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Abstract

This report starts with a brief revision of the second quantization formalism, emphasiz-
ing its application rather than rigorous derivations. Subsequently, several models of spinless
fermionic one-dimensional chains are presented and a discussion on some numerical results
follows. Finally, the existence of Majorana modes in one-dimensional quantum wires is exam-
ined.

1 Motivation

In 1961, G. Gamow wrote “Only the number theory and topology (analysis situs) still remain
purely mathematical disciplines without any application to physics. Could it be that they will be
called to help in our further understanding of the riddles of nature?” Less than sixty years later,
the term “topology” seems to be ubiquitous in today’s condensed matter area of focus. Topological
phase transitions, topological insulators, topological superconductors are just a few examples of a
large plethora of the so-called topological states of matter [1].

Topological quantum computation is perhaps one of the most promising topic in this emerging
field. The approach aims at storing and manipulating quantum information in exotic quasiparti-
cles which generalise bosonic and fermionic statistics, hence referred to as anyons. Their unusual
behaviour allows to abstract them from local geometrical details and realise a “topological descrip-
tion” which provides a much desired resilience against control errors and perturbations [2]. The
ultimate goal of this report will be to introduce the Majorana zero-modes, a recent proposal to
implement decoherence-protected degrees of freedom in one-dimensional systems [3].

Nonetheless, in order to prepare the ground for these enticing advancements, we shall begin
by the much more humble task of studying the second quantization formalism, since as one can
imagine, most of the aforementioned phenomena are rooted in the many-body quantum physics.

2 Second quantization preliminaries

In order to motivate the need of a new formalism to deal with many-body quantum mechanics,
we shall briefly review the many-particle Hilbert space [4]. Let us consider the set of normalized
eigenfunctions |λ〉 of some single-particle Hamiltonian such that Ĥ |λ〉 = ελ |λ〉. If we consider
now the wavefunction corresponding to N particles populating the spectrum of the Hamiltonian,
we must take into account the quantum mechanics principle of indistinguishability, i.e. the total
wavefunction has to be symmetric or anti-symmetric if the particles are identical bosons or fermions,
respectively. Such wavefunction reads

|λ1, λ2, . . . , λN 〉 =
1√

N !
∏∞
λ=0(nλ!)

∑
P∈SN

ζP |λP1〉 ⊗ |λP2〉 ⊗ · · · ⊗ |λPN 〉 , (1)
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where the summation runs over all the permutations of {1, . . . , N}. The term nλ in the nor-
malizing pre-factor is the number of particles in the |λ〉 eigenstate (restricted to 0 or 1 in the
case of fermions), ζ is 1 for bosons and −1 for fermions, and its exponent is 0 or 1 depending on
whether the permutation is even or odd. In the case of fermions, Eq. (1) is the well-known Slater
determinant.

A quick glance at the previous expression is enough to realize how inconvenient this formulation
would be when trying to compute the overlap of two wavefunctions, since the number of products
quickly scales with N . Furthermore, one can see that this approach will also pose some issues in a
system where the number of particles is not a fixed number N , but rather, a fluctuating variable.

The second quantization formalism [5] is a mathematical apparatus which aims at overcoming
the aforementioned burdens. It is built upon the notion of the occupation number representation.
Now, instead of characterizing a many-body state (anti)symmetrizing a product of single-particle
states, we shall consider the set of single-particle states, together with the number of particles
occupying each of them. It is written as follows

|{nλ}〉 = |nλ1
nλ2
· · ·nλN 〉 , (2)

where nλi is the number of particles occupying the λi state, which is of course restricted to 0
or 1 in the case of fermions due to Pauli Exclusion Principle. Indeed, N =

∑
λ nλ. However, this

constraint is usually relaxed extending the usual Hilbert space to the Fock space, defined in Eq.
(3).

F =

∞⊕
N=0

HN , (3)

where HN = H⊗N1 is the Hilbert space of N particles. Please note that one might have to restrict
HN to its (anti)symmetrized subspace when dealing with identical (fermions) bosons. H0 stands
for the vector space containing one single state, namely, the vacuum.

In Fock space, we define the creation and annihilation operators which respectively raise and
lower the number of particles in a given single-particle state by 1. The annihilation operator cλ and
the creation operator c†λ are hermitian conjugates. The latter allows to define the full basis of the

Fock space F , applying it consecutively to the vacuum: |nλ1
= 1 · · ·nλN = 1〉 = c†λ1

· · · c†λN |vac〉.
Let us see an example of how we would define a 2-electron state:

c†↑c
†
↓ |vac〉 = c†↑

↓
|1〉 =

↑↓
|11〉 =

1√
2

(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉) . (4)

The last equality relates the state in the second quantization formalism to its representation as
a fixed-number-of-particles Hilbert state. We adopt the convention that the first quantum state in
the occupation representation appears with a positive sign in the corresponding anti-symmetrized

wavefunction, in the fermionic case. In other words, that
↑↓
|11〉 = −

↓↑
|11〉. The (anti)symmetric prop-

erties of the wavefunctions will naturally arise as some (anti)commutation relationships between
the operators that we will define next.

Moreover, we shall note that a fermionic operator acting on an occupied quantum state yields 0
by virtue of the Pauli Principle, and similarly any annihilation operator also returns 0 when acting
on an empty state.

The anti-commmutation relations for fermions read

{c†α, c
†
β} = {cα, cβ} = 0, (5)

{cα , c†β} = δαβ . (6)

Although in this report we will be mainly interested in characterizing electrons, we shall add
the bosonic commutation relations for the sake of completeness:

[b†α, b
†
β ] = [bα, bβ ] = 0, (7)

[bα, b
†
β ] = δαβ . (8)
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In addition, it will be useful to define the number operator, whose eigenvalues are the number
of particles occupying the corresponding state |λ〉:

c†λcλ |{nλ}〉 = nλ |{nλ}〉 . (9)

Change of basis is defined naturally for these operators. As an example, let us consider the
Fourier transformation to momentum space in a 1D lattice, which will prove useful in Section 3:

cj =
1√
N

∑
k

eikrjck. (10)

c†j =
1√
N

∑
k

e−ikrjc†k. (11)

Indeed, the creation operator in real space is related to creation operators in momentum space,
and as one would expect, anti-commutation relations also hold for c†k and ck.

To conclude this brief revision, we shall include how one-body operators look like in the for-
malism:

Ô =
∑
αβ

Oαβ , c
†
αcβ (12)

where Oαβ are the matrix elements of the operator in the chosen basis. Certainly, a one-body
operator engages particles one by one. Let us consider for example the z-component of the spin
operator, where the matrix elements are those of the σz Pauli matrix. Following Eq. (12) we
obtain

Ŝz =
~
2

(
c†↑c↑ − c

†
↓c↓

)
.

Physically, it seems logical: if one recalls the number operator defined in Eq. (9), it is immediate
to notice that we are indeed “counting” the number of spin-up electrons and then “subtracting”
its spin-down counterpart. Furthermore, it is interesting to notice that we have one single operator
acting on the Fock space of none, one or two particles, which we do not need to extend as it
happens when working in first quantization Hilbert spaces.

In the following subsection we will perform some calculations on a 2-level system, in order to
illustrate a basic usage of the formalism.

2.1 Singlet and triplet states in a 2-level system

Let us consider a system of 2 electrons characterized by the spin and another quantum number that
we shall designate orbital. In the first quantization formalism, a state would be represented by the
anti-symmetrized product of each electron’s wavefunction. However, commutativity of the tensor
product allows us to (anti)symmetrize orbital and spin functions separately, so that the total state
is defined by a product of a symmetric orbital function and an anti-symmetric spin function or vice-
versa. Possible options are gathered in Table 1. The anti-symmetrization constraint reduces the 16

possible combinations to only 6 valid states: |aa〉⊗ (|↑↓〉−|↓↑〉)√
2

, |bb〉⊗ (|↑↓〉−|↓↑〉)√
2

, (|ab〉+|ba〉)⊗(|↑↓〉−|↓↑〉)
2 ,

(|ab〉−|ba〉)√
2

⊗ |↑↑〉, (|ab〉−|ba〉)√
2

⊗ |↓↓〉, and (|ab〉−|ba〉)⊗(|↑↓〉+|↓↑〉)
2 .

Orbital Spin

Symmetric
|aa〉 |↑↑〉
|bb〉 |↓↓〉

|ab〉+ |ba〉 |↑↓〉+ |↓↑〉

Antisymmetric |ab〉 − |ba〉 |↑↓〉 − |↓↑〉

Table 1: Possible orbital and spin functions for 2 electrons in the 2-level system. Normalization
constants have been omitted for readability.

Now, let us tackle the problem within the second quantization formalism. The most generic
2-fermion creation operator in our 2-level system reads

Ĉ(ν) =
∑

α,β={a,b}
σ,ρ={↑,↓}

νσραβc
†
ασc
†
βρ =

∑
α,β={a,b}
σ,ρ={↑,↓}

νσραβ

(
−c†βρc

†
ασ

)
, (13)
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where the second equality is a direct consequence of the anti-commutation relationship (5).
After having rearranged indices, it is straightforward to notice that νσραβ = −νρσβα. Once again, we
find that from the 16 possible coefficients only 6 of them are truly independent. This means that
we have 6 different creation operators and that we can write any possible state of our system as
a linear combination of them. To relate these operators to their corresponding “first-quantized”
state, one just has to act them on the vacuum state, as we did in the example of Eq. (4). These
relationships are shown in Table 2.

Hilbert state Operator Total spin Spin z-component

|aa〉 (|↑↓〉 − |↓↑〉) c†a↑c
†
a↓

S = 0 Sz = 0|bb〉 (|↑↓〉 − |↓↑〉) c†b↑c
†
b↓

(|ab〉+ |ba〉) (|↑↓〉 − |↓↑〉) c†a↑c
†
b↓ − c

†
a↓c
†
b↑

(|ab〉 − |ba〉) |↑↑〉 c†a↑c
†
b↑

S = 1
Sz = +1

(|ab〉 − |ba〉) |↓↓〉 c†a↓c
†
b↓ Sz = −1

(|ab〉 − |ba〉) (|↑↓〉+ |↓↑〉) c†a↑c
†
b↓ + c†a↓c

†
b↑ Sz = 0

Table 2: Possible independent states and their corresponding operators for 2 electrons in a 2-level
system. Normalization constants have been omitted for readability.

In order to calculate the total spin and the z-component we compute the second-quantized
operators using Eq. (12). In order to apply them to a state we will adopt the following prescription:
first express the state as a succession of operators acting on the vacuum and then apply the anti-
commutation relations to shift the annihilation operators to the right, which will vanish when
acting on the vacuum. The remaining terms will be the resulting state. Although this procedure is
straightforward, algebraic manipulations can become a bit cumbersome, therefore a Mathematica
package [6] was employed to verify results in Table 2.

3 Hopping model

We shall start this section analysing a very simple model of spinless fermions in a 1D chain to
become acquainted with the notion of diagonalizing a Hamiltonian within the second quantization
formalism. Then, we will progressively increase the complexity of the model to obtain a system
which exhibits some topological bound states, paving the way towards the Kitaev chain.

j + 1j − 1
ja

t

(a) N -sites chain with one kind of hopping,
t.

2j + 12j − 1

2j

2a t′

2j − 2 2j + 2

t

m+ 1

mA A

B

B

B

(b) 2N -sites dimerized chain with two kinds
of hopping, t and t′.

Figure 1: Spinless fermionic 1D hopping model with periodic boundary conditions.

To start with, let us consider a simple N-sites one-dimensional chain with only one type of hop-
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ping allowed between nearest neighbours, where rj = aj, being a some constant which determines
the periodicity of the model (Fig. 1a). The Hamiltonian of the system is expressed as follows

Ĥ = −t
N∑
j=1

(c†j+1cj + c†jcj+1), (14)

where t is a real and positive constant, the hopping amplitude. The operator formalism provides a
good intuition of the physics in the model: indeed, the hopping is represented by the annihilation
of an electron at site j (operator cj) followed by the creation of a new electron at the neighbouring

site j + 1 (operator c†j+1) and vice-versa.
Roughly speaking, we could say that the main idea behind the diagonalization scheme will

be to rewrite the Hamiltonian in some other basis such that Ĥ =
∑
λ ελc

†
λcλ. By doing so and

identifying c†λcλ with the number operator, the physical meaning is clear: the Hamiltonian can
be understood as the sum of all its eigenvalues (ελ) times the number of particles in each of the
corresponding eigenstates.

In the present case, the chain periodicity suggests the problem could be greatly simplified by
Fourier transforming, so we will make use of the expressions proposed early, (10) and (11). Firstly,
we shall notice that the periodic boundary conditions impose some restrictions on the possible
values of the momentum k:

c†j = c†j+N ⇒
1√
N

∑
k

eikajck =
1√
N

∑
k

eika(j+N)ck ⇒ eikNa = 1⇒ k =
2πm

Na
, (15)

where we adopt the convention m = (−N2 ,−
N
2 + 1, · · · , N2 − 1). As expected, we also have N

independent operators in momentum space and for N → ∞ we recover the usual first Brioullin
zone. Proceeding as announced, the Hamiltonian writes

Ĥ =
−t
N

N∑
j=1

∑
kk′

(
e−ika(j+1)c†ke

ik′ajck′ + e−ik
′ajc†k′e

ika(j+1)ck

)
= −t

∑
kk′

(
e−ikac†kck′ + eikac†k′ck

)
δkk′

=
∑
k

(−2t cos(ka)) c†kck =
∑
k

εkN̂k, (16)

where the second equality results from the fact that
∑N
j=1 e

−i(k−k′)ja = Nδkk′ due to the restric-
tions PBC impose on k. As we suggested before, the Hamiltonian appears to be an operator
counting the number of electrons with momentum k, multiplying the count by the energy of such
electron and returning the sum. The eigenvalues εk = −2t cos(ka); k = (−πa ,−

π
a +1, . . . , πa −1) are

actually a discrete version of the energy dispersion relation that one finds in the simplest version
of the tight-binding model, but we shall not dwell further on the physics of this model, since it is
not the purpose of the example. Instead, we will add some complexity to it.

Now, we will allow two different types of hopping, t and t′. Therefore, the periodicity of the
model is given by 2a, as showed in Figure 1b. (For convenience we will consider a chain with 2N
sites in this case). The Hamiltonian of the system reads

Ĥ =

N∑
j=1

[
−t
(
c†2j−1c2j + c†2jc2j−1

)
− t′

(
c†2j+1c2j + c†2jc2j+1

)]
. (17)

Once again, the second quantization operators provide a clear picture of the hopping, but un-
fortunately this notation somehow conceals the periodicity of the model. Thus, we shall reinterpret
the system as a chain of N dimers as depicted in Figure 1b. We will assign the operator c†A to the

odd sites (first site of each dimer) and c†B to its even counterpart. In other words, c†Am = c†2j−1
and c†Bm = c†2j . The Hamiltonian of Eq. (17) can now be rewritten as:
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Ĥ =

N∑
m=1

[
−t
(
c†AmcBm + c†BmcAm

)
− t′

(
c†Am+1cBm + c†BmcAm+1

)]
=

N∑
m=1

[
−tc̃†mσxc̃m − t′

(
c̃†m+1σ+c̃m + c̃†mσ−c̃m+1

)]
, (18)

where in the second equation we introduced matrix notation to make the expression more compact.
We set c̃†m =

(
c†Amc

†
Bm

)
and c̃m =

(
cAm
cBm

)
. On the other hand, σx is the usual Pauli matrix and

σ+ =
(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
. Once the Hamiltonian is expressed in terms of these “new” operators,

we can continue going to Fourier space to diagonalize it. The procedure is analogous to that of
the previous example, with the exception that periodicity is now 2a, therefore periodic boundary
conditions c̃†N+1 = c̃†1 imply that k = π

Nan with n =
(
−N2 , . . . ,

N
2 − 1

)
. Hence Eq. (18) reads

Ĥ =
∑
k

c̃†k

(
0 −t− t′e−ik2a

−t− t′eik2a 0

)
c̃k

=
∑
k

ε+(k)D̃†+,kD̃+,k + ε−(k)D̃†−,kD̃−,k. (19)

As we can observe, we rephrased the Hamiltonian in terms of some abstract “number operators”
which count the number of excitations present in the system. Renaming γ = −t− t′eik2a to lighten
notation one easily finds that

ε± = ±|γ| = ±
√
t2 + t′2 + 2tt′ cos(2ka). (20)

D̃†k =
(
D̃†+,k D̃

†
−,k

)
= c̃†kU

†. (21)

D̃k =

(
D̃+,k

D̃−,k

)
= Uc̃k, (22)

with U =
(
γ∗ γ∗

ε+ ε−

)
being the matrix for the change of basis. A quick glance at Equation (20)

already provides an interesting insight: the energy spectrum of the system is symmetric under the
exchange t↔ t′, which is in agreement with the periodic structure of the model. When plotting the
spectrum in k-space (Fig. 2) we find that a gap opens at ε = 0 for t 6= t′. In fact, this corresponds
to the well-known picture of an insulator. At t = t′ this gap closes and the system is equivalent
to the simple chain studied initially, which describes a conductor. In this case, the plot is nothing
more that εk = −2t cos(ka) but folded onto itself, as we imposed a periodicity of 2a. On the other
hand, setting one amplitude to 0 would trivially result in a flat band.

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5

(a) Solution corresponding to N = 10, t = 0.5 and
t′ = 1. Exchanging t and t′ yields the same result.

-2 -1 1 2

-2

-1

1

2

(b) Solution corresponding to N = 10, t = 1 and t′ = 1.

Figure 2: Energy spectrum in momentum space for the dimerized hopping model with periodic
boundary conditions. The dotted line represents the continuum solution and the dots are the
actual eigenvalues for a 10-sites chain.
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Even though this brief analysis might suggest that our model is totally symmetric under the
exchange of the hopping amplitudes, this is not totally accurate. Indeed, the eigenfunctions exhibit
some non-trivial dependence of t and t′ through γ = −t − t′eik2a which can be characterized by
the bulk winding number [7]. However, this matter is outside the scope of this report.

We shall finish this section analysing again this model, but this time we will impose open
boundary conditions. As a matter of fact, this is the Su-Schrieffer-Heeger (SSH) model which after
some adjustments can be used to describe some physical systems, such as poly-acetylene [7].

. . .
t t′

1 2 3 9 10

(a) Trivial configuration, t > t′

. . .
t t′

1 2 3 9 10

(b) Topological configuration t < t′.

Figure 3: Fermionic 1D chain of N = 10 sites. Two hopping amplitudes are allowed, t and t′.

For an even number of the sites, the Hamiltonian of the system can be expressed in a real space
basis as follows

Ĥ =


0 −t 0 . . . 0
−t 0 −t′ . . . 0
0 −t′ 0 . . . 0
...

...
...

. . .
...

0 0 0 −t 0

 . (23)

We shall particularize the model for the case of N = 10 and approach the problem numerically,
diagonalizing the previous Hamiltonian with the software Mathematica. We present the obtained
results below.

0.5 1.0 1.5 2.0

-3

-2

-1

1

2

3

Figure 4: Energy spectrum as a function of the hopping parameter quotient t/t′ for N = 10 sites.

In Figure 4 we study the evolution of the spectrum as a function of the hopping parameter
quotient t/t′. We can observe that for large values of such ratio, the system behaves essentially as
if it had periodic boundaries: the spectrum is symmetric around an energy gap at ε = 0. Physically
this corresponds to the depiction in Figure 3a: since t is much greater than t′ the system is trivially
dimerized. However, as we decrease the value of t/t′ some interesting effect emerges. We observe
that instead of having the gap closed at t = t′ and intermediately reopened as happened in the
previous case, two states decay towards zero energy. Here again, a schematic figure sheds a lot of
light on the physics of the model: the difference between the hopping parameters also leads the
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sites to dimerize but now it happens in a different fashion (called topological [7]), so that the sites
in the boundaries are somehow disconnected. In fact, at the limit t = 0 no hopping is allowed to
such sites and and since there is not any on-site potential, the so-called zero-energy bound states
arise. On the other hand, the bulk of the chain is flat and fully degenerated. From the diagrams
in Figure 3 it is clear that this situation would not arise if we set t′ = 0 instead, and interestingly,
we would always have a zero-energy state if the chain had an odd number of sites.

-1.0

-0.5

0.0

0.5

1.0

(a) Zero-energy bound state at site j = 1.

-1.0

-0.5

0.0

0.5

1.0

(b) Zero-energy bound state at site j = 10.

-1.0

-0.5

0.0

0.5

1.0

(c) Eigenfunction corresponding to t/t′ = 0.3 and ε =
0.002.

-1.0

-0.5

0.0

0.5

1.0

(d) Eigenfunction corresponding to t/t′ = 1.5 and ε =
0.717.

Figure 5: Eigenfunctions of the Hamiltonian for open boundary conditions and N = 10. The
functions correspond to the dots in the energy spectrum plot (Fig. 4).The vertical axis represents
the probability amplitude.

A careful analysis of some of the eigenfunctions corroborates the previous comments. Indeed,
we can observe how for t/t′ = 0 we obtain two definite modes at the extremes of the chain (Fig.
5a and 5b). This situation would remain unchanged for any even number of sites. As we increase
the ratio between the hopping parameters those bound states delocalize progressively, becoming
a superposition of the electron in every site (Fig. 5d). We shall remark that the probability of
occupation associated to each site exhibits some symmetry (notice that in Fig. 5 only amplitudes
of probability are represented). This is due to the fact that the chain is symmetric itself [8].

4 Kitaev chain

As we have seen in the previous models, fermionic sites in the chain are described by a pair of
creation and annihilation operators, c†j , cj which satisfied the anti-commutation relations mentioned
in Eq. (5) and (6). We can formally rewrite such operators in terms of the so-called Majorana
operators [9]:

c†j =
1

2
(γAj + iγBj) , cj =

1

2
(γAj − iγBj) , (24)

which have the remarkable property of being hermitian, i.e., γ†Aj = γAj and γ†Bj = γBj . This
implies that we cannot think of a single Majorana mode as being “empty” or “filled”, as we have
done with other fermionic modes. Nevertheless, these new operators also satisfy some similar
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anticommutation relations, which can be condensed in the following expression:

{γαj , γβk} = 2δαβδjk. (25)

The definitions in Eq. (24) can be somehow understood as rewriting a complex number as
a pair of real numbers. Hence, Majorana operators will always come in an even number. Since
condensed matter systems are underpinned by the physics of electrons, one might naively think
that it is impossible to realise single isolated Majorana modes. However, it is not the case, and
this was Kitaev’s notable insight [3]: to engineer a toy model which allows such modes to arise.
The proposed system is once again a spinless fermionic 1D-chain with the following Hamiltonian:

Ĥ =
∑
j

[
−t
(
c†jcj+1 + c†j+1cj

)
− µ

(
c†jcj −

1

2

)
+ ∆cjcj+1 + ∆∗c†j+1c

†
j

]
. (26)

Here t characterizes the hopping amplitude as in the previous models. In addition we suppose
that the chain is coupled to a superconducting reservoir which injects fermionic pairs in the adjacent
sites. The coupling is characterized by the parameter ∆ which represents the superconducting gap.
As a side note we remark that since we are dealing with spinless fermions the antisymmetry of
the Cooper pair wavefunction falls on the orbital part, hence it is a p-wave pairing [8]. Finally,
the Hamiltonian must include the chemical potential µ, as the number of particles is not fixed.
Following Kitaev’s proposal, let us rewrite the Hamiltonian from Eq. (26) in terms of the Majorana
operators:

Ĥ =
i

2

∑
j

(−µγAjγBj + (t+ |∆|)γBjγAj+1 + (−t+ |∆|)γAjγBj+1) , (27)

where we included a factor e±θ/2 in the expressions (24) respectively, in order to “hide” the phase
dependence of the superconducting gap. In this report we will restrict ourselves to analysing two
special cases [3]:

1. Case |∆| = t = 0, µ < 0. This choice of parameters makes the system trivial, without any
hopping or superconductivity. The Hamiltonian reads Ĥ = i

2 (−µ)
∑
j γAjγBj , where only

Majorana operators of the same site j are paired together. The ground state has certainly 0
occupation number.

2. Case |∆| = t > 0, µ = 0. Now the Majorana operators from different sites are paired
together. Indeed, Ĥ = it

∑
j γBjγAj+1, and as we can see, the Majorana operators γA1 and

γB2N remain unpaired, i.e., they do not enter the Hamiltonian. In fact, they correspond to
the zero-energy modes, as occurred similarly in the SSH model studied before.

We will finish this section pointing out that although it might seem that unpaired Majoranas
appear as a result of the parameters fine-tuning, it is not the case. Actually, the Majoranas are
protected until µ ' −2t, that is, as long as the bulk energy gap is finite. This is a result of
the particle-hole symmetry that exhibits the Hamiltonian. To move the energy levels from zero
individually would break such symmetry, and moving then together requires them to be coupled,
which only happens once the bulk energy gap is closed (namely, at µ = 2t) [9].

5 Conclusion

Along the previous pages we have been able to appreciate the potential of the second quantization
formalism. Indeed, if instead of assigning a position to each particle and (anti)symmetrizing all
the possible permutations, one directly thinks in terms of occupation numbers, indistinguishability
ensues naturally. Moreover, it has proven a very compact notation to write Hamiltonians.

The discussion on the hopping models has pointed out the similarities between the Su-Schrieffer-
Heegerspectra model and a spinless p-wave superconducting wire (Kitaev’s chain). Furthermore,
we shall remark the important role that symmetries play in understanding the physics of the stud-
ied models, albeit mentioned just once and very briefly.
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Finally, although the application of Majorana modes to quantum computation is far beyond
the scope of this report, the analysis of the energy spectrum gives a slight hint on their interest.
Indeed, Kitaev’s chain allows for the existence of states of definite energy, which are situated far
apart in space. Roughly speaking, it is this non-locality which suggests a promising future for
decoherence-protected qubits.
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