000087692 001__ 87692
000087692 005__ 20200716101432.0
000087692 0247_ $$2doi$$a10.1016/j.ijhydene.2019.01.078
000087692 0248_ $$2sideral$$a109876
000087692 037__ $$aART-2019-109876
000087692 041__ $$aeng
000087692 100__ $$0(orcid)0000-0003-2614-9228$$aColom Díaz, Juan Manuel$$uUniversidad de Zaragoza
000087692 245__ $$aHigh pressure study of H2 oxidation and its interaction with NO
000087692 260__ $$c2019
000087692 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087692 5203_ $$aThe present study deals with the oxidation of H2 at high pressure and its interaction with NO. The high pressure behavior of the H2/NOx/O2 system has been tested over a wide range of temperatures (500–1100 K) and different air excess ratios (lambda = 0.5–6.4). The experiments have been carried out in a tubular flow reactor at 10, 20 and 40 bar NO has been found to promote H2 oxidation under oxidizing conditions, reacting with HO2 radicals to form the more active OH radical, which enhances the conversion of hydrogen. The onset temperature for hydrogen oxidation, when doped with NO, was approximately the same at all stoichiometries at high pressures (40 bar), and shifted to higher temperatures as the pressure decreases. The experimental results have been analyzed with an updated kinetic model. The reaction NO + NO + O2 <--> NO2 + NO2 has been found to be important at all conditions studied and its kinetic parameters HNO + H2 <--> NH + H2O have been modified, according to its activation energy uncertainty. Furthermore, the kinetic parameters of reaction have been estimated, in order to obtain a good prediction of the oxidation behavior of H2 and NO conversion under reducing conditions. The kinetic model shows a good agreement between experimental results and model predictions over a wide range of conditions.
000087692 536__ $$9info:eu-repo/grantAgreement/ES/DGA/GPT$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/BES-2016-076610$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2015-65226-PPQ
000087692 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000087692 590__ $$a4.939$$b2019
000087692 592__ $$a1.141$$b2019
000087692 591__ $$aELECTROCHEMISTRY$$b7 / 27 = 0.259$$c2019$$dQ2$$eT1
000087692 593__ $$aCondensed Matter Physics$$c2019$$dQ1
000087692 591__ $$aENERGY & FUELS$$b30 / 112 = 0.268$$c2019$$dQ2$$eT1
000087692 593__ $$aEnergy Engineering and Power Technology$$c2019$$dQ1
000087692 591__ $$aCHEMISTRY, PHYSICAL$$b48 / 158 = 0.304$$c2019$$dQ2$$eT1
000087692 593__ $$aFuel Technology$$c2019$$dQ1
000087692 593__ $$aRenewable Energy, Sustainability and the Environment$$c2019$$dQ2
000087692 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000087692 700__ $$0(orcid)0000-0001-5426-6486$$aMillera, Ángela$$uUniversidad de Zaragoza
000087692 700__ $$0(orcid)0000-0002-5420-0943$$aBilbao, Rafael$$uUniversidad de Zaragoza
000087692 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, María Uxue$$uUniversidad de Zaragoza
000087692 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000087692 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000087692 773__ $$g44, 12 (2019), 6325-6332$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000087692 8564_ $$s775833$$uhttps://zaguan.unizar.es/record/87692/files/texto_completo.pdf$$yPostprint
000087692 8564_ $$s284105$$uhttps://zaguan.unizar.es/record/87692/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000087692 909CO $$ooai:zaguan.unizar.es:87692$$particulos$$pdriver
000087692 951__ $$a2020-07-16-08:51:30
000087692 980__ $$aARTICLE