000088317 001__ 88317
000088317 005__ 20210126093425.0
000088317 0247_ $$2doi$$a10.1016/j.memsci.2019.03.076
000088317 0248_ $$2sideral$$a112209
000088317 037__ $$aART-2019-112209
000088317 041__ $$aeng
000088317 100__ $$aCastro-Muñoz, Roberto
000088317 245__ $$aTowards the dehydration of ethanol using pervaporation cross-linked poly (vinyl alcohol)/graphene oxide membranes
000088317 260__ $$c2019
000088317 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088317 5203_ $$aHighly hydrophilic inorganic material graphene oxide (GO) was successfully prepared and incorporated into a cross-linked poly(vinyl alcohol) (PVA) matrix. The obtained mixed matrix membranes (MMMs) have been used for the dehydration of ethanol (10: 90% water-ethanol) by pervaporation (PV), monitoring their performance in terms of total permeate flux, partial components fluxes, as well as their separation factor. The effect of filler was analyzed by doubling the GO content (at 0.5, 1.0, and 2.0 wt%) in the MMMs. A complete analysis of the operating temperature (between 40 and 70 degrees C) was carried out by means of Arrhenius relationship. Moreover, the membranes were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), measurements of degree of swelling (uptake), water contact angle (CA) and mechanical properties. At 40 degrees C, the best performance was provided by the MMMs containing 1 wt% GO, showing a separation factor of 263 and a permeate flux of about 0.137 kg m(-2) h(-1) (in which 0.133 kg m(-2) h(-1) corresponds to water). This represents a 75% enhancement of the original permeation rate of pristine cross-linked PVA membranes. Taking into account the promising results, it is likely that these MMMs will provide featured benefits in green processes, e.g. ethanol purification by means of less-energy consumption.
000088317 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T43-17R$$9info:eu-repo/grantAgreement/EUR/ERASMUS/EUDIME-2011-0014$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2016-77290-R
000088317 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000088317 590__ $$a7.183$$b2019
000088317 592__ $$a1.898$$b2019
000088317 591__ $$aPOLYMER SCIENCE$$b3 / 89 = 0.034$$c2019$$dQ1$$eT1
000088317 593__ $$aBiochemistry$$c2019$$dQ1
000088317 591__ $$aENGINEERING, CHEMICAL$$b10 / 143 = 0.07$$c2019$$dQ1$$eT1
000088317 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ1
000088317 593__ $$aMaterials Science (miscellaneous)$$c2019$$dQ1
000088317 593__ $$aFiltration and Separation$$c2019$$dQ1
000088317 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000088317 700__ $$0(orcid)0000-0002-0542-6604$$aBuera-Gonzalez, Juan
000088317 700__ $$0(orcid)0000-0003-0297-3503$$aIglesia, Óscar de la
000088317 700__ $$aGaliano, Francesco
000088317 700__ $$aFila, Vlastimil
000088317 700__ $$0(orcid)0000-0001-9595-0831$$aMalankowska, Magdalena$$uUniversidad de Zaragoza
000088317 700__ $$aRubio, César
000088317 700__ $$aFigoli, Alberto
000088317 700__ $$0(orcid)0000-0002-4954-1188$$aTellez, Carlos$$uUniversidad de Zaragoza
000088317 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000088317 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000088317 773__ $$g582 (2019), 423-434$$pJ. membr. sci.$$tJournal of Membrane Science$$x0376-7388
000088317 8564_ $$s1684808$$uhttps://zaguan.unizar.es/record/88317/files/texto_completo.pdf$$yPostprint
000088317 8564_ $$s277149$$uhttps://zaguan.unizar.es/record/88317/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000088317 909CO $$ooai:zaguan.unizar.es:88317$$particulos$$pdriver
000088317 951__ $$a2021-01-26-09:31:03
000088317 980__ $$aARTICLE