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Abstract 

Soil degradation by water is a serious environmental problem worldwide, with specific 

climatic factors being the major causes. We investigated the relationships of synoptic 

atmospheric patterns (i.e. weather types, WTs) with runoff, erosion and sediment yield 

throughout the Mediterranean basin by analyzing a large database of natural rainfall 

events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was 

used to identify spatial relationships of the different WTs including three hydro-

sedimentary variables: rainfall, runoff, and sediment yield (SY, used to refer to both soil 

erosion measured at plot scale and sediment yield registered at catchment scale). The 

results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on 

N and NW flows; (b) eastern sites dependent on E and NE flows; (c) southern sites 

dependent on S and SE flows; and, finally, (d) western sites dependent on W and SW 

flows. Conversely, three spatial classes are identified for SY characterized by: (a) N and 

NE flows in northern sites (b) E flows in eastern sites, and (c) W and SW flows in 

western sites. Most of the rainfall, runoff and SY occurred during a small number of 

daily events, and just a few WTs accounted for large percentages of the total. Our 

results confirm that characterization by WT improves understanding of the general 

conditions under which runoff and SY occur, and provides useful information for 

understanding the spatial variability of runoff, and SY throughout the Mediterranean 

basin. The procedures used here could be useful to aid in the design of regional water 

management and soil conservation measures. 
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1. Introduction 

General climatic conditions, particularly precipitation, are one of the most 

important factors that trigger soil degradation. The seminal paper of Langbein and 

Schumm (1958) identified a complex non-linear relationship of specific sediment yield 

with annual precipitation, based on the link between moisture conditions and plant 

cover. Thus, a rapid rise in sediment yield occurs with increasing rainfall in regions that 

have an annual rainfall of 100 to 500 mm and little protection by vegetation. In contrast, 

if the mean annual precipitation is greater, the presence of a dense plant cover decreases 

sediment yield. Further examination of this relationship by Walling and Kleo (1979) 

showed that the Mediterranean climatic zone, together with monsoonal and semi-arid 

areas, is especially vulnerable to soil degradation and water erosion. They proposed 

several explanations. First, the mean annual precipitation in Mediterranean regions is 

relatively low, and this leads to dispersed or low-density plant cover. Second, the 

Mediterranean climate has high spatial and temporal variability, with extremely intense 

rainstorms that can increase soil erosion and sediment availability. Third, human 

activities further compromise the vulnerability of these landscapes (Grove and 

Rackham, 2003; García-Ruiz et al., 2013). Therefore, identifying the environmental 

factors that control the spatial and temporal patterns of rainfall, runoff, erosion and 

sediment yield in Mediterranean regions is important for designing effective regional 

water and soil conservation measures. 
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There has been extensive research on soil erosion throughout the Mediterranean 

basin in the past 3 decades (Kosmas et al., 1997; García-Ruiz et al., 2013). This research 

has examined study sites with different physiographic features, soil types, land uses and 

cover management practices on different spatial scales (Gallart et al., 2013; Nadal-

Romero et al., 2013). Most studies conclude that seasonal rainfall regimes (climate 

conditions) control runoff, soil erosion and sediment transport (García-Ruiz et al., 

2013), and that a small number of annual events are usually responsible for soil erosion 

(González-Hidalgo et al., 2007). Likewise, the majority of the sediment load in 

Mediterranean rivers is also carried in a small fraction of the time, clearly influenced by 

the availability of sediment (i.e. López-Tarazón et al., 2010). However, there has been 

no synthetic analysis of how climate conditions influence runoff, soil erosion and 

sediment yield across the Mediterranean basin. 

Previous studies in the Mediterranean basin have examined the spatial and 

temporal distribution of precipitation defining the weather conditions under which they 

occur, also named weather types (WTs) (Ramos et al., 2015). This integrative approach 

is a well-established methodology, using daily synoptic conditions according to the 

surface pressure field and identifies the main direction of surface wind. Thus, each WT 

compiles daily information on the various origins and characteristics of air masses 

responsible for generating rainfall and runoff leading to erosion and sediment yield.  

There have been several climate studies analyzing the relationships of WTs to 

different climate phenomena, such as teleconnection indices (Navarro-Serrano and 

López-Moreno, 2017), spatial distribution of precipitation (Fernández-González et al., 

2011; Hidalgo-Muñoz et al., 2011; Cortesi et al., 2014; Fernández-Raga et al., 2016), 

and temperature (Peña-Angulo et al., 2016). Other studies have examined the link 

between WTs and natural hazards, such as landslides, floods and hydrological droughts 
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(Messeri et al., 2015; Teale et al., 2017), and the distribution and occurrence of forest 

fires (Trigo et al., 2016; Ruffault et al., 2016, 2017; Rodrigues et al., 2019). Other 

research has examined the relationships of WTs with atmospheric contaminants, human 

health and pathologies (Santurtún et al., 2014; Royé et al., 2016; Liao et al., 2017), and 

air quality (Collaud-Coen et al., 2011). Therefore, the WT has been proved a useful tool 

in understanding the relationship between climate and many connected processes. 

However, information on the relationships of different WTs with runoff, soil erosion, 

and sediment yield is scarce.  

Wilby et al. (1997) found that historical changes in the frequency of winter 

cyclonic WTs could account for a significant proportion of the variation in sediment 

yield in rivers of the United Kingdom. In addition, Foster and Lees (1999) found that 

long-term trends in sediment yield of large catchments in the United Kingdom were 

linked to changes in the occurrence of specific WTs. In northwest Spain, Fernández-

Raga et al. (2010) concluded that WTs with a western component produced most of the 

precipitation with high kinetic energy. Recently, Tylkowski (2017) and Montreuil et al. 

(2016, 2017) analyzed coastal erosion in the Polish Baltic and Belgian coasts, 

respectively, concluding that only a few atmospheric conditions are responsible for 

heavy storm surge and large percentages of coastal erosion. All of these studies indicate 

that research into WTs holds great promise for finding the relationship between 

geomorphological processes and specific atmospheric patterns.  

The main objective of this research was to analyze the relationships between 

rainfall, runoff, soil erosion, and sediment yield (SY, hereafter used to refer both to soil 

erosion measured at plot scale and sediment yield registered at catchment scale) with 

WTs throughout the Mediterranean basin. We compiled the most complete database for 

the area containing information on rainfall, runoff, and SY at high temporal resolution 
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(event scale) from experimental plots and catchments. This study aims to progress 

beyond previous analyses by Nadal-Romero et al. (2014, 2015), and to pioneer the use 

of collective efforts aimed at understanding hydrological and erosion dynamics in the 

Mediterranean region (Merheb et al., 2016; Taguas et al., 2017).  

 

2. Materials and methods 

2.1. Database creation 

2.1.1. Rainfall, runoff and sediment yield 

A database of rainfall events with hydrological and SY information was 

compiled from a network of experimental plots and catchments (<50 km2) throughout 

the Mediterranean basin. This information was collected by research groups from 

several universities and research institutes, with most financial support provided by the 

European Commission, with further aid from national and regional governments. The 

data set included information from 68 sites, 28 experimental plots and 40 catchments, 

referenced to 182 case studies, and from 9 countries: Morocco, Portugal, Spain, France, 

Italy, Tunisia, Slovenia, Greece and Israel (Figure 1a and Figure 7 in supplementary 

material). The number of study sites varied greatly among countries, and most of the 

data came from Spain. In total, 22,458 rainfall events between 1985 and 2015 were 

entered in the database. Fifty-seven of the study sites (84%) had data on SY. 

The datasets for each site differed in the duration of the record (1 to 29 years), 

the size of the study area (a few m2 to 50 km2), and land use and land cover (Table 1). 

62% of the datasets included records for more than 5 years, and 41% for 10 years or 

more. Only 10% of the datasets covered less than 3 years. Likewise, 67% contained 

over 50 events, and 50% more than 100 events. Therefore, an inter-comparison of 

different time periods, from 1988 to 2015 (Table 1), was performed to gain a broad 
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assessment of Mediterranean environmental characteristics. This is similar to the 

procedures of previous research that examined these global characteristics (García-Ruiz 

et al., 2015; Panagos et al., 2017). 

2.1.2. Weather types 

The classification of daily WTs over the Mediterranean region relies on the daily 

sea level pressure dataset from NCEP/NCAR 40-year Reanalysis Project (Kalnay et al., 

1996) for the period 1985-2015. We used the WT classification proposed by Jenkinson 

and Collinson (1997), based on the original work of Lamb (1972), and an approach 

suggested by Jones et al. (1993) and Trigo and DaCamara (2000). Briefly, for each grid 

cell and daily record, a WT is calculated by a set of indices that take into account the 

direction and vorticity of the geostrophic flow of the nearest 22 NCAR pressure points. 

The result (i.e. the WT for day n) is then assigned to the study site according to location 

(Figure 1b).  

In the present research, the 26 WTs of the original classification were aggregated 

into 10 types, by combining the original, pure directional, and hybrid types: 

Anticyclonic (A) and Cyclonic (C), and 8 directional types, North (N), Northeast (NE), 

East (E), Southeast (SE), South (S), Southwest (SW), West (W) and Northwest (NW). 

2.2. Database Analysis 

The analysis of WTs was performed across the Mediterranean basin according to 

the NCEP Re-analysis grid resolution, and final WT classification was assigned to the 

different local study sites, depending on their location (see Figure 1b). The rainfall, 

runoff, and SY were related to the daily WTs estimated in each site. In that respect, WT 

evaluation is spatially independent, but based on sea level pressure data from NCEP Re-

analysis (i.e. the same day can be classified as northerly or southerly WTs in different 

study sites). Each of the 22,458 daily events was associated with a WT type for 
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individual sites. For each site, the percentage of total rainfall, runoff and SY produced 

under each WT was estimated. A Principal Component Analysis (PCA) was used to 

summarize and classify these data (Everitt and Horton, 2011). The 8 directional WTs 

were considered as variables, and the percentages of rainfall, runoff, and SY associated 

with each WT at each site were considered observations (Cyclonic (C) and Anticyclonic 

(A) WTs were discarded from the PCA analysis which was based only on directional 

WTs). Each PC was selected according to the percentage of the total variance explained, 

and interpreted from its correlation with the different WTs. The results of the PCA 

established spatial patterns of rainfall, runoff and SY and their relationships with WTs 

in the Mediterranean basin (based on the loadings from the PCA). All statistical 

analyses were carried out using R software (R, version 3.2.3) (R Development Team 

Core 2013). The results were divided into four sub-sections describing the relationship 

of WTs with rainfall, runoff and SY. In each sub-section, the spatial distribution of the 

association of WTs with hydro-sedimentary variables was determined, with grouping 

into classes defined by the PCA results. For each distribution class, three representative 

study sites were selected to show the total distribution of WTs (including A and C). 

Detailed results for the 68 sites examined in this study are provided as supplementary 

material (Figures 9-19). At the end of the results section, we present 6 examples 

showing the relationships of daily WTs with rainfall, runoff, and SY at specific sites 

(synoptic situations). 

 

3. Results 

The PCA analysis showed the location of the 8 directional WTs in the factor 

space for rainfall, runoff and SY (Figure 2). For rainfall and runoff data, all study cases 

clearly separate these WTs, but groups of WTs were not as strongly defined for the SY 
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data. Figure 8 of the supplementary material shows the distribution of the different 

study sites in the factor space.  

3.1. Rainfall classes  

PC1 accounted for 40% of the total variance, and had significant positive 

correlations with E and NE WTs, and significant negative correlations with W and SW 

WTs. PC2 accounted for 19% of the total variance, and showed significant positive 

correlations with the N and NW WTs, and significant negative ones with the S and SE 

WTs. The contribution of the directional WTs to total rainfall differed notably among 

sites (Table 3 in the supplementary material). Thus, we grouped the study sites into 4 

classes based on their distribution in the PCA plane (Figure 3). 

The first class encompassed sites with predominantly NW and N WTs (n = 17). 

In most of these sites, these 2 WTs accounted for more than 25% of total rainfall (mean: 

31.2%, Table 2), and for more than 45% of rainfall for Añarbe and Latxaga (Spain) 

(Table 3 in the supplementary material and Figure 3). This class included sites in the 

Basque Country and Navarre regions of northern Spain, as well as those in the Ebro 

Valley and Pre-Pyrenees (Spain), northeastern Tunisia, Sicily (Italy), and Crete 

(Greece). 

The second class contained sites with predominantly E and NE WTs (n = 21), 

which accounted for 44% of total rainfall (Table 2). In some of the sites of this class, 

these WTs produced more than 55% of the total rainfall (e.g. Abanilla in Spain and 

Slovenian Istria) (Table 3 and Figure 3). The sites were located along the Spanish 

Mediterranean coast, Morocco, and Slovenia (Figure 3).  

The third class included those sites in which rainfall was dominated by W and 

SW WTs (n = 22), accounting for 43% of total rainfall (Table 2). In some cases, such as 

Idanha (Portugal), these WTs produced up to 70% of the total rainfall (Table 3). Most of 
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the sites in this class were on the western side of the Mediterranean basin (Atlantic 

sites), Andalusia and the Central Pyrenees (Spain), the Italian Peninsula and Sicily 

(Italy), Crete (Greece) and Israel (Figure 3). 

The fourth class was a specific area in which most rainfall was associated with S 

and SE WTs (n = 8; Figure 3). The S and SE WTs accounted for more than 40% of the 

total rainfall (Table 2), with greater influence from southerly flows. Most of the 

southern sites were around the Gulf of Lion (Spain and France) (Figure 3). 

3.2. Runoff classes 

PC1 accounted for 32% of the total variance, and had significant positive 

correlations with the E and NE WTs, and significant negative correlations with the W 

and SW WTs. PC2 comprised 19% of the total variance, and showed significant 

positive correlations with the N and NW WTs, and significant negative ones with the S 

and SE WTs. The contribution of runoff differed among sites and WTs (Table 3 in the 

supplementary material). We grouped the study sites into 4 classes based on their 

distribution in the PCA plane (Figure 4). Notably, the sites included in each runoff class 

were not necessarily coincident with those in each rainfall class, but spatial distributions 

were similar. 

The NW and N WTs accounted for almost 40% of total runoff (n = 16) (Table 

2), and up to 55% in some cases (e.g. Latxaga and Barrendiola in Spain; Figure 4 and 

Table 3). Locally, and only at 3 sites, the C WT had a strong influence (e.g. almost 40% 

in Avgeniki, Greece; Figure 4). The spatial distribution of sites in this class was similar 

to that of the first rainfall class: northern Spain (Basque Country and Navarre), some 

sites in the central Iberian Peninsula (IP), Málaga, Tunisia, Sicily (Italy) and Crete 

(Greece) (Figure 4). 
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The E and NE WTs accounted for about 45% of total runoff in the second class 

(n = 21), and up to 70% in some cases (e.g. Montnegre, Albaladejito and Abanilla in 

Spain; Table 3 and Figure 4). The spatial distribution of the sites in this class was 

similar to that of the second rainfall class: the Mediterranean coast of the IP, Morocco 

and Slovenia (Figures 3 and 4).  

The W and SW WTs accounted for 52% of total runoff in the third class (n = 18, 

Table 2), and more than 75% in Rinconada, Villamor and Coimbra (Table 3 in the 

supplementary material). These 2 WTs produced more than 40% of total runoff in most 

sites, with the exception of Mesara (Greece) and Carrasquero (Spain), where the C WT 

caused a large amount of runoff (supplementary Figure 16). The sites in this class were 

in the western Mediterranean (Atlantic sites), and in Andalusia, the Pyrenees, Sicily, 

Crete and Israel, similar to the pattern for the third rainfall class (Figure 4). 

The S and SE WTs accounted for 33% of total runoff (Table 2) in the fourth 

class (n = 12), and up to 50% in Roujan (France), Venergà, and Almachar (Spain) 

(Table 3 and Figure 4). However, the contribution of the predominant WTs varied 

greatly among sites (coefficient of variation: 68%). The spatial distribution of sites in 

this class was similar to that of the fourth rainfall class: southern and northern sites of 

the IP and central Italy (Figure 4). 

3.3. Erosion and sediment yield classes (SY) 

PC1 accounted for 33% of the total variance and had significant positive 

correlations with the N and NE WTs, and significant negative ones with the W and SW 

WTs. PC2 was responsible for 21% of the total variance, and had a significant positive 

correlation with the E WT. Notably, the SY classes had higher variability than those for 

rainfall and runoff (Figure 5 and Table 2). We grouped the study sites into 3 classes 

based on their distribution on the PCA plane (Figure 2c).  
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The N and NE WTs accounted for 48.6% of the total SY in the first class (n = 

17, Table 2). In addition, the NE WT comprised more than 90% of the total SY at the 

Moroccan site (Rheraya), and both WTs amounted to approximately 40% of the total 

SY in all cases (Table 2). The sites in this class were in Morocco, the eastern IP 

(including Mallorca), Sicily (Italy) and Crete (Greece) (Figure 5). 

The E WT accounted for 25% of the total SY in the second class (n = 16), but 

this rose to 50% in El Cautivo, Abanilla, Ardal, Santomera and Venta del Olivo (all on 

the south-east Spanish Mediterranean coast) (Figure 5). In addition, the C WT had a 

strong influence in 3 cases (Malaga, Burete, and Porta Coeli in Spain, Figure 5). These 

sites were in the eastern IP (Figure 5), Slovenia, Tunisia and Italy. 

The W and SW WTs accounted for 40% of SY in the third class (n = 24), and 

60-80% in the most western Mediterranean sites (Portugal and Galicia [Spain], Table 3 

and Figure 5). These 2 WTs caused approximately 40% of the total SY in Israel.  

3.4. Synoptic patterns 

Figure 6 shows six representative examples of daily atmospheric patterns 

throughout the Mediterranean basin, obtained from NCEP Re-analysis, and the 

corresponding WTs of selected sites where an event was registered on a chosen day. 

Figure 6a presents an event on September 11, 1996, a date when E flows 

affected all sites where rainfall, runoff or SY were recorded (Albaladejito, La 

Concordia, El Cautivo and Porta Coeli in Spain), or NE (Santomera). The isobaric 

configuration shows a low-pressure system located between the IP and North Africa, 

and the resulting predominant wind directions were east-west and northeast-southwest, 

accordingly. 

The second synoptic chart (Figure 6b) presents an event on February 19, 2003 

and shows a low-pressure system in the northwest of the IP. The 1010 mb isobar 
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includes the Western Mediterranean, causing W and S flows in the Gulf of Lion 

(Roujan and Vernegà).  

The third synoptic chart (Figure 6c) shows a low pressure system located in the 

centre of the IP on March 29, 2004, that generated synchronic responses in the 

Mediterranean basin. E-NE flows were recorded on the Spanish Mediterranean side (La 

Concordia, Porta Coeli, Navalón, and Sa Vall), with SE flows in the Ebro basin 

(Bárdenas, La Puebla, Lanaja, and Mediana). On the other hand, the data for Morocco 

indicated that the response was due to N/NW flows. 

The fourth chart (Figure 6d), recorded on October 16, 2009, shows the synoptic 

configuration related to central and eastern sites of the Mediterranean region, in which a 

low pressure system between southern Italy and Greece produced mostly S WTs in 

Greece and N/NW flows in Tunisia. 

The fifth chart (Figure 6e), recorded on February 9, 2010, shows a new 

configuration related to the Western Mediterranean basin, in which a deep low pressure 

system around the Balearic Sea gave rise to W and S flows in Tunisia and Sicily. 

The last chart (Figure 6f), recorded on October 10, 2010, shows high variability. 

There was a low-pressure system in the IP and the eastern Mediterranean basin, but not 

affecting North Africa. Different WT patterns were recorded in many different sites. C 

patterns were observed in the Pyrenees and the Gulf of Lion, such as Araguás, Vernegà, 

Ca L’Isard, Can Vila (Spain) and Roujan (France); N WTs were recorded in Oskotz 

(Navarre, Spain) and Burete (Murcia, Spain); and W WTs were observed in the western 

sites of the IP (Corbeira in Galicia and Conchuela in Andalucía). There was also an 

event in the Eastern Mediterranean (Agia Varvara, Greece), although the synoptic 

situation did not allow the classification used to determine the S/SE flows in detail. 
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Synoptic charts are affected by the synchrony of the recorded data, and must 

therefore, be interpreted with caution. However, the charts shown here indicated that the 

disturbances associated with low-pressure systems were generally responsible for most 

responses in the Mediterranean basin. 

 

4. Discussion 

During the last three decades, many studies of experimental plots and 

catchments throughout the Mediterranean basin have quantified the factors that are most 

responsible for runoff, soil erosion and SY (Kosmas et al., 1997). There is now a huge 

amount of information on how of these parameters relate to climatic factors, plant 

cover, land use and land management practices (García-Ruiz et al., 2008; Taguas and 

Gómez, 2015; Rogger et al., 2017); also on the temporal and spatial variations of these 

processes (Boix-Fayos et al., 2005, 2006, 2007; Vanmaercke et al., 2012, 2015; García-

Ruiz et al., 2015; Merheb et al., 2016). In this study, we tried to go beyond these 

previous studies by compiling the largest data set available for the Mediterranean basin 

to analyze the relationships between daily rainfall, runoff, and SY with WTs. This was 

possible only due to the efforts of numerous research groups from several universities 

and research institutes in 9 Mediterranean countries, with the Iberian Peninsula being 

the most widely-represented region (Figure 1 and Figure 7 supplementary material). 

Most of the sites are located in Spain with fewer are in France, Italy and other countries 

(Morocco, Tunisia, Slovenia, Greece and Israel). 

The scarcity of information in central and far east of the Mediterranean basin did 

not enable us to conduct a global detailed analysis, and in that respect, the heavier 

representation of Spanish study sites could be understood as a limitation of the data set. 

A similar situation occurred to García-Ruiz et al. (2013) who carried out a review on 
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erosion in Mediterranean landscapes based on more than 650 published studies, from 

which more than 60% came from Spanish sites. Nevertheless, we consider that the over-

representation of sites in Spain is counterbalanced by the fact that each one has been 

analyzed individually and the results not extrapolated to those areas with no or little 

data. Notwithstanding this limitation, the present study provides interesting results, 

showing clear relationships between WTs and rainfall, runoff, and SY, as well as clear 

spatial patterns throughout the Mediterranean basin (each case can be individually 

analyzed in Figures 9-19). Despite the inherent limitations associated with the available 

dataset, we believe that the spatial patterns emerging from this analysis are of interest, 

even more so because they allow for a discussion on the influence of WTs on the 

studied variables. Additional data, especially SY information from the less well-

represented regions in the dataset, would be essential to confirm the extent and 

influence of WTs on the identified rainfall, runoff, and SY classes. 

Recent spatial studies have highlighted the importance of analyzing the 

relationships of environmental variables with atmospheric circulation patterns (Ramos 

et al., 2015). However, there are no previous global analyses of the effects of 

atmospheric conditions in the Mediterranean basin on rainfall, runoff and SY. Our 

analysis allowed representative study sites around the Mediterranean basin to be 

identified according to synoptic weather patterns. Our results show the presence of 4 

homogeneous classes for rainfall and runoff, and 3 classes for SY. In general, the spatial 

patterns of the rainfall and runoff classes were similar, with only minor variations. The 

first class (N WTs) covered mainly the Basque and Navarre sites, some study areas 

within the Iberian Peninsula, and others in Italy (Sicily) and Greece (Crete). The second 

class (E WTs) mostly corresponded to eastern Spanish Mediterranean sites. The third 

class (S WTs) contained the fewest sites, mostly in the Gulf of Lion (Spain and France) 
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and displayed high variability in the relationships. The fourth class (W WTs) 

corresponded to western Mediterranean sites in Portugal and Spain, the Central 

Pyrenees and Israel. However, there were only 3 classes for SY: sites dominated by N 

and NE WTs, those with E flows, and ones with W and SW flows. On the other hand, 

there was greater variability for SY than rainfall and runoff, probably due to its more 

diverse and complex causative factors. 

Similar spatial patterns were obtained in different studies analyzing several 

environmental variables. For example, Gámiz-Fortis et al. (2011) analyzed the spatial 

and temporal streamflow variability of the Ebro River Basin (Spain) and its association 

with large-scale patterns of atmospheric circulation. These authors identified 3 spatial 

patterns: the Basque-Cantabrian region, the southern-Mediterranean area, and the 

Pyrenees. Ramos et al. (2014) studied the relationships between WTs and daily rainfall 

in the IP, and identified four areas: the northern Cantabrian coastland, the Central-

southwest, the Mediterranean coastland, and the Ebro Basin. Nevertheless, rainfall 

events are not only linked to synoptic scale atmospheric circulations, as has been 

demonstrated by various authors in climatological studies (Cortesi et al., 2014; Peña-

Angulo et al., 2016). Local factors, such as convective processes, orography and 

distance to the sea, could play a major role in the frequency of rainfall and runoff events 

and in the extent of spatial patterns. For example, the geographical layout of the main 

mountain chains (i.e. Pyrenees, Alps) could be one of the most important factors 

promoting the spatial patterns, and could help to establish sharply delimited areas 

according to specific effects from WTs. 

PCA groups were found to characterize spatial patterns at Mediterranean scale, 

although individual WTs displayed some variations between sites. Consequently, an 

interesting finding of our study is that a high percentage of rainfall, runoff and SY 
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events occurred for a small number of WTs, representing atmospheric conditions that 

are often rare. For example, in Idanha (Portugal) 60.6% of SY occurred during an SW 

WT, and in Rheraya (Morocco) 91.3% of SY occurred during an NE flow. These results 

are similar to those of Pattison and Lane (2012), who indicated that only 5 WTs 

accounted for 80% of the recorded extreme events in the River Eden (United Kingdom). 

These results also agree with those of Ramos et al. (2014), who concluded that a high 

percentage of monthly rainfall (about 70%) occurred during only 7 WTs. Additionally, 

studies elsewhere in the world confirmed that a small number of extreme events 

generate most rainfall, runoff and SY (López-Bermúdez, 1990; Martínez-Mena et al., 

2001; González-Hidalgo et al., 2007). Related to these results, changes in the frequency 

of these WTs are bound to have a significant impact on the hydrological and erosion 

response and the export of sediment. These results may provide an insight into the 

development of water planning and soil conservation measures. Over time, the 

Mediterranean basin has become drier and the rainfall patterns more erratic. The 

insights from the present study might help to evaluate the relationships of atmospheric 

conditions with rainfall, runoff and SY around the Mediterranean basin in a context of 

global change.  

Furthermore, this study shows that the predominance of one WT for rainfall does 

not mean that this WT also predominates for runoff or SY (Table 3 in the 

supplementary material). Indeed, the patterns obtained suggest that rainfall, runoff and 

SY had different responses to different WTs, probably as a consequence of the non-

linear relationships among these variables, especially for SY events. These results agree 

with those of previous studies in Mediterranean areas (López-Tarazón et al., 2010; 

Rodríguez-Caballero et al., 2014; Hueso-González et al., 2015), and illustrate the 

complexity of water and sediment dynamics. This non-linearity could be at least 
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partially explained by the availability of detached material that can be readily eroded, 

and the existence of different sediment sources, which in turn depend on various 

processes (e.g. previous weathering processes and rainfall conditions) influencing 

sediment availability and SY.  

 The analyzed dataset comprises a wide range of physiographical and 

geomorphological conditions (topography, soils, plant cover) and length of data records 

(see Table 1). The latter can lead to biased results, because the minimum record length 

is an issue that has not yet been resolved in geomorphology studies. Most authors claim 

that short temporal series present compressed variance (Kirkby, 1987). Wischmeier and 

Smith (1978) stated that “care must be taken to ensure that the duration is sufficient to 

account for cyclical effects and random fluctuations in uncontrolled variables whose 

effects are averaged in the USLE factor values”. The time frame varies from author to 

author and usually is expressed in years (Lane and Kidwell, 2003; Ollesch and Vacca, 

2002). However, González-Hidalgo et al. (2012) suggested including a minimum 

number of 100 events instead of years to avoid the effects of maximum erosion events. 

In the present study, the records vary between 9 and more than 800 events spanning 

from 1 to 22 years. Furthermore, the reliability of the dataset is guaranteed because 

more than 67% of the study sites recorded more than 50 events, and 50% of sites 

included over 100 events. In this respect, the range of the dataset ensures the reliability 

of results and, regardless of the spatial distribution of the study sites, the global 

conclusions are not affected by the effect of maximum events. However, a few WTs are 

responsible for a high percentage of runoff and SY, varying at spatial level.  

Characterization of the relationships of rainfall, runoff, and SY with WTs is 

crucial for understanding hydrological and SY dynamics in the Mediterranean basin. In 

fact, improving our understanding of hydrology and soil erosion dynamics is a strategic 
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research step, essential for the development of protection and management policies, 

with adaptations to the distinct environments within the Mediterranean basin. However, 

we acknowledge that many other environmental factors related to runoff and soil 

erosion dynamics are outside the scope of the present study, such as land use/land 

cover, topography, weathering dynamics, antecedent conditions such as soil moisture, 

and the distribution of rainfall and rainfall intensity within storms. We consider that 

further research is needed to better understand the relationships of rainfall, runoff, and 

SY with WTs. This is particularly important, because a small increase in the frequency 

of certain WTs may lead to more frequent events with high runoff volumes and greater 

SY. Therefore, future research should focus on: (i) analyzing the temporal and seasonal 

variability of the relationships of WTs with different hydro-sedimentary variables, (ii) 

evaluating extreme events and their relationships with different WTs (Hidalgo-Muñoz et 

al., 2011), and (iii) studying the effect of changes in the frequencies of different WTs. 

  

5. Conclusions 

This study investigated the relationships of three hydro-sedimentary variables —

rainfall, runoff and SY — with different WTs, and their spatial variability in the 

Mediterranean basin. Compilation and analysis of this very large dataset required the 

cooperation of a sizable group of scientists from 9 Mediterranean countries, whose 

common aim was to advance knowledge of rainfall, runoff, and SY dynamics 

throughout the Mediterranean basin. Thus, the prime innovation of the present work 

concerns the compilation of this Mediterranean database, which has taken information 

from 68 study sites (plots or catchments) and 22,458 events. The results demonstrate 

that WTs influence to a different extent rainfall, runoff, and SY, and that the 

relationships of these hydro-sedimentary variables with WTs have distinct spatial 
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patterns throughout the Mediterranean basin. Moreover, our study indicated that the 

synoptic WT classification can be effectively used to study hydrological and SY 

responses in Mediterranean areas, and that this is a valuable new tool for studies of 

hydrological responses, soil erosion, and sediment delivery.  

In addition to these, there are several specific insights from this study: 

 (i) A small number of WTs are responsible for most rainfall, runoff, and SY in 

Mediterranean environments. 

(ii) For each site, different WTs are associated with the greatest rainfall, runoff, 

and SY, indicating a non-linear relationship between these hydro-sedimentary variables. 

 (iii) There were 4 spatial classes of sites that had similar rainfall and runoff 

relationships with WTs: (a) northern sites (including the Basque country and Navarre in 

Spain, inland of the Iberian Peninsula, and some sites in Sicily and Crete), which 

depend on N and NW flows; (b) eastern sites (including the eastern Iberian Peninsula, 

Morocco, and Slovenia), which depended on E and NE flows; (c) southern sites (located 

around the Gulf of Lion but with high variability) which depended on S and SE flows; 

and (d) western sites (from the western Mediterranean to Israel), which depended on W 

and SW flows. 

(iv) There were 3 spatial classes that had higher variability in SY than observed 

for rainfall and runoff: (a) northern sites, characterized by N and NE flows, (b) eastern 

sites, characterized by E flows, and (c) western sites, characterized by W and SW flows. 

 

This study confirms that Mediterranean dynamics are highly variable due to 

geographical and atmospheric factors: atmospheric patterns provide meaningful 

information toward understanding the spatial variations in the Mediterranean, 

identifying regions with different behavior, most of which are influenced by the relief. 
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Finally, the analysis of the spatial variability of the relationships of runoff and sediment 

yield with weather types and the database generated would be useful tools presenting 

practical applicability for designing regional water and soil conservation measures (e.g. 

combined with meteorological forecasting).  
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Highlights 

 
1. An extensive rainfall-runoff-erosion database was compiled in the Mediterranean 

basin 

2. We analyzed the relationships between weather types, rainfall, runoff and sediment 

yield 

3. Most rainfall, runoff, and sediment yield occurred in a small number of weather types 

4. Four spatial classes driven by N-NW, E-NE, S-SE and W-SW flows dominated 

rainfall/runoff 

5. Three classes were identified for sediment yield, comprising N-NE, E and W-SW 

flows 
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Country Name 

Location 

Scale 

Study period 

Length of 

the 

dataset 

Number of 

rainfall 

recorded 

events 
Land cover Reference 

Lat. Long. Start 

period 
End 

period 
  

Greece Agia Varvara 35.1433 24.9894 Plots 2008 2011 4 111 Pastures Kairis et al. (2015) 
Spain Aisa 42.6744 -0.6119 Plots 1995 2010 16 637 Cereal, shrubland, crop abandonment, meadows Nadal-Romero et al. (2013) 
Spain Aixola 43.1529 -2.5014 Catch. 2003 2008 6 222 Mostly reforested with Pinus radiata Zabaleta et al. (2007) 
Spain Albaladejito 40.0762 -2.1957 Plots 1994 1997 4 28 Cereal and pastures Bienes et al. (2001, 2005) 

Spain 
Añarbe 

43.2255 -1.8498 Catch. 2003 2005 
4 18 Reforested and mature P. nigra in the lower part and 

autochthonous (Quercus robur and Fagus sylvatica) in the 
upper part 

Zabaleta et al. (2007) 

Spain 
Araguás 

42.5958 -0.6208 Catch. 2005 2015 11 360 Badlands, reforested (P. nigra and P. sylvestris), meadows Nadal-Romero and Regüés 
(2010) 

Spain Aranjuez 40.0798 -3.5250 Plots 1994 1997 4 38 Cereal and pastures Bienes et al. (2001, 2005) 
Spain Abanilla 38.1994 -1.0917 Plots 1988 1992 5 40 Open shrubland Díaz et al. (1997) 
Spain Ardal 38.0741 -1.5383 Plots 1989 2000 12 146 Cereal, shrubland and abandoned land Romero-Díaz et al. (1999) 
Spain Arnas 42.6430 -0.5847 Catch. 1999 2009 11 96 Abandoned sloping fields with shrubs and forest Lana-Renault et al. (2011) 

Greece Avgeniki 35.1911 25.0222 Plots 2008 2010 3 92 Olives orchards Kairis et al. (2013) 

Spain Bardenas 
Norte 42.1677 -1.4547 Plots 1993 2004 12 118 Badlands Desir and Marín (2007) 

Spain Bardenas Sur 42.1550 -1.4191 Plots 1993 2004 12 89 Badlands Desir and Marín (2007) 

Spain 
Barrendiola 

43.0026 -2.3509 Catch. 2003 2004 2 25 Autochthonous vegetation (F. sylvatica, Q. robur or Q. 

petraea) and reforested (P. radiata. P. nigra or Larix decidua) Zabaleta et al. (2007) 

Spain Burete 38.0500 -1.7667 Plots 2006 2011 6 142 Forest Martínez-Mena et al. (2008) 
Spain Can Revull 39.5500 3.1011 Catch. 2004 2007 4 19 Rainfed herbaceous crops, rainfed tree crops and forests Estrany et al. (2009a) 
Italy Cannata 37.8833 14.7666 Catch. 1996 2006 11 169 Rangeland and cereal Licciardello et al. (2007) 
Spain Carrasquero 42.3112 0.5327 Catch. 2007 2009 3 24 Forest, grassland, shrubland, agricultural lands López-Tarazon et al. (2012) 
Spain Ceguera 42.2386 0.5109 Catch. 2007 2009 3 30 Forest, grassland, shrubland Brosinky et al. (2014) 

Portugal 
Casal das 

Hortas 40.1886 -8.4619 Catch. 2011 2013 4 9 Permanent crops, rangeland, pastures, forest (74%), urban 
(16%) Ferreira et al. (2016) 

Spain 
Corbeira 

43.2181 -8.2285 Catch. 2005 2014 10 651 Forest, pasture, cultivated land, impervious area Rodríguez-Blanco et al. 
(2013) 

Spain 
El Cautivo 

37.0027 -2.4404 Catch. 1992 2014 23 134 Low-intensity hunting and cereals farming associated to 
hunting; hiking Cantón et al. (2001) 

Portugal 
Idanha 

39.8467 -7.1667 Catch. 2010 2015 6 27 Oak and cork trees (young forest), wheat, maize, sorghum, 
meadow Canatario-Duarte (2011) 

Tunisia 
Kamech 

36.8773 10.8753 Catch. 2005 2012 
8 167 Cropland (mainly cereal crops occasionally rotated with 

leguminous crops); Mediterranean shrubland, dwellings, gully 
and grazing 

Inoubli et al. (2016) 

Spain La Conchuela 37.8178 -4.8958 Catch. 2006 2011 6 185 Conventional tillage Gómez et al. (2014) 
Spain La Concordia 39.7500 -0.7167 Plots 1995 2012 18 203 Forest Gimeno-García et al. (2007) 
Spain La Parrilla 37.7333 -5.1500 Catch. 2010 2013 4 74 Irrigated annual crops Cid et al. (2016) 
Spain La Puebla 41.6645 -0.7239 Plots 1991 2003 13 187 Badlands Desir et al. (1995) 
Spain La Tejeria 42.7363 -1.9492 Catch. 2000 2014 15 177 Winter cereals (wheat and barley) Casali et al. (2008) 
Spain Lanaja 41.7797 -0.2889 Plots 1991 2004 14 163 Badlands Sirvent et al. (1997) 
Spain Lascuarre 42.2066 0.4977 Catch. 2007 2009 3 32 Forest, shrubland, agricultural lands López-Tarazón et al. (2012) 
Spain Latxaga 42.7854 -1.4364 Catch. 2003 2014 12 189 Winter cereals (wheat and barley) Casali et al. (2008) 
France Laval 44.1406 5.6392 Catch. 1985 2014 30 465 Badlands Cambon et al. (2015) 

Spain 
Malaga 

36.8001 -3.8492 Plots 2011 2013 3 23 Shrubland Martínez-Murillo et al. 
(2016) 

Spain Marchamalo 40.6822 -3.2147 Plots 1994 1997 4 48 Cereal and pastures Bienes et al. (2001, 2005) 
Italy Masse 42.9928 11.7089 Plots 2008 2015 8 78 Bare and seeding bed Todisco et al. (2012) 
Spain Mediana 41.4534 -0.7158 Plots 1991 2004 14 137 Badlands Desir et al. (1995) 

Greece Mesara 35.0833 25.3800 Catch. 2012 2015 4 250 Olives, vines, citrus fruit and vegetables Varouchakis (2016) 

Spain 
Morille 

40.8315 -5.7053 Catch. 2002 2010 9 88 Open forest Hernández-Santana and 
Martínez (2008) 

France Moulin 44.1406 5.6392 Catch. 1988 2003 16 149 Badlands Cambon et al. (2015) 

Spain 
Munilla 

42.1912 -2.2908 Catch. 2012 2015 4 17 Abandoned terraces with herbaceous vegetation and sparse 
shrubland Lana-Renault et al. (2018) 

Spain Oskotz 42.9584 -1.7792 Catch. 2003 2014 10 416 61% Forest and 39% pasture Casali et al. (2010) 
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Spain Porta Coeli 39.6590 -0.4890 Plots 1988 2012 25 240 Forest land Andreu et al. (2001) 
Spain Puente Genil 37.4128 -4.8383 Catch. 2005 2011 7 93 Olive orchard Taguas et al. (2013) 

Spain 
Rinconada 

40.6020 -6.6153 Catch. 2000 2010 11 331 Dense forest Hernández-Santana and 
Martínez (2008) 

France 
Roujan 

43.4917 3.3213 Catch. 1992 2015 24 410 Vineyards and cereals crops, orchards, mediterranean 
shrubland Raclot et al. (2009) 

Spain Santomera 38.2700 -1.1167 Plots 1989 2002 14 283 Forest Martínez-Mena et al. (2002) 

Spain 
Sa Vall 

39.6386 3.1766 Catch. 2004 2006 3 77 Rainfed tree crops, rainfed herbaceous crops, forests, irrigated 
crops Estrany et al. (2009b) 

Spain La Barranca de 
los Pinos 41.1582 -3.8086 Catch. 2010 2010 1 13 Forest and pastures Lucía et al. (2011) 

Spain Setenil 36.8736 -5.1269 Catch. 2005 2011 7 121 Olive orchard Taguas et al. (2015) 
Italy Sicilia Agata 37.6547 12.9853 Plots 2014 2014 1 11 Bare soil Novara et al. (2016) 
Italy Sparacia 37.6366 13.7658 Plots 2002 2015 14 210 Bare soil Bagarello et al. (2013) 

Slovenia Slovenian 
Istria 45.4982 13.7983 Plots 2005 2006 2 52 Badlands, bare soil (in an olive grove), meadow, forest Zorn et al. (2009) 

Spain Venta Olivo 38.3544 -1.5194 Catch. 1997 2011 15 108 Shrubland Castillo et al. (2003) 

Spain Venta Olivo 
plot 38.3833 -1.1667 Plots 2001 2008 8 161 Shrubland Boix-Fayos et al. (2007) 

Spain Vernega Bosc 41.8772 2.9325 Catch. 1993 2011 19 44 Forest Outeiro et al. (2010) 

Spain Vernega 
Campas 41.8738 2.9213 Catch. 1993 2011 19 44 Agricultural practices Outeiro et al. (2010) 

Spain Villacarli 42.3489 0.5540 Catch. 2006 2008 3 20 Forest, grassland, shrubland, badlands López-Tarazón et al. (2012) 

Spain 
Villamor 

41.2457 -5.5839 Catch. 2002 2010 9 87 Cereal Martínez Fernández et al. 
(2012) 

Morocco Rheraya 31.2000 -7.9300 Plots 2003 2009 7 15 Rangeland (stones cover and vegetation cover) Simonneaux et al. (2015) 
Spain Navalón 38.9166 -0.8333 Plots 2004 2014 11 470 Cultivated area Cerdà et al. (2017) 

Spain 
Almáchar 

36.8000 -4.2167 Plots 2014 2015 2 13 Conventional sloping vineyards Rodrigo-Comino et al. 
(2017) 

Spain Ca L'Isard 42.1934 1.8232 Catch. 2005 2012 8 55 Forest, meadows, sparse vegetation, rocky outcrop, badlands Latron et al. (2009) 
Spain Can Vila 42.1981 1.8234 Catch. 2005 2012 8 93 Forest, meadows, sparse vegetation, rocky outcrop, badlands Latron et al. (2010) 

Spain 
Utrillas 

40.796231 -0.839938 Plots 2005 2006 2 24 Reclaimed mining slopes Moreno-de las Heras et al. 
2010 

Spain 
Parapuños 

39.6105 -6.1333 Catch. 2001 2015 15 161 Dehesa Schnabel and Gómez 
Gutiérrez (2013) 

Spain Montnegre 41.7000 2.5666 Catch. 1998 2002 15 77 Forest Bernal and Sabater (2012) 
Israel Israel 32.75631 35.019918 Plots 2006 2007 2 24 Natural recovery of post fire Mediterranean maquis Wittenberg et al. (2014) 

 
Table 1.  Location, time of data collection, and characteristics of the study sites 

included in the database. 
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Table 2. Relative contributions of the different WTs to total rainfall, runoff, and SY at 

the different study sites (plots and experimental catchments) within each spatial class, 

based on PCA analysis. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

PCA 

classes 

Environmental 

variables (%) 
mean standard 

deviation 
Coefficient 
of variation  Max 

Northern 

(NW, N) 

rainfall 31.2 11.5 37 51.1 

runoff 38.6 15.6 41 64.7 

SY 48.6 16.1 33 92.3 

Eastern  

(E, NE) 

rainfall 43.8 14.7 34 69.0 

runoff 45 21.2 47 72.7 

SY 25.1 21.5 86 60.7 

Southern 

(SE, S) 

rainfall 42.7 12.1 28 58.0 

runoff 32.9 22.2 68 82.0 

SY - - - - 

Western 

(SW, W) 

rainfall 43.3 15.2 35 71.9 

runoff 52.2 15.4 30 80 

SY 40.3 19.8 49 83.1 
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