evaluation of cookies was conducted using an unstructured 10 cm linear scale 

ranging from “no intensity” to “very high intensity” according to Baryłko-Pikielna and 

Matuszewska (2014). Ten experienced panelists (5 males and 5 females; 30-42 years of age) who 

participated in the study scored the intensity of every attribute three times in the following order: 

aroma (buttery, acid, citrus and off-aroma), taste (buttery, sweet, acid, citrus), color “light” to 

“dark” and fracturability. After cooling, the cookies were delivered in coded plastic containers in 

a random order. Every panelist was provided with spring water to cleanse the palate between 

tasted samples. The results from the analogous scale were converted to numerical values (0 to 10 

units). The assessment was conducted twice: at the beginning (24 h following baking) and after 

16 weeks of storage. 

The overall consumer’s degree of liking cookies was estimated using a hedonic category 

scale. The consumer panel consisted of 42 male and 83 female subjects (faculty students aged 

20-26 years). Cookies were evaluated using nine-point structured hedonic scale with the 

extremes “dislike extremely – 1” and “like extremely – 9”. 

 

2.11. Data analysis 

The results of sensory analysis, lipid oxidation products and antioxidative potential were 

subjected to two-way ANOVA followed by Tukey's post-hoc test, the level of P < 0.05 being 

considered significant. Statistical analyses were performed with GraphPad Prism 5 (GraphPad 

Software, Inc., San Diego, CA). All results for given volatile compounds were graphically 
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related to the amounts of FJQF (0-9%) added to cookies and R2 values were computed for the 

regression (0, 1st or 2nd degree) fitting the data. 

 

3. Results and discussion 

3.1.  Antioxidant properties of FJQF  

 FJQF proved to be remarkably rich in antioxidant compounds (Table 1), especially in 

vitamin C (287 mg/100 g), that latter being comparable with freeze-dried sea buckhorn fruits, 2-

times higher than in freeze-dried cranberry (Sadowska, Dybkowska, Rakowska, Hallmann, & 

Świderski, 2017) or blackcurrant, and five times as high as in oranges and strawberries (Hägg, 

Ylikoski, & Kumpulainen, 1995). Carotenoids content in FJQF was higher than in apples or 

bananas, but 3–4-fold lower than in watermelon or apricot (Saini, Nile, & Park, 2015).  

Application of UPLC/PDA/MS technique enabled determining the contents of 11 

phenolic compounds in FJQF belonging to 3 groups, with phenolic acids dominating, compared 

with flavan-3-ols and flavonols (total content: 3630 mg/100 g FJQF). Phenolic profile of FJQF 

contained valuable protocatechic acid (about 1364 mg/100 g FJQF), considered to be an 

effective antioxidant in vitro in both lipid and aqueous media than BHT - the strongest synthetic 

antioxidant used in bakery products (Li, Wang, Chen, & Chen, 2011). The second most abundant 

compound was caffeic acid, for which high intestinal absorption in cell lines (intestinal 

ischemia–reperfusion model) was demonstrated. Since caffeic acid has a stronger antioxidant 

activity than that of chlorogenic acid, and that latter undergoes hydrolysis into caffeic acid in the 

intestine, it is possible that caffeic acid plays a major role in the protective effect of chlorogenic 

acid against ischemia–reperfusion injury (Sato et al., 2011).  

Also, spectrophotometric, rapid assay using TPC (Granato et al., 2018) confirmed high content 

of phenolic compounds in FJQF - 4165 mg GAE/100 g of FJQF. Such impressive value of TPC 

measured using Folin-Ciocalteu assay was also reported in fresh fruits Japanese quince (about 
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2000 mg GAE/100 g) (Du et al., 2013). Thus antioxidant activity of FJQF measured by the 

DPPH method (Table 1) was remarkable and markedly exceeded that reported by other authors 

in Japanese quince syrup, candied fruit slices or jams enriched with JQF (Nawirska-Olszańska et 

al., 2010). 

 

Insert Table 1 

 

  The antioxidant capacity of FJQF depended on the synergy of diverse compounds – 

ascorbic acid and polyphenols, possessing high number of hydroxyl groups: epicatechin, 

epigallocatechin gallate, epigallocatechin and procyanidines A2 and B2 (921 mg/100 g FJQF). 

Previous studies indicated the crucial role of flavan-3-ols and procyanidins as major 

determinants in creation of antioxidant potential of JQF fruits (Du et al., 2013; Strugała et al., 

2016). Those authors also showed that JQF extract inhibited the pro-inflammatory enzymes of 

the cyclooxygenase group. 

3.2. Volatile compounds of FJQF  

The analysis of volatile compounds in the headspace of FJQF using SPME yielded a total 

of 35 identified and quantified compounds (Table 1). The identified volatile compounds 

consisted of aldehydes (10 compounds), terpenes (10), ketones (5), alcohols (6), carboxylic acids 

(3), furan compounds (3) and other compounds (3). Carboxylic acids predominated in FJQF, the 

principal one being acetic acid (58.36%),  the next two – octanoic and hexanoic acids. According 

to published reports, those compounds were not detected in volatile profile of the fresh juice 

obtained from Chaenomeles taxa, or in fruits of Chinese quince Pseudocydonia sinensis (Jordán, 

Vila, Hellin, Laencina, Rumpunen, & Ros, 2003; Choi, Lee, Lee, & Kim, 2018). However, 

acetic, malic, formic and succinic acids were assayed in quince fruits using GC in substantial 

amounts, and considered responsible for disapproval of the fresh fruits. The high content of 
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acetic acid in quince was due to over-ripening, while organic acids provide information about 

maturation stage of the fruit (Trigueros, Pérez-Alvarez, Viuda-Martos, & Sendra, 2011). Our 

results were, generally, in agreement regarding aldehydes, however some qualitative differences 

were found (Jordán et al., 2003). Aldehydes are probably derived from unsaturated fatty acids, 

e.g. linolenic and linoleic acids, via oxygenation and sequential transformation by lipoxygenase 

during maturation of fruits (Choi et al., 2018). Volatile compounds detected in FJQF, such as 2-

hexenal, (E) and hexanal, proved strongly antimicrobial activity towards pathogen 

microorganisms at low concentrations (Ayseli & Ayseli, 2016). 

3.3. Antioxidant properties of cookies 

The enrichment of cookies with FJQF resulted in a significant increase in antioxidant properties 

as compared with C-samples (Fig. 1). It should be pointed out that the addition of 0.5% FJQF to 

cookies resulted in two-fold increase of the radical scavenging activity, whereas highest addition 

(9%) resulted in 3.5-fold increase, as compared with C-samples (DPPH values: 22.58% - C-

cookies, 81.94% - cookies with 9% FJQF). Summing up, higher level of incorporation of FJQF 

into cookie formulation resulted in improving the antioxidant activity of the final product (Fig.1), 

like when using papaya or chokeberry (Bialek, Rutkowska, Bialek, & Adamska, 2016; 

Varastegani et al., 2015). Some polyphenols in FJQF, like epicatechin, significantly promoted 

the antioxidant capacity accompanied by a strong inhibition of glycation toxicants formation 

(Zhang, Chen, & Wang, 2014). Our results confirmed the reports that high contents of functional 

ingredients rich in polyphenols are associated with increased antioxidant activity of biscuits and 

muffins due to high amounts of polyphenols (Antoniewska et al., 2018; Krystjan, Gumul, 

Ziobro, & Korus, 2015).  

It should be also noted that highly enriched cookies (9% FJQF) exceeded FJQF in DPPH 

activity (Fig 1). That indicated an important role of not only polyphenols, but also of compounds 

formatted during Maillard reaction (MR), in the antioxidant potential of cookies. Similar results 
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were obtained by Varastegani et al. (2015) in cookies highly substituted with papaya pulp flour. 

Other studies revealed that MR products, mainly melanoidins assayed in bakery products, were 

able to scavenge the peroxyl and ABTS radicals (Michalska, Amigo-Benavent, Zielinski, & 

Dolores del Castillo, 2008; Nooshkam, Varidi, & Bashash, 2019).  

During the 16 weeks of storage, a significant decrease (P < 0.05) in radical scavenging 

activity of cookies was noted (Fig. 1). These observations are consisted with the findings of other 

authors who reported decreased antioxidant capacity in cookies enriched with cherry pomace 

encapsulated in whey and soy proteins, black currant powder and chocolate coat, and in muffins 

containing buckwheat flakes and amaranth flour blend (Antoniewska et al., 2018; Molnar et al., 

2015; Šaponjac et al., 2016).  

The inclusion FJQF, rich in polyphenols, into cookies, reduced the decrease of 

antioxidant capacity of enriched, stored cookies; those containing 9 or 1.5% FJQF lost only 15% 

of DPPH (Fig.1) in contrast to C-cookies (33% loss of DPPH). Moreover, FJQF contained 

procyanidins, regarded as stabilizing compounds. It was reported that the decomposition rate of 

phenolic compounds depends on their structure, the decrease of  polymeric procyanidins being 

lower than that of other phenolic groups (e.g. anthocyanins) during a 6-month storage in 

smoothies obtained from different fruits (Nowicka et al., 2016). The high loss of anthocyanins 

(66.67%) was also observed in cookies enriched with pomace extract and stored for 4 months 

(Šaponjac et al., 2016).  

3.4. Oxidative stability of cookies during storage  

Oxidative stability of fat extracted from cookies, expressed as  amounts of hydroperoxides 

measured by PV, was significantly (P˂0.05) related to the FJQF content and storage time (Fig. 

1). As compared with C-samples, lower amounts of hydroperoxides were found in enriched 

cookies containing 0.5 to 1.5% FJQF due to the presence of phenolic and other compounds 

having antioxidant potential. Similar results were reported for enriched cookies and bakery 
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products with plant components rich in antioxidants: green and yellow tea leaves, chokeberry 

extract, cherry pomace extract, black currant and jostaberry powder as natural ingredients to 

inhibit lipid oxidation (Bialek et al., 2016; Gramza-Michałowska et  al., 2016; Molnar et al., 

2015; Šaponjac et al., 2016). Also, substitution of wheat flour by other plant ingredients (e.g. oat, 

buckwheat, purple wheat, papaya pulp flour) in formulas was made in order to improve 

antioxidant properties of bakery products (Cognat, Shepherd, Verrall, & Stewert, 2014; 

Pasqualone et al., 2015; Varastegani et al., 2015). 

 

Insert Fig. 1 

 

We noted that higher amounts of FJQF in the formula were associated with higher values 

of PV, especially when cookies were enriched with 6 or 9% of FJQF (Fig. 1). This observation is 

in agreement with results of other authors who found that plant components rich in antioxidants 

used in formulas may act as a pro-oxidants in cookies (Bialek et al., 2016).  

Oxidative stability of fat extracted from cookies was studied also by measuring secondary 

oxidation products using AnV method. Generally, FJQF-enriched cookies exhibited high AnVs 

due to the presence of volatile compounds with carbonyl groups, that reacted with p-anisidine. 

This is shown by AnVs in fresh cookies, which ranged from 2.74 to 12.98 (Fig. 1, Table 1). 

Our results support the hypothesis that hydroperoxides - primary lipid oxidation products 

– may undergo degradation, leading to the generation of a range of secondary products, such as 

aliphatic aldehydes, alcohols, ketones and hydrocarbons. We found that after the 12-week 

storage, the breakdown of hydroperoxides in fat extracted from cookies was manifested by 

decreased PV and, simultaneously, by increased AnV (Fig. 1). It could have resulted from the 

oxidation of unsaturated fatty acids (mainly PUFA) in the lipid fraction of cookies as was 

previously reported in oat cookies and in muffins enriched with pumpkin seed flour during 
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storage (Bialek, Rutkowska, Adamska, & Bajdalow, 2016; Cognat et al., 2014). In our study, this 

phenomenon was manifested by increased AnVs in fat extracted from cookies stored for 12 

weeks as compared with AnV of fresh cookies. In the case of C-cookies, a 4.5-fold  increase of 

AnVs was noted, whereas in enriched cookies the increase of AnV was lower, 2- to 3-fold, 

depending on FJQF content.  

 

3.5.  Sensory and consumer evaluation and microbiological profile of cookies 

Addition of FJQF into the cookie formulation significantly (P < 0.05) affected sensory 

rating of attributes of cookies (Table 2). Intensity ratings of buttery aroma decreased with 

increasing the content of FJQF, while acidic and citrus aroma increased, due to the presence of 

volatile compounds in FJQF (Table 1). Off-aroma was rated very low (0.80-1.61 scores) even in 

highly enriched cookies, probably because of a high intensity of acidic taste (Table 2). Increasing 

amount of FJQF in the formulation significantly (P < 0.05) decreased the intensity of buttery and 

sweet tastes of cookies with simultaneous increase in the intensity of acidic and citrus taste. 

Cookies containing highest amount of FJQF (9.0%) had low intensity of buttery and sweet tastes, 

associated with strong intensity of acid taste and aroma.  

 

Insert Table 2 

 

The ratings of cookie color increased with increasing level of cookie enrichment with 

FJQF. Similar effect was reported for cookies supplemented with sour cherry pomace extract 

(Šaponjac et al., 2016) and bee pollen (Krystjan et al., 2015). Like in case of the antioxidant 

potential, it could be affected not only by the content of FJQF, but also by the Maillard and 

caramelization reactions during the baking process (Molnar et al., 2015). 
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Incorporation of FJQF reduced the rating of cookie fracturability from 7.58 for C-samples 

to 3.3 for samples containing 9.0% FJQF (Table 2). It could have resulted from the dominating 

share of fibres (32g/100g dry fruit), especially of pectins and cellulose-like polysaccharides, in 

the carbohydrate composition of FJQF (Thomas et al.,2003). 

Generally, the storage of cookies significantly (P < 0.05) affected rating intensities of 

many sensory indices (Table 2). Stored cookies were rated lower regarding buttery aroma and 

taste as compared with fresh cookies. Decreased intensity of acidic and citrus aromas were 

scored in cookies contained higher FJQF amounts (1.5-9.0%). Also the sensory panel found a 

significant decrease of intensity of acidic, citrus and sweet tastes after storage but not for all 

samples. Storage did not significantly influence rating intensity of off-aroma, except C-cookies 

and those containing 6 and 9% FJQF. Storage significantly affected fracturability rating: cookies 

became softer, slightly gummy and less fragile than fresh samples, especially those with higher 

amount of  FJQF (6 and 9%). This resulted from increased fiber content in highly enriched 

cookies, as fibers markedly contribute to the hydration properties associated with hydroxyl 

groups in the fiber structure, thus enabling more water interactions via hydrogen bonding 

(Varastegani et al., 2015). 

The ratings of acceptability of cookies by young consumers are shown in Table 3. 

Hedonic acceptability of cookies was significantly (P < 0.05) related to FJQF content in the 

formulation. In general, the consumer panel indicated a higher preference for cookies containing 

1.0 and 1.5% FJQF than for containing  higher amounts of FJQF (6 and 9%). About 20% 

consumers scored cookies containing highest amount of FJQF as “dislike a lot”, and about 6% as 

“dislike extremely”. No such ratings pertained to cookies containing 1, 1.5 or 3% of  FJQF. The 

low hedonic preferences of acceptability of cookies containing 6 or 9% of FJQF was probably 

due to high acidic taste, low buttery taste and low fracturability. Similar effect was found in 

cookies in which wheat flour was substituted by orange pulp (5, 15 and 25g /100 g of flour). The 
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acceptability of highly substituted cookies (25 g/100 g flour) was scored lower (4.89 points) than 

those containing lower amount of orange pulp (7.28 points) (Larrea, Chang, & Martinez-

Bustosc, 2005). 

 

Insert Table 3 

 

Throughout the 16 weeks of storage, no yeast or molds, with counts exceeding 10 (colony 

forming units) CFU/g, were found in cookies. An increased level of molds (3.5 x 104 CFU/g, 

data not shown) was found only in C-cookies stored for 18 weeks. Therefore, samples stored for 

over 16 weeks were not subjected to sensory evaluation or further analyzes. The use of plant 

materials rich in phenolic compounds may effectively extend the shelf life of products by 

reducing or eliminating spoilage by microorganism (yeast and molds) and also may preserve the 

foods by reducing lipid oxidation, as it was reported to have significant antioxidant activity 

(Negi, 2012). Having in mind this statement and our results, enrichment of cookies with FJQF 

may become a good alternative to synthetic additives. 

3.6.  Volatile compounds of cookies  

The variety of volatile compounds in cookies, determined by SPME/GC-MS, showed a 

dependence on FJQF content, as well as to oxidative and thermal reactions. Those compounds 

included aldehydes (18), ketones (2), carboxylic acids  (6), furanes (4), hydrocarbons (23), 

alcohols (5), terpenes (4), esters (4) and pyrazines (2). Three groups of volatile compounds in 

cookies were distinguished: volatiles detected only in fresh cookies, volatiles detected in fresh as 

well as in stored ones, and those detected only in stored cookies (Table 4). Many of them were 

previously identified in enriched bakery products (Cognat et al., 2014; Mohsen, Fadel, Bekhit, 

Edris, & Ahmed, 2009; Pasqualone et al., 2014a; 2015).  
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Insert Table 4 

 

Among volatiles detected only in fresh cookies, acetic acid was the most abundant one 

(Fig. 2). As expected, it was present in FJQF-enriched cookies at levels up to over 6-fold higher 

than in C-cookies depending on the amount of FJQF, and was responsible for strong acid taste 

and aroma of  cookies (Tables 2 and 4). The origin of low amounts of acetic acid detected in C-

cookies could be the oxidation of ethanol (Pasqualone et al., 2014a).  

The fresh enriched cookies were rich in volatile aldehydes: hexanal, octanal, 2-heptenal, 

(E) and 2-octenal, (E). The contents of those compounds increased with increasing FJQF content 

as confirmed by high R2 values (Table 4, Fig. 2). Other identified aldehydes: nonanal, 2-nonenal, 

(E) and decanal were detected at significantly higher levels in C-cookies than in enriched 

cookies, as they were apparently formed as secondary lipid oxidation products in the baking 

process (Cognat et al., 2014). While C6 aldehydes were characterized by pleasant odor notes, 

other ones like heptanal, 2-heptenal, (E), octanal and nonanal were responsible for off-flavors 

(Pasqualone et al., 2015). Addition of FJQF to cookies contributed to their citrus aroma and taste 

generated by two terpenes – D-limonene and (+)-3-Carene (Fig. 2, Table 4). 

 

Insert Fig. 2 

 

Maillard reaction (MR) contributed to the formation of several volatile compounds: 

Strecker aldehydes, furan compounds, pyrazines and pyrydines. The most abundant among MR 

products was furfural, responsible for the sweet aroma of cookies. Furanones are mainly 

associated with caramel-like, sweet, fruity and burnt odor impression (Mohsen et al., 2009). 

Significantly higher levels of furfural were detected in cookies enriched with FJQF than in C-

cookies. Also cookies with FJQF distinguished by higher amounts of other furan compounds 
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(e.g. 2-furanmethanol). This difference was probably due to different pH of the two types of 

cookies, because pH values lower than 7 (such as in the enriched cookies) favor the formation of 

furan-derivatives, while higher pH induces preferential formation of pyrazines (Jousse, Jongen, 

Agterof, Russel, & Braat, 2002; Pasqualone et al., 2014a). Thus, no pyrazines were detected in 

enriched cookies contained highest FJQF addition. An inhibitory effect of acetic acid on 

pyrazine formation was previously reported (Pasqualone et al., 2014a). Three Strecker aldehydes 

were detected in cookies: 2-methylbutanal, 3-methylbutanal, benzaldehyde; these could have 

been derived from some amino acids, e.g. leucine, isoleucine or phenylalanine (Fig. 2; Mohsen et 

al., 2009; Pasqualone et al., 2015). Intermediates from MR were shown to act as free radical 

scavengers, inhibiting the propagation of free radicals (Mohsen et al., 2009). In this study, the 

antioxidant properties of cookies were derived not only from FJQF, but also from the generation 

of MR products during baking. 

Finally, 2,2,4,6,6-pentamethyl-heptane was detected in substantial amounts; its content 

decreased with increasing FJQF content  in cookies, probably due to flour contamination. Also, 

Pasqualone, Paradiso, Summo, Caponio and Gomes (2014b) identified 2,2,4,6,6-pentamethyl-

heptane in semolina samples and ascribed their exogenous origin to the production process and 

transportation to pasta factory. 

The storage of cookies for 16 weeks contributed to changes in the contents of many 

volatile compounds and also generated formation of new compounds (Table 4). In general, the 

hydrocarbons showed a noticeable increase in comparison with their yields in fresh cookies (R2 

=0.677 and R2=0.431). Hexane was the predominant compound in stored cookies, their content 

increasing 5 – 10-fold (depending on the content of FJQF) as compared with fresh cookies (Fig. 

2). Moreover, 12 new hydrocarbons, not detected in fresh cookies, were generated during 

storage, e.g. isooctane and heptane, whose content was higher in C-cookies than in enriched 

cookies. Regarding aromatic hydrocarbons, in stored cookies the level of toluene increased and 
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styrene was generated, although their levels were generally low (Table 4). Their generation 

resulted from the decomposition of hydroperoxides, very labile species that may undergo 

degradation generating a complex array of secondary products, such as aliphatic aldehydes, 

hydrocarbons, alcohols, ketones and organic acids (Bialek et al., 2016). Hydrocarbons (heptane, 

octane) are perceived as products of oleic acid autooxidation (Cognat et al., 2014). The process 

of autoxidation of lipids also sparked the creation of four new carboxylic acids (pentanoic, 

hexanoic, octanoic, nonanoic), not detected in fresh samples (Table 4).  

The dominating new compound in stored cookies was ethyl acetate, whose retention time 

(2.38 min, data not shown) indicated that it was generated from acetic acid via esterification with 

alcohol (Fig. 2). The storage-induced generation of ethyl acetate in wheat flour was reported 

(Dong, Hu, Sun, Zhang, Wu, & Wang, 2018). Also two other new esters in stored cookies were 

detected, probably due to esterification of butanoic acid.  

In stored cookies, hexanal and butanal were detected in low quantities. These two 

aldehydes, as well as pentanal, 2-hexenal and 1-pentanol, are responsible for the perception of 

rancidity of cookies and bakery products, as linoleic acid - of oxidative degradation products 

(Cognat et al., 2014; Mohsen et al., 2009). Because of their low levels in enriched cookies,  

sensory panelists scored the off-aroma in cookies low. Also, the two mentioned aldehydes (2-

heksenal-2E and 2 hexenal-E) were detected only in C-cookies.  

During storage, the contents of three Strecker aldehydes and of other MR compounds – 

furfural and 2-furanmethanol in cookies, decreased (Fig. 2). It was also confirmed by sensory 

lower intensity of buttery and sweet aroma of stored cookies as compared with fresh cookies. 

The decrease of aldehydes in stored cookies most likely resulted in lowering scoring intensity of 

buttery aroma of cookies (Table 2).  
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Summing up, we noted increased levels of hydrocarbons in stored cookies, as well as new 

hydrocarbons arising during storage. We thus regard hydrocarbons as process-related 

contaminants of cookies. 

Conclusions 

 Enrichment of cookies with freeze-dried Japanese quince fruits significantly improved 

the antioxidant potential of cookies as shown by a 2–3.5 fold increase in DPPH values in cookies 

(depending on the content of fruits). Also, the addition of freeze-dried Japanese quince fruits 

substantially decreased the loss of antioxidant potential during the storage for 16 weeks as 

compared with the control cookies. 

 The content of the freeze-dried Japanese quince fruits had a marked effect on the volatile 

profile of cookies, namely higher contents of hexanal, heptanal, octanal, 2-heptenal, (E) than in 

the control cookies. These compounds were not derived from the oxidation of cookies but from 

the added fruits. Acetic acid was dominating in the volatile profile of enriched cookies; that was 

associated with acidic taste and higher amounts of furan compounds as compared with control 

cookies. Storage of cookies resulted in a noticeable increase in hydrocarbons as compared with 

their yields in fresh cookies; also, new hydrocarbons not detected in fresh cookies, were 

generated resulting in low scores of off-aroma in stored cookies. 

 The unique aroma and taste of freeze-dried Japanese quince fruits are responsible for 

giving strong intensity of acid and citrus aroma and taste, masking others tastes and aromas in 

cookies, especially in those highly enriched. The consumer panel indicated a higher preference 

for cookies containing 1 and 1.5% of freeze-dried Japanese quince fruits than those containing  

higher amounts: 6 and 9%.  

 The obtained results evidenced a positive effects of using freeze-dried Japanese quince 

fruits in manufacturing cookies containing no artificial additives: higher radical scavenging 

activity, prevented generation of lipid-derived compounds, unique sensory attributes and high 
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acceptance by consumers. Freeze-dried Japanese quince fruits could be regarded as a possible 

solution to extend the shelf-life of cookies, enhancing their microbiological safety during 

storage. 
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Tables and figures captions:  

Table 1: Components of freeze-dried Japanese quince fruits (FJQF) 

Table 2: Sensory intensity of attributes of the enriched (0.5-9%) and control cookies (0%) – fresh 

and stored for 16 weeks  

Table 3: Assessment of hedonic acceptability of the enriched (0.5-9%) and control cookies (0%) 

(n=125) 

Table 4: Volatile compounds of the enriched (1-9%) and control cookies (0%) - fresh and stored 

for 16 weeks (means ± SD, n=3) 

 

Figure 1. Radical scavenging activity on DPPH (DPPH, %), hydroperoxide value (PV, mEq 

O/kg fat) and anisidine value (AnV) of the enriched (0.5-9%) and control cookies (0%)  

Figure 2. Volatile compounds of the enriched (0.5-9%) and control cookies (0%) - fresh () and 

stored () for 16 weeks  
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Figure 1. Radical scavenging activity on DPPH (DPPH, %), hydroperoxide value (PV, mEq O/kg 

fat) and anisidine value (AnV) of the enriched (0.5-9%) and control cookies (0%) 
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Figure 2. Volatile compounds of the enriched (0.5-9%) and control cookies (0%) - fresh () and 

stored () for 16 weeks 

 

Table 1. Components of freeze-dried Japanese quince fruits (FJQF) 

 

Component Content, mg/100 g* 
Vitamin C 287.3 ± 15.3 
Total carotenoids 7.95 ± 0.65 
Total chlorophyll 5.77 ± 0.07 

Phenolic acids 
Protocatechuic acid 1364 ± 55 
Neochlorogenic acid 51.21 ± 1.23 
Chlorogenic acid 195.4 ± 4.1 
Caffeic acid 1026 ± 28 

Flavan-3-ols 
Epicatechin 364.1 ± 6.8 
Epigallocatechin gallate 246.6 ± 4.4 
Epigallocatechin 189.4 ± 2.8 
Procyanidin A2   42.56 ± 1.95 
Procyanidin B2 78.45 ± 2.09 

Flavonols 
Isoquercetin 5.27 ± 0.18 
Kaempferol 66.52 ± 2.46 

DPPH, % 69.00 ± 4.58 
TPC, mg GAE/100 g 4165 ± 24 
Volatile compound Relative content (%) 
Alcohols  

1-Pentanol 0.15 ± 0.03 
1-Hexanol 0.23 ± 0.02 
1-Decanol  0.16 ± 0.02 
1-Octanol 0.10 ± 0.00 
1-Octen-3-ol 0.46 ± 0.05 
Benzenemethanol 0.19 ± 0.01 

Aldehydes  
2-Butenal 0.31 ± 0.02 
Pentanal 2.89 ± 0.15 
2-Pentenal, (E) 0.44 ± 0.03 
Hexanal 2.51 ± 0.26 
2-Hexenal, (E) 0.46 ± 0.09 
Heptanal 1.08 ± 0.12 
2-Heptenal, (E) 0.85 ± 0.02 
Octanal 1.94 ± 0.10 
Nonanal 1.03 ± 0.08 
p-Menth-1-en-9-al 0.79 ± 0.06 

Carboxylic acids  
Acetic acid 58.36 ± 3.96 
Hexanoic acid 0.52 ± 0.02 
Octanoic acid 1.36 ± 0.11 

Furan compounds  
Furfural  1.45 ± 0.09 
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2-Methylfuran 3.27 ± 0.38 
2-Acetylfuran 0.09 ± 0.01 

Ketones  
2-Butanone, 3-hydroxy 0.48 ± 0.03 
1-Octen-3-one 0.75 ± 0.10 
α-Ionone 0.43 ± 0.07 
Acetophenone 0.36 ± 0.12 
2,6,6-Trimethyl-2-cyclohexene-1,4-dione   0.20 ± 0.01 

Terpenes  
D-Limonene 1.83 ± 0.16 
m-Cymene  0.29 ± 0.02 
α-Pinene 0.23 ± 0.00 
Camphene 0.15 ± 0.01 
Carvone, (+) 0.14 ± 0.03 
Ocimene, (E) 0.17 ± 0.02 
Estragol 0.23 ± 0.09 
Terpenol  0.64 ± 0.14 
Terpinolen 0.85 ± 0.13 
Ocimene, (Z) 0.09 ± 0.01 

Others  
Butyrolactone 0.20 ± 0.01 
Toluene  0.58 ± 0.12 
Pentane 0.77 ± 0.07 

 

* - mg/100 g of dry matter 
DPPH - 2,2-diphenyl-1-picrylhydrazyl radicals 
TPC - Total phenolic content 
GAE – Gallic acid equivalents 
 



  

34 

 

Table 2. Sensory intensity of attributes of the enriched (0.5-9%) and control cookies (0%) – fresh and 
stored for 16 weeks 
 

 

a, b, c - significantly different, depending on FJQF (freeze-dried Japanese quince fruits) content 
* - significantly different, depending on storage time  
  

FJQF 
content 
(%) 

Indices 

Buttery aroma Acid aroma Citrus aroma Off-aroma  Fracturability 

Fresh Stored     Fresh Stored     Fresh Stored      Fresh Stored       Fresh Stored      

0 6.00a ± 0.35 4.98a,* ± 0.27 0.31a ± 0.15 0.35a ± 0.14 0.21a ± 0.11 0.27a ± 0.13 0.25a ± 0.17 1.19a,b,* ± 0.18 7.58a ± 0.31 7.35a ± 0.30 
0.5 5.17b ± 0.62 4.47b,* ± 0.36 1.74b ± 0.44 1.45b ± 0.22 1.52b ± 0.33 1.39b ± 0.25 0.80b ± 0.17 0.92a ± 0.18 7.10a,b ± 0.37 6.58b,* ± 0.49 
1.0 5.05b ± 0.41 3.92c,* ± 0.29 1.96b ± 0.28 1.79b ± 0.32 1.86b ± 0.29 1.78c ± 0.21 0.90b ± 0.24 0.98a ± 0.16 6.85b ± 0.38 5.43c,* ± 0.36 
1.5 4.43b ± 0.41 3.82c,* ± 0.38 3.69c ± 0.46 2.96c,* ± 0.29 2.70c ± 0.41 2.38d,* ± 0.26 0.95b,c ± 0.21 1.09a ± 0.23 6.71b ± 0.29 5.51c,* ± 0.47 
3.0 3.06c ± 0.57 1.24d,e* ± 0.19 4.95d ± 0.32 3.41d,* ± 0.36 4.08d ± 0.26 2.91e,* ± 0.31 1.01b,c ± 0.21 1.05a ± 0.34 6.40b ± 0.35 5.11c,* ± 0.32 
6.0 2.61c ± 0.69 1.55d,* ± 0.26 5.40d ± 0.41 4.12e,* ± 0.35 5.21e ± 0.32 3.35f,* ± 0.24 1.21c ± 0.18 1.53b,* ± 0.29 5.13c ± 0.27 3.21d,* ± 0.34 
9.0 2.50c ± 0.72 1.08e,* ± 0.17 6.47e ± 0.35 5.09f,* ± 0.28 6.31f ± 0.23 4.23g,* ± 0.31 1.61d ± 0.24 2.48c,* ± 0.26 3.30d ± 0.36 1.82e,* ± 0.28 

FJQF 
content 
(%) 

Buttery taste Sweet taste Acid taste Citrus taste Colour 

Fresh Stored     Fresh Stored     Fresh Stored             Fresh Stored        Fresh Stored      

0 7.14a ± 0.28 5.79a,* ± 0.26 7.19a ± 0.25 6.65a,* ± 0.40 0.72a ± 0.24 0.68a ± 0.18 0.24a ± 0.11 0.31a ± 0.18 3.25a ± 0.22 3.04a ± 0.23 
0.5 5.69b ± 0.43 5.22b,* ± 0.60 5.89b ± 0.28 5.50b,* ± 0.39 2.60b ± 0.42 2.59b ± 0.29 2.09b ± 0.21 2.02b ± 0.30 3.74b ± 0.20 3.51b ± 0.32 
1.0 5.61b ± 0.50 4.12c,* ± 0.44 5.81b ± 0.29 5.40b,* ± 0.32 3.95c ± 0.31 3.42c,* ± 0.26 3.47c ± 0.38 3.15c,* ± 0.39 3.96b,c ± 0.26 3.82b,c ± 0.25 
1.5 4.29c ± 0.34 3.22d,* ± 0.40 4.31c ± 0.36 4.09c ± 0.32 4.69d ± 0.45 4.37d ± 0.28 4.59d ± 0.29 3.77d,* ± 0.35 4.23c,d ± 0.26 4.06c,d ± 0.23 
3.0 3.95c ± 0.24 1.76e,* ± 0.34 4.03c ± 0.27 3.95c ± 0.29 6.68e ± 0.38 5.80e,* ± 0.32 6.15e ± 0.32 4.09d,e,* ± 0.24 4.55d ± 0.32 4.37d ± 0.24 
6.0 3.09d ± 0.23 1.21f,* ± 0.26 2.91d ± 0.33 2.78d ± 0.44 7.18e ± 0.35 6.84f,* ± 0.25 7.31f ± 0.33 4.36e,* ± 0.23 5.13e ± 0.25 5.01e ± 0.20 
9.0 1.15e ± 0.23 1.13f ± 0.20 2.51d ± 0.41 2.13e,* ± 0.28 8.67f ± 0.29 8.64g ± 0.36 7.97g ± 0.26 5.33f,* ± 0.31 5.58f ± 0.20 5.22e,* ± 0.20 
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Table 3. Assessment of hedonic acceptability of the enriched (0.5-9%) and control cookies (0%) (n=125) 

 

Hedonic value 

Number of assessors making hedonic choices 

Content of FJQF (%) in cookies 

0 0.5 1.0 1.5 3.0 6.0 9.0 

Like extremely - 9 0 3 6 12 0 0 0 

Like very much - 8 40 24 46 46 26 15 5 

Like moderately - 7 33 30 30 32 51 25 23 

Like a little - 6 16 23 20 16 18 23 14 

Neither like or dislike - 5 14 12 10 9 13 22 12 

Dislike a little - 4 11 18 6 7 13 18 22 

Dislike moderately - 3 7 9 7 3 4 12 15 

Dislike a lot - 2 4 6 0 0 0 10 26 

Dislike extremely - 1 0 0 0 0 0 0 8 

acceptability 6.32 b 5.90 c 6.78 a 7.02 a 6.42 b 5.30 d 4.30 e 

Range 8-2 9-2 9-3 9-3 8-3 8-2 8-1 
   

  a,b,c,d - Means bearing the same superscript do not differ significantly from each other 
FJQF – freeze-dried Japanese quince fruits 
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Table 4. Volatile compounds of the enriched (1-9%) and control cookies (0%) - fresh and stored 
for 16 weeks (means of 3 replicates  SD) 

Volatile compound 
(%) Cc 

Content of FJQF (%) in cookies 
0 1.0 3.0 9.0 

R2 0 1.0 3.0 9.0 
R2 

Fresh cookies Stored cookies 

Acetic acid Ac 3.63 ± 
0.52 

9.67 ± 
1.35 

14.09 ± 
2.52 

23.37 ± 
3.00 

0.92
3 

1 n.d. n.d. n.d. n.d.   

Butanoic acid Ac 0.28 ± 
0.10 

0.33 ± 
0.11 

0.41 ± 
0.08 

0.77 ± 
0.18 

0.85
8 

2 n.d. n.d. n.d. n.d.   

Pentanal Al
d 

3.87 ± 
0.25 

3.41 ± 
0.67 

3.59 ± 
0.68 

3.67 ± 
0.54 

0.08
9 

2 n.d. n.d. n.d. n.d.   

Heptanal Al
d 

0.85 ± 
0.06 

0.35 ± 
0.06 

0.61 ± 
0.08 

0.91 ± 
0.21 

0.52
7 

1 n.d. n.d. n.d. n.d.   

Methional Al
d 

0.27 ± 
0.05 

0.30 ± 
0.06 

0.36 ± 
0.03 

0.29 ± 
0.06 

0.39
4 

2 n.d. n.d. n.d. n.d.   

2-Heptenal, (E) Al
d 

1.07 ± 
0.08 

0.80 ± 
0.11 

1.15 ± 
0.15 

1.31 ± 
0.11 

0.65
4 

1 n.d. n.d. n.d. n.d.   

Benzeneacetaldehyd
e 

Al
d 

1.23 ± 
0.10 

2.41 ± 
0.70 

2.89 ± 
0.26 

2.54 ± 
0.55 

0.77
3 

2 n.d. n.d. n.d. n.d.   

2-Nonenal, (E) Al
d 

2.42 ± 
0.10 

1.15 ± 
0.20 

1.58 ± 
0.35 

2.02 ± 
0.30 

0.07
1 

1 n.d. n.d. n.d. n.d.   

2-Octenal, (E) Al
d 

0.00 ± 
0.00 

0.06 ± 
0.00 

0.21 ± 
0.03 

0.32 ± 
0.07 

0.89
6 

1 n.d. n.d. n.d. n.d.   

2-Ethylhexene Hc 0.34 ± 
0.03 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

N  n.d. n.d. n.d. n.d.   

3-Ethylheptane Hc 0.23 ± 
0.02 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

N  n.d. n.d. n.d. n.d.   

2,2,4,4-
Tetramethyloctane Hc 4.03 ± 

0.21 
3.41 ± 
0.47 

2.47 ± 
0.43 

2.64 ± 
0.29 

0.78
8 

2 n.d. n.d. n.d. n.d.   

2,6-Dimethyl-octane Hc 0.55 ± 
0.05 

0.60 ± 
0.05 

0.52 ± 
0.09 

0.48 ± 
0.07 

0.47
0 

1 n.d. n.d. n.d. n.d.   

Butylcyclopentane Hc 0.15 ± 
0.03 

0.13 ± 
0.03 

0.09 ± 
0.01 

0.14 ± 
0.01 

0.50
0 

2 n.d. n.d. n.d. n.d.   

Undecane Hc 0.28 ± 
0.04 

0.20 ± 
0.00 

0.28 ± 
0.05 

0.19 ± 
0.05 

0.31
6 

2 n.d. n.d. n.d. n.d.   

1-Hepten-3-one K 0.33 ± 
0.04 

0.06 ± 
0.02 

0.00 ± 
0.00 

0.00 ± 
0.00 

M  n.d. n.d. n.d. n.d.   

1-Octen-3-one K 0.00 ± 
0.00 

0.03 ± 
0.02 

0.14 ± 
0.03 

0.33 ± 
0.06 

0.95
6 

1 n.d. n.d. n.d. n.d.   

1-Pentanol A 0.21 ± 
0.04 

0.36 ± 
0.10 

0.48 ± 
0.06 

0.57 ± 
0.10 

0.73
0 

1 n.d. n.d. n.d. n.d.   

1-Octanol A 0.76 ± 
0.14 

1.07 ± 
0.15 

1.21 ± 
0.20 

1.50 ± 
0.21 

0.66
5 

1 n.d. n.d. n.d. n.d.   

Acetylfuran Fc 0.17 ± 
0.02 

0.25 ± 
0.08 

0.87 ± 
0.10 

1.31 ± 
0.27 

0.93
2 

2 n.d. n.d. n.d. n.d.   

5-Methyl-2-
furancarboxaldehyde Fc 0.05 ± 

0.01 
0.07 ± 
0.02 

0.33 ± 
0.06 

0.98 ± 
0.08 

0.97
8 2 n.d. n.d. n.d. n.d.   

2,6-
Dimethylpyrazine P 0.21 ± 

0.02 
0.15 ± 
0.02 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.81
5 

R n.d. n.d. n.d. n.d.   

2-Ethylpyrazine P 0.34 ± 
0.02 

0.09 ± 
0.02 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.72
9 

P n.d. n.d. n.d. n.d.   

β-Pinene T 0.36 ± 
0.02 

0.17 ± 
0.05 

0.19 ± 
0.01 

0.20 ± 
0.01 

0.17
0 

1 n.d. n.d. n.d. n.d.   

(+)-3-Carene T 0.10 ± 
0.06 

0.60 ± 
0.14 

0.59 ± 
0.08 

0.48 ± 
0.03 

0.52
5 

1 n.d. n.d. n.d. n.d.   

Propanoic acid, 
heptyl ester E 0.73 ± 

0.08 
0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

N  n.d. n.d. n.d. n.d.   

Butanal Al
d 

1.35 ± 
0.15 

0.94 ± 
0.12 

0.92 ± 
0.22 

1.19 ± 
0.05 

0.14
4 1 0.39 ± 

0.08 
0.30 ± 
0.05 

0.29 ± 
0.06 

0.33 ± 
0.02 

0.07
2 1 

3-Methylbutanal Al
d 

2.98 ± 
0.55 

3.91 ± 
1.09 

3.80 ± 
0.80 

2.82 ± 
0.48 

0.38
5 2 0.23 ± 

0.06 
0.77 ± 
0.19 

0.87 ± 
0.25 

1.09 ± 
0.09 

0.69
9 1 
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2-Methylbutanal Al
d 

1.24 ± 
0.16 

2.01 ± 
0.40 

1.39 ± 
0.16 

1.07 ± 
0.16 

0.52
5 1 0.09 ± 

0.03  
0.21 ± 
0.04 

0.28 ± 
0.03 

1.22 ± 
0.04 

0.98
6 2 

Hexanal Al
d 

6.45 ± 
0.82 

3.96 ± 
0.78 

4.36 ± 
0.55 

5.08 ± 
0.89 

0.40
6 2 0.95 ± 

0.06 
0.20 ± 
0.06 

0.26 ± 
0.02 

1.00 ± 
0.14 

0.83
0 2 

Octanal Al
d 

0.25 ± 
0.02 

0.53 ± 
0.09 

2.05 ± 
0.38 

2.23 ± 
0.46 

0.92
2 2 0.06 ± 

0.01 
0.08 ± 
0.01 

0.09 ± 
0.03 

0.13 ± 
0.05 

0.47
4 1 

Nonanal Al
d 

6.45 ± 
0.77 

2.47 ± 
0.43 

3.54 ± 
0.49 

4.13 ± 
0.42 

0.59
8 3 0.79 ± 

0.14 
0.64 ± 
0.19 

0.68 ± 
0.07 

0.58 ± 
0.07 

0.24
2 1 

Decanal Al
d 

0.70 ± 
0.06 

0.10 ± 
0.02 

0.20 ± 
0.08 

0.24 ± 
0.09 

0.81
7 3 0.16 ± 

0.06 
0.10 ± 
0.00 

0.09 ± 
0.03 

0.13 ± 
0.02 

0.51
5 2 

Benzaldehyde Al
d 

2.27 ± 
0.12 

1.53 ± 
0.20 

2.65 ± 
0.59 

3.44 ± 
0.49 

0.74
6 2 0.01 ± 

0.00 
0.08 ± 
0.01 

0.11 ± 
0.03 

0.18 ± 
0.02 

0.84
0 1 

Hexane Hc 6.53 ± 
1.06 

6.56 ± 
1.40 

5.50 ± 
0.92 

3.35 ± 
0.50 

0.67
7 1 32.77 ± 

4.05 
31.12 ± 

4.29 
28.27 ± 

3.36 
26.10 ± 

4.97 
0.43

1 1 

Toluene A
Hc 

0.12 ± 
0.04 

0.09 ± 
0.01 

0.10 ± 
0.02 

0.17 ± 
0.02 

0.75
6 2 1.43 ± 

0.09 
1.03 ± 
0.02 

0.21 ± 
0.07 

1.31 ± 
0.52 

0.84
8 3 

2,2,4,6,6-
Pentamethyl-heptane Hc 23.89 ± 

2.21 
19.95 ± 

2.40 
12.76 ± 

2.23 
7.21 ± 
1.58 

0.92
4 2 1.07 ± 

0.16 
0.81 ± 
0.07 

0.72 ± 
0.19 

0.19 ± 
0.04 

0.87
2 1 

Decane Hc 0.59 ± 
0.05 

0.49 ± 
0.08 

0.37 ± 
0.09 

0.25 ± 
0.06 

0.83
8 3 0.22 ± 

0.04 
0.18 ± 
0.03 

0.16 ± 
0.05 

0.05 ± 
0.03 

0.68
3 2 

Nonane Hc 0.12 ± 
0.02 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 M  0.19 ± 

0.02 
0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 N  

2-Furanmethanol Fc 0.50 ± 
0.12 

0.55 ± 
0.10 

0.95 ± 
0.27 

0.66 ± 
0.18 

0.72
4 2 0.06 ± 

0.01 
0.10 ± 
0.02 

0.10 ± 
0.05 

0.57 ± 
0.15 

0.90
4 2 

Furfural or 2-
furancarboxaldehyde 
or 2-furaldehyde 

Fc 3.48 ± 
0.57 

7.35 ± 
1.09 

9.56 ± 
1.65 

10.55 ± 
1.96 

0.78
6 2 0.06 ± 

0.02 
0.18 ± 
0.02 

0.29 ± 
0.04 

0.56 ± 
0.07 

0.89
4 1 

α-Pinene T 0.28 ± 
0.00 

0.49 ± 
0.07 

0.93 ± 
0.11 

1.63 ± 
0.19 

0.95
2 2 0.02 ± 

0.00  
0.09 ± 
0.01 

0.11 ± 
0.03 

0.17 ± 
0.04 

0.70
0 1 

D-Limonene T 0.09 ± 
0.03 

0.17 ± 
0.05 

0.29 ± 
0.04 

0.37 ± 
0.09 

0.79
8 2 1.01 ± 

0.20 
1.36 ± 
0.15 

1.67 ± 
0.08 

2.12 ± 
0.43 

0.74
0 1 

1-Octen-3-ol A 0.24 ± 
0.02 

0.22 ± 
0.06 

0.32 ± 
0.05 

0.60 ± 
0.12 

0.88
9 2 0.00 ± 

0.00  
0.11 ± 
0.03 

0.14 ± 
0.04 

0.45 ± 
0.11 

0.85
9 2 

Ethyl acetate E n.d. n.d. n.d. n.d.   19.89 ± 
2.35 

26.81 ± 
3.99 

29.71 ± 
4.84 

33.56 ± 
4.18 

0.71
6 2 

Acetic acid, butyl 
ester E n.d. n.d. n.d. n.d.   0.10 ± 

0.00 
0.03 ± 
0.00 

0.05 ± 
0.03 

0.09 ± 
0.03 

0.23
9 1 

Butanoic acid, 
methyl ester E n.d. n.d. n.d. n.d.   0.84 ± 

0.08 
0.37 ± 
0.09 

0.42 ± 
0.09 

0.79 ± 
0.09 

0.75
3 2 

2,4-Dimethylpentane Hc n.d. n.d. n.d. n.d.   1.54 ± 
0.25 

1.51 ± 
0.16 

1.59 ± 
0.09 

1.45 ± 
0.16 

0.20
2 2 

Isooctane Hc n.d. n.d. n.d. n.d.   18.06 ± 
2.81 

16.29 ± 
3.61 

15.12 ± 
1.45 

12.50 ± 
1.63 

0.50
9 1 

Heptane Hc n.d. n.d. n.d. n.d.   2.10 ± 
0.21 

1.28 ± 
0.19 

0.77 ± 
0.22 

2.57 ± 
0.13 

0.46
8 1 

Hexadecane Hc n.d. n.d. n.d. n.d.   0.08 ± 
0.02 

0.11 ± 
0.02 

0.18 ± 
0.03 

0.62 ± 
0.09 

0.95
2 2 

1-Heptene, 5-methyl- Hc n.d. n.d. n.d. n.d.   0.05 ± 
0.02 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 L  

2-Nonene, (E) Hc n.d. n.d. n.d. n.d.   0.08 ± 
0.01 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 L  

Dodecane Hc n.d. n.d. n.d. n.d.   0.18 ± 
0.08 

0.09 ± 
0.02 

0.06 ± 
0.04 

0.14 ± 
0.05 

0.58
5 2 

Decane, 5-ethyl-5-
methyl- Hc n.d. n.d. n.d. n.d.   0.21 ± 

0.07 
0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 L  

Tetradecane Hc n.d. n.d. n.d. n.d.   0.05 ± 
0.02 

0.02 ± 
0.02 

0.06 ± 
0.02 

0.08 ± 
0.01 

0.62
0 2 

Nonadecane Hc n.d. n.d. n.d. n.d.   0.05 ± 
0.01 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 N  

Cyclododecane Hc n.d. n.d. n.d. n.d.   0.13 ± 
0.05 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 L  

Styrene A
Hc n.d. n.d. n.d. n.d.   0.09 ± 

0.02 
0.10 ± 
0.02 

0.12 ± 
0.04 

0.21 ± 
0.04 

0.74
4 2 
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Pentanoic acid Ac n.d. n.d. n.d. n.d.   0.00 ± 
0.00 

0.08 ± 
0.01 

0.10 ± 
0.03 

0.18 ± 
0.02 

0.81
1 1 

Hexanoic acid Ac n.d. n.d. n.d. n.d.   0.00 ± 
0.00 

0.17 ± 
0.06 

0.21 ± 
0.07 

0.57 ± 
0.05 

0.92
4 3 

Octanoic acid Ac n.d. n.d. n.d. n.d.   0.00 ± 
0.00 

0.07 ± 
0.03 

0.18 ± 
0.04 

0.48 ± 
0.04 

0.91
4 1 

Nonanoic acid Ac n.d. n.d. n.d. n.d.   0.00 ± 
0.00 

0.01 ± 
0.01 

0.02 ± 
0.02 

0.18 ± 
0.03 

0.96
0 2 

(2E)-2-Octen-1-ol A n.d. n.d. n.d. n.d.   0.00 ± 
0.00 

0.10 ± 
0.05 

0.12 ± 
0.02 

0.19 ± 
0.04 

0.69
6 1 

Cyclopentanol A n.d. n.d. n.d. n.d.   0.21 ± 
0.06 

0.17 ± 
0.03 

0.14 ± 
0.03 

0.33 ± 
0.10 

0.71
5 2 

2-Hexenal, (2E) Al
d n.d. n.d. n.d. n.d.   0.05 ± 

0.01 
0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 L  

2-Hexenal, (E) Al
d n.d. n.d. n.d. n.d.   0.09 ± 

0.01 
0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 N  

Heptanal Al
d n.d. n.d. n.d. n.d.   0.07 ± 

0.01 
0.09 ± 
0.02 

0.09 ± 
0.04 

0.12 ± 
0.02 

0.32
7 2 

 
FJQF – freeze-dried Japanese quince fruits; Cc –chemical classes of volatile compounds; A – Alcohols; Ac – Carboxylic acids; 
Ald – Aldehydes; Alk – Alkanes; AHc – Aromatic hydrocarbons; Hc – Hydrocarbons; E – Esters; K – Ketones; T – Terpenes, P 
– Pyrazines, Fc - Furan compounds; n.d. – not detected. 
The number accompanying R2 value corresponds to the degree of polynomial regression: 1 – linear; 2 – 2nd degree; 3 – 3rd degree 
L - Correlation not applicable due to zero values at FJQF content exceeding 0 
N – Correlation not applicable due to zero values at FJQF content exceeding 0.5  
M - Correlation not applicable due to zero values at FJQF content exceeding 1.0 
P - Correlation applicable to range 0 – 1.5 
R – Correlation applicable to range 0 – 3 
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Highlights: 

 

Cookies with Japanese quince fruits (JQF) had high antioxidative potential 

 

Presence of acetic acid in enriched cookies intensified acidic and citrus aroma 

 

Stored cookies were rich in hydrocarbons, including newly generated ones 

 

Addition of JQF enhanced microbiological safety of stored cookies 

 

Consumers preferred cookies containing 1 and 1.5% JQF to those containing 6 or 9% 

 


