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A B S T R A C T

The intra-species genetic diversity of Cryptosporidium parvum in dairy cattle farms in the central area of Colombia
was investigated using a multilocus fragment typing approach with nine variable-number tandem-repeat (VNTR)
loci and the gp60 gene. Genomic DNA of 70 C. parvum isolates from pre-weaned calves in 32 farms was analysed.
Most markers showed two (ML1, MSB, CP47, and MSC6-7) or three alleles (5B12, Cgd2_3850, and Cgd6_5400),
although they exhibited a major allele accounting for more than 69% of specimens, which explains their low
discriminatory index. The TP14 microsatellite was monomorphic while a total of six alleles were found at the
ML2 microsatellite. The two novel allelic variants (219bp, 245bp) exhibited by more than 36% of specimens at
the latter locus were a remarkable finding. The 10-markers typing tool provided a Hunter-Gaston discriminatory
value of 0.940 (95% CI, 0.918 – 0.961) and differentiated 22 multilocus subtypes (MLTs). Nevertheless, the
combination of the three most informative markers (ML2, gp60, and Cgd2_3850) differentiated 68% of MLTs and
hardly impaired the discriminatory index. The fact that many MLTs (13/22) were distinctive for individual farms
provides evidence for the endemic nature of the infection and the major role played by transmission within
farms. The eBURST algorithm suggested a low degree of genetic divergence. All but three MLTs were clustered in
a clonal complex with a star-like topology typical of clonal expansion, however linkage analysis did not find
evidence of linkage disequilibrium. Bayesian analysis also identified a genetic structure with K=3 being the
best estimation of ancestral clusters, although a large proportion of isolates (35%) could not be allocated to a
single population, which indicates their mixed origin. The results confirm the genetic distinctiveness of C.
parvum in cattle farms in this geographical area. This is the first multilocus analysis on the intra-specific
variability of Cryptosporidium from calves in South America.

1. Introduction

Molecular tools are essential in unravelling the identity and trans-
mission dynamics of Cryptosporidium isolates circulating in human and
animal populations. This protozoan is a major contributor in diarrhoeal
disease in humans and livestock worldwide, particularly cattle (Khan
et al., 2018). Thirty-one species have been reported so far, based on
sequencing of the small-subunit (SSU) rRNA gene which is considered
the most reliable locus for identification of Cryptosporidium spp. Two
species are responsible for the majority of human infections, including
the anthroponotic C. hominis and the zoonotic C. parvum (Ryan et al.,
2016). The latter is also one of the most prevalent enteric pathogens

associated with neonatal calf diarrhoea, which highlights the economic
significance and public health impact of cryptosporidiosis in cattle
farms (Thomson et al., 2017).

Subtyping studies have showed a remarkable genetic diversity
within C. parvum isolates, with the presence of human-specific, animal-
specific and zoonotic subtypes. Fourteen allelic families (IIa → IIo) have
been identified by phylogenetic analysis of the 60-KDa glycoprotein
(gp60) gene, as well as several subtypes within each family. Some fa-
milies, notably IIc, have only been identified in human cases, but others
such as IId and especially IIa, are usually identified in both human and
animal infections; remarkably, there is a high prevalence of subtype
IIaA15G2R1 in humans and cattle in Europe, North America and
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Australia (Ryan et al., 2014). Another class of highly polymorphic ge-
netic markers characterized by allelic variability in repeat length are
microsatellites and minisatellites, also known as short variable-number
tandem-repeat (VNTR) loci. These markers are being increasingly used
in multilocus schemes to investigate the intra-species diversity of
Cryptosporidium spp. Multilocus methods improve resolution over ana-
lysis using a single locus, which underestimates genetic diversity where
sexual reproduction occurs (Robinson and Chalmers, 2012). Never-
theless, a standardised multilocus scheme is not currently available
(Chalmers et al., 2018).

Cryptosporidium has been recognised as a cause of diarrhoea in
suckling calves in some South American countries (Del Coco et al.,
2008; Meireles, 2010; Díaz-Lee et al., 2011; Pulido-Medellín et al.,
2014; Holsback et al., 2018). However, the impact of bovine cryptos-
poridiosis in this continent is not well documented and data on the
genetic diversity of C. parvum are limited. Modest numbers of speci-
mens from calves have been characterised by gp60 sequencing in Brazil,
Argentina or Chile (Meireles et al., 2011; Paz e Silva et al., 2013;
Tomazic et al., 2013; Del Coco et al., 2014; do Couto et al., 2014;
Heckler et al., 2015; Mercado et al., 2015; Toledo et al., 2017) and no
previous work with VNTR markers has so far been conducted. In Co-
lombia, the single genotyping study reporting the distribution of
Cryptosporidium species and gp60 subtypes among pre-weaned calves
highlighted this protozoan as a common and widespread pathogen in
the central area of the country (Avendaño et al., 2018). Moreover, the
latter study revealed the genetic distinctiveness of C. parvum in this
geographical area, with the presence of eight subtypes within the IIa
family, but the overwhelming predominance of an unusual subtype
(IIaA18G5R1) previously unreported in natural infections in human or
animal hosts. The genetic polymorphisms of C. parvum isolates from the
latter contribution have been further characterised in the current study.
For this purpose, a panel of nine VNTR markers was characterised by
fragment length analysis, and the results were combined with the gp60
subtype. Multilocus subtypes were also used to explore the population
structure of C. parvum in cattle farms in this area of Colombia.

2. Materials and methods

2.1. Cryptosporidium isolates

Genomic DNA of 70 C. parvum isolates from a previous study was
used in this molecular analysis (Avendaño et al., 2018). These isolates
were collected between 2010 and 2012 from naturally infected diar-
rhoeic (n: 25) and non-diarrhoeic (n: 45) calves younger than 35 days.
The calves were from 32 dairy cattle farms located in four Departments
in the central area of Colombia: Antioquia (n: 1), Boyacá (n: 4), Cun-
dinamarca (n: 26) and Meta (n: 1). One isolate from each of 16 farms
and 2 to 6 isolates from each of the remaining 16 farms were used.
Calves were maintained under semi-extensive feeding conditions.
Cryptosporidium species and C. parvum gp60 subtypes in the previous
study were determined based on a PCR-restriction fragment length
polymorphism (RFLP) and sequence analyses of the SSU-rRNA and gp60
genes, respectively (Xiao et al., 2001; Alves et al., 2003; Feng et al.,
2007).

2.2. Multilocus fragment typing

An automated capillary electrophoresis (CE)-based DNA fragment
analysis tool was used to categorize each isolate at nine VNTR markers,
including five microsatellite (ML1, ML2, TP14, 5B12, CP47) and four
minisatellite (MSB, MSC6-7, cgd2_3850, cgd6_5400) loci. The frag-
ments were amplified using single (ML2, 5B12, MSB), heminested
(ML1, cgd6_5400) and nested (TP14, CP47, MSC6-7, cgd2_3850) PCRs,
with primers and conditions previously described (Gatei et al., 2007;
Quílez et al., 2011; Ramo et al., 2016a). Reverse primers labelled with
HEX (4,7,2′,4′,5′,7′-hexachloro-6-carboxyfluorescein), FAM (6-carbox-
yfluorescein), or TAMRA (6-carboxytetra-methylrhodamine) were used
to allocate alleles with overlapping peaks to a specific locus. The pri-
mers used for PCR analysis of all gene targets, the annealing tempera-
tures used, and the sizes of the expected PCR products are listed in
Table 1.

Table 1
Primers and conditions of the PCR reactions for the amplification of diverse microsatellites and minisatellites.

Locus GenBank
Acces no.

Primer sequence (5’ → 3’) Annealing temp
(°C)

Fragment size range (bp) Reference

ML1 G35348 F1: CATGAGCTAAAAATGGTGG 55 218-242 (Cacciò et al., 2000; Chalmers et al., 2005)
F2: CTAAAAATGGTGGAGAATATTC
R: HEX-CAACAAAATCTATATCCTC 50

ML2 AF344880 F: CAATGTAAGTTTACTTATGATTAT 50 180-237 (Cacciò et al., 2001)
R: FAM-CGACTATAAAGATGAGAGAAG

TP14 XM627041 F1: TAATGCCCACCCATCTTCTT 61 279-333 (Mallon et al., 2003; Quílez et al., 2011)
R1: TCCATCTGGGTCCATTTAGC
F2: CTAACGTTCACAGCCAACAGTACC 62
R2: FAM-GTACAGCTCCTGTTCCTGTTG

5B12 AQ449854 F: TGACGATGAAGATGAGGGAAC 60 134-155 (Quílez et al., 2011)
R: HEX-CAGGACAGATTTAGGAGGAGGA

CP47 AF384127 F1: GCTTAGATTCTGATATGGATCTAT 43 417-479 (Gatei et al., 2007)
R1: AGCTTACTGGTCCTGTATCAGTT 55
F2: ACCCCAGAAGGCGGACCAAGGTT
R2: FAM-GTATCGTGGCGTTCTGAATTATCAA

MSB XM627997 F: GGGAGGCATAGGGATGA 59 246-324 (Tanriverdi and Widmer, 2006)
R: TAMRA-CTTTTGATCGCTTCTTTTCCA

MSC6-7 BX538350 F1: ATTGAACAAACGCCGCAAATGTACA 55 517-570 (Gatei et al., 2007)
R1:CGATTATCTCAATATTGGCTGTTATTGC 55
F2: GCTATTTGCTATCGTCTCACATAACT
R2: TAMRA-CTACTGAATCTGATCTTGCATCAAGT

cgd2_3850 XM626569 F1: ATTGAAGATTGCGGATGATGGGGTT 70 151-205 (Ramo et al., 2016a).
R1: TGGAGCGCCAAGTGCTGAAGA
F2: ATTTGCTGTTGCAACTGGTG
R2: TAMRA-GCCAAGTGCTGAAGAAGAGG

61

cgd6_5400 XM627858 F: TAATCTTTGCGTGGGACCTC 60 251-312 (Ramo et al., 2016a).
R1: GTGACTTGAATGACCCAGGA
R2: HEX-TGGAGTTTCTGAGACACAAAGA 59

C. Avendaño, et al. Acta Tropica 192 (2019) 151–157

152



According to the amplicon intensity, 0.5-to-2 μl samples of the
micro- and minisatellite-labelled PCR products for each C. parvum iso-
late were mixed and subjected to CE on a 3500xL Genetic Analyzer and
sized automatically using the GeneScan 600 Liz Size Standard (Applied
Biosystems, Life Technologies). Data were stored and analysed with the
aid of Gene Mapper software (version 4.1) to determine fragment sizes.
At least two representative isolates for each allele were amplified using
unlabelled primers and the above-mentioned PCR conditions, and they
were subsequently analysed by bidirectional sequencing for length
confirmation. Allele nomenclature was based on the fragment size (in
base pairs) adjusted after comparison with sequence analysis of these
representative isolates. Alleles were translated into numbers for mul-
tilocus analyses.

2.3. Multilocus subtype identification

The alleles at all nine VNTR loci were combined with the gp60
subtype to provide the multilocus subtype (MLT) for each isolate. Each
MLT was then assigned a number. The identification of two alleles at a
single locus was designated a mixed infection, and the two possible
MLTs were considered. The Hunter-Gaston discriminatory index (HGDI)
and 95% confidence intervals were calculated for each VNTR locus and
the multilocus analysis. For this purpose, the VNTR diversity and con-
fidence extractor software (V-DICE) available at the Health Protection
agency bioinformatics tools website were used (http://www.hpa-
bioinfotools.org.uk/cgi-bin/DICI/DICI.pl) (Hunter and Gaston, 1988).

2.4. Data analysis

The evolutionary relationships of the isolates was analysed by the
eBURST algorithm (http://eburst.mlst.net/). Clonal complexes were
defined as clusters of closely related MLTs that differ from one another
at one locus [single locus variants (SLVs)]. The MLTs that were not
clustered in any clonal complex were classified as singletons (Feil et al.,
2004). Allelic linkage disequilibrium (LD) among different loci was
assessed by measuring the standardised index of association (IAS) using
the software LIAN v. 3.7 (http://guanine.evolbio.mpg.de/cgi-bin/lian/
lian.cgi.pl) (Haubold and Hudson, 2000). The population structure was
determined using the software STRUCTURE v. 2.3 (http://pritchardlab.
stanford.edu/structure.html). This program utilises a Bayesian algo-
rithm in order to identify distinct sub-populations and determine frac-
tions of the MLT for each isolate belonging to each subpopulation
(Pritchard et al., 2000). The most probable number of ancestral popu-
lations was defined by the K value in accordance with previous reports
(Evanno et al., 2005).

2.5. Nucleotide sequence accession numbers

Representative nucleotide sequences generated in the current study
were deposited in the GenBank database under accession numbers
MG924432 to MG924435, MG924439 to MG924446 and MG924450.

3. Results

3.1. Allelic diversity

The numbers and sizes of alleles and the HGDI values identified at
each VNTR locus are summarised in Table 2. The analysis of allelic
variation revealed that most loci exhibited two (ML1, MSB, CP47, and
MSC6-7) or three (5B12, Cgd2_3850, and Cgd6_5400) alleles and the
TP14 microsatellite was monomorphic. A major allele was exhibited by
more than 69% of isolates at all these markers, with a single locus
(Cgd2_3850) displaying a HDGI value higher than 0.450. In contrast, a
total of six alleles more evenly distributed were identified at the ML2
microsatellite, which explains the highest HGDI value (0.822) exhibited
by this marker. This discriminatory index was higher than that reported

for gp60 sequencing, which differentiated a total of eight subtypes in a
previous study with the same stock of samples. Sequencing of re-
presentative isolates for each allele revealed novel allelic variants at the
ML2 (219 and 245bp), 5B12 (173bp) and Cgd2_3850 (169bp) loci.

3.2. Multilocus subtypes

The multilocus subtype (MLT) of each isolate was determined based
on the combination of alleles at the nine mini- and microsatellite loci
and the gp60 subtype. A total of 61 isolates from 26 farms had complete
allele data for all ten loci and 22 MLTs were identified (Table 3). The
two most prevalent MLTs (13 and 15) were identified in ten specimens
and four farms. Nine isolates showing a biallelic profile at a single locus

Table 2
Microsatellites and minisatellites alleles identified using capillary electrophor-
esis in C. parvum isolates from calves in Colombia. The adjusted size after se-
quencing (base pairs) and number assigned to each allele for multilocus analysis
is indicated.

Locus Alelle (bp) (assigned number) Nº of isolates (%) (n: 70)a Nº of farms (n: 32)

ML1 [HGDI= 0.089 (0.000 – 0.182)]b

226 (2) 3 (4.6) 3
238 (1) 62 (95.4) 24
ML2 [HGDI= 0.822 (0.802 – 0.842)]
219 (2) d 11 (18) 5
231 (1) 15 (24.6) 5
233 (3) 11 (18) 6
235 (6) 2 (3.3) 2
237 (4) 11 (18) 8
245 (5) d 11 (18) 4
TP14 [HGDI= 0.000 (0.000 – 0.101)]
324 (1) 67 (100) 30
MSB [HGDI= 0.031 (0.000 – 0.089)]
316 (2) 1 (1.5) 1
322 (1) 64 (98.5) 28
CP47 [HGDI= 0.239 (0.119 – 0.360)]c

417 (1) 55 (85.9) 25
420 (2) 7 (10.9) 5
417+420 2 (3.1) 2
MSC6-7 [HGDI= 0.058 (0.000 – 0.134)]
516 (2) 1 (1.5) 1
549 (1) 64 (97) 29
516+549 1 (1.5) 1
5B12 [HGDI= 0.223 (0.098 – 0.347)]
167 (2) 7 (10.9) 6
169 (1) 56 (87.5) 24
173 (3) d 1 (1.6) 1
Cgd2_3850 [HGDI= 0.459 (0.352 – 0.566)]
169 (3) d 4 (6.1) 1
193 (1) 46 (69.7) 21
199 (2) 15 (22.7) 10
193+199 1 (1.5) 1
Cgd6_5400 [HGDI= 0.190 (0.072 – 0.309)]
271 (3) 1 (1.6) 1
277 (1) 56 (88.9) 24
283 (2) 1 (1.6) 1
277+283 5 (7.9) 1
GP60 [HGDI= 0.506 (0.363 – 0.650)]
IIaA15G2R1 (1) 5 (7.6) 3
IIaA16G2R1 (2) 3 (4.5) 1
IIaA17G4R1 (3) 2 (3) 1
IIaA18G5R1 (4) 46 (69.7) 22
IIaA19G6R1 (5) 2 (3) 2
IIaA20G5R1 (6) 3 (4.5) 3
IIaA20G6R1 (7) 4 (6.1) 1
IIaA20G7R1 (8) 1 (1.5) 1

a Not all 70 C. parvum isolates could be typed at every loci.
b Hunter-Gaston Discriminatory Index (index [confidence interval 95%]).
c CP47 alleles were identified as IA29G10 (417bp) and IIA30G10 (420bp) by

sequencing, in accordance with the nomenclature proposed by Gatei et al.
(2007).

d Alleles not described previously.
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(CP47, cgd6_5400, cgd2_3850 and MSC6-7) were scored as having two
potential MLTs; five of these isolates belonged to the same farm and
showed a biallelic profile at locus Cgd6_5400. Numerous MLTs (13/22)
were distinctive for individual farms. The remaining nine MLTs were
simultaneously identified in two or more farms. A comparison between
MLTs and the previously reported subtypes determined by gp60 se-
quencing showed that each subtype corresponded to a single MLT, with
the exception of subtypes IIaA15G2R1 and IIaA18G5R1. The multilocus
analyses differentiated additional allelic variants in specimens subtyped
as IIaA15G2R1 (4 MLTs) and IIaA18G5R1 (12 MLTs). The HGDI value
of the ten-satellite tool was 0.940 (95% CI, 0.918 – 0.961). The inclu-
sion of the three most discriminatory loci (ML2, gp60 and Cgd2_3850)
in the multilocus analysis differentiated a total of 15 MLTs and pro-
vided a similar value (HGDI: 0.904; 95% CI, 0.873–0.936).

3.3. Population analysis

The eBURST analysis revealed two clonal complexes and one sin-
gleton, with the main cluster containing all but three MLTs. The second
clonal complex was formed only by two MLTs differing in the gp60
subtype (Fig. 1). The linkage analyses of all specimens as a single po-
pulation suggested a predominantly panmictic structure within the C.
parvum population in this geographical area. Evidence of linkage dis-
equilibrium (LE) was not found since the pairwise variance (VD:
1.3196) was lower than the 95% critical value (L: 1.3221), although the
P value almost reached statistical significance (IAs: 0.0186; P: 0.056).
Values remained not significant when counting only once all repeated
MLTs (IAs: 0.0051; VD: 1.2365; L: 1.6017; P: 0.378). The results of
analysis with STRUCTURE indicated that the most likely number of
clusters was three (K=3). Two thirds of isolates (65.7%) were con-
sidered to belong to any of the three clusters since the probability of

Table 3
Multilocus subtypes identified in C. parvum isolates from calves in Colombia, based on the combination of nine microsatellites/minisatellites and the gp60 locus.

MLT Alleles identified at each locusa Nº of isolatesb

(n: 61)
Nº of farms
(n: 26)

TP14 MSB MSC 6-7 ML1 cgd6_5400 5B12 CP47 cgd2_3850 ML2 GP60

1 1 1 1 1 1 2 1 2 4 6 3 3
2 1 1 1 1 1 2 1 2 4 8 1 1
3 1 1 1 1 1 2 2 1 2 4 3 2
4 1 1 1 1 1 1 1 1 1 2 3 1
5 1 1 1 1 1 1 1 1 1 4 3 1
6 1 1 1 1 1 1 1 1 3 1 3 1
7 1 1 1 1 1 1 1 1 3 3 2 1
8 1 1 1 1 1 1 1 1 3 4 4 3
9 1 1 1 1 1 1 1 1 6 4 1 1
10 1 1 1 1 1 1 1 1 4 4 5 3
11 1 1 1 1 1 1 1 1 4 5 2 2
12 1 1 1 1 1 1 1 1 5 1 1 1
13 1 1 1 1 1 1 1 1 5 4 10 4
14 1 1 1 1 1 1 1 1 2 4 2 2
15 1 1 1 1 1 1 1 2 1 4 10 4
16 1 1 1 1 1 1 1 3 2 7 4 1
17 1 1 1 1 1 1 2 1 3 4 1 1
18 1 1 1 1 1 1 2 1 6 4 1 1
19 1 1 1 1 1 1 2 1 2 4 4 3
20 1 1 1 1 2 1 1 1 5 4 5 1
21 1 1 1 1 3 1 1 1 3 1 1 1
22 1 1 2 1 1 1 1 1 5 1 1 1

a The number assigned to each allele is shown in Table 2.
b Only alleles that amplified at all ten markers were used for the multilocus analysis. Samples revealing mixed infection at a specific marker were unfolded and

assigned to the corresponding MLT.

Fig. 1. Relationships among 22 multilocus subtypes (MLTs) of Cryptosporidium parvum identified in calves using the eBURST algorithm. Each circle represents a MLT;
the size is proportional to the number of isolates. MLTs related by single-locus variants are linked by lines. The allelic profile of each MLT is indicated in Table 3.
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belonging to them was higher than 0.8. The remaining isolates could
not be allocated to a single population and were considered to have a
mixed ancestry (Fig. 2).

4. Discussion

Multilocus genotyping is more informative than the analysis of a
single locus in exploring the intra-species diversity of Cryptosporidium,
given the occurrence of genetic recombination in the sexual phase of
the protozoan life cycle. Combinations with more than 55 VNTR loci
have been used to date and recommendations on the validation of
markers for a multilocus scheme have been proposed, although no
standardised panel has been universally adopted so far (Robinson and
Chalmers, 2012; Hotchkiss et al., 2015; Pérez-Cordón et al., 2016;
Chalmers et al., 2017, 2018). A review of multilocus studies with C.
hominis and C. parvum revealed that different sets of markers are re-
quired for typing each species (Robinson and Chalmers, 2012). Studies
with C. parvum from domestic ruminants indicated that differences also
apply to host factors, with some loci being much more useful for ana-
lysing isolates from either calves or lambs (Ramo et al., 2016a,b).

The genetic diversity or C. parvum in cattle is not well documented
in South America. Previous studies based on sequence analysis of the
gp60 gene, which is the most popular marker for Cryptosporidium sub-
typing, have shown the genetic richness of the protozoan in this area. A
wide range of subtypes belonging to a single gp60 allelic family have
been reported in Brazil (IIaA14G2R1, IIaA14G2R2, IIaA15G2R1,
IIaA16G3R2, IIaA17G2R1, IIaA18G1R1, IIaA18G2R2, IIaA19G2R1,
IIaA19G2R2, IIaA20G1R1; IIaA20G2R1, IIaA20G2R2) (Meireles et al.,
2011; Paz e Silva et al., 2013; do Couto et al., 2014; Heckler et al.,
2015; Toledo et al., 2017), Argentina (IIaA16G1R1, IIaA17G1R1,
IIaA18G1R1, IIaA19G1R1, IIaA20G1R1, IIaA21G1R1, IIaA22G1R1,
IIaA23G1R1) (Tomazic et al., 2013; Del Coco et al., 2014) and Chile
(IIaA15G4R1, IIaA16G4R1, IIaA17G4R1) (Mercado et al., 2015). The
fact that many of these subtypes were novel allelic variants or were not
shared among different countries has been related to the geographic
isolation of the protozoan in cattle farms (Avendaño et al., 2018). The
latter authors conducted the first large study of Cryptosporidium species
and subtypes in Colombia, which revealed the distinct identity of C.
parvum circulating in calves. A rare subtype, IIaA18G5R1, was by far
the most prevalent and widely distributed in the study, and three novel
subtypes were found (IIaA19G6R1, IIaA20G6R1 and IIaA20G7R1).

Isolates from the above-mentioned investigation have been further
analysed in the present study using a panel of nine VNTR markers,
which were selected based on their resolution ability for typing C.
parvum from calves (Ramo et al., 2016a). None of the VNTR loci ex-
ceeded the genetic variability of the gp60 locus (8 alleles). Seven
markers were either biallelic (ML1, MSB, CP47, MSC6-7) or triallelic
(5B12, cgd6_5400, cgd2_3850) but exhibited a major allele accounting

for more than 69% of specimens, which explains their low dis-
criminatory index. It is worth mentioning that no variation was found
at the TP14 microsatellite, which is considered a relevant locus in
multilocus studies in Europe and the United States (Quílez et al., 2011,
2013; Herges et al., 2012; Hotchkiss et al., 2015). This marker was
required to achieve 95% of MLTs in previous studies with either C.
parvum or C. hominis (Robinson and Chalmers, 2012). The 324bp
fragment exhibited by all isolates in this study was also the pre-
dominant allele found in calves in northern Spain (Ramo et al., 2016a).
Nevertheless, the latter authors reported two additional allelic variants
(333bp and 342bp) that increased the HDGI value to 0.663, which in-
dicates that geographical factors should also be considered when se-
lecting the most informative loci.

The greatest number of alleles was detected at the ML2 locus (6
alleles), which provided a HGDI value even higher than gp60 sequen-
cing. This microsatellite has been reported to be among the most
polymorphic markers for typing C. parvum from humans, pre-weaned
livestock or waterborne outbreaks in Europe (Cacciò et al., 2001;
Hunter et al., 2007, 2008; Quílez et al., 2011, 2013; Díaz et al., 2012).
The most prevalent allele at this marker (ML2-231) was also the most
common allelic variant in calves in Spain (Quílez et al., 2011; Díaz
et al., 2012; Ramo et al., 2016a). Nevertheless, more than 36% of
specimens exhibited two novel allelic variants 219bp and 245bp in
length, which further supports the genetic uniqueness of C. parvum in
cattle farms in this geographical area.

The combination of nine VNTR markers with the gp60 subtype
provided a more robust analysis than gp60 alone, and identified 22
multilocus subtypes within 61 isolates. Most MLTs (16/22) were dif-
ferentiated within the two most prevalent subtypes (IIaA15G2R1 and
IIaA18G5R1), thereby supporting the usefulness of multilocus typing as
compared to sequencing of the gp60 gene. It is significant to note that
the combination of only the three most informative markers (ML2, gp60
and Cgd2_3850) differentiated 68% of MLTs and hardly impaired the
discriminatory index, showing a marker redundancy that has been re-
ported in most multilocus schemes (Robinson and Chalmers, 2012).
Likewise, the exclusion of gp60 and ML2 loci dramatically reduced the
numbers of MLTs (n= 9), indicating that both markers contributed the
most to the discriminatory power of the multilocus approach.

The genetic diversity found in our study is similar to that reported
among 118 calves in the United Kingdom using a six-loci approach (23
MLTs) (Hotchkiss et al., 2015), but much lower to that detected in
Ireland (78 MLTs) or Spain (70 MLTs) using panels of seven and twelve
markers, respectively (de Waele et al., 2013; Ramo et al., 2016a). Many
MLTs (13/22) were confined to individual farms, a finding that has
been related to the endemic nature of infection and intensive farming
practices with limited exchange of animals between herds (Tanriverdi
and Widmer, 2006; Quílez et al., 2011; Drumo et al., 2012; Ramo et al.,
2016a). In the current study, dairy calves in most farms (31/32) were

Fig. 2. Bayesian analysis of 61 C. parvum isolates from calves in Colombia as inferred by STRUCTURE. The bar plot shows the most probable number of ancestral
clusters (K=3) represented by different colours. Each bar represents an isolate. The colours within the bar reflect the isolate’s estimated proportion of membership
(shown on the y-axis) in that cluster. The MLT number for each isolate is shown in the x-axis. The allelic profile of each MLT is indicated in Table 3. Analyses were
conducted on allelic data at VNTR loci and the GP60 subtype.
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reared under a semi-extensive system, but the introduction of new an-
imals occurred rarely. Most herds breed their own replacement females
rather than buying young heifers, suggesting that Cryptosporidium in-
fection is mainly transmitted within cattle farms.

Analyses of C. parvum populations have shown a significant di-
versity in terms of the role of genetic exchange, with differences at a
local geographical level that could determine the degree of re-
combination (Tanriverdi et al., 2008). Evidence of these variations has
been reported in Scotland, with panmictic, epidemic or clonal sub-
populations among specimens from humans and livestock (Mallon
et al., 2003; Morrison et al., 2008). The C. parvum population structure
ranged from basic clonality (humans) to epidemic clonality (livestock)
in France, and a predominant pattern of clonality was found in Italy
(Ngouanesavanh et al., 2006; Drumo et al., 2012). In contrast, an
overall panmitic structure was reported in cattle farms and/or humans
in the Upper Midwest of the United States, Ireland and northern Spain
(Herges et al., 2012; de Waele et al., 2013; Ramo et al., 2016a).

In the current study, the analysis with the eBURST algorithm
showed that all but three MLTs were linked by SLVs, suggesting a low
degree of genetic divergence. The distinctive identity of the remaining
three MLTs was associated with the gp60 gene, since all these specimens
belonged to any of the three subtypes with 20 TCA repeats in the tri-
nucleotide region. MLTs in the main clonal complex formed a network
with a star-like structure typical of clonal expansion, but linkage ana-
lysis did not find evidence of linkage disequilibrium. Nevertheless, the
P-value was close to the statistical significance at the 5% level, advising
subsequent studies with more exhaustive sampling. This observation
was supported by an analysis using STRUCTURE, which indicated that
the population structure is best explicated by K=3 ancestral types, but
a large proportion of isolates (35%) could not be assigned to only one of
these three populations as they showed mixed ancestry.

To the best of our knowledge, this is the first multilocus analysis on
the intra-specific variability of Cryptosporidium from calves in South
America. The results reveal that this fragment analysis approach based
on the combination of ten markers is a useful tool for strain typing and
epidemiological tracking, but should be optimized by selecting the most
informative markers at a local level in order to improve both the cost
effectiveness and the time involved in testing. Our findings also confirm
the distinctiveness of C. parvum infection in cattle farms in this geo-
graphical area and indicate a moderate genetic diversity. Further in-
vestigations with a larger sample set of specimens from this and other
areas should be conducted to better understand the genetic diversity of
the protozoan in South America.
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