000088297 001__ 88297
000088297 005__ 20200716101612.0
000088297 0247_ $$2doi$$a10.1364/BOE.10.005818
000088297 0248_ $$2sideral$$a116715
000088297 037__ $$aART-2019-116715
000088297 041__ $$aeng
000088297 100__ $$0(orcid)0000-0001-7534-0884$$aRodríguez, Pablo
000088297 245__ $$aImage quality eigenfunctions for the human eye
000088297 260__ $$c2019
000088297 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088297 5203_ $$aThis work presents a compact statistical model of the retinal image quality in a large population of human eyes following two objectives. The first was to develop a general modal representation of the optical transfer function (OTF) in terms of orthogonal functions and construct a basis composed of cross-correlations between pairs of complex Zernike polynomials. That basis was not orthogonal and highly redundant, requiring the application of singular value decomposition (SVD) to obtain an orthogonal basis with a significantly lower dimensionality. The first mode is the OTF of the perfect system, and hence the modal representation, is highly compact for well-corrected optical systems, and vice-versa. The second objective is to apply this modal representation to the OTFs of a large population of human eyes for a pupil diameter of 5 mm. This permits an initial strong data compression. Next, principal component analysis (PCA) is applied to obtain further data compression, leading to a compact statistical model of the initial population. In this model each OTF is approximated by the sum of the population mean plus a linear combination of orthogonal eigenfunctions (eigen-OTF) accounting for a selected percentage (90%) of the population variance. This type of models can be useful for Monte Carlo simulations among other applications
000088297 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-095795-B-I00
000088297 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000088297 590__ $$a3.921$$b2019
000088297 591__ $$aBIOCHEMICAL RESEARCH METHODS$$b15 / 77 = 0.195$$c2019$$dQ1$$eT1
000088297 591__ $$aRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING$$b24 / 133 = 0.18$$c2019$$dQ1$$eT1
000088297 591__ $$aOPTICS$$b17 / 97 = 0.175$$c2019$$dQ1$$eT1
000088297 592__ $$a1.591$$b2019
000088297 593__ $$aBiotechnology$$c2019$$dQ1
000088297 593__ $$aAtomic and Molecular Physics, and Optics$$c2019$$dQ1
000088297 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000088297 700__ $$0(orcid)0000-0002-1328-1716$$aNavarro, Rafael
000088297 700__ $$aRozema, José J.
000088297 773__ $$g10, 11 (2019), 5818-5831$$pBIOMEDICAL OPTICS EXPRESS$$tBiomedical Optics Express$$x2156-7085
000088297 8564_ $$s2892713$$uhttps://zaguan.unizar.es/record/88297/files/texto_completo.pdf$$yVersión publicada
000088297 8564_ $$s448782$$uhttps://zaguan.unizar.es/record/88297/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000088297 909CO $$ooai:zaguan.unizar.es:88297$$particulos$$pdriver
000088297 951__ $$a2020-07-16-09:57:33
000088297 980__ $$aARTICLE