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Study of an inhomogeneous spin-orbit
coupling in topological semiconducting wires

Abstract

The present End-of-Degree Thesis is framed within the context of Majorana

fermions in Condensed Matter, and it focusses on the Rashba nanowire, a real-

istic system which allows the emergence of Majorana zero modes. After having

introduced the present state of affairs in the field, the original proposal is re-

viewed, and subsequently, a nanowire with inhomogeneous spin-orbit coupling

is analysed. Utilizing numerical techniques, it is shown that under precise con-

ditions a defect in the spin-orbit coupling can originate zero-energy fermionic

bound states akin to the original Majorana zero modes. Finally, a finite-size

effect induced by the presence of the defect is investigated.
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of two self-contained pieces. The elaboration of the main work (Study of an
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Chapter 1

Introduction

Almost a century ago, the Italian physicist Ettore Majorana introduced the concept
of Majorana fermions, particles which would constitute their own antiparticles. The
search of these hypothetical entities in the field of high energy physics has been hith-
erto fruitless, however, in the past few decades, condensed matter systems have proved
a promising platform for their study [1–3].

Nonetheless, in the field of solid state physics, Majorana fermions are not elemen-
tary particles as originally envisaged by E.M., but rather, quasi-particle excitations of
a many-body ground state which ultimately amount to a certain combination of elec-
trons and holes. This inevitable feature hinders the quest: in a simple metal, charge
renders electrons (c†σ) different from their hermitian conjugate, holes (cσ), and so does
spin in the Bogoliubov operators (d = uc†↑ + vc↓) underpinning typical, s-wave super-
conductors. The previous observation suggests that effective spinless superconductors
could be adequate candidates to host Majorana fermions [3]. Indeed, as it was shown
by A. Kitaev [4], under precise conditions, p-wave superconductors in 1D allow the
emergence of zero-energy modes which fulfil the Majorana formal requirement γ = γ†.
Their two-dimensional analogue (px± ipy)-wave superconductors are also useful to that
purpose, but regrettably, such materials are scarce in nature, and to this date, only
Sr2RuO4 has been predicted to exhibit intrinsic triplet pairing [3].

This demoralizing gloom was finally driven away after the groundbreaking work by
Fu and Kane, where they showed that it was possible to obtain a two dimensional state
hosting Majorana bound states at vortices by proximitizing an ordinary s-wave super-
conductor to a strong topological insulator [5]. This concept was thereupon refined and
other proposals followed: first, semiconductor-superconductor heterostructures [6], and
then, the further simplified one-dimensional nanowires [7, 8].

The underlying idea of the preceding examples is to engineer p-wave superconduc-
tivity by effectively disposing of the electron’s spin degree of freedom. In the scheme
proposed by Oreg et al. [8] this is achieved by combining spin-orbit coupling with an
external magnetic field. The first ingredient splits the spectrum in two bands whose
spin depends on the momentum, while the second breaks time-reversal symmetry, lift-
ing Kramer’s degeneracy. This solves the fermion doubling problem and eventually
allows s-wave superconductivity to induce the desired p-wave-like pairing mechanism.
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Among the vast quantity of recent advancements which constitute the state-of-the-
art in the field of Majorana fermions, this End-Of-Degree Thesis will be focused on
their occurrence in one-dimensional systems. Accordingly, our starting point will be
the Kitaev chain, a toy model which exemplifies the emergence of Majorana zero modes
on the edges of a topological p-wave superconductor. Later, a substantial part of this
work will be devoted to review the scheme described in the preceding paragraph, and at
last, we will explore the consequences of introducing a certain degree of inhomogeneity
in the spin-orbit coupling field.

In order to conclude these introductory lines, it is perhaps worth mentioning why
the Majorana fermions have attracted this great deal of attention among the research
community in Condensed Matter. Aside from their fundamental interest, the collective
excitations identified with the Majorana fermions have the property of exhibiting non-
Abelian statistics. Unlike many-body systems whose behaviour is dictated by the usual
fermionic or bosonic statistics, the wavefunction of these exotic anyons can experience a
fundamental alteration under the exchange of the constituents, a feature which renders
them promising candidates to embody the so-called Topological Quantum Computation
[3]. Furthermore, Majorana zero modes have been proposed as a decoherence-protected
alternative to store quantum information [4].

1.1 Presenting the Majorana fermions: The Kitaev
chain

Throughout this Section we will examine the system proposed by A. Kitaev, which is
probably the simplest model to date supporting the existence of Majorana zero modes
(MZMs). However, before introducing the Hamiltonian of the model, discussing some
generalities about the MZMs is in order.

Formally speaking, the Majorana operators (γAj, γBj) can be understood as a
“decomposition” of the ordinary fermionic operators in their real and complex parts,

c†j =
1

2
(γAj + iγBj) , cj =

1

2
(γAj − iγBj) . (1.1)

As opposed to the typical fermionic anti-commutativity ({ci, cj} = {c†i , c
†
j} =

0, {ci, c†j} = δij), the Majorana operators fulfil the relations

{γαi, γβj} = 2δαβδij, γ2Aj = γ2Bj = 1. (1.2)
Furthermore, from their definition in Eq. (1.1), one can observe that these new

operators are hermitian, i.e., γ†Aj = γAj and γ†Bj = γBj. This remarkable fact has
two important consequences. Firstly, it does not allow to think of a Majorana mode
as being filled or empty, a property we shall reserve for fermionic modes. Secondly,
since electrons and holes are their respective hermitian conjugates, it will be natural
to search for Majorana zero modes at the Bogoliubov quasi-particle excitations of a
superconductor, which have both electron and hole components.
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A careful inspection of the previous definition, leads us to realize that physical sys-
tems will always have an even number of Majorana operators. Naively, we might think
that each pair of Majoranas will be always localized in their corresponding fermionic
site, but as we will see, certain systems allow isolated Majorana modes to arise.

To that purpose, Kitaev proposed a toy model which is essentially a tight-binding
description of a one-dimensional spinless p-wave superconductor. The Hamiltonian
writes [4],

H = −µ
N∑
j=1

(
c†jcj −

1

2

)
+

N−1∑
j=1

[
−t

(
c†jcj+1 + c†j+1cj

)
+∆cjcj+1 +∆∗c†j+1c

†
j

]
, (1.3)

where t is the hopping amplitude, µ is the chemical potential, ∆ the induced su-
perconducting gap and N is the number of sites in the chain. The mechanism of su-
perconductivity is not crucial for this initial analysis, we will just assume that our wire
is in contact with some bulk superconductor which injects and extracts Cooper pairs.
We shall however remark, that the Pauli exclusion principle together with the spinless
nature of our chain forces the superconducting pairing to be between next-neighbour
sites. Finally, we can assume the pairing parameter ∆ to be real, or equivalently,
absorb its complex phase in the definition of the Majorana operators.

Following Kitaev’s steps, let us insert the Majorana operators (Eq. (1.1)) in the
previous expression and rewrite the Hamiltonian as follows,

H = −iµ
2

N∑
j=1

γAjγBj +
i

2

N−1∑
j=1

[(t+ |∆|)γBjγAj+1 + (−t+ |∆|)γAjγBj+1] . (1.4)

In order to better grasp the topological properties of the Kitaev model, we shall
start by analysing the previous equation in two limiting cases [4, 9]:

If |∆| = t = 0 µ < 0, the system is in the trivial phase, and the Hamiltonian
reads,

Htriv = −iµ
2

N∑
j=1

γAjγBj, (1.5)

where only Majorana operators of the same site j are paired together.
However, if we set |∆| = t > 0 µ = 0, the system enters a different regime, the

so-called topological phase. In this case,

Htopo = it

N−1∑
j=1

γBjγAj+1. (1.6)

Now the Majorana operators from different sites are paired together, contrary to
the previous case, where same site Majorana operators were coupled to form a stan-
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dard fermion. Interestingly, the Majorana operators γA1 and γBN remain unpaired,
and therefore [Htopo, γA1] = [Htopo, γBN ] = 0.

As it was mentioned a few paragraphs above, the definition of the Majorana oper-
ators (Eq. (1.1)) shows that each of them only represents half of a fermionic degree
of freedom. Thus, it seems reasonable to define a complex operator combining the
coupled Majoranas from the Hamiltonian (1.6),

d†j =
1

2
(γBj − iγAj+1) , dj =

1

2
(γBj + iγAj+1) . (1.7)

These operators describe fermionic excitations, and more specifically, they are the
Bogoliubov quasi-particles which diagonalize the topological Hamiltonian

Htopo = 2t
N−1∑
j=1

(
d†jdj −

1

2

)
. (1.8)

Remarkably, the previous Hamiltonian only involves N − 1 fermionic excitations,
whereas the original chain had N sites. This situation stems from the fact that the
Majorana operators γA1 and γBN did not enter the Hamiltonian in the topological
phase. Certainly, we are allowed to define another fermionic operator relating these
two Majoranas in like manner,

d†0 =
1

2
(γA1 − iγBN) , d0 =

1

2
(γA1 + iγBN) , (1.9)

which is highly delocalized and has zero energy. The latter property implies that
the ground state is two-fold degenerate. It will be constructed “subtracting” from
the vacuum the Bogoliubov quasi-particles of energy t, and there will always exist the
freedom to “add” the excitation defined in Eq. (1.9), since it has zero energy. These
two states read,

|ψ0⟩ = d0

N−1∏
j=1

dj |vac⟩ , |ψ1⟩ = d†0 |ψ0⟩ , (1.10)

and have the particularity of differing in the fermionic parity. This property lays
bare the difference of our system to conventional superconductors, where the ground
state is unique and has even parity, allowing the electrons to pair up into Cooper pairs.

Additionally, the construction of the zero-energy excitation (Eq. (1.7)) sheds some
light on the need for spinless fermions in Kitaev’s model. Had we considered a spinful
chain, the degeneracy of each eigenstate would be doubled, and the chain edges would
host two Majorana zero modes each, or in other words, a localized fermionic excitation,
lacking of any interest [3].

So far, only the special case |∆| = t = 0 was considered, but in his original paper,
A. Kitaev studied analytically the topological phase transition in the parameter space.
However, in this introductory survey, we opted for a brief numerical analysis which
might provide a clearer insight into the physics of the model. To that purpose, we
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shall rewrite the original Hamiltonian in the Bogoliubov-de Gennes formalism [10], i.e.
H = 1

2
C†HBdGC up to an unimportant constant, being C =

(
c1, . . . cN , c

†
1 . . . c

†
N

)T

our
choice for the Nambu spinors. The BdG Hamiltonian writes,

HBdG = −µ
N∑
j=1

τz |j⟩ ⟨j| −
N−1∑
j=1

[(tτz + i∆τy) |j⟩ ⟨j + 1|+ h.c.] , (1.11)

where τi are the Pauli matrices acting on particle-hole space, |j⟩ is a N-dimensional
column vector representing the j-th site of the chain, and ∆ was assumed to be real.

(a) Bogoliubov-de Gennes excitation spectrum
as a function of the chemical potential µ. The
dashed vertical lines represent the topological
phase transition points in the thermodynamic
limit.

(b) Eigenmode corresponding to the black dot in
the left plot. The markers corresponding to cre-
ation and annihilation operators are perfectly su-
perimposed for every x.

Figure 1.1: Numerical analysis for the Kitaev chain (N = 30 sites). The superconduct-
ing gap ∆ is set to 1 in units of t, the hopping parameter.

The spectrum in Figure 1.1a shows the two topological phases that were discussed
previously. For 2t > |µ| we observe the trivial phase, where there are not any zero-
modes. As we decrease |µ|/t a zero-mode arises. The phase boundary is given by
the equation 2t = |µ| in the limit N → ∞. It is also pertinent to remark that
the spectrum is symmetric due to the particle-hole symmetry induced by the BdG
formalism. Moreover, the zero-energy level appears to be doubly degenerate, but this
is again a consequence of the formalism and it must not be confused with the double-
degeneracy of the ground state discussed in Eq. (1.10). In fact, the ground state
manifold (|ψ0⟩ , |ψ1⟩) is a truly many-body state and the previous spectrum only
provides the single-particle fermionic excitations over the ground state. Therefore, the
zero-energy “state” in the spectrum represents in reality the zero-energy excitation
defined in Eq. (1.9), which can be seen in the plot at the right panel (Fig. 1.1b).

The plotted eigenmode is slightly delocalized and decays into the bulk of the chain
due to finite-size effects (as a matter of fact, the chain can still be consider topological
but one has to go to the thermodynamic limit to find the “proper” edge physics). For
that reason, the degeneracy in the ground state is lifted by an energy which scales with
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e−L/ξ, where L is the length of the chain and ξ is the coherence length (which diverges
at the topological phase transition) [3].

We shall finish this introduction inspecting the bulk spectrum of the system, for
which we will assume periodic boundary conditions [9, 10]. The Kitaev chain exhibits
translational symmetry, therefore we can re-express the Bogoliubov Hamiltonian (1.11)
in momentum space, i.e., HBdG =

∑
kH(k)c†kck, where ck = 1√

N

∑
j e

−ikjcj, taking the
lattice parameter to be the unity for simplicity. From Eq. (1.10) one finds that H(k)
is the following 2 by 2 matrix,

H(k) = −(µ+ 2t cos k)τz + 2∆sin kτy, (1.12)
whose spectrum is given by

E = ±
√

4∆2 sin2 k + (µ+ 2t cos k)2, (1.13)

where k ∈ (−π, π) in the continuum limit. We are mainly interested in the set of
points in the parameter space which correspond to gap closings. Assuming that the
superconducting gap is non-zero, the first addend vanishes for k = 0 and k = π, which
implies that µ = ±2t for the cosine term to disappear. Those are indeed the points at
which we claimed the topological phase transition would happen in the thermodynamic
limit (recall spectrum in Figure 1.1a), and the coincidence is not merely accidental.
Actually, it is a manifestation of the so-called bulk-edge correspondence, which will al-
low us to relate the topological phase transitions in the open system to the gap-closings
in the bulk.

The topological states of matter constitute a field of study on its own which will not
be manifestly addressed within this work. Yet, it is worth mentioning that whereas in
the classical Ginzburg-Landau theory of spontaneous symmetry breaking, phase tran-
sitions are characterised by a local order parameter, the topological analogues require a
global quantity to be described [11]. Indeed, the quasi-particle excitations constituting
the Majoranas are massless, chargeless, spinless, and devoid of any local observable.
In our system, the relevant quantity is the topological invariant M = (−1)ν , being ν
the number of pairs of Fermi points, which is odd in the topological phase and even
otherwise [9].

In order to conclude this introduction, let us emphasize that in spite of its richness,
the Kitaev chain is a mere toy model specifically designed to exemplify the existence
of unpaired Majorana zero modes. Nonetheless, as it was discussed at the beginning
of the Chapter, this does not entail the impossibility to realize such system in the
laboratory; on the contrary, it suggests the experimentalist the requisites to observe
isolated Majorana zero modes. It will be the goal of the subsequent chapters to explore
a feasible proposal to engineer such modes.
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Chapter 2

The Rashba nanowire:
homogeneous spin-orbit coupling

In the present chapter we will examine one of the many proposals to devise a realistic
system capable of hosting Majorana zero modes, and which only requires three simple
ingredients: a 1D quantum wire with Rashba spin-orbit coupling (eg. InAs or InSb),
a uniform magnetic field and a conventional s-wave superconductor.

As depicted in Figure 2.1, the semiconducting wire is supposed to be placed on a
bulk s-wave superconductor, and superconductivity is induced in the wire by proximity
effect. Nevertheless, in this work we will address neither the microscopic origin of this
mechanism, nor that of the Rashba spin-orbit coupling. Instead, we will consider the
Hamiltonian of the system as the starting point, and we will study the role played by
each constituent in recreating p-wave superconductivity.

The scheme was originally envisioned by Lutchyn et al. [7] and Oreg et al. [8]. It
has been amply reviewed ever since [3, 9, 11].

B⃗

s-wave SC

z

x

y

Figure 2.1: Schematic representation of Oreg’s proposal. The semiconducting nanowire
(in blue) is placed in contact with an s-wave superconductor (in grey). In this work
we chose the Rashba spin-orbit coupling to be confined in the x− y plane, whereas the
magnetic field is set along the z direction. When the system reaches the topological
phase, the MZMs arise on the edges of the nanowire.
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Let us start writing explicitly the full Hamiltonian of the system, for which we shall
choose Ψ† = (ψ†

↑, ψ
†
↓, ψ↓,−ψ↑) as the Nambu spinors.

H =
1

2

∫
dxΨ†(x) (Hkin +Hsoc +HZeeman +Hsc)Ψ(x), (2.1)

where Ψ†
↑,(↓) creates spin-up (down) electrons at position x, and without loss of

generality, we assume our wire to lie along the x axis. The kinetic term writes

Hkin =

(
−~2∂2x

2m
− µ

)
τzσ0, (2.2)

where m is the electron’s effective mass and µ stands for the chemical potential.
The spin-orbit coupling is described by

Hsoc = −α
~
τ0 (cos θσx + sin θσy) (−i~∂x) , (2.3)

where α represents the strength of the Rashba field and u = (cos θ, sin θ) determines
its direction. Note also the presence of the momentum operator, −i~∂x. In short,
this interaction tends to align the x (or y) projection of the electron’s spin along the
direction of its momentum. We have chosen to analyse the quasi-general case for later
purposes (cf. Chapter 3), but nothing prevents us from restricting the field to one axis.
In this case, the magnetic field is applied perpendicular to the wire, along the z axis,
and it enters the Hamiltonian as

HZeeman = Bτ0σz, (2.4)
where B is the Zeeman energy, and finally, for the superconducting term we have

Hsc = ∆τxσ0, (2.5)
where ∆ is the induced superconducting gap, assumed to be real. For all the previ-

ous expressions σi=0,x,y,z are the Pauli matrices acting on spin space, and τi=0,x,y,z their
particle-hole counterparts.

In the first place, let us analyse the Hamiltonian corresponding to the nanowire
arrangement in the absence of the superconductor, in order to elucidate why our system
can be finely tuned to behave as a spinless wire. This simplification allows us to dispense
with the BdG formalism and reduce our problem to spin space. Furthermore, assuming
an infinite wire, translational invariance enables us to solve the eigenvalue problem in
momentum space. The Hamiltonian density to be considered is

H0 = ξ(k)σ0 − αk (cos θσx + sin θσy) +Bσz, (2.6)

where we denoted ξ(k) = ~2k2
2m

− µ to lighten notation, and the spectrum reads

E±(k) = ξ(k)±
√
B2 + k2α2. (2.7)

In the absence of Rashba spin-orbit coupling and magnetic field, our spectrum would
be the well-known spin-degenerated, parabolic curve corresponding to free electrons,
therefore, we would have an even number of pairs of Fermi points (namely two of them)
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as depicted at the top-left panel in Fig. 2.2.
Switching on the Rashba field while still maintaining a null Zeeman field lifts the

spin degeneracy and the spectrum has two parabolas shifted along the momentum axis
by ±kSO = mα

~2 . Each of them corresponds to the spin-up and spin-down projections
along the quantization axis determined by the Rashba field u = (cos θ, sin θ). However,
this is not sufficient to effectively freeze out one of the two spin species, since for any
value of the Fermi level above the bottom of the parabolas, both bands would be filled
(Fig. 2.2, top-right).

∆1 ∆2

Figure 2.2: Energy bands in momentum space for a Rashba nanowire. Axes in arbi-
trary units. Adapted from Ref. [11]. Top-left: spin-orbit coupling, Zeeman field and
superconductivity are set to zero. Top-right: A non-vanishing SOC field is considered.
The red parabola contains the electronic states with a positive spin projection along
the Rashba quantization axis, α, and the blue parabola corresponds to their negative
counterpart. Bottom-left: a magnetic field is applied. Bottom-right: superconduc-
tivity is taken into account, and the BdG formalism renders the spectrum “doubled”.
The arrows in red and blue indicate respectively an example of intraband pairing (akin
to p-wave pairing) and interband pairing (Eq. (2.9)).

The situation ameliorates if we apply an external magnetic field which opens a gap
of 2B at k = 0, removing the band crossing, and hence lifting the spin degeneracy at
zero momentum (Fig. 2.2, bottom-left). More importantly, since the Zeeman and the
Rashba fields are orthogonal to each other, they tend to align the spin along different
quantization axis which results in spin-momentum locked bands: the larger the mo-
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mentum, the more tilted along the Rashba axis the spin is. Now, it suffices to tune the
chemical potential to be inside the Zeeman gap, i.e. |µ| < B, for the system to host
an odd number of pairs of Fermi points, which indicates that we are on the right path
towards p-wave superconductivity.

In order to illustrate the effective p-wave pairing it is helpful to write the supercon-
ducting term defined in Eq. (2.5) in the so-called helical basis, which rendered diagonal
the wire Hamiltonian (Eqs. (2.6) and (2.7)):

ϕ± = b±

(
γ±(k)
1

)
, with γ±(k) =

αk(− cos θ + i sin θ)

−B ±
√
B2 + k2α2

, (2.8)

where b± are the normalization constants. The superconducting term reads

Hsc = ∆−−Ψ
†
−(k)Ψ

†
−(−k) + ∆++Ψ

†
+(k)Ψ

†
+(−k) + ∆+−Ψ

†
+(k)Ψ

†
−(−k) + h.c., (2.9)

where ∆−− = −∆γ+(k)

(γ+(k)−γ−(k))2
, ∆++ = −∆γ−(k)

(γ+(k)−γ−(k))2
, and ∆+− = ∆(γ+(k)+γ−(k))2

(γ+(k)−γ−(k))2
.

The expression of the Hamiltonian in the new basis makes explicit the effective p-
wave superconductivity: indeed, the system still presents an inter-band pairing (∆+−) in
a similar fashion to the original s-wave mechanism, but remarkably, electrons from the
same spin-momentum locked bands are also paired together via the intra-band pairing
( ∆−− , ∆++). Note that the pairing continues to be between electrons of opposite
momentum.

From the previous analysis, it is possible to understand that projecting the initial
Hamiltonian (2.1) onto the lower band “−”, we essentially recover the Kitaev Hamil-
tonian, a valid operation inasmuch the induced Zeeman gap is sufficiently strong [11].

To gain further insight, we shall go back to the full Hamiltonian (2.1) and calculate
the BdG spectrum:

E2
±(k) = ξ2(k) + α2k2 +B2 +∆2 ± 2

√
B2∆2 + ξ2(k) (B2 + α2k2). (2.10)

As a consequence of the superconducting term, the spectrum is now gapped at two
points, near k = 0 and around the Fermi momentum (bottom-right panel in Fig. 2.2)
only the former being relevant for the topological phase transition [8]. The preceding
expression evaluated at zero momentum yields

E±(k = 0) =
∣∣∣B ±

√
∆2 + µ2

∣∣∣, (2.11)

and indeed the lower band “−” closes at B = Bc ≡
√
∆2 + µ2. In a similar fashion

to the bulk-edge correspondence in the Kitaev chain discussed at the end of Section
1.1, this point signals the topological phase transition. This conclusion is in perfect
agreement with the previous analysis of the Rashba nanowire in the absence of a bulk
superconductor, from which we concluded that for B > |µ| the system is susceptible of
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hosting a topological phase.

We shall finish this Chapter by overcoming the problem numerically. To that pur-
pose, let us formulate a tight-binding model of the system, which can be obtained
discretizing the Hamiltonian in Eq. (2.1). Denoting C†

j = (c†j↑, c
†
j↓) the creation opera-

tors for a spin-up(down) electron at position j, the Hamiltonian reads,

H =
N−1∑
j=0

[
(t− µ)C†

jσ0Cj +BC†
jσzCj

]
+

+
N−2∑
j=0

(
− t

2
C†

j+1σ0Cj −
itSOx

2
C†

j+1σxCj −
itSOy

2
C†

j+1σyCj + h.c.

)
+

+
N−1∑
j=0

∆
(
c†j↑c

†
j↓ + cj↓cj↑

)
,

(2.12)

where t is the kinetic hopping amplitude, and tSOx , tSOy are the spin-orbit cou-
pling hopping parameters. Within the Bogoliubov-de Gennes formalism the matrix
to diagonalize is essentially a 4N by 4N block tridiagonal matrix. Choosing C† =(
c†0↑, c

†
0↓, c0↓,−c0↑, · · · , c

†
N−1↑, c

†
N−1↓, cN−1↓,−cN−1↑

)
for the Nambu basis, the block in

the diagonal reads

D =


t− µ+B 0 ∆ 0

0 t− µ−B 0 ∆
∆ 0 −t+ µ+B 0
0 ∆ 0 −t+ µ−B

 , (2.13)

whereas the block in the upper diagonal has the form,

U =
1

2


−t tSOy + itSOx 0 0

−tSOy + itSOx −t 0 0
0 0 t −tSOy − itSOx

0 0 tSOy − itSOx t

 . (2.14)

Necessarily the block in the lower diagonal is U †, so that the Hamiltonian is her-
mitian.
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Figure 2.3: BdG excitation spectrum of a homogeneous-SOC chain (N = 50 sites)
for increasing magnetic field in the z direction. Simulation parameters (in units of
t): tSOx = tSOy = 0.2, µ = 0, ∆ = 0.3. The dashed vertical line indicates the point
corresponding to the topological phase transition.

The spectrum certainly resembles that of the Kitaev chain (Fig. 1.1a). In like
manner, it is symmetric around zero energy due to the particle-hole symmetry induced
by the BdG formalism, and more importantly, a zero-energy excitation emerges in the
middle of a gap once the topological phase is reached, i.e., for B ≥ Bc.

Moreover, a second topological phase transition occurs at B ∼ 6.5Bc, which we did
not encounter during the analytical analysis. This result is inherent in the tight-binding
model, and can be explained invoking the bulk-edge correspondence argument: if we
Fourier-transformed the Hamiltonian in Eq. (2.12), we would recover a finite band
structure, similar to the one obtained for the Kitaev model (recall Eq. (1.13)). Like-
wise, the periodic band structure would undergo a second topological phase transition
corresponding to the gap-closing at k = π, which is what we observe in the plot. This
apparent mismatch should not cause any uneasiness to the reader, since that magnetic
energy 1 is far beyond the attainable values in a laboratory; however, it shows the limi-
tations of our model and one should always bear in mind, that in reality, the spectrum
is not of infinite band-width as we obtained earlier.

The last remarkable feature of the plot in Figure 2.3 are the oscillations of the
zero-energy excitation above certain magnetic field. This phenomenon is a finite size
effect which corresponds to the overlapping of the Majorana wavefunctions [9, 11].

1For a typical laboratory magnetic field (∼ 30 T) we have B = gµBB/2 ∼ 4 ·10−5 meV ≪ 6.5Bc ∼
1.6 meV [11].
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Chapter 3

The Rashba nanowire:
inhomogeneous spin-orbit coupling

The previous survey on the wonted Rashba nanowire has prepared the ground for the
bulk of this work, so we will now delve into the study of an inhomogeneous spin-orbit
interaction. Our main goal will be to investigate whether a defect in the spin-orbit
coupling is sufficient to localize the Majorana zero modes, provided the wire is in the
topological phase.

As a consequence of the newly incorporated inhomogeneity, the translational in-
variance of the system is irremediably lost and studying the spectrum in momentum
space is not a feasible option anymore. In addition, analytical calculations are now
extremely challenging, if not beyond the bounds of possibility; therefore, we are left
with numerical analysis as the only tool to tackle the problem.

To our knowledge, the 1D case has not been studied in depth and only Klinovaja
and Loss [12] had written on the subject previously. Nevertheless, this End-of-Degree
Thesis does not aspire to provide a comprehensive picture of the matter, and we will
content ourselves with exploring a few details.

3.1 Modelling the inhomogeneity
In Chapter 3 we chose the Rashba field to lie on the x-y plane (cf. Eqs. (2.3) and
(2.12)). Henceforth, we will allow the angle θ with the x-axis to vary along the wire,
letting the spin-orbit coupling vector rotate on its plane.

The tight-binding Hamiltonian of the system is practically that of the homoge-
neous case displayed in Eq. (2.12), except for the spin-orbit coupling parameters being
reformulated as follows:

tSOx(j) = tSO cos θ(j), tSOy(j) = tSO sin θ(j), (3.1)
where the phase describes a hyperbolic tangent profile:
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θ(j) = wπ

[
tanh

(
j + 1/2− j0

λ

)
+ tanh

(
−j + 1/2− j1

λ

)]
. (3.2)

In doing so, four new parameters are introduced in the Hamiltonian: λ, which rep-
resents the characteristic length along which the rotation is performed, the winding
parameter w, which indicates the number of turns the SOC-vector does at each defect,
and j0 and j1, which will allow us to localise the rotations.

We have chosen to insert two rotations to avoid any discontinuities in the periodic
boundary conditions scheme. We shall refer to the defect located at j0 as kink and use
anti-kink for its counterpart at j1. Moreover, note that the SOC hopping parameters
are effectively evaluated at j+1/2. It was decided to implement the inhomogeneity in
such manner to take into account the fact that the spin-orbit term involves two nearest
neighbours in the tight-binding Hamiltonian (2.12).

Finally, it is worth mentioning that we shall distinguish between abrupt and smooth
rotations. Within our numerical approach, we implement an abrupt rotation setting
λ << a, being a the lattice spacing in the tight-binding model. However, this quan-
tity is meaningless in an actual experimental arrangement, where several length-scales
are involved. We shall assume that an abrupt rotation implies λ << λF , the Fermi
wavelength [12].

3.2 Fermionic bound states
One of the main findings in [12] was that a zero energy mode, similar to the Majorana
bound states, arises at the defect when the SOC vector undergoes a w = 0.5, abrupt
rotation. Along this Section, we recover their result, in spite of having characterised
the kinks slightly differently, and we examine how this feature is lost if the rotation is
performed smoothly.

In order to exemplify these phenomena, we will focus on a closed chain so that the
Majorana zero modes on the edges are discarded, hence simplifying the system. Imple-
menting periodic boundary conditions in our Hamiltonian only requires to extend the
second summation in Eq. (2.12) to N − 1 and then set CN = C0, C†

N = C†
0.

The spectrum corresponding to the aforementioned case is plotted in Figure 3.1.
At first glance, it appears that we recover a similar evolution to that of the homoge-
neous case (cf. Fig. 2.3), where the spectrum gaps at B = Bcrit, giving birth to some
intra-gap, zero-energy states. However, one should recall that in this case we per-
formed the calculations in a closed chain where there are not any edges, and therefore
any topological phase-vacuum interfaces either. Indeed, these fermionic bound states
resemble the Majorana zero modes, but actually, they are localized at the SOC defects
(Fig. 3.2). They come in a pair due to the fact that we implemented two defects (kink
and anti-kink) in our chain and it was found that their difference in energy decreases
exponentially with the size of the system, suggesting that in the thermodynamic limit
one would find a doubly degenerated excitation.
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Figure 3.1: BdG excitation spectrum of an inhomogeneous-SOC chain (N = 500 sites,
PBC) for increasing magnetic field in the z direction. Simulation parameters: tSO =
1, µ = 0, ∆ = 0.3 (in units of t); λ = 0.1a, j0 = 125, j1 = 375, w = 0.5. The dashed
vertical line indicates the topological phase transition. Since the chain is substantially
longer than that of the spectrum in Fig. 2.3, there are not any oscillations or other
noticeable finite-size effects.

c↑

c↓

c†
↑

c†
↓

Figure 3.2: Eigenmode corresponding to one of the two zero-energy excitations for
the inhomogeneous-SOC chain at B = 2Bc. The rest of the parameters are those of
the above plot. The other zero-energy excitation was omitted as it exhibits the same
behaviour. Chosen basis: C† = (c†↑, c

†
↓, c↓,−c↑). There exists a difference of one order

of magnitude in the probability maxima between spin-up and spin-down components,
but given the Zeeman term in the Hamiltonian one should not expect the two species
to behave equivalently.
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These new intra-gap excitations are not as robust as the original Majorana zero
modes, and a slight displacement from w = 0.5 lifts the excitation from its privileged
position at zero energy, albeit recovered for any w = n+ 0.5 with n ∈ Z (Fig. 3.3a).

(a) Case of an abrupt rotation (λ = 0.1a). (b) Case of a smooth rotation (λ = 2a).

Figure 3.3: BdG excitation spectrum of an inhomogeneous-SOC chain (N = 500 sites,
PBC) in the topological phase as a function of the winding parameter w, where w = 1
represents a full rotation of the SOC vector. Simulation parameters: tSO = 0.2, µ =
0, B = 0.4, ∆ = 0.3 (in units of t); j0 = 125, j1 = 375.

Quite remarkably, this periodicity is lost as soon as we implement a smooth defect
(Fig. 3.3b). In order to explain this surprising behaviour, we propose the following
heuristic argument: in the case of an abrupt rotation, i.e. λ→ 0, it is reasonable to ad-
mit that in Eq. (3.2), tanh

(
± j+1/2−j0,1

λ

)
≈ ±1 ∀j, which implies that the Hamiltonian

is equivalent for any w, w′, provided that max{w,w′}/min{w,w′} = n ∈ Z. However,
in the case of a smooth rotation the previous assumption is no longer valid, and as a
consequence the parameters tSOx,y(j) have different periodicity in w depending on the
value of j. In other words, the Hamiltonian does not follow the previous equivalence
rule and there is not any reason to expect a periodic behaviour in w. Interestingly, the
number of zero-energy crossings appears to be equal in both regimes, but they do not
represent exactly the same: in the abrupt case, a zero-energy crossing indicates that,
for such w, there is a mid-gap excitation for any B within the topological phase, while
in the smooth case, the w corresponding to the crossing also depends on the magnetic
field. Alas, numerical analysis does not allow to gain further insight into this direction.

Trivial-topological interface

At this point, one might argue that in the preceding analysis we did not find “proper”
Majorana zero modes because we did not have any interface between a trivial and a
topological phase, unlike in the Kitaev chain, where the vacuum behaves as a trivial
phase. This can be easily achieved rotating the magnetic field so that it lays along
the y axis. Now, we can implement a rotation which leaves the SOC field parallel to
the magnetic field, and thereby engineering a nanowire which is half-topological and
half-trivial. However, this scheme does not yield any satisfactory results. As it can be
seen in Fig. 3.4, any potential MZM on the domain wall would mix with the bulk state
in the trivial phase.
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Figure 3.4: First BdG excitation (c†↓) for the inhomogeneous-SOC chain (N = 500,
PBC). Simulation parameters: tSO = 0.2, µ = 0, B = 2Bc, ∆ = 0.3 (in units of t);
j0 = 125, j1 = 375, w = 0.75, λ = 0.01a. The magnetic field is aligned along y, and it
is parallel to the SOC vector from the sites 125 to 375.

3.3 Majorana zero modes and fermionic bound states
Throughout the preceding Section, in order to better understand the role played by the
inhomogeneity in the spin-orbit coupling, we steered clear of any kind of edge physics
considering a closed chain. The next natural step would be to wonder whether the
introduced defect has any repercussions on the original Majorana zero modes which we
had engineered in the homogeneous Rashba nanowire.

In general, when we examined an open chain with the kink/anti-kink structure in
the spin-orbit coupling, we found that the defect hardly affected the Majorana zero
modes. Nevertheless, in the case of a w = 1, smooth rotation an interesting finite-size
effect takes place which is worth reporting.

For low magnetic fields (Fig. 3.5, bottom row), the first BdG excitation corresponds
to the Majorana zero modes localized on the edges, in the same manner that we found
in the Kitaev chain, or equivalently, in the homogeneous Rashba nanowire. The first
and second BdG excitations are anchored at the defects, although for the present
choice of parameters (w = 1, λ = 10a) they have a finite energy. For high values of
B (Fig. 3.5, top row) the MZMs delocalize into the bulk of the chain. This effect was
also observed during the study of the homogeneous case, where for a sufficiently high
magnetic field, the MZMs exhibited an oscillatory behaviour (cf. Fig. 2.3). However,
an unexpected phenomenon occurs at intermediate magnetic field: when B ∼ 2.7Bcrit

the first BdG excitation appears to be pinned at the defects, whereas the first a second
BdG excitations delocalize toward the edges. Strikingly, the Majorana zero modes are
somewhat recovered for a higher magnetic field (Fig. 3.5, third row).
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B = 1.7Bc

B = 2.7Bc

B = 3.7Bc

B = 4.7Bc

Figure 3.5: BdG excitation eigenmodes of an inhomogeneous-SOC chain (N = 200
sites, OBC), for different values of magnetic field in the z direction. Simulation param-
eters: tSO = 0.2, µ = 0, ∆ = 0.3 (in units of t); λ = 10a, j0 = 50, j1 = 150, w = 1.
The left, middle and right columns correspond to the three first BdG excitations in
energy, respectively. For brevity, only the spin-down electron (c†↓) excitations are de-
picted, the other components exhibiting a similar behaviour.

In order to try to explain this behaviour, we shall consider separately an open,
homogeneous system which only hosts Majorana zero modes on the edges, and a closed
inhomogeneous chain which only allows the existence of fermionic bound states. In-
spired by first-order perturbation theory, we computed the overlap between the first
BdG excitations of the two systems, and their difference in energy (Fig. 3.6).

Interestingly, we found that in the case of a relatively small chain (N = 200) the
overlap is non-zero. However, in perturbation theory such overlap is only relevant when
the difference in energy is small compared to the energy scale of the problem. In our
present state of affairs, it is not evident which is such energy scale, but in any case, the
numerical analysis allows us to observe that Ek/a −Ehom ≃ Ek/a vanishes for the same
magnetic field which led to the “mixing” of the eigenfunctions, providing a plausible
explanation. On the other hand, the overlap is non-existent when we consider a longer
chain (N = 800), for which the effect discussed above was not observed.
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⟨ ψ k/
a

∣ ∣ ψ hom
⟩

Figure 3.6: Overlap of the first BdG excitations of an open homogeneous system and
a kink/anti-kink scheme with PBC as a function of the magnetic field. The solid
line represents the energy difference of the excitations (which does not depend on N)
in units of t. Simulation parameters: tSO = 0.2, µ = 0, ∆ = 0.3 (in units of t);
λ = 10a, j0 = N/4, j1 = 3N/4, w = 1
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Chapter 4

Conclusions and outlook

Along this End-of Degree Thesis, we examined thoroughly the homogeneous Rashba
nanowire, a realistic arrangement which emulates a one-dimensional p-wave supercon-
ductor by integrating three widely accessible elements: spin-orbit coupling, a Zeeman
field and s-wave superconductivity. Combining analytical and numerical methods, we
reviewed how the system enters a topological phase characterised by the presence of
isolated Majorana zero modes. This transition occurs at a precise critical magnetic
field, which only depends on the chemical potential and the superconducting gap.

In the second instance, we studied the effect of an inhomogeneous spin-orbit cou-
pling in the Rashba nanowire. We concluded that the defect is not enough to localize
the Majorana zero modes, although there exists a specific type of domain wall (abrupt
and winding parameter w = 0.5) which allows the existence of zero-energy fermionic
bound states, akin to the Majorana zero modes. Numerical analysis allowed us to
observe that, in general, the defect does not affect the MZMs on the edges, except in
relatively small chains, where under certain conditions, the overlap of the MZM’s and
the fermionic bound states is not negligible.

The numerical approach with which we chose to tackle the inhomogeneous scheme
definitely provided some flavour of the physics involved in the system, however, a pro-
found and complete comprehension of the matter would require overcoming the problem
analytically. Unfortunately, understanding why the FBSs only arise at w = 0.5, or the
connexion between the spectra for abrupt and smooth defects is not achievable by
merely considering the methods presented in this work.

Furthermore, several other aspects remain unexplored. It may be worthwhile to
survey the possible differences between strong and weak spin-orbit regimes. More
ambitiously, one could perform a comparative study of the inhomogeneous nanowire
and its two-dimensional analogue, a vortex-like topological defect in spin-orbit coupling,
where the existence of a MZM pair has been reported [13]. Finally, it could be of interest
to try to elucidate whether the presence of fermionic bound states influences in some
manner the exchange statistics of the Majorana zero modes.
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