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ABSTRACT. Focused electron beam induced deposition (FEBID) is considered the 

ultimate direct-write lithography technique for three-dimensional (3D) structures. 

However, it has not been possible yet to obtain 3D deposits by FEBID with the same 

purity and crystallinity of the corresponding bulk materials. In the present work, purified 

and crystalline 3D cobalt nanowires of diameter below 90 nm have been fabricated by 

ex-situ high-vacuum annealing at 600 ºC after FEBID growth. While increasing the 

metallic content of the nanowires up to 95% at., the thermal annealing process induces 

the recrystallization of the pseudo-amorphous as-grown structure into bulk-like, hcp and 

fcc crystallites with lateral sizes comparable to the nanowire’s width. The net 

magnetization increases 80% with respect to as-grown values, up to 1.61  0.06 T, near 

bulk cobalt. This achievement opens new pathways for applications of this synthetic 

method in the fabrication of either individual or arrays of 3D high-purity and crystalline 

cobalt nanowires for high-density memory and logic devices, nanosensors and actuators, 

and could be a viable method to obtain other pure and crystalline 3D materials by FEBID. 

 

 

 

 

 

 

 

 



Focused electron beam induced deposition (FEBID) is a synthetic technique, competitive 

for the fabrication of nanoscale objects and devices in a single-step lithographic method, 

not requiring the use of masks or lift-off procedures to fabricate motifs of nearly arbitrary 

shape and dimensions in a great variety of substrates1–3. The versatility of this direct-write 

nanofabrication technique to grow metallic4, insulating5, ferromagnetic6,7 or 

superconducting8 materials, combined with its capability for three-dimensional growth9, 

has stimulated the search for applications in fields as diverse as nanocontacting10, circuit 

edit and mask repair11, plasmonics12,13, photodetection14, magnetic storage and logics15,16, 

gas17 and magnetic sensing18, nano-actuation19, etc. FEBID implies the electron-beam-

induced decomposition of a metal-organic gas precursor adsorbed on the growth surface, 

fundamentally driven by the secondary electrons emitted by the substrate or the nascent 

deposit material3. The metal deposits generally contain different levels of contaminants 

originating from partially-decomposed precursor molecules and from dissociation of 

residual gases in the growth chamber20. Even though the smart tuning of the growth 

parameters (primary beam voltage and current, base pressure, precursor flux, dwell time, 

etc.) enables the growth of relatively-highly-metallic deposits18,21–24, in many cases the 

as-grown metallic content is remarkably low. For example, Pt deposits grown by FEBID 

with the standard precursor (CH3)3Pt(CpCH3) only contain 18% of Pt, in the form of 3 

nm small grains, the rest being C and O25. Thus, the lack of purity and the poor 

crystallinity will in general be limiting factors for obtaining the full potential of FEBID. 

 Diverse approaches have been followed to increase the purity of FEBID deposits, 

as reviewed by Botman et al. in 200920, and further explored since. This includes the 

growth on substrates at elevated temperatures26–28, in-situ annealing in high vacuum29–31, 

electron beam irradiation32,33, exposure to reactive atmospheres34,35, laser-assisted heating 

during deposition36,37, post-growth Joule heating upon injection of high electric 



currents38, ex-situ annealing39,40, supersonic jet delivery of precursor gas41, and 

combinations of all these methods35,42–46. Astounding success has been achieved in 

growing virtually-pure Pt deposits by post-growth electron irradiation in oxygen 

atmosphere34, or functional Au plasmonic nanostructures by electron beam irradiation in 

water vapor atmosphere13. However, such strategies have been generally applied to 2D 

deposits and challenges remain for their application to 3D deposits, such as the high 

volume shrinkage occurring due to the low metal content in the original deposit, which 

leads to substantial modification of the deposit shape or even the collapse of the 3D 

structures. 

 The case of magnetic materials grown by FEBID merits a separate discussion. 

Cobalt and iron deposits are amongst the FEBID materials with highest metallic content 

levels47–49. In this case, purity and crystallinity will have great impact in their electrical 

transport31 and magnetic properties (saturation magnetization, magneto-crystalline 

anisotropy, coercive field, etc.)50,51, both key for the potential application of FEBID 

magnetic deposits. 2D Co deposits are mostly based on the metal-organic precursor 

dicobalt octacarbonyl, Co2(CO)8. As-grown high metal contents up to 95% at. Co with 

metallic behavior upon optimum growth conditions have been achieved with limited 

lateral resolution and small crystalline size47. Even so, C and O contamination is always 

present due to the incomplete decomposition of the precursor molecules or residual 

chamber contaminants. 2D Fe deposits can be grown with high purity and small crystal 

size in ultra-high vacuum environment, which is a too-demanding condition for many 

applications22. In the case of 3D magnetic deposits, the dispersion of composition values 

found in the literature is high, given the strong dependence of the growth mode to small 

changes in the numerous growth parameters48,50. To the best of our knowledge, the growth 

of pure and fully-crystalline 3D magnetic deposits by FEBID has not been reported so far 



and is likely not possible without post-processing. The first attempts to purify Fe deposits 

were carried out by Furuya et al. through ex-situ thermal annealing and electron beam 

irradiation in ultra-high vacuum, demonstrating the formation of highly-magnetic alpha-

iron deposits, in some cases coexisting with iron carbides39. 3D nanostructures were 

already subjected to post annealing up to 600 ºC achieving iron contents near 60% at. 

Fe.30 Studies on FEBID Co include the work by Belova et al., who analyzed carbon-

seeded micrometric deposits grown on substrates at 70 ºC, on the verge of the thermal 

decomposition of the precursor, which presented a metal content >95% at. Co.27 Begun 

et al. explored the catalytic activity of Co in a reactive atmosphere (H2) upon electron 

beam irradiation, observing the formation of metallic Co only in a 20-nm-thick surface 

region of the deposit44. The effect of intense electric current on the properties of 

suspended Co nanowires has also been reported to induce purification from 80% to 89% 

at. Co and crystallization into large fcc crystals caused by local Joule heating and 

electromigration38. Recently, post-growth annealing in high vacuum of thin Co stripes 

increased its composition from 67% to 84% at. Co, with a conductivity of metallic 

character and three orders of magnitude higher than as-grown31. Although such previous 

work has provided hints on how to improve the purity and crystallinity of magnetic 

deposits grown by FEBID, the procedure to obtain purified and crystalline 3D magnetic 

deposits maintaining the original shape has not been reported yet. Hereafter, such 

successful post-processing method will be described for 3D cobalt nanowires. Given its 

simplicity, it will facilitate the development of future applications based on 3D magnetic 

nanostructures. 

In the present work, we draw our attention to the synthesis of pure and fully-

crystalline cobalt nanowires of lateral size below 90 nm by FEBID growth and subsequent 

ex-situ annealing at temperatures up to 600 ºC in high-vacuum conditions. These 



nanowires present 70% at. Co after FEBID growth, increasing to 95% at. Co after post-

processing. The saturation magnetization reaches the value of 1.61  0.06 T after post-

processing. Moreover, volume shrinkage after post-processing is not observed, ensuring 

good mechanical stability of the 3D structures during the process, in sharp contrast to 

other FEBID 3D materials with low metal content in the as-grown material. These results 

demonstrate that optimizing growth conditions to maximize cobalt content of as-grown 

nanostructures is not a key requirement provided that it is 65% at. or higher. To the 

contrary, the attention of as-grown FEBID magnetic nanostructures can be focused on 

tailoring the lateral dimensions and increasing architectural accuracy and complexity to 

produce individual or arrays of customized 3D nanostructures, which can be later 

annealed ex-situ to obtain devices of pure material with optimum magnetic response for 

the numerous applications foreseen for these structures, i.e. magnetic data storage and 

logic systems, Hall-effect nanosensing, catalytic growth of nanostructures, cantilever 

functionalization, or magnetic nanoactuators49.  

RESULTS AND DISCUSSION 

The fabrication of as-grown 3D Co nanowires by FEBID is performed with the optimal 

growth parameters reported in previous works to obtain small diameter nanostructures 

(around 90 nm) with high aspect ratio (>15) and moderately high Co composition, >65% 

at. Co (see Methods)50. With these conditions, a net magnetic induction of 0.80 ± 0.05 T 

is obtained by the combined effect of low purity and surface oxidation. Energy dispersive 

X-ray spectroscopy (EDS) chemical analysis performed at half height of nanowires 

length, approximately where the magnetic characterization by electron holography is later 

performed, showed that the composition of the nanowires was 65 ± 3 % at. Co, 23 ± 3 % 

at. C and 11 ± 1 % at. O. No significant changes in the chemical composition have been 

observed along the nanowire, except near the base, where oxygen signal from the copper 



grid is also collected. 

 Five sets of specimens have been grown right on five Cu grids for transmission 

electron microscopy (TEM), labelled from A to E. The post-growth annealing processes 

were carried out for 100 minutes in grids B-E at different temperatures; 150 ºC (sample 

B), 300 ºC (sample C), 450 ºC (sample D) and 600 ºC (sample E), keeping sample A as 

the reference as-deposited sample at 24 ºC. Each of the rest has been annealed. Table 1 

summarizes the annealing condition of each of these samples. All the nanowires are 

exposed to air before and after the annealing procedure, suffering surface oxidation.  

Table 1. Annealing conditions of each of the FEBID cobalt nanowires studied. 

Sample 
Annealing 

temperature (ºC) 

Annealing 

time (minutes) 

Start pressure 

(10-6 mbar) 

Final pressure 

(10-6 mbar) 

A - - - - 

B 150 100 2.3 3.6 

C 300 100 2.5 3.4 

D 450 100 3.2 4.5 

E 600 100 4.0 7.4 

 

 High resolution transmission electron microscopy (HRTEM) imaging and chemical 

mapping by electron energy loss spectroscopy (EELS) in scanning transmission electron 

microscopy (STEM) mode have been used to track the structural and chemical evolution 

of the nanowires upon increasing annealing temperatures. Firstly, the as-grown nanowires 

(see Figure 1a) display the expected nanocrystalline microstructure, with no texture. The 

Fast Fourier Transform (FFT) of a 12 x 12 nm2 region of the image reveals just a diffuse 

diffraction ring. Also, the presence of a 5 nm-thick layer of CoxOy covering the whole 

nanostructure can be detected in the HRTEM image, as a brighter, lower density thin layer 

at the surface.52 The EELS chemical map also depicts an oxygen-rich layer of comparable 

size surrounding the nanowire (see Figure 2a). Interestingly, the oxygen content inside 



the nanowires is not perfectly homogeneous, but gradually increases from the core 

towards the surface. In a previous work53, we evidenced that the surface oxidation layer 

is not ferromagnetic, causing an overall deterioration of the ferromagnetic properties. The 

negative impact of the surface oxidation can be palliated by growing a protective shell to 

increase the overall net magnetization by 17%, still rather far from bulk cobalt.53 

However, the use of protective layers has been discarded in the current work in order to 

separate clearly the impact of annealing on the properties of the cobalt nanowires. The 

evolution of the nanowires' microstructure and chemical composition upon increasing 

annealing temperature is illustrated in Figure 1(b-e) and Figure 2(b-e). The crystallinity 

increases as the annealing temperature rises. Grain size is hard to quantify accurately due 

to the density and superposition of the crystals, but it can be roughly estimated by 

inspecting the HRTEM images and the features of the FFT. At 150 ºC some individual 

spots can be also identified, see Figure 1(b), in the digital diffractogram of the nanowire 

together with the diffuse diffraction ring, denoting the presence of grains of larger size, 

with sufficient crystalline coherence to produce clear Bragg diffraction spots. Diffusion 

of contaminants has already begun, as the oxygen distribution turns out to be more 

inhomogeneous. At 300 ºC diffuse scattering has disappeared in the FFT and large cobalt 

grains have grown to reach diameters around 10-15 nm. Well-defined oxygen-rich 

regions have clearly segregated all over a higher purity cobalt matrix, which correspond 

to cobalt oxide nanoparticles with a typical size of around 10 nm, estimated from EELS 

chemical maps. Among the most common cobalt oxides, CoO is stable up to 900 ºC in 

air and ambient temperatures, while it tends transforms into Co3O4 around 600-700 ºC,54 

much above the annealing temperatures discussed in this work. Thus, even though the 

stoichiometry cannot be determined, it is plausible that the observed oxide particles are 

CoO. Nanowires annealed at 450 ºC present abundant regions where the FFT evidences 

a single crystalline pattern. This indicates that, in these areas, the grain size is large 



 
 

Figure 1. TEM (left column) and HRTEM (central column) images of (a) an as-deposited 

Co-FEBID and the ones annealed at (b) 150 ºC, (c) 300 ºC, (d) 450 ºC and (e) 600 ºC. 

Each sample case is accompanied by the corresponding Fast Fourier Transform (FFT) of 

a 12 x 12 nm2 area of the image (right column). Indexed FFT images correspond to fcc 

(011).



 

Figure 2. HAADF-STEM images (first row) and STEM-EELS chemical maps of (a) an 

as-deposited Co-FEBID nanowire and the ones annealed at (b) 150 ºC, (c) 300 ºC, (d) 450 

ºC and (e) 600 ºC. The chemical maps show the spatial distribution of Co, C and O, in 

green, blue and red, respectively. The lowest panels represent relative compositions of 

Co, C and O in the same images. The undefined scale bars are 20 nm in all images. 

 

enough to not overlap with other crystals. When they do, mostly in the boundaries 

between two large crystals, Moiré fringes may appear in the STEM and HRTEM images. 

In turn, this means that the grain size is becoming comparable to the diameter of the 

nanowire. Additionally, this causes the drastic diminution of the number of oxygen-rich 

grains with respect to annealing at 300 ºC. In the end, the annealing at the highest 

temperature of 600 ºC gives rise to a nanowire composed by a succession of large single-

crystals as wide as the nanowire itself. Remarkably, a grain boundary spanning the whole 

nanowire width and separating two large crystals is observed, as shown in Figure 1(e). 

Cobalt crystals presenting hcp and fcc structure have been found. Microstructure of the 

nanowires as a function of the annealing temperature is further illustrated in Figure S2 

and S3 of the Supporting Information (SI), where selected area diffraction patterns, 



HRTEM images of representative grains of both structures and their respective FFTs are 

shown for different annealing temperatures. At 600 ºC chemical maps in Figure 2(e) 

evidence that oxygen has practically disappeared inside the nanowires, whilst the natural 

oxidation still remains at the surface. 

 

Figure 3. (a) Overall composition of the Co-FEBID nanowires as a function of the 

annealing temperature extracted from the integration of Co, O and C signals of the STEM-

EELS spectrum images in Figure 2. (b) Profiles of the Co composition of the Co-FEBID 

NWs as a function of the radial position for different annealing temperatures.  



 

Figure 4. STEM-EELS profiles of the Co (in green), O (in red) and C (in blue) 

compositions as a function of the radius of (a) an as-deposited Co-FEBID nanowire and 

the ones annealed at (b) 150 ºC, (c) 300 ºC, (d) 450 ºC and (e) 600 ºC. Yellow bands and 

dashed lines are guides to the eye showing the shells of the nanostructures. 

 A key aspect for technological application of this annealing process is preserving 

the original architecture of the nanostructure.  As illustrated in Figure S1 of the SI, the 

diameter and length of the Co-FEBID nanowires are virtually the same before and after 

the annealing treatment, even at the highest annealing temperature of 600 ºC. As no 



significant reduction of the volume occurs, the shape of the as-grown nanostructure is 

conserved, enabling the application of this method to complex architectures. 

 A more quantitative analysis of the composition of the Co-FEBID nanowires as a 

function of the annealing temperature is shown in Figure 3. The overall Co composition 

of the nanowires, obtained from the integration of the spectrum images shown in Figure 

2, is plotted in Figure 3(a). The average metallic content increases from approximately 

70% at. Co of as-deposited nanowires up to 90% at. Co after annealing at 600 ºC. Both 

carbon and oxygen content decrease showing different dependences. While the oxygen 

diminishes from 16% at. O (as grown) to 3% at. O (600ºC annealing), carbon content 

decreases more slowly from 13% to 7% at. C. This means that while oxygen virtually 

disappears from the structure (except the possible oxidation of the surface), about 50% of 

the original carbon contamination remains after annealing at the maximum temperature. 

Figure 3(b) shows the radial dependence of the Co composition as a function of the 

annealing. The metallic content increases from 70% at. Co in the as-grown sample up to 

95% at. Co at 450 ºC and above. This evidences that, except for the outer surface of the 

nanowire where natural oxidation and accumulation of non-volatile contaminants 

migrate, the inner part of the nanowire is virtually pure. Local variations of Co 

composition at intermediate temperatures are related to the presence of oxide grains 

observed in the EELS maps. Interestingly, the composition of the non-ferromagnetic 

nanowire surface also changes with temperature annealing, as shown in Figure 4. For the 

as-grown and 150 ºC-annealed nanowires the O/C ratio is over 1. However, for those 

NWs annealed at 300 ºC or higher temperatures, the O/C ratio is reversed, particularly in 

the surface where the carbon content increases dramatically up to 60-70% at. C. The 

spatially resolved quantification of the chemical composition of the annealed nanowires 

shown in Figures 3 and 4 gives some clues about the annealing process. Puydinger et al. 



reported that the expected mechanism for purification of Co-FEBID deposits is the 

thermal activation of precursor residues in the form of CO or CO2.
31 Upon thermal 

annealing these volatile species migrate to the surface and evaporate, which accounts for 

the practically complete loss of oxygen except for the inevitable surface oxidation. The 

remaining carbon is non-volatile and accumulates in the surface at high annealing 

temperatures, in agreement with the observation of partially graphitized carbon at the 

surface of the nanowires even after annealing at 600 ºC, see Figure 1(e).  In these 

conditions the nanowires are apparently more resistant to oxidation, as the surface oxygen 

content after annealing is much diminished with respect to as-grown nanowires. Indeed, 

the formation of a 5-10 nm carbonaceous layer may act as a protective coating from 

oxidation. 

 The drastic increase of cobalt content upon annealing must have a direct 

consequence on the magnetization of the nanowire. The remanent net magnetic induction 

along the nanowire's axis (Bx), averaged across the thickness of the sample along the 

electrons trajectory, has been estimated by electron holography (see Methods). As shown 

in Figure 5, the purification of the Co nanowires upon thermal annealing also strengthens 

the magnetization. Magnetic induction sharply increases in the first stage of annealing, 

from 0.80 ± 0.05 T as grown up to 1.09 ± 0.05 T at 150 ºC, 1.20 ± 0.05 T at 300 ºC and 

around 1.32 ± 0.05 T at 450 ºC, tending to stabilize at this value up to the highest 

annealing temperature at 600 ºC with 1.36 ± 0.05 T. This enhancement of the net 

magnetization as a function of the annealing temperature replicates the rise on metallic 

content, both increasing gradually until they tend to saturate around 450 ºC. It is worth 

noting that the presence of large hcp and fcc crystals, which implies the appearance of 

significant magneto-crystalline anisotropy,55 does not affect the remanent orientation of 

the magnetization of the nanowires. This is evidenced by the perfectly axial orientation 



of the flux lines all along the regions of the nanowires studied. Therefore, the strong 

magnetic shape anisotropy of high aspect ratio Co nanowires still dominates. 

 
Figure 5. Electron holograms and magnetic induction flux representations of 3D Co-

FEBID nanowires (a,d) as-deposited, (b,e) annealed at 300 ºC, and (c,f) annealed at 600 

ºC. The magnetic induction flux images are obtained by normalizing the magnetic phase 

ones to the diameter (maximum thickness) and calculating the cosine of 350 times the 

normalized magnetic phase. (g) Profile of the thickness-averaged axial component of 

magnetic induction (Bx) calculated for the Co-FEBID nanowires as a function of the 



annealing temperature. 

 The chemical quantification and the novel microstructure observed after high-

temperature annealing indicates that the inner part of the nanowires is virtually pure 

cobalt. However, the estimated magnetic induction of 1.36 T is still far from the bulk 

value of 1.76 T. One reason for this discrepancy is the fact that carbon migration to the 

nanowire's surface plus the possible oxidation of the outer part of the nanowire make that 

the effective magnetic thickness of the nanowire is less than the nominal one. Therefore, 

the structural model would be that of a pure cobalt nanowire covered at the surface by a 

5-10 nm thick layer of non-magnetic shell composed of diffused residual carbon 

contaminants and naturally-oxidized cobalt formed upon exposure to air. If the shell 

thickness is neglected from the calculation just taking into account the core diameter 

(estimating an approximate average contamination shell thickness of 7.5 nm for the 

highest annealing temperature), the magnetic induction increases up to 1.61 ± 0.06 T, 

much nearer to bulk cobalt values already found in 2D deposits.18 In fact, a similar 

correction on the chemical composition would bring the metallic content of the inner part 

of the nanowire closer to 100% at. Co. The estimated magnetic induction values, 

corrected by the thickness of the non-magnetic shell, have been plotted in comparison 

with the cobalt content as a function of the annealing temperature in Figure 6. The 

correlation between these magnitudes is clear and follows the same trend, i.e.  both 

increase gradually up to 300 ºC annealing, then tend to saturation at 450 ºC. 

 The successful application of post-growth purification procedures to FEBID cobalt 

presents a new scenario in which, instead of maximizing metallic content during 

deposition, the optimization of growth conditions can be focused on other key parameters 

such as lateral size, geometric complexity or growth rate,15,46 which are key for the 

implementation of 3D FEBID deposits as racetrack memories, magnetic sensors or 



 

Figure 6. Average net magnetic induction and Co composition as a function of the 

annealing temperature considering the experimental data extracted from the central 20 

nm of each nanowire. 

actuators. In this line of thought, future progress in the purification of FEBID cobalt 

nanowires could point towards exploring further crystallization upon longer annealing 

times with the aim of producing single crystalline nanowires, the use of reactive 

atmosphere to etch the remaining contaminants at the surface,44 or annealing of core-shell 

nanowires in which a novel metal coating (Pt, Au) protects the magnetic core from air 

exposure.52 In this sense, the application of this procedure to other FEBID materials 

should be analyzed carefully. Our approach does not suggest that as-grown metallic 

content is not an issue anymore. To the contrary, it is reasonable to think that the as-grown 

metallic content must reach a certain level in order to prevent a remarkable volume 

shrinkage and eventually the destruction of the device during annealing. In the case of 

cobalt, we demonstrate that 65% at. Co is sufficient to guarantee the architectural stability 



of the initial design. However, in the example of low-purity Pt-FEBID discussed in the 

introduction, which corresponds to small Pt nanoparticles in a carbonaceous matrix, it is 

likely that a similar process25 causes a large volume reduction and the collapse of the 

structure. Thus, further progress in the growth of as-grown deposits with higher metallic 

content would be required before applying the method described here.  

CONCLUSIONS 

In summary, post-growth ex-situ annealing in high-vacuum of 3D cobalt nanowires 

grown by FEBID has been performed. Our results demonstrate that thermal annealing at 

600 ºC produces purified and crystalline cobalt nanowires with a diameter below 90 nm, 

a metallic content above 95% at. Co, and a net magnetization up to 1.6 T. The combined 

effect of contaminants migration to the surface and recrystallization of as-grown 

nanocrystalline structure gives rise to narrow 3D nanowires with physical properties close 

to bulk cobalt. Given the relatively high metal content of the as-grown deposits, the 

change in shape of the deposit after purification is minimal, facilitating their functional 

implementation in 3D devices. The results shown are a forward step towards the ultimate 

goal of driving FEBID towards a practical lithography technique to fabricate 3D 

functional nanostructures with unique lateral resolution. 

METHODS 

Growth of the 3D Co nanowires by FEBID. The nanostructures were grown in the 

commercial Helios Nanolab 650 Dual Beam system equipped with a Schottky field 

emission gun (S-FEG) electron column and a gas injector system (GIS) for depositing Co 

using Co2(CO)8 precursor gas. After the optimization of the parameters, the deposits were 

fabricated in TEM Cu grids selecting an electron beam voltage of 5 kV, an electron beam 

current of 100 pA and a chamber growth pressure of 2.6 × 10-6 mbar. To reduce the 



contamination of the deposit due to residual gases, the deposition chamber was evacuated 

until a base pressure of 1.3 × 10-6 mbar was reached. The growth pattern was a single 

patterning point scanned by the electron beam 1.7 × 107 times during 45 second. The 

scanning of it gives rise to a vertical segment which constitute the 3D nanowire.50 

Compositional analysis by energy dispersive X-ray spectroscopy. Energy dispersive 

X-ray spectroscopy (EDS) experiments were carried out in the Helios Nanolab 650 Dual 

Beam system with the APOLLO X detector using the EDAX software. Semi-quantitative 

standardless EDS chemical analysis has been carried out. Only Co, C and O elements are 

considered to give the atomic content (in atomic percentage). The experiments were 

performed before the annealing process and after the natural oxidation of the nanowires, 

using an electron beam voltage of 5 kV, an electron beam current of 800 pA, and a base 

pressure of 1.43 × 10-6 mbar. 

Ex-situ post-growth annealing experiments. The post-growth ex-situ annealing took 

place in an SEM Quanta FEG 250 system equipped with a heating stage in high vacuum. 

To minimize contamination during annealing, the SEM chamber was initially evacuated 

until the base pressure decreased below 4 × 10-6 mbar. A heating ramp of 50 ºC/min was 

programmed, which corresponds to the maximum allowed by the equipment, until the 

target annealing temperature for each sample was reached. Then the samples were 

annealed at 150 ºC, 300 ºC, 450 ºC and 600 ºC for 100 minutes. The base pressure 

increased during the early stages of the annealing process due to degassing of the SEM 

components near heating stage before falling back to a lower level until the experiment 

finished (see Table 1). After annealing, the heater was switch off and the specimen was 

cooled down freely to room temperature. Longer annealing times were tested (for 

instance, 500 min at 600 ºC). The resulting nanowires did not conserve the original 

architecture and pure cobalt sections (see Figure S4) were intermixed with carbonaceous 



ones, so no further tests were made. 

Microstructural and compositional analysis by transmission electron microscopy. 

High resolution transmission electron microscopy (HRTEM) imaging was performed in 

a Titan Cube 60-300 operated at 300 kV and fitted with an S-FEG, a CERCOR aberration 

corrector for objective lens from CEOS providing sub-angstrom point resolution, and a 

2K × 2K Ultrascan CCD camera from Gatan. Selected area electron diffraction was 

carried out in a Tecnai T20. Scanning transmission electron microscopy (STEM) and 

electron energy loss spectroscopy (EELS) experiments were carried out in Titan Low 

Base 60-300 system operated at 300 kV. This microscope is equipped with a high 

brightness field emission gun (X-FEG), a CETCOR corrector for the condenser system 

which produces an electron probe with a lateral size below 1 Å. The STEM-EELS 

experiments were performed using a Gatan Image Filter (GIF) Tridiem 866 ERS, with a 

25 mrad convergence semi-angle, an energy dispersion of 0.5 eV/pixel with a resolution 

of 1.5 eV, a GIF aperture of 2.5 mm, a camera length of 10 mm, a pixel time of 15 ms 

and an estimated beam current of 270 pA. Examples of the EELS spectra collected are 

illustrated in Figure S5. 

Determination of the magnetic induction (B) of nanowires by off-axis electron 

holography. Off-axis electron holography experiments were performed in the Titan Cube 

60-300 described previously. This instrument is also equipped with a motorized 

electrostatic biprism placed at the selected area apertures holder and a Lorentz lens 

located below the objective lens to enable magnetic-field-free imaging. The experiments 

were realized at 300 kV by switching off the objective lens and using the Lorentz lens as 

the image-forming lens. The biprism was excited at 150 - 170 V to create the overlapping 

area of ranging from 400 nm to 500 nm width, with a fringe contrast ranging from 20% 

to 25%. The hologram acquisition time was 5 s. The holograms were acquired in 



remanence state after the saturation of the magnetization in the two opposite directions 

along the longitudinal NW growth axis, so the electrostatic phase shift (which conserves 

its sign upon magnetization reversal) caused by the mean inner potential can be easily 

discounted and the magnetic phase shift (φMAG) extracted. Saturation was achieved by 

tilting the nanowires’ axes by 30º and exciting the objective lens up to 10% excitation, 

which corresponds to an axial magnetic field of 0.3 T. Central regions of the nanowires 

were analysed, far from the tip where the presence of stray fields makes that magnetic 

induction is not perfectly along the nanowire's axis (see Figure S8). If the nanowire axis 

is set along the x axis, the magnetic induction component Bx can be calculated as: 

|𝐵𝑥(𝑥, 𝑦)| =
ℏ

𝑒 · 𝑡

𝜕𝜑𝑀𝐴𝐺(𝑥, 𝑦)

𝜕𝑦
 

where ћ is the reduced Planck constant, e the electron charge and t the total variable 

thickness along the nanostructure width. Further details on the electron holography 

experiments and data analysis can be found in the SI and in Refs. 50,53. 
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