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Abstract 

Core-shell nanoparticles provide a unique morphology to exploit electronic interactions between 

dissimilar materials conferring them new or improved functionalities. MoS2 is a layered transition-

metal disulfide that has been studied extensively for the hydrogen evolution reaction (HER) but 

still suffers from low electrocatalytic activity due to its poor electronic conductivity. To understand 

the fundamental aspects of the MoS2-Au hybrids with regard to their electrocatalytic activity, a 

single to a few layers of MoS2 were deposited over Au nanoparticles via a versatile procedure that 

allows for complete encapsulation of Au nanoparticles of arbitrary geometries. High-resolution 

transmission electron microscopy of the Au@MoS2 nanoparticles provides direct evidence of the 
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core–shell morphology and also reveals the presence of morphological defects and irregularities 

in the MoS2 shell that are known to be more active for HER than the pristine MoS2 basal plane. 

Electrochemical measurements show a significant improvement in the HER activity of Au@MoS2 

nanoparticles relative to free-standing MoS2 or Au-decorated MoS2. The best electrochemical 

performance was demonstrated by the Au nanostars – the largest Au core employed here – 

encapsulated in an MoS2 shell. Density-functional theory calculations show that charge transfer 

occurs from the Au to the MoS2 layers, producing a more conductive catalyst layer and a better 

electrode for electrochemical HER. The strategies to further improve the catalytic properties of 

such hybrid nanoparticles are discussed. 
 

Keywords: Core-shell, Density Functional Theory, charge transfer, Nano stars, Nano rods, 

electrocatalysis, transition-metal dichalcogenides   
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1. Introduction 

Layered transition-metal dichalcogenides (TMDs), in particular of Group VIB TMDs like MoS2, 

WS2 and MoSe2, used traditionally in petrochemistry, have begun to attract interest for key 

sustainable-energy reactions such as hydrogen evolution reaction (HER) and CO2 reduction.1-5 In 

their ground state (2H phase), Mo and W TMDs are semiconductors with thickness-dependent 

band-gaps in the range of 1-2 eV6 and, consequently, are not particularly effective as 

electrocatalysts. Another limitation of these materials for electrocatalysis, as shown by both 

calculations and experiments, is that the active sites for HER are located along the (limited) 

exposed edges while the basal planes are relatively inert. It is against this background that efforts 

are currently being dedicated to further modify the MoS2 structures with the aim of improving 

performance by increasing the density of their catalytic sites either by creating defects,7-9 

modifying the morphology or by doping with other transition metals.2-3, 10-11 Another approach is 

to combine MoS2 with other materials and produce hybrids with improved electrical 

conductivity,12 more active basal planes,13 or improved photocatalytic activity.14-15 Recently, a 

study exploring the thickness dependence (number of layers) of MoS2 electrocatalysts showed a 

significant improvement in the catalytic activity for HER with decreasing number of layers.16 The 

layer-dependent electrocatalysis was correlated to interlayer hopping of electrons between layers 

of MoS2. Therefore, increasing the hopping efficiency is a crucial factor for the design of MoS2 

with optimal catalytic activity. Although many materials have been tested and researched as 

heterogenous catalysts, the use of hybrid materials, such as core-shell structures, is a noteworthy 

approach for tuning the catalytic properties of layered nanomaterials. In particular, increasing 

evidence shows that the core is not merely an inert support for the shell and complex interactions 

(electronic and mechanical) at the core–shell interface can alter catalytic behavior at the surface of 

few-layer shells.14, 17-18 However, there is lesser knowledge about the influence of such core-shell 

interactions on the mechanisms of electrocatalytic reactions, which is the focus of this work. 

Hybrid nanoparticles made of coinage-metal cores coated with MoS2 layers have been reported 

recently by several groups.12, 14-15, 17, 19-20 The choice of Au as a model core material, albeit 

expensive as a practical catalyst, is quite straightforward in this context: Au is inert towards 

oxidation; Au interacts strongly with MoS2 via the S atoms; and the localized surface plasmon 

frequency of nanostructured Au is strong and in the visible range. The optical characteristics of 
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transition-metal core–MoS2 shell nanoparticles present a new hybridized state between the surface 

plasmons of the metal core and the exitonic transitions of the MoS2 shell.14-15, 17 These hybridized 

states can be optically tuned by varying the shape of the nanoparticles.21 Further modulation of 

this transition by coupling to the excitonic modes of MoS2 has been demonstrated,14-15, 17 offering 

myriad potential applications.22 It is therefore appealing to study hybrid Au-MoS2 core-shell 

structures as model photocatalysts23-25 and electrocatalysts.26 However, while photocatalysis using 

plasmonic nanostructures is a complex process, wherein a correct understanding of the process 

may be hindered by strong thermal effects from the metal nanoparticles,27 electrocatalysis is a 

more straightforward route towards understanding the basic mechanisms of reactions at Au-MoS2 

surfaces.     

In this work, various MoS2 and Au structures were produced: three geometries of Au cores coated 

by a conformal MoS2 shell, as well as a complementary structure consisting of free-standing MoS2 

nanoflowers decorated with exposed Au nanoparticles. All materials were processed to produce 

drop-casted electrodes from a suspension of the catalysts in a Nafion-based ink and their 

electrocatalytic activity towards hydrogen evolution was studied. Electrochemical measurements 

reveal that the structures with the largest Au core (Au nanostars) are superior HER electrocatalysts 

with lower onset potentials and Tafel slopes relative to Au-decorated free-standing MoS2. Density-

functional theory (DFT) calculations suggest that the dominant mechanism for the improved 

catalytic activity is most likely one wherein the Au support promotes the formation of basal-plane 

S vacancies in MoS2 and further stabilizes H adsorption at these catalytically active sites. These 

effects are driven by electron transfer from the Au core to the MoS2 shell (also seen in the XPS 

measurements), and such charge transfer could also potentially improve the conductivity of the 

semiconducting 2H phase thereby benefiting overall electrocatalytic performance.   
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2. Experimental 

Experimental procedures 

All Au cores were pre-formed and then encapsulated within MoS2 by overnight stirring with 

ammonium tetrathiomolybdate ((NH4)2MoS4) to bind MoS4
-2 anions to the Au cores, using 

procedures similar to those reported in our previous publication.17 Detailed procedures for the 

synthesis of the Au cores, the encapsulation in MoS2 and the experimental procedures for the 

preparation of electrodes for the electrocatalytic measurements are available in the Supporting 

Information. In addition, two reference samples were produced—free standing MoS2 and free-

standing MoS2 decorated with Au nanoparticles; detailed synthesis protocols and characterization 

are provided in the Supporting Information. 

Computational methods 

DFT calculations were performed using Vienna Ab Initio Simulation Package (VASP; version 

5.4.1).28-29 The projector-augmented wave (PAW)30-31 method was used to describe core and 

valence electrons along with the Perdew-Burke-Ernzerhof (PBE) form32 of the generalized-

gradient approximation to describe electron exchange and correlation. The planewave kinetic 

energy cutoff was set to 400 eV and Gaussian smearing of 0.05 eV was used for Brillouin-zone 

integrations. Structural optimization was performed using the conjugate-gradient method with a 

force tolerance of 0.01 eV/Å. The relaxed lattice parameters for bulk Au (FCC) and single-layer 

MoS2 (2H phase) are 4.15 Å and 3.18 Å, respectively. All calculations of isolated MoS2 were 

performed using a 4 × 4 supercell; for Au-supported cases, supercells and atomic positions are 

provided in the Supporting Information. During relaxation of MoS2/Au slab, the bottom two layers 

of Au were fixed at their bulk positions. To avoid spurious interactions with the periodic images, 

at least 10 Å of vacuum was inserted normal to the slabs. The Brillouin zone was sampled using a 

5 × 5 × 1 Γ-centered k-point mesh in all calculations. H-adsorption energies were calculated by 

inserting one H atom on the surface of the slab and dipole corrections33-34 were applied along the 

normal direction. Electronic density-of-states were calculated using 3000 energy-grid points. 

Similar to prior studies,35-36 solvent effects have been neglected here, as a first approximation, and 

are not expected to change the overall conclusions. 
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3. Results and Discussion  

The comparative study presented here is based on various morphologies of Au—spherical 

nanoparticles, elongated nanorods, and spiky Au nanostars—encapsulated within a few MoS2 

layers. In addition, a sample of Au nanoparticles deposited on nanostructured MoS2 was produced, 

to represent samples where the Au is directly exposed to the surrounding medium and can itself 

potentially catalyze the HER reaction.  

 

Materials analysis and characterization with electron microscopy 

 

I. Au particles embedded within MoS2 (P-Au@MoS2) 

Similar to the prior work,17 the product consisted of nanoparticles with sizes between 10-20 nm 

embedded within almost amorphous material.  Figure 1a shows a TEM image of an assortment of 

P-Au@MoS2 nanostructures showing that the Au cores are sheathed conformably by MoS2 

monolayers (blue arrows in Figure 1d); Often, this core–shell morphology is seen more clearly at 

higher magnification in Figure 1b. Figure S1 shows the core level EELS spectrum of one such 

nanoparticle, showing Au, Mo and S signals. Figure 1c shows a STEM HAADF image of a group 

of P-Au@MoS2 nanoparticles while Figure 1d displays a single nanoparticle at higher 

magnification using the same technique. Automatic indexing of the FFT performed using the 

JEMS software37 revealed that the core of the nanoparticle corresponds to the Au face-centered 

cubic structure seen along the [011] zone axis. The Au core forms a multiply twinned particle, 

typical of Au nanostructures, with a truncated octahedron morphology.  
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Figure 1. Electron microscopy images of P-Au@MoS2. a) TEM image of a few particles. b) TEM 
image of a single particle. c) STEM HAADF image of a group of particles with truncated-
tetrahedron Au core structure. d) HR-STEM HAADF of a single particle. The inset shows the FFT 
analysis performed at the center of the nanoparticle in the area highlighted by the green square. 

 

 

II. Au rods embedded within MoS2 (R-Au@MoS2) 

The Au nanorods (aspect ratio of ~3), were coated with MoS2 forming a single layer (Figure 2a) 

or a few-layers thick coating (Figure 2b), embedded within MoS2 amorphous material. The 

coating of the MoS2 layer was not as perfect as for the spherical nanoparticles,17 frequently 

consisting of incomplete shells. The Fourier transform (FFT) within the inset of Figure 2b shows 

the reflections from the (200) and (1-11) planes of Au. Note that the Au lattice is not coincident 

with the growth axis in this case. Figure S2 shows another Au nanorod coated with a monolayer 

of MoS2: the perfect contour of the MoS2 layer and the lattice image of the Au nanorod can be 

appreciated. The (001) plane of the Au lattice is parallel to the growth axis of the nanorod, which 

is not always the case (vide infra). It is nonetheless not clear at this point if the lattice of the Au 

nanorod has any influence on the growth mode of the top MoS2 layer. Figure S3 shows a tilt series 

of one such nanorod in three angles (0, ±25°). The tilt series shows, that notwithstanding the 
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imperfections in the MoS2 layer, it encapsulates the entire Au nanorod. Note that the hybrid 

nanoparticle was placed on a lacy grid with its upper part placed on the amorphous carbon frame 

and its lower part suspended in vacuum. Therefore, the contrast and image-quality of the MoS2 

layer placed on the amorphous carbon substrate, is not as good as the one in vacuum. In general, 

the wrapping of the MoS2 layer on the tip of the Au nanorod is less continuous along its facets. 

Figure 3a shows a STEM-HAADF image of a group of R-Au@MoS2. The average value of the 

aspect ratio is 2.5, with variation between 1.6 and 3.3. Figure 3b shows the tip of one such hybrid 

nanoparticle in greater detail. The individual MoS2 layers are clearly discernible on the surface of 

the nanorod. The MoS2 interlayer distance has been extracted from this image and is equal to 0.70 

nm. This value is slightly higher than the one reported for the interlayer spacing of few-layer MoS2 

(0.62 nm).38-39 The tip of the Au nanorod is coated with three MoS2 layers, while two MoS2 layers 

are seen at the facet of the nanorod. It is quite common to observe that the coating at the tip of the 

nanorod contains more MoS2 layers than at the facets of the nanorods (Figure S4a). Note that the 

centers of the facets also tend to display a local increase of the number of MoS2 layers (Figure 

S4b). Raman measurements of P-Au@MoS2 and R-Au@MoS2 showed that the separation of the 

E2g
1 and A1g peaks is 22-23 cm-1 (Figure S5), also confirming that the MoS2 shell comprises 2-3 

molecular layers of MoS2.38 In particular, the observed shift of the E2g
1

 to lower frequencies, to 

and beneath 380 cm-1
, is the fingerprint of S vacancies.40-42 

 

 
Figure 2. a-b) TEM image of an individual gold nanorod within MoS2 (R-Au@MoS2). The inset 
in b shows the FFT analysis performed within the area highlighted by the grey square.  
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Figure 3. (a) STEM HAADF of an assortment of R-Au@MoS2. (b) HR-STEM HAADF 
micrograph of the tip of a single R-Au@MoS2 nanoparticle. The green arrow highlights the area 
used to extract the intensity profile, displayed in the inset, of the STEM HAADF image. The black 
arrow in the inset marks the distance between three peaks of the intensity profile, showing a 0.70 
nm spacing between adjacent layers.  
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III. Au nanostars embedded within MoS2 (S-Au@MoS2) 

Large spiky nanostar Au particles were produced and coated with MoS2. TEM images depict the 

nanostars before (Figure 4a-c) and after the coverage with MoS2 (Figure 4d-f). The arm length 

varies between 60-360 nm and the diameter of the entire nanostructure is in the range of 115-475 

nm. The coverage on the Au nanostars was more amorphous (Figure 4f), since a thermal annealing 

stage resulted in the reconstruction of the Au particles into featureless structures and the loss of 

the spiky nature. Additional data, including the change in absorption spectrum upon MoS2 

deposition, the powder XRD diffraction of the samples, and EDS chemical maps of the S-

Au@MoS2 structures are presented in Figure S6-7 in the Supporting Information.   

 
Figure 4. TEM images of Au nanostars: (a) A low magnification image. (b) A higher 
magnification of the area in the orange frame marked in (a). (c) A higher magnification of the area 
in the blue frame marked in (b). TEM images of Au nanostars coated with MoS2: S-Au@MoS2. 
(d) A low magnification image. (e) A higher magnification of the area in the orange frame marked 
in (d). (f) A higher magnification of the area in the blue frame marked in (e).   

 

Electrocatalytic measurements 

The electrocatalytic activity toward HER under acidic conditions (0.5 M H2SO4) was evaluated 

using a standard, three-electrode setup with the working electrode prepared by drop casting the 

catalysts onto a polished glassy carbon (GC) electrode. The polarization curves are presented in 
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Figure 5a from which we determine the overpotentials at 10 mA∙cm-2 and the Tafel slopes (Figure 

5b). The overpotentials of the hybrid materials are consistently lower than bare MoS2 or Au. As 

reference samples, MoS2 nanoflowers and Au-deposited nanoflowers were also prepared and 

measured for the catalytic activity towards HER (see the Supporting Information for detailed 

synthesis protocol and TEM images in Figure S8). The hybrids exhibit an improvement of more 

than 200 mV of the overpotential (at 10 mA∙cm-2) relative to edge-oriented MoS2 nanoflowers, 

regardless of whether the Au particles are embedded within MoS2 or exposed on its surface. The 

larger the Au structures, the lower is the overpotential at 10 mA∙cm-2
, reaching 164 mV for the S-

Au@MoS2. Interestingly, the structures with similar size of Au particles (P-Au@MoS2 and 

nanoflowers deposited with Au particles) showed close results. The HER kinetics is also estimated 

using the corresponding Tafel plots (Figure 5b) from which we observe that MoS2 nanoflowers or 

Au alone show inferior catalytic properties compared with the hybrid nanoparticles considering 

both the overpotential and the Tafel slope. The hybrid Au core - MoS2 shell also show substantially 

lower Tafel slopes, reaching 50 mV/dec for S-MoS2, indicating a faster rate of the HER for the 

hybrids. The exchange current density, j0, is presented in Table S1, and shows moderately higher 

values for the hybrids. 
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Figure 5. (a) HER polarization curves. The polarization curves are based on geometrical current 

density and were not IR corrected. (b) Corresponding Tafel slopes obtained for the hybrid 

Au/MoS2 materials, Au (bare rods), MoS2 nanoflowers and commercial 10% Pt/C in 0.5 M H2SO4 

(pH ~0.25). The scan rate of the polarization curves was 10 mV·sec-1.  

Additional insights into the improved catalytic activity of the hybrid Au@MoS2 can be obtained 

via first-principles density functional theory (DFT) calculations. In particular, we seek to 

understand, via DFT calculations, the relative importance of mechanical strains and electronic 

interactions that arise at the Au–MoS2 core–shell interface, and the implications of these effects 

for the catalytic properties of the MoS2 shell. We modeled the Au@MoS2 nanoparticle as a 

monolayer of MoS2 (1L-MoS2) supported on an Au (111) slab. As the calculated lattice mismatch 
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between the MoS2 monolayer and the Au surface is 7.72%, it is unrealistic to enforce epitaxial 

matching on the MoS2 layer; the alternate approach of compressing the Au slab 34 leads to artifacts 

in the electronic structure of the support. While it is reasonable to expect some degree of tensile 

strain in the curved MoS2 shell, the precise values for our samples are difficult to extract 

experimentally as some disorder of the MoS2 shell is also expected, based on previous data.43 

Hence, we chose to model the supported hybrid Au/MoS2 system by rotating the MoS2 layer to 

produce two coincident-site lattices, one with a small biaxial tensile strain, 𝜀𝜀=+0.67%, and the 

second with a larger tensile strain of 𝜀𝜀=+2.48% (see Supporting Information for more details). 

While it is not possible to account fully for the geometric complexity of the Au cores, the slab 

models employed here nevertheless allow us to explore separately the strain and support effects 

that influence the catalytic activity of the MoS2 shell, thus allowing for broader conclusions beyond 

the specific set of Au core structures reported here. 

Figure 6 displays the free energy of hydrogen adsorption (∆GH), a widely-used descriptor of 

HER activity in acidic media,44-46 for unsupported and Au-supported 1L-MoS2 at standard 

conditions [300 K and a potential of 0 V vs. Reversible Hydrogen Electrode (RHE)]. ∆GH was 

calculated as 

Δ𝐺𝐺𝐻𝐻 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝐻𝐻 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −
𝐸𝐸𝐻𝐻2
2

+ Δ𝐸𝐸𝑍𝑍𝑍𝑍𝑍𝑍 − 𝑇𝑇Δ𝑆𝑆, (1) 

where 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝐻𝐻, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and 𝐸𝐸𝐻𝐻2 are the total energies of either 1L-MoS2 or the composite 1L-

MoS2/Au (111) slab with an adsorbed H atom, the clean slab (no H), and an H2 molecule in the 

gas phase, respectively; Δ𝐸𝐸𝑍𝑍𝑍𝑍𝑍𝑍 and Δ𝑆𝑆 are the differences in zero-point energies and entropies, 

respectively, of an adsorbed H atom and its reference state in the H2 molecule. As per Sabatier’s 

principle,47 a surface with ∆GH = 0 is an ideal HER catalyst 46 with negative/positive values of ∆GH 

leading to over-/under-binding of H. In agreement with previous reports,36, 48-50 we find that the 

basal plane of unstrained MoS2 monolayer is inert towards HER due to its highly unfavorable ∆GH 

~1.9 eV at a S top-site. At +0.67% and +2.48% strain, the adsorption energy deceases by 0.02 eV 

and 0.13 eV, respectively; the addition of the Au(111) support further lowers ∆GH by 0.15 eV 

(𝜀𝜀=+0.67%) and 0.16 eV (𝜀𝜀=+2.48%). While the electronic effect of the Au support is more 

significant than the strain effect, the resulting adsorption energies at the S top-sites are still too 

thermodynamically unfavorable for HER. However, it is well known that basal plane S-vacancies 

in MoS2 are highly active for HER36, 48 and, indeed, we find that ∆GH drops to ~0.1 eV at a S-
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vacancy site in unstrained MoS2 monolayer. At +0.67% and +2.48% strain, ∆GH decreases slightly 

to 0.05 eV and -0.06 eV, respectively, and the addition of the Au support further reduces these 

adsorption energies to -0.02 eV and -0.11 eV. Thus, at low to moderate tensile strains, the support 

and strain effects act in synergy and render S-vacancy sites more favorable for HER.  

 

Figure 6. Free energy of H-adsorption (∆GH) at S top sites and S-vacancy sites on the basal plane 
of freestanding MoS2 monolayer and Au (111)-supported MoS2 monolayer at biaxial tensile strains 
of +0.67% and +2.48%. MoS2 and MoS2-v represents the defect-free and defective single layers, 
respectively. Blue and red dashed lines are the reference values of ∆GH at a S top-site and a vacancy 
site, respectively, in the basal plane of an unstrained, freestanding MoS2 monolayer. 

Electronic structure calculations offer insights, beyond thermodynamics calculations, into the 

microscopic interactions between the MoS2 monolayer and the Au (111) support. Figure 7 

displays the total and angular-momentum projected density of states (DOS) of a pristine, 

unsupported MoS2 monolayer and the Au-supported counterparts at +0.67% and +2.48% biaxial 

strains. The absence of electronic states near the Fermi level for unsupported MoS2 monolayer 

renders H-adsorption unfavorable, which is well documented.50 However, when an MoS2 

monolayer is deposited on an Au support, we notice the gradual emergence of gap states near the 

Fermi level, which leads to slightly stronger—albeit, still thermodynamically unfavorable—

adsorption of H. The density of the gap states increases with increasing tensile strain and the 

overall band gap of MoS2 also decreases as known from previous studies.51-55 A Bader analysis56-

58 reveals that electrons are transferred from the Au slab to the MoS2 monolayer (1.4×1013 e-/cm2 

for 𝜀𝜀=+0.67% and 8.28×1012 e-/cm2 for 𝜀𝜀=+2.48%). Charge-density-difference plots (Figure 8) 
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are consistent with the Bader analysis and reveals that charge redistribution occurs largely at the 

MoS2/Au interface with smaller effects on the upper S basal plane. 

 

Figure 7. Total and angular-momentum-projected density of states (DOS) of (a) unsupported and 
unstrained 1L-MoS2, (b) 1L-MoS2 on Au (111) with +0.67% strain, and (c) 1L-MoS2 on Au (111) 
with +2.48% strain. Only the states projected on to the MoS2 layer are displayed for clarity and 
the Au states are excluded. The Fermi level is set to zero and the work function Φ of the various 
systems are also indicated in each panel. 

 

(a) 

(b) 

(c) 
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Figure 8. Charge-density-difference plots for MoS2 on Au, at (a) +0.67% and (b) +2.48% strain; 
isosurfaces are set to 4.4×10-3 e-/Å3 and 5.7×10-3 e-/Å3 in panels (a) and (b), respectively and 
yellow/cyan colors indicate charge accumulation/depletion. The charge transferred from the Au 
slab to MoS2 is indicated in each case. Blue, red and orange spheres represent the S, Mo and Au 
atoms. (c, d) Integrated (over xy plane) charge-density differences corresponding to panels (a) and 
(b) as a function of distance normal to the slab (z); yellow, green and red dots show the z-
coordinates of Au, S and Mo layers in the MoS2/Au slab. Charge-transfer is strongly localized at 
the MoS2/Au interface. 

For unstrained MoS2 monolayer with vacancy defects (MoS2-v ; Figure 9), we find that 

dangling Mo bonds at the S-vacancy appear as antibonding gap states, ~1 eV above the Fermi 
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level, consistent with previous reports 36, 50, 59 and these defect states are responsible for enhancing 

H-adsorption. The addition of the Au support injects charge into the MoS2 layer and shifts the 

Fermi level such that the vacancy defect states are much closer to the Fermi level, further 

stabilizing H adsorption at S-vacancy sites. Thus, our electronic structure studies confirm that, for 

a monolayer, the support effect, arising from charge transfer from Au to MoS2, is dominant over 

the strain effect and that the new gap states introduced during this charge transfer process are 

responsible for promoting H adsorption on the sulfur basal plane. Furthermore, charge transfer to 

the MoS2 shell can also improve the conductivity of the semiconducting 2H phase, which is, in 

turn, beneficial for electrocatalysis. XPS measurements on P-Au@MoS2 show a shift in the 

binding energies of the Mo towards lower binding energies (compared with pristine MoS2) and a 

shift of the Au binding energies towards the higher energies, usually attributed to charge transfer 

from the Au to the Mo (see Figure S10 and Table S2 for the XPS data and analysis).  

We also performed a more detailed analysis (see Supporting Information) of the competing 

thermodynamics of HER and electrochemical desulphurization, the latter having been shown to be 

a promising route for activation of MoS2 via generation of sulphur vacancies.45,60-61 In essence, the 

calculations show that at negative potentials, the Au support not only stabilizes H adsorption at the 

catalytically active sites but also promotes the formation of basal-plane S vacancies in MoS2. 

Tensile strains are slightly detrimental to the formation of vacancies but once vacancies are 

formed, strain plays a smaller role in stabilizing H adsorption at these defects (see Supporting 

Information). The insights gained from these trends may serve to explain the dominant factors in 

this system as well as to indicate further possible activation routes for these materials. In a nutshell, 

the MoS2 shells are likely defect-rich, in order to encapsulate the Au nanoparticle, producing a 

combined effect whereby S vacancies, strain, and charge injection from the substrate all make the 

MoS2 monolayer a better HER catalyst. Finally, while we have not modeled multilayer MoS2@Au 

structures due to the computational cost, we expect that the improvement in HER activity will be 

less significant as compared to the monolayer case since the dominant charge transfer effect is 

fairly localized to the interface between the first MoS2 layer and the Au slab; the strain effect is 

expected to be of nearly similar magnitude between single and multiple layers and, as shown 

above, is of secondary importance to the charge transfer effect. 
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Figure 9. Total and angular-momentum-projected density of states of 1L-MoS2 with a basal-plane 
S vacancy (MoS2-v) for (a) an unsupported, unstrained single layer, (b) MoS2-v on Au (111) at 
+0.67% strain, and (c) MoS2-v on Au (111) +2.48% strain. 

 

4. Conclusions 

In conclusion, we have presented a method to synthesize core–shell Au@MoS2 nanoparticles and 

applied this to realize various MoS2-coated Au nanoparticles. Electron microscopy showed that 

the MoS2 layers completely encapsulate the Au nanoparticle even though these layers contain 

defects and seams. Such defects are more common near regions of high curvature such as the tips 

of the nanorods and nanostars. The hybrid Au@MoS2 core–shell nanoparticles are superior 

electrocatalysts relative to free standing MoS2. Theoretical modeling suggests that the improved 
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catalytic activity is likely due to charge transfer from the Au cores to the MoS2 shells, which 

improves the electronic conductivity of the semiconducting MoS2 shells and also reduces the 

energetic cost for generation of active chalcogen vacancy sites.   
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