000088331 001__ 88331
000088331 005__ 20210902121643.0
000088331 0247_ $$2doi$$a10.3390/electronics9030382
000088331 0248_ $$2sideral$$a117012
000088331 037__ $$aART-2020-117012
000088331 041__ $$aeng
000088331 100__ $$aGarcía Martínez, Eduardo
000088331 245__ $$aA review of PHIL testing for smart grids—selection guide, classification and online database analysis
000088331 260__ $$c2020
000088331 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088331 5203_ $$aThe Smart Grid is one of the most important solutions to boost electricity sharing from renewable energy sources. Its implementation adds new functionalities to power systems, which increases the electric grid complexity. To ensure grid stability and security, systems need flexible methods in order to be tested in a safe and economical way. A promising test technique is Power Hardware In-the-Loop (PHIL), which combines the flexibility of Hardware-In-the-Loop (HIL) technique with power exchange. However, the acquisition of PHIL components usually represents a great expense for laboratories and, therefore, the setting up of the experiment involves making hard decisions. This paper provides a complete guideline and useful new tools for laboratories in order to set PHIL facilities up efficiently. First, a PHIL system selection guide is presented, which describes the selection process steps and the main system characteristics needed to perform a PHIL test. Furthermore, a classification proposal containing the desirable information to be obtained from a PHIL test paper for reproducibility purposes is given. Finally, this classification was used to develop a PHIL test online database, which was analysed, and the main gathered information with some use cases and conclusions are shown.
000088331 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000088331 590__ $$a2.397$$b2020
000088331 591__ $$aCOMPUTER SCIENCE, INFORMATION SYSTEMS$$b93 / 162 = 0.574$$c2020$$dQ3$$eT2
000088331 591__ $$aPHYSICS, APPLIED$$b88 / 160 = 0.55$$c2020$$dQ3$$eT2
000088331 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b145 / 273 = 0.531$$c2020$$dQ3$$eT2
000088331 592__ $$a0.36$$b2020
000088331 593__ $$aComputer Networks and Communications$$c2020$$dQ2
000088331 593__ $$aControl and Systems Engineering$$c2020$$dQ2
000088331 593__ $$aSignal Processing$$c2020$$dQ2
000088331 593__ $$aHardware and Architecture$$c2020$$dQ2
000088331 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ2
000088331 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000088331 700__ $$0(orcid)0000-0001-7407-0608$$aSanz Osorio, José Francisco$$uUniversidad de Zaragoza
000088331 700__ $$aMuñoz Cruzado, Jesús
000088331 700__ $$aPerié, Juan Manuel
000088331 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000088331 773__ $$g9, 3 (2020), 382   [23 pp.]$$pElectronics (Basel)$$tElectronics$$x2079-9292
000088331 8564_ $$s1904957$$uhttps://zaguan.unizar.es/record/88331/files/texto_completo.pdf$$yVersión publicada
000088331 8564_ $$s480178$$uhttps://zaguan.unizar.es/record/88331/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000088331 909CO $$ooai:zaguan.unizar.es:88331$$particulos$$pdriver
000088331 951__ $$a2021-09-02-09:01:28
000088331 980__ $$aARTICLE