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Abstract  

The liver stem cell niche is a specialized and dynamic microenvironment with biomechanical 

and biochemical characteristics that regulate stem cell behavior. This is feasible due to the 

coordination of a complex network of secreted factors, small molecules, neural, blood 

inputs and extracellular matrix (ECM) components involved in the regulation of stem cell 

fate (self-renewal, survival, and differentiation into more mature phenotypes like 

hepatocytes and cholangiocytes). 

In this review, we describe and summarize all the major components that play essential 

roles in the liver stem cell niche, in particular, growth factor signaling and the biomechanical 

properties of the ECM.  

 

 

Keywords: liver development, ECM, stem cell, progenitor cell, stem cell niche, growth 
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1. Introduction  

The stem cell niche is a specific and dynamic microenvironment in which many inputs such 

as signals departing from blood vessels, neural and supportive cells, as well as secreted 

factors, and extracellular matrix (ECM) components regulate stem cell behavior. These 

multiple signals with a physical, electrical, structural or biochemical nature are responsible 

for supporting stem cell properties. 

In the last two decades, the role and importance of the ECM in cell biology has considerably 

increased, and currently, the ECM is recognized as an active entity composed of a variety of 

proteins and other molecules(Akhmanova et al., 2015). Besides, the structural, chemical and 

functional diversity of ECM components confers distinct biomechanical and biochemical 

properties to the ECM, providing a specific composition to the matrix, strictly correlated 

with the tissue, and sometimes species, of origin. In the liver, the extrahepatic stem cell 

niches are located in the peripheral or peribiliary glands inside the walls of the bile ducts, 

while the intrahepatic stem cell niches are found on the ductal plates of fetal livers and the 

Canals of Hering in the postnatal livers (Schmelzer et al., 2007). Although the major 

structural components of liver’s ECM are collagens (COL) and fibronectin (FN), the matrix of 

bile ductules, where the progenitor cells reside, is mainly composed of COL IV and laminin 

(LN) (Terada and Nakanuma, 1994; Yasoshima et al., 2000). 

The liver is known for its unique regenerative capability. The support of stem cell behavior 

provided by the stem cell niche helps maintain their quiescent state in homeostasis and 

regulates their self-renewal, expansion, and differentiation after activation. Following tissue 

injury, the surrounding microenvironment promotes self-renewal and differentiation of 

stem cells by activating and sending numerous signals. Moreover, the secretion of diverse 

growth factors (GF) such as TGF-α, EGF, FGF, and HGF play an essential role in liver 

development, health, and disease. The ECM is also a reservoir of GF and bioactive molecules 

by regulating their diffusion and availability (Hynes, 2009; Wilgus, 2012). It is constituted by 

adhesive molecules, notch signaling proteins, and proteoglycans which can bind and 

modulate GF activity (Lee et al., 2011).  

Several authors have tried to determine which factors, signals or conditions control the fate 

choice of hepatic stem/progenitor cells to differentiate towards a specific cell type. This 
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review provides an in-depth summary of the most recent findings on the role of hepatic 

ECM in liver stem cell behavior. 

2. Composition and function of stem cell niches in solid organs 

In 1978, Raymond Schofield proposed that stem cells resided in specific locations called 

niches, which provided a complex multifactorial microenvironment (Schofield, 1978). Today, 

we can determine that a stem cell niche is an accurate and complex microenvironment 

within a specific anatomic location. It comprises cellular and acellular elements that interact 

with local and systemic signals for the regulation of the stem cell function (Kordes and 

Haussinger, 2013; Mohyeldin et al., 2010; Scadden, 2006), where the interactions of 

neighbors with stem cells via cadherins (Marthiens et al., 2010) and soluble paracrine signals 

play a critical role for stem cell maintenance and differentiation. Thus, the niche is not 

merely the place where stem cells reside, but it also compromises the microenvironment 

generated by the surrounding cells, involving the release of signals that induce stem cell 

quiescence. It also promotes stem cell asymmetric and symmetric divisions critical in tissue 

homeostasis, regeneration and repair, and ultimately the anchorage of stem cells and 

stromal cells to the ECM (Jones and Wagers, 2008). Although in vivo stem cell 

microenvironments are entirely inaccessible, it is usually regarded that the presence of a 

stem cell defines a genuine stem cell niche. Thus, despite the importance of all niche 

elements, the identification of a stem cell is the necessary evidence (Weissman, 2000). 

Stem cells are frequently found on basement membranes (Fuchs et al., 2004), where 

specific adhesion molecules called integrins mediate the interactions. Alteration or loss of 

integrin expression gives rise to the recruitment of stem cells (Watt and Hogan, 2000). 

Additionally, the direct contact with peripheral nervous system elements helps to control 

stem cell recruitment. 

A typical stem cell niche includes different components that are perfectly integrated and 

controlled. These components comprise the mentioned stem cells, stromal cells, ECM 

proteins, soluble factors, and innervation and neural inputs (Fig. 1). Other key niche factors 

are cell-cell and cell-ECM adhesions, as mentioned above. Although these are standard 

components, every particular tissue sustains different functional and specialized types of 

niches (Jones and Wagers, 2008). Mohyeldin et al. suggest that oxygen and other gaseous 
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messengers can also be considered as components of the stem cell niche, in the sense that 

they can also act as metabolic regulators of stem cell function (Mohyeldin et al., 2010). 

3. Liver development 

Hepatic development and organization begins by the third week of gestation and continues 

until the postnatal stage. The anterior portion of the hepatic diverticulum forms the 

intrahepatic biliary tree and the liver, whereas the posterior portion gives rise to the 

extrahepatic bile ducts and the gallbladder (Zorn, 2008). 

From definitive endoderm, hepatocytes are originated during embryonic development after 

hepatic competence acquisition by ventral foregut endoderm and specification of those 

epithelial cells into hepatic endoderm (Zaret, 2008, 2016). 

Primordial liver cells transition into a non-polarized cellular phenotype called hepatoblasts, 

which then generate the liver bud. These cells are bipotent progenitor cells that express 

fetal hepatic genes as well as cholangiocyte and hepatocyte lineage genes (Schmelzer et al., 

2007). They can differentiate into both cell types depending on different signaling pathways. 

Notch and TGF-β promote biliary differentiation (Clotman et al., 2005; Decaens et al., 2008; 

Tanimizu and Miyajima, 2004). However, the specification of hepatoblasts toward 

hepatocyte fate is promoted when these pathways are down-regulated (Huch et al., 2013; 

Huch et al., 2015; Nantasanti et al., 2015). 

4. Liver stem cell niches 

The human hepatic stem cells are located in the ductal plates of the fetal and neonatal 

livers, and in the Canals of Hering in pediatric and adult livers (Kordes and Haussinger, 2013; 

Kuwahara et al., 2008; Saxena and Theise, 2004; Schmelzer et al., 2007; Stachelscheid et al., 

2009; Zhang et al., 2008; Zhou et al., 2007). These cells constitute approximately 0.5-2% of 

the parenchyma and have a size that ranges between 7-10 μm in diameter with a high 

nuclear-cytoplasm ratio. They express EpCAM, NCAM, CD133, CXCR4, SOX9, SOX17, FOXA2, 

CK8/18/19, Hedgehog protein, Claudin 3, and ALB at deficient levels. They do not express 

AFP, ICAM-1 or endothelial, mesenchymal, and hematopoietic markers(Schmelzer et al., 

2007). 
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The hepatoblasts reside mainly in the parenchyma of fetal and neonatal livers or as small 

aggregates in the Canals of Hering in adult livers (Zhang et al., 2008). These progenitor cells 

have a larger size than the hepatic stem cells (10-12 μm), as well as more substantial 

amount of cytoplasm; however, they have an overlapping antigenic profile (Schmelzer et al., 

2006; Schmelzer et al., 2007; Theise et al., 1999). They share the expression of CXCR4, 

CD133, SOX17, CK8/18/19, Hedgehog proteins and the non-expression of hematopoietic, 

endothelial or mesenchymal markers. The differences are found in the reduction of the 

expression levels of EpCAM, in the presence of high levels of ALB with discrete cytoplasmic 

packing, the change of expression of NCAM by ICAM-1, and a strong expression of AFP, 

amongst others. The percentage of these cells in postnatal livers decreases to <0.01% of 

parenchymal cells (Schmelzer et al., 2007; Zhang et al., 2008). On the contrary, they 

undergo a significant expansion during specific regenerative processes associated with 

several diseases such as cirrhosis and toxic injury. 

In the past decade, other niches of stem cells have been identified in the large intrahepatic 

bile ducts, which have a distinct histology, resembling the one found in the extrahepatic bile 

ducts (Cardinale et al., 2011; Carpino et al., 2012). This is a different stem cell niche located 

in the peribiliary glands, which contain a different stem cell population known as human 

biliary tree stem/progenitor cells (hBTSCs), which can be differentiated into cholangiocytes 

and hepatocytes (Reid, 2016; Semeraro et al., 2012). hBTSCs originated from the common 

bile duct are also amenable to be differentiated into pancreatic cell lineages (Cardinale et 

al., 2015; Wang et al., 2013), displaying the nature of a multipotent stem cell. 

 

5. Role of liver ECM in the liver stem cell niche 

5.1. The interaction between ECM and hepatic stem cells  

The process of ECM renovation is a complex but remarkably synchronized procedure 

resulting from the equilibrium among production, secretion, degradation (Lu et al., 2011). 

Although ECM comprises less than 3% in a healthy liver section (Gressner, 1992), and minimal 

modification on the ECM has a direct consequence in hepatic functions (Bedossa and 

Paradis, 2003). 
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The principal structural components of the liver ECM are COL and FN. COL I and III are 

expressed in the portal stroma, space of Disse, liver capsule, and fibroid tissue (Aycock and 

Seyer, 1989; Martinez-Hernandez, 1984). COL IV and LN give rise to the basal lamina of 

the blood vessels and bile ducts (Martinez-Hernandez, 1984). COL V forms thin fibers 

located in the center of thick COL I and III fibrils. On the other hand, FN is a glycoprotein 

that can be found in the liver capsule, portal stroma, and space of Disse. FN levels 

increase during liver regeneration (Aziz-Seible and Casey, 2011), while the absence of 

that is correlated with cirrhosis, liver stiffness, and disorganized COL network (Iwasaki et 

al., 2016). Cell-cell interaction and also cell-matrix interplay are essential in the regulation 

of the stem cell behavior within niches (Spradling et al., 2001). In the liver, the ECM and 

basement membrane of bile ducts, where the progenitor cells reside, are mainly composed 

of COL IV and LN (Terada and Nakanuma, 1994; Yasoshima et al., 2000). 

It is known that the liver has a significant regenerative ability. Although hepatocytes have a 

slow turn-over, hepatic injury promotes a rapid reconstitution of liver mass, where 

inflammatory cytokines such as TNF-α and IL-6 produced by Kupffer cells (Kwon et al., 2015) 

trigger hepatocytes to enter the cell cycle (G0 → G1). As hepatocyte proliferation is 

overwhelmed by some drugs, toxins or in chronic liver diseases, liver stem/progenitor cells 

contribute to liver regeneration (Roskams et al., 2003; Vig et al., 2006). However, little is 

known about the surrounding environment of the hepatic progenitor cells. Different hepatic 

chronic diseases are characterized by excessive deposition of ECM because of continuous 

liver damage. Murata et al. demonstrated that fibrotic livers have more than five-fold 

increase in COL deposition compared to a healthy organ (Murata et al., 1984). 

Stuart Forbes’ research group demonstrated that during liver damage, both in rodents and 

humans, there are specialized niches around hepatic progenitors where the LN helps the 

maintenance of undifferentiated progenitor cells (Lorenzini et al., 2010). Furthermore, LN 

also promoted the expression of biliary/hepatoblast genes and significantly inhibited the 

expression of early hepatocyte genes, demonstrating the role of this protein in the control 

of liver progenitor cell fates (Lorenzini et al., 2010). Studying the expansion of liver 

progenitor cells in a choline-deficient ethionine-supplemented model, it was observed that 

the deposition of ECM precedes the expansion and migration of the progenitor cells (Van 

Hul et al., 2009). This accumulation of COL I and LN was found in front of these progenitor 
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cells along the portal-venous gradient of lobular invasion(Van Hul et al., 2009). Therefore, 

changes in the ECM composition alter the cell signaling in liver, facilitating either normal 

regeneration or paving the way for liver disease (Williams et al., 2014). Recently, Klaas et al. 

studied the role of the ECM in liver regeneration (Klaas et al., 2016). They observed 

considerable alterations (COL, FN, and elastin) as well as in non-structural proteins. These 

changes resulted in the rearrangement and increase of the stiffness in damaged liver ECM 

(Klaas et al., 2016). Takayama et al. succeeded to culture and expand pluripotent stem cell-

derived hepatoblasts on dishes coated with human LN-111. These cells were maintained for 

more than three months and could differentiate into both hepatocyte-like cells and 

cholangiocyte-like cells (Takayama et al., 2013). 

5.2. Growth factor presentation  

GF are key intercellular signaling molecules (mostly proteins) that direct cells during 

development and adult organisms, controlling cell growth, migration, and differentiation 

(Lee et al., 2011). 

Many GF and small molecules play critical roles in the hepatic specification and stem cell 

maturation (Chen et al., 2018). TGF-α and EGF are just a few examples of liver autocrine GF 

signaling. They are produced both by hepatocytes and non-parenchymal cells, and 

concentration gradients of these molecules induce different liver cell behaviors. In the case 

of HGF, it can cause hepatocyte loss, leading to an embryonic liver size reduction (Schmidt 

et al., 1995). FGF also plays an essential role in liver development, health and disease. Itoh 

et al. concluded that these molecules could work at the paracrine and endocrine level (Itoh 

et al., 2016). Examples of FGF as paracrine factors are FGF8 and FGF10, involved in 

embryonic liver development; FGF7 and FGF9, in tissue repair after liver injury, and FGF5, 

FGF8, FGF9 in the development and progression of hepatocellular carcinoma. 

On the other hand, FGF15/19 and FGF21 are endocrine signals that play critical roles in the 

bile acid metabolism. Insulin is also known by preserving many hepatocyte-specific 

functions, like albumin secretion by hepatocytes, lipogenesis, and glycogenesis, amongst 

others. OSM is an interleukin family cytokine involved in hepatic maturation and the 

induction of hepatocyte-specific functions such as lipid synthesis, detoxification, and 

ammonia clearance. However, it has also been shown that progenitor cells that receive OSM 
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do not mature, despite stimulating hepatocyte differentiation. Interestingly, hepatocyte 

function is recovered when OSM is removed from the environment (Levy et al., 2015). 

The ECM can additionally be considered as a reservoir of GF and bioactive molecules, 

regulating their diffusion (Hynes, 2009; Wilgus, 2012). It contains many components like 

adhesive proteins, notch signaling molecules, and proteoglycans which can bind and 

modulate GF activity (Lee et al., 2011). In other cases, GF can be released through ECM and 

proteoglycan degradation. Furthermore, the ECM can storage immature molecules until 

they are activated. For example, TGFβ, which stimulates biliary differentiation, is secreted in 

an inactivated way and remains retained in the ECM until its activation (Yue, 2014). 

Downregulation of this signaling pathway allows hepatoblasts to differentiate into 

hepatocytes (Huch et al., 2015) (Fig. 2). Additionally, some GF contain heparin-binding 

domains (HBD), which are critical for the modulation of biological activities like cell 

proliferation, differentiation, morphogenesis, and angiogenesis. The first growth factors 

isolated with this motif were bFGF (FGF2) (Bohlen et al., 1984) and aFGF (FGF1) (Bohlen et 

al., 1985). Since then, a vast family of GFs containing an HBD was identified (e.g., VEGF, 

PDGF, EGF, other FGFs, TGFbetc) (Rider and Mulloy, 2017). 

Proteoglycans are proteins that carry glycosaminoglycans (GAGs), a vital carbohydrate that 

exists in four forms in the liver and in different quantities: heparan sulfate, chondroitin 

sulfate, dermatan sulfate, and hyaluronic acid (Baghy et al., 2016; Kjellen and Lindahl, 1991). 

Complexes formed between GAGs and GFs, like FGF-heparin or FGF-heparan sulfate 

complexes, protect the GFs from degradation. Furthermore, heparan sulfate plays key roles 

in binding and interacting with GF, plasma proteins, and other factors, allowing with this, 

the regulation of protein distribution, bio-availability, and action to target cells. Even though 

there are well-known signaling proteins that interact with heparan sulfate domains, there 

are still knowledge gaps that remain to be elucidated (Billings and Pacifici, 2015).  

All these mechanisms act on stem cells and stem cell niches, modulating stem cell 

proliferation and differentiation. 

5.3. Mechanobiology of ECM and liver Stem Cells. 

In the last years, the field of biomedical engineering has continuously evolved. This progress 

has introduced new relevant knowledge, as the concept of mechanobiology. 
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Mechanobiology is a scientific area at the interface of the biology and engineering, focused 

on the study of the role that tissue biophysical stimulus and mechanical environment (force, 

geometry, topography, stiffness, matrix elasticity) play in cellular processes, including 

differentiation, injury response, physiology, and pathology (Engler et al., 2006; Ingber, 

2018). Consequently, mechanobiology identifies that cells can recognize not only 

biochemical signals, but also physical factors that impact their normal functioning and 

maintenance (Lim et al., 2010). 

Currently, it is well documented that all the cells in the body are mechanosensitive (Jaalouk 

and Lammerding, 2009), including liver cells. This organ was not considered to be associated 

with a mechanical load in the past. Hence, liver mechanobiology represents a field in 

progress that might be critical in areas such as development, pathology, and tissue 

engineering. In this section, we sought to provide a thorough description of hepatic 

mechanobiology and ECM contribution. 

An essential component of cellular mechanosensitivity is the capability of the cell-cell and 

cell-matrix interactions to detect and respond to the mechanical stiffness of its surface. The 

focal adhesion complexes are the points where cell-matrix interactions take place, mediated 

by integrin molecules that link the ECM to the actin-myosin cytoskeleton of the cell. The 

contraction promoted by the complex actin-myosin cytoskeleton allows the cell to survey its 

mechanical environment through the movement of the integrin. In general, when the ECM 

is stiff, the contraction of the cellular cytoskeleton is more difficult, and it generates an 

accumulation of integrins, enlarged focal adhesions, and further development of the 

cytoskeleton (Janmey and Miller, 2011). The integrin movement is a downstream signaling 

pathway where the Rho/GTPases and the contraction of the actin-myosin cytoskeleton 

(Wells, 2008a) are the primary mediators. Cell-cell interactions are mediated via cadherins, 

creating a bridge between the cytoskeleton of two neighboring cells (Smutny and Yap, 

2010). Taking into account this premise, the optimal stiffness for culturing and expanding 

any given cell type corresponds to the in vivo elastic modulus of its corresponding tissue 

(Pedro M.Baptista, 2014). Sometimes, the stiffness of a tissue or a substrate is defined 

regarding Elastic or Young's modulus, a constant that refers to the ability of a material to 

resist a determined deformation, or the ratio of strain when stress is applied. The liver, 

which is a soft organ, is described as viscoelastic with a non-linear stress-strain behavior 
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(Suh and DiSilvestro, 1999). The effects of these ECM properties on cell mechanosensitivity 

are mostly unknown (Pedro M.Baptista, 2014). 

The chemical structure of a tissue and the organization of all its components, as COL, 

proteoglycans, and FN amongst others contribute to mechanical strength and behavior of 

the tissue. Consequently, modifications produced in any of these components, lead to 

alterations in the mechanical properties of the tissue (Wells, 2008c). The human liver is 

composed by a population of stem/progenitor cells located in the stem cell niche. The 

components of the ECM in the liver stem cell niche are exclusive when compared with the 

rest of the liver, and therefore, the mechanical properties or stiffness of these regions are 

different from the rest of the organ (Lozoya et al., 2011). An excellent example of 

mechanically controlled cell response is the human hepatic stem cells that can differentiate 

into hepatocytes on soft surfaces, while cholangiocytes are observed on more rigid surfaces 

(LeCluyse et al., 2012).  

In the liver, the property of stiffness is not static, and it fluctuates with organ development, 

disease, and repair. During early liver development, human progenitor stem cells in their 

undifferentiated state are maintained in the endoderm due to a low stiffness environment. 

The creation and development of ECM structures, cytokines, and environmental stimuli 

usually initiate cell migration and differentiation of human progenitor stem cells into more 

mature parenchymal liver cells (Si-Tayeb et al., 2010a; Si-Tayeb et al., 2010b). These 

determinations have been observed in vitro experiments, where the use of low stiffness 

substrates promoted the maintenance and expression of stem cell markers in human 

progenitor stem cells (Schrader et al., 2011). Similarly, in work performed by Lozoya et al. 

(Lozoya et al., 2011), human hepatic stem cells were cultivated in 6 different hydrogel 

formulations during one week and then, the degree of differentiation was analyzed by using 

various markers. The generated results demonstrated a stiffness-dependent behavior of 

these cells (Smutny and Yap, 2010), suggesting that cells seeded on their desirable 

mechanical environment allow to organize themselves in the same way observed in the 

stem cell niche.  

In mechanobiology, another significant stimulus is represented by the shear stress. Human 

liver stem, progenitor, and embryonic stem cells have been shown to differentiate into 
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mature liver cells when exposed to shear stress in perfusion bioreactor cultures (Miki et al., 

2011; Schmelzer et al., 2010). The work developed by Toshio et al. demonstrated the 

potential of using a four-compartment 3D perfusion culture to induce hepatic 

differentiation in embryonic stem cells. In this study, the hepatic differentiation was carried 

out by using a combination of cytokines with the culture in a dynamic 3D perfusion system. 

This study showed that the 3D perfusion culture induced more functional maturation in 

embryonic stem-derived hepatic cells, compared with 2D cultures and consequently, the 

use of 3D perfusion bioreactor technologies may be useful for further studies on generating 

embryonic stem cell-derived hepatic cells (Miki et al., 2011; Schmelzer et al., 2010). Finally, 

another type of mechanical force to consider in the liver is the interstitial fluid pressure, 

which hepatocytes are sensitive and able to respond to (Hsu et al., 2010).  

In the context of partial hepatectomy, the loss of tissue is completely regenerated de novo 

through hepatocyte proliferation and the activation of matrix-producing cells. Through 

regeneration, a provisional matrix is generated during the early stages, and it contains 

uncrosslinked COL I (T Kim, 2003). When regeneration is mediated by progenitor cells, the 

initial composition of the matrix maintains the hepatoblast phenotype until ECM structures 

are fully formed with the addition of COL IV and the crosslinking of COL I (Zhang et al., 

2008). If proliferating hepatocytes initiate the regeneration, the production of the matrix 

takes place by human hepatic stem cells simultaneously. In this process, physical and 

chemical cues provided by the ECM control the initiation and cessation of cell propagation 

(Kordes et al., 2014). Along the same line, alterations in this process produce an increase in 

stiffness and consequently, liver dysfunction, being the last one an essential parameter in 

the prognosis of liver diseases and hepatocellular carcinoma (Jung et al., 2011; Tsukuma et 

al., 1993). During the fibrotic state, the human hepatic stem cells are activated and an 

excess amount of LN and COL, especially COL IV, are deposited (Wells, 2008b).  

In summary, the correct interplay between the ECM biomechanical and biochemical 

environment is a crucial factor for liver stem/progenitor and more mature cells in 

homeostasis, development, regeneration, and disease. 

5.4. Novel tools for ECM – Stem Cell interaction research 
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Ideally, the best method to study and determine the interactions of ECM components with 

stem cells is within in vivo studies. However, these studies are difficult to perform due to the 

complexity of the stem cell niche and the strict legislation that controls the human/animal 

experimentation. Focused on animal experimentation, apart from ethical considerations, 

the work with animals is time consuming, laborious and expensive (Andersen and Winter, 

2017). These issues have forced researchers to find new alternatives to decrease the time 

and resources involved in these type of studies and, naturally, to decrease the number of 

animals used. The term 3R'S (reduction, refinement, and replacement), is an alternative 

strategy that was defined by Russell and Burch and that included a large variety of new 

techniques that intend to recreate the physiological environment found in vivo without the 

use of animals (Arora et al., 2011; Franco et al., 2018). 

An excellent example of this strategy is the work developed by M. Huch et al. in 2013 when 

they turned to 3D cell culture systems to investigate the stem cell biology of the liver. The 

structures generated in these culture systems were called organoids (Huch and Koo, 2015) 

and defined as a 3D structure derived from either pluripotent stem cells, neonatal tissue 

stem cells or adult-derived stem/progenitor cells. In these, cells spontaneously self-organize 

into structures that resemble the in vivo tissue concerning the cellular composition and 

tissue function (Hindley et al., 2016). In the publication mentioned above, researchers 

showed that the Wnt-target Lgr5 labels actively proliferating cells in the adult mouse liver 

following toxic damage. When these Lgr5 positive cells were expanded and self-organized 

into 3D cystic structures by using Matrigel® and by adding a chemically defined growth 

medium containing specific GF, these cells had the potential of differentiating into both 

hepatocytes and cholangiocytes in vivo (Huch et al., 2013). In 2015, by employing a similar 

strategy, this research group was able to establish human hepatic organoids from both 

healthy liver biopsies and single EpCAM positive cells (Huch et al., 2015). Hence, organoid 

cultures represent an ideal tool for studying stem cell niche interactions in a 3D ECM 

microenvironment, since this method is amenable to ECM manipulations that might shed 

some light in knowledge gaps of certain liver diseases and help translational medicine, by 

providing a more physiologically relevant 3D in vitro model system. 

Another tool that has attracted significant interest in the last decades is the use of 

tissue/organ decellularization. This process usually consists of the perfusion of a detergent 
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solution in order to remove cellular contents, preserving only the ECM of the organ. The 

decellularization method applied in human, porcine and rat liver ECM generated scaffolds 

containing the major proteins present in the liver ECM, like LN, COL, or FN, and also the 

ECM-bound GF. These properties improve the physiology of the in vitro microenvironment 

(Soto-Gutierrez et al., 2011; Wang et al., 2016). In a recent study, Vyas et al. showed that 

human fetal liver progenitor cells self-assembled inside acellular liver scaffold discs to then 

form 3D liver organoids, which were able to recapitulate several aspects of hepatobiliary 

organogenesis and resulted in the parallel formation of progressively more differentiated 

hepatocytes and bile duct structures. This model shows relevant information about 

mechanisms of hepatic and biliary development and could be an exciting model in the 

future of disease modeling and drug screening (Vyas et al., 2017). 

The link between biomedical engineering and biology has allowed the creation of a new 

alternative tool: Bioprinting. It consists in the use of spatial patterning of living cells and 

other non-living biologic materials employing an additive manufacturing technique (Ozbolat 

et al., 2016). This technique allows for the precise control of the microarchitecture and 

macroarchitecture of tissues and organs, which is critical to the function of many biological 

structures (Leberfinger et al., 2017). A clear example of this technology was reported 

recently by the group of Alan Faulkner-Jones et al. where these researchers reported the 

first investigation into the bioprinting of human pluripotent stem cells, their response to a 

valve-based printing process, as well as their post-printing differentiation into hepatocyte-

like cells. The hepatic-like cells were examined for the presence of hepatic markers to 

further validate the compatibility of the valve-based bioprinting process with fragile cell 

transfer (Faulkner-Jones et al., 2015). 

Throughout this section, we have described technologically sophisticated engineering tools 

that allow more precise control over the liver stem cell microenvironment, amenable to test 

the relevant role played by the use of decellularized ECM or its multiple components, as 

well as the use of specific GFs. These new tools have the potential to promote further 

advances in diverse areas such as the study of liver development, homeostasis, and disease, 

by recreating much more accurately the micro/macroenvironment found in vivo. 

6. Conclusion 
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It is well known that the liver is an organ with a remarkable regenerative capacity. Part of 

this regenerative ability is possible due to the synchronous proliferation of stem cells and 

ECM remodeling in the stem cell niche, which provides a complex multifactorial 

microenvironment where many inputs regulate stem/progenitor cell behavior. 

Traditionally, decades ago, the liver ECM was considered to be an inert cell growth 

substrate. However, due to the developments made in the last decades, it is now recognized 

that the liver ECM is a dynamic structure, which is composed of a variety of proteins and 

other macromolecules that work as a supportive scaffold, regulating cell biological 

functions. Finally, the ECM mechanobiology is also vital in the regulation of stem cell 

behavior, where cells can detect and identify physical factors. Therefore, the correct 

performance and maintenance between the biophysical, biomechanical and biochemical 

microenvironment of the ECM and liver stem cells are essential to direct stem and 

progenitor cell quiescence, proliferation, and differentiation, profoundly impacting organ 

homeostasis, repair, regeneration, and disease. 
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Figures and legends 

 

Figure 1: Stem cell niche components. Stem cell niches are specific microenvironments composed of multiple 

cells, such as neurons, stromal, epithelial, as well as blood vessels. Autocrine and paracrine signals mediate the 

interactions between all these componentssignals. Secreted molecules can also interact with cells which are 

not nearby, distributed via the bloodstream to different parts of the body. The ECM, which the main structural 

components are collagens and fibronectin, plays an essential role in the cellular niche functioning as a 

supportive scaffold that regulates the biological functions of the cells and it can be considered as a reservoir of 

growth factors and bioactive molecules, regulating their diffusion and availability. Here, it is also necessary to 

mention the role played by the mechanobiology, where physical signals are also critical for the correct ECM-

stem cell interaction. The stem cell niche maintains and controls the fate of the stem cells, supporting self-

renewal and maintaining the balance between quiescence, proliferation and differentiation. 
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Figure 2: Hepatic lineage. Different ECM components, growth factors, and signaling pathways are involved in 

the hepatic cell fate choice, as well as the location of the stem cells and hepatoblasts during human 

development. Laminin, collagen IV and heparin sulfate are ECM components involved in the stem cell self-

renewal. Heparin, proteoglycans, and fibronectin are necessary for stem cell differentiation into hepatoblasts. 

Laminin and collagen IV give rise to a cholangiocyte fate, whereas collagen I and fibronectin are responsible for 

hepatocyte differentiation. Hepatoblasts can differentiate into cholangiocytes and hepatocytes depending on 

different signaling pathways. Mainly, Notch, TGFB and Jagged promote biliary differentiation, meanwhile, 

Oncostatin M and HGF drive hepatocyte lineage. The primary markers that are specific of these cells are also 

described in brackets. 
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