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Abstract

Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto,
reverse Pareto, q-exponential and log-normal models. An approach to this problem is to consider three statistical models: one
for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban
and rural agglomerations in Romania for the 1992-2017 period, by comparing the recently introduced three log-normal mixture
(3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The
tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are
computed, and goodness-of-fit tests are performed using the Kolmogorov-Smirnov (KS), Cramér-von Mises (CM) and Anderson-
Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical
tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred
model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not.
All the three models prove to be very well suited parameterizations of Romania’s city size data.

c© 2018 Published by Elsevier Ltd.
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1. Introduction

Although natural phenomena are complex processes, they frequently display macroscopic regularities. Statis-
ticians observe these patterns and try to describe them by different probability laws. One such complex system is
represented by the distribution of cities and villages, in different countries or regions.

City size distribution has been studied extensively for several decades [1, 2, 3, 4]. The first studies considered
only big cities, presumably due to lack of data. However, owing to advances in technology and statistical tools, data
for small cities have been available for researchers.

Despite the vast research conducted so far, the fitting of the whole population of cities, both small and big, re-
mains difficult. Some studies have attempted to combine the log-normal body and the upper-tail Pareto into a unified
distribution to analyze the distribution of all cities [5], introducing, among others, the Pareto tails log-normal (PTLN)
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distribution, by modeling lower and upper tails with Pareto and middle range with log-normal, and identifying the
transition points both from lower tail to log-normal and from log-normal to upper tail [6, 7]. Other distributions,
such as the reverse Pareto and reverse generalized Pareto, are used in analyzing the lower tail cities size [8]. Another
probability law used in describing the distribution of cities for all ranges of populations is the q-exponential distribu-
tion, which reproduces the Zipf-Mandelbrot law. This function is related to the generalized non-extensive statistical
mechanics, obeying an anomalous decay equation [9, 10]. In 2018, the q-exponential distribution was generalized,
the resulted distribution being used to describe urban data [11].

In 2015, Puente-Ajovı́n and Ramos [12] concluded that the threshold double Pareto Singh-Maddala distribution
(tdPSM) is the preferred model in four countries: France, Germany, Italy, and Spain. The tdPSM distribution considers
Pareto behavior in the lower and upper tails, and a Singh-Maddala body. This distribution has also been used to model
the US city size [13]. This type of statistical model also considers two transition points or thresholds between the tails
and the body which can be determined endogenously by maximum log-likelihood estimation.

In this paper, we analyze empirically the population distribution of municipalities, towns, and rural administrative
units for Romania. It is well known that population size is influenced by three factors: natural growth, internal and
external migrations. According to various studies conducted Romania shows a large mobility of individuals [14, 15].

During the first years of the transition from a state-socialist society to a market economy based, democratic society
(1990-1994), internal migration went through certain transformations. In 1990, the rural-urban flow has reached the
high share of 70 percent of all migrants, and dropped to only 30.5 percent in 1994. Nowadays, in Romania the urban-
rural migration is higher than the traditional reverse flow; from 1992 more people started to move from towns to rural
areas and in 1997 the migration from urban to rural areas became higher than the reverse flow [16, 17].

According to data provided by the National Institute of Statistics (INS), in the year 2017, on average, 11.3 out of
1,000 of urban residents changed their residential status to rural, while the average annual flow of internal migration
from rural to urban areas was 7 people out of 1,000 inhabitants. In 2017, the rural-urban flow share was 22.90% of all
migrants. However, despite the change of internal migration flows direction, there is a significant external migration
at the national level, from both urban and rural areas abroad to other countries, which lead to a massive depopulation
of the rural areas [18]. According to recent studies, over 3 million active individuals from Romania (approximately
15% of the total population), most of whom belonging to the 25-45 age segment are graduates from high school or
university and live abroad [19, 20, 21].

During the 2007-2017 period, the urban population decreased from 55.44% in 2007 to 53.60% in 2017, the urban
population being higher in the larger towns. At present, only six towns, except for the capital city, exceed 300,000
inhabitants: Iaşi, Timişoara, Cluj-Napoca, Constanţa, Galaţi and Craiova. The capital Bucharest itself currently counts
with over 2 million inhabitants. In 2017, the urban-urban flow share was 29.35% of all migrants.

Using the three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Gener-
alized Beta of second kind distributions (tdPGB2), we prove that Romanian cities’ size distribution (considering all
cities) suits well to these statistical models, the preferred model being the PTLN probability law. In our analysis we
used the information Tempo online INS database regarding usually resident population from urban and rural areas,
from 1992 to 2017, organized into administrative-territorial units (UATs).

In 2017, by its residential population of 19.64 millions of inhabitants, Romania was ranked the 7th among the 28
Member States of the European Union, after Germany, France, the UK, Italy, Spain and Poland, that is about 3.8%
of the total EU 28 population. In the whole EU 28, from 2007 to 2017, the total residential population increased by
approximately 13.2 millions of inhabitants (2.7%). Despite a deceleration in population growth is registered in the
entire European continent, what is registered in Romania is much worse. From 2007 to 2017, in Romania, the total
residential population decreased by 1.49 million people (-7.0%).

In 2017, out of a total number of 3,181 UATs in Romania, 320 (10% of the total) are located in the urban area
(municipalities and towns) and 2,861 (90%) in the rural area (rural administrative units). These 320 municipalities
and towns are structured in terms of the size of the population according to the following scheme:

• Less than 10,000 inhabitants, which comprises 36.8% of the total UATs from urban area and approximately
6.4% from the population in this area.

• Between 10,000 and 99,999 inhabitants, that is 55.31% of the UATs and 38% of the urban population.

• More than 100,000 inhabitants, that is 7.81% UATs, and 55.6% of the urban population.
2
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In 2017, 56.33% of the Romanians lived in these 320 urban areas UATs. As for the inhabitants living in the rural
areas, the structure of the 2,861 rural administrative units, by the size population, is the following:

• Less than 5,000 inhabitants, comprising 83.01% of the number of UATs and 65.2% of the total rural population.

• Between 5,000 and 10,000, that is 15.55% of the total UATs in the rural area and 29.6% of the total rural
population.

• More than 10,000, but not more than 32,000 inhabitants, that is 1.4% of the UATs, and 5.2% of the total rural
population.

Thus, analyzing the size distribution of all Romanian cities, during the 1992-2017 time span and focusing on the
years 1992, 2007 and 2017, provides an essential insight into the organization of living areas in Romania.

In 1992, in Romania there were 260 towns and 2,686 rural administrative units, while the country had their first
general election after the communist era. In 2007, Romania became an EU member.

This paper is organized as follows. In Section 2, we present the three log-normal mixture (3LN), the Pareto tails
log-normal (PTLN) and threshold double Pareto Generalized Beta of second kind (tdPGB2) distributions. Empirical
analysis of Romania’s towns and rural administrative units population is performed in Section 3, while Section 4
concludes the paper.

2. Methodology

Some characteristics of the data sets considered such as maximum and minimum values, number of observations,
measures of skewness and kurtosis, standard deviations, and means are shown in Table 1. We notice that the measure
of kurtosis is very high for each data set, suggesting a heavy tail distribution. Also, the skewness is high for these data
sets. In Figs. 1 and 2 we display the empirical density function of Romania log city sizes for 1992, 2007 and 2017.
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Figure 1. Density of the log of Romanian cities 1992 and 2007.

The three log-normal mixture distribution (3LN) [22] is defined by the following density function

f3LN(x; µ1, σ1, µ2, σ2, µ3, σ3, π1, π2, π3) =

3∑

i=1

πi fLN(x; µi, σi) (1)

where x > 0, 0 ≤ πi ≤ 1, π1 +π2 +π3 = 1, and fLN is the density function of log-normal model of parameters µ, σ > 0,
that is,

fLN(x; µ, σ) =
1

xσ
√

2π
exp

(
− (ln(x) − µ)2

2σ2

)
.
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Table 1. Descriptive statistics of Romania cities’ population

Year Nr. of Mean SD Mean SD Min Max Skewness Kurtosis
obs. (log scale) (log scale)

1992 2,946 7,850 45,517 8.317 0.774 259 2,191,176 38.50 1,796
1993 2,946 7,841 45,656 8.307 0.779 247 2,195,490 38.39 1,788
1994 2,946 7,834 45,665 8.300 0.784 241 2,193,158 38.27 1,780
1995 2,946 7,819 45,617 8.293 0.789 240 2,188,462 38.19 1,774
1996 2,948 7,789 45,411 8.286 0.792 233 2,177,085 38.09 1,767
1997 2,948 7,769 45,263 8.280 0.795 219 2,168,149 38.02 1,762
1998 2,948 7,756 45,131 8.277 0.798 209 2,160,947 37.98 1,760
1999 2,951 7,735 44,981 8.273 0.801 187 2,154,193 38.01 1,762
2000 2,951 7,729 44,919 8.273 0.802 179 2,152,178 38.01 1,762
2001 2,951 7,723 44,873 8.271 0.804 175 2,149,763 38.06 1,765
2002 2,955 7,698 44,844 8.266 0.806 171 2,151,408 38.22 1,779
2003 2,983 7,611 44,610 8.252 0.807 169 2,151,527 38.54 1,807
2004 3,133 7,232 43,503 8.194 0.804 165 2,151,552 39.49 1,896
2005 3,164 7,150 43,268 8.180 0.805 159 2,151,601 39.71 1,916
2006 3,173 7,121 43,242 8.174 0.808 155 2,154,487 39.83 1,926
2007 3,176 7,106 43,242 8.171 0.809 151 2,156,978 39.93 1,933
2008 3,180 7,089 43,203 8.169 0.809 159 2,158,816 40.03 1,940
2009 3,180 7,082 43,220 8.166 0.813 153 2,160,627 40.08 1,944
2010 3,181 7,071 43,224 8.162 0.816 151 2,162,037 40.14 1,949
2011 3,181 7,055 43,116 8.159 0.819 147 2,157,282 40.17 1,951
2012 3,181 7,042 43,000 8.158 0.820 145 2,151,758 40.10 1,946
2013 3,181 7,029 42,837 8.153 0.823 142 2,140,816 39.95 1,934
2014 3,181 7,010 42,362 8.149 0.827 137 2,110,752 39.68 1,914
2015 3,181 6,997 42,215 8.145 0.831 127 2,100,519 39.68 1,914
2016 3,181 6,989 42,230 8.141 0.835 125 2,103,251 39.67 1,913
2017 3,181 6,977 42,366 8.135 0.839 120 2,112,483 39.80 1,922

0.0

0.2

0.4

0.6

5.0 7.5 10.0 12.5 15.0

Figure 2. Density of the log of Romanian cities 2017.
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In addition, the cumulative distribution function (CDF) of the 3LN model is simply

F3LN(x; µ1, σ1, µ2, σ2, µ3, σ3, π1, π2, π3) =

3∑

i=1

πiΦ(x; µi, σi) (2)

where Φ is the CDF corresponding to the log-normal density function, that is,

Φ(x; µ, σ) =
1
2

+
1
2

erf
(

ln(x) − µ
σ
√

2

)
,

erf being the error function associated to the normal distribution.
Once the eight parameters of the 3LN model are estimated, we can use the quantile function to predict city sizes

according to this distribution as

x̃3LN = F−1
3LN(p) = inf{x ∈ (0,∞) | F3LN(x) ≥ p} , p ∈ [0, 1]. (3)

This class of log-normal mixtures has been introduced in the study of city size distributions in 2019 by Kwong
and Nadarajah and proved to be a better fit to the US 2010 all places’ census data and Indian 2011 census data than the
PTLN model. A mixture of three log-normal densities can accomodate heavy tails (see, e.g., [23] and [24]), type of
tails our data display. By modeling the Romanian data sets by the 3LN probability law we are assuming that the whole
population can be grouped into three, in principle different, subpopulations, each following a log-normal distribution.
The subpopulations of cities are assumed to have similar growth characteristics [22]. The number of subpopulations
can be taken to be also five or seven, for example, but the improvement in the corresponding maximum log-likelihoods
is small (for the cases of USA and India, see [22]) and the additional information does not balance the huge increase
in the complexity of the model.

In this paper, we show that the PTLN and tdPGB2 models are statistically equivalent to the 3LN distribution for
Romania’s census city size. In 2011, Bee et al. [25] gave empirical support that probability laws having log-normal
body and Pareto tails can be generated as mixtures of log-normal models. Growiec et al. [26] showed that a log-normal
distribution multiplied by a stretching factor leads to a Pareto upper tail.

The Pareto tails log-normal probability law (PTLN) [6] is defined by

fPT LN(x;α, τl, µ, σ, τu, β) =



dexα−1, 0 < x ≤ τl

d fLN(x; µ, σ), τl ≤ x ≤ τu

dcx−β−1, τu ≤ x < ∞
(4)

where the continuity constants are e =
fLN(τl; µ, σ)

τα−1
l

, c =
fLN(τu; µ, σ)

τ
−1−β
u

, and the normalization constant d is given by

d =

(
fLN(τl; µ, σ)

τl

α
+ Φ(τu; µ, σ) − Φ(τl; µ, σ) + fLN(τu; µ, σ)

τu

β

)−1

.

The CDF of the PTLN distribution is defined by

FPT LN(x;α, τl, µ, σ, τu, β) =



de
xα

α
, 0 < x ≤ τl

k1 + d(Φ(x; µ, σ) − Φ(τl; µ, σ)), τl ≤ x ≤ τu

k2 +
cd
β

(τ−βu − x−β), τu ≤ x < ∞
(5)

where k1 = de
∫ τl

0 xα−1 dx and k2 = k1 + d
∫ τu

τl
fLN(x; µ, σ) dx.
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Using the estimated parameters and the quantile function, we can predict city sizes according to this distribution
as

x̃PT LN =



[
αFPT LN(x)

de

]1/α

, FPT LN(x) ∈ [0, k1)

Φ−1
[

FPT LN(x) − k1

d
+ Φ(τl)

]
, FPT LN(x) ∈ [k1, k2]

[
dc

(τu)−βde − β
(
FPT LN(x) − k2

)
]1/β

, FPT LN(x) ∈ (k2, 1]

(6)

where Φ−1(p; µ, σ) = inf{x ∈ (0,∞) |Φ(x; µ, σ) ≥ p} is the quantile function of the log-normal distribution.
One could consider a nested model in the PTLN distribution, denoted by PTLN-diff, in which differentiability of

the probability density function fPT LN at the threshold points τl, τu is required. This means reducing the number of
parameters by two. The differentiability conditions boil down to imposing the constraints

α =
µ − ln(τl)

σ2 (7)

β =
ln(τu) − µ

σ2 , (8)

the PTLN-diff distribution having four parameters to be estimated (τl, µ, σ, τu).
Prior to introducing the tdPGB2 model, let us mention that the Generalized Beta of second kind distribution

(GB2) [27, 28, 29, 30] is used often in economics, insurance and income studies, and it has a density function of the
form

fGB2(x; a, b, p, q) =
axap−1

bapB(p, q)
(
1 + (x/b)a)p+q (9)

where x > 0, a, b, p, q > 0 and B(p, q) denotes the Beta function.2

The CDF corresponding to the GB2 density function is given by

FGB2(x; a, b, p, q) =
1

B(p, q)
B
( (x/b)a

1 + (x/b)a , p, q
)

(10)

where B(x, p, q) =
∫ x

0 tp−1(1 − t)q−1 dt, x ∈ [0, 1] is the incomplete Beta function.
Then, the third statistical model considered in this paper, the tdPGB2 distribution [32], is defined by density

function

ftdPGB2(x;α∗, τ∗l , a, b, p, q, τ∗u, β
∗) =



d∗e∗xα
∗−1, 0 < x ≤ τ∗l

d∗ fGB2(x; a, b, p, q), τ∗l ≤ x ≤ τ∗u
d∗c∗x−1−β∗ , τ∗u ≤ x < ∞

(11)

where the continuity constants are e∗ =
fGB2(τ∗l ; a, b, p, q)

(τ∗l )α∗−1 , c∗ =
fGB2(τ∗u; a, b, p, q)

(τ∗u)−1−β∗ , and the normalization constant is

given by

d∗ =

(
e∗

(τ∗l )α
∗

α∗
+ FGB2(τ∗u; a, b, p, q) − FGB2(τ∗l ; a, b, p, q) +

c∗

β∗(τ∗u)β∗

)−1

.

The tdPGB2 distribution depends on eight parameters α∗, τ∗l , a, b, p, q, τ∗u, β
∗ > 0, where α∗ and β∗ are Pareto

exponents, τ∗l being the lower tail switching point and τ∗u is the upper tail cutoff. Analogously to the fact that the
log-normal distribution is a limiting case of the GB2 model, the tdPGB2 has the PTLN distribution as limiting case.
For p = 1, the tdPGB2 distribution is reduced to tdPSM model [12]. If we take q = 1, we obtain a probability law

2All the three shape parameters a, p, q control the tail behavior, and large values of the parameter a results in a thinning of the tails [31]. Also,
for p = 1, the GB2 distribution is reduced to the Singh-Maddala submodel, while for q = 1, we get the Dagum submodel. Other submodels include
the log-logistic (p = q = 1) and Lomax (a = p = 1) distributions, while the gamma, Weibull and log-normal models are limiting distributions.
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having Pareto tails and Dagum body. Choosing different values for the parameters of the GB2 body, we derive new
distributions having Pareto tails and, for example, Lomax or log-logistic body.

The CDF of tdPGB2 distribution is

FtdPGB2(x;α∗, τ∗l , a, b, p, q, τ∗u, β
∗) =



d∗e∗
xα
∗

α∗
, 0 < x ≤ τ∗l

k∗1 + d∗(FGB2(x; a, b, p, q) − FGB2(τ∗l ; a, b, p, q)), τ∗l ≤ x ≤ τ∗u
k∗2 +

d∗c∗

β∗
(
(τ∗u)−β

∗ − x−β
∗)
, τ∗u ≤ x < ∞

(12)

where k∗1 = d∗e∗
∫ τ∗l

0 xα
∗−1 dx, and k∗2 = k∗1 + d∗

∫ τ∗u
τ∗l

fGB2(x; a, b, p, q) dx.
Using the estimated parameters and the quantile function, we can predict city sizes according to the tdPGB2

distribution as

x̃tdPGB2 =



[
α∗FtdPGB2(x)

d∗e∗

]1/α∗

, FtdPGB2(x) ∈ [0, k∗1)

F−1
GB2

[
FtdPGB2(x) − k∗1

d∗
+ FGB2(τ∗l )

]
, FtdPGB2(x) ∈ [k∗1, k

∗
2]

[
d∗c∗

(τ∗u)−β∗d∗e∗ − β∗
(
FtdPGB2(x) − k∗2

)
]1/β∗

, FtdPGB2(x) ∈ (k∗2, 1]

(13)

where F−1
GB2(p; a, b, p, q) = inf{x ∈ (0,∞) | FGB2(x; a, b, p, q) ≥ p} is the quantile function of the GB2 distribution.

Analogously to the case of the PTLN-diff probability law, one can obtain a nested model in the tdPGB2 distribution
in which the density function is differentiable at the threshold points τ∗l , τ

∗
u. We denote this statistical model by

tdPGB2-diff. The differentiability conditions lead to the following constraints

α∗ =
a(p − q(τ∗l /b)a)

1 + (τ∗l /b)a (14)

β∗ =
a(q(τ∗u/b)a − p)

1 + (τ∗u/b)a , (15)

the reduced set of parameters being (τ∗l , a, b, p, q, τ∗u).
Using our comparative analysis, we show that the 3LN, PTLN and tdPGB2 models are all very well suited

distributions for modeling Romania’s cities population; the PTLN and tdPGB2 probability laws being statistically
equivalent to the 3LN model by Vuong tests.

3. Empirical analysis

In this Section, we discuss the analysis of cities’ size distribution of Romania for 1992-2017 period. As we
saw in Table 1, the data sets have similar values for the respective descriptive statistics, so we explicitly show the
results obtained for years 1992, 2007 and 2017, and briefly mention that the results for the other years are similar. In
order to assess the goodness-of-fit, we perform Kolmogorov-Smirnov (KS), Cramér-von Mises (CM) and Anderson-
Darling (AD) tests. The last statistical test is useful when we are interested to see how adequate is the fit of the
distribution at the tails [33]. Table 2 reports the statistics and p-values of the mentioned tests. All the three probability
laws considered in this paper are clearly non-rejected by the tests. Other criteria used are the Akaike and Bayesian
Information Criteria (AIC and BIC). The lower the AIC and the BIC, the better the fit.

3.1. Parameter estimates and discussion
The maximum likelihood estimates of Romania’s cities population are displayed in Table 3. It can be observed

that all parameter estimates are highly significant as indicated by the low standard errors.
In the case of the 3LN distribution, the estimated parameters represent the means µ̂i and standard deviations σ̂i of

the log-population of three subgroups of cities, each in proportion π̂i, that are assumed to have similar characteristics
7
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Table 2. Statistical tests results of Romania’s cities population. Non-rejections at the 5% level are in bold.

Model Year Test statistics (p-value)

3LN 1992 KS=0.007(0.999), CM= 0.015 (0.999)
AD=0.097 (0.999)

2007 KS=0.010 (0.938), CM=0.034 (0.961)
AD=0.191 (0.993)

2017 KS=0.008 (0.987), CM=0.021 (0.996)
AD=0.131 (0.999)

PTLN 1992 KS=0.010 (0.953), CM=0.032 (0.970)
AD=0.205 (0.989)

2007 KS=0.011 (0.812) , CM=0.048 (0.887)
AD=0.291 (0.945)

2017 KS=0.016 (0.406), CM=0.111 (0.532)
AD=0.579 (0.608)

tdPGB2 1992 KS=0.009 (0.978), CM=0.027 (0.986)
AD= 0.183 (0.994)

2007 KS=0.009 (0.974), CM=0.040 (0.931)
AD=0.254 (0.968)

2017 KS=0.009 (0.968), CM=0.019 (0.998)
AD=0.119 (0.999)

with respect to growth [22]. In fact, the means of the log-population µ̂i, i = 1, 2, 3, are in general different from one
another, and the standard deviations σ̂i, i = 1, 2, 3, are distinct by a considerable amount. The weights π̂i, i = 1, 2,
also vary across samples. This may mean that the partition into growth groups may vary along time, since some cities
may grow faster than others. However, as [22] also mention, the “actual factors that drive population growth of a city
remain unclear”, but this 3LN parametrization may lead to a new insight into the problem, to be developed in another
paper or papers.

In the case of the model PTLN, the MLE estimate of lower tail switching parameter τ̂l is 926 for the year 1992,
while for year 2007 is 665 and for year 2017 is 649. The Pareto exponent estimates of the PTLN model for the lower
tail fluctuate in time more than Pareto exponent estimates for the upper tail for the 1992-2017 period. This is due in
part because in the cases of PTLN and tdPGB2 distributions (to be shown next) there is a small percentages of UATs
(under 1.5%) in the lower tails. Comparing with the results obtained for the tdPGB2 model, the Pareto exponent
estimates of the PTLN model for the upper tail are higher than the Pareto exponent estimates for the tdPGB2 model
for all years except the 2001-2003 period. This means that the results of the fitting of tdPGB2 model report a more
unequally population distributed among UATs in the upper tail than what the results of the fitting of the PTLN model
report. Some indications on why there is an unequally population distributed among UATs in the upper tail may be the
urban-urban migration flow and the degree of economic development of urban areas. The upper tails of both PTLN
and tdPGB2 models consist of only urban areas.

According to data provided by the National Institute of Statistics (INS), in the year 1992, on average, 5.7 out
of 1,000 of urban residents changed their residential status to other urban areas, while in the year 2017, the average
annual flow of internal migration from one urban area to another urban area was 8.9 people out of 1,000 inhabitants.
In the year 2007, on average, 7.4 out of 1,000 of urban residents changed their residential status to other urban areas.

The upper cutoff MLE estimates of the PTLN probability law are 11,618, 10,125 and 9,486, respectively for all
years considered. Most places for the PTLN distribution are estimated to be in the log-normal body (' 92%), while
the lower tail has a low percentage of places (<1%). The dispersion estimates σ̂ of the PTLN distribution are 0.516,
0.558 and 0.592, respectively for all years considered. This means that in 2017 there was a more unequally population
distributed among the UATs in the log-normal body compared to the year 1992.

In the case of tdPGB2 distribution, for the year 1992, the MLE estimate of the lower Pareto exponent α̂∗ is 3.214
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Table 3. Parameter estimates of Romania’s cities population

1992 2007 2017
Parameter estimators (standard errors)
and criteria information

3LN distribution
µ̂1 9.308 (0.104) 9.224 (0.105) 9.230 (0.114)
σ̂1 1.549 (0.068) 1.582 (0.069) 1.602 (0.075)
µ̂2 8.253 (0.054) 8.029 (0.011) 7.863 (0.026)
σ̂2 0.365 (0.044) 0.530 (0.009) 0.445 (0.021)
µ̂3 8.189 (0.013) 9.259 (0.105) 8.103 (0.019)
σ̂3 0.521 (0.010) 0.253 (0.107) 0.662 (0.015)
π̂1 0.107 (0.008) 0.102 (0.005) 0.096 (0.009)
π̂2 0.136 (0.004) 0.882 (0.005) 0.317 (0.031)
log-likelihood -27,415 -29,306 -29,441
AIC 54,847 58,628 58,897
BIC 54,895 58,677 58,946

PTLN distribution
α̂ 2.263 (0.309) 2.237 (0.354) 2.537 (0.340)
τ̂l 926 (46) 665 (43) 649 (47)
µ̂ 8.207 (0.009) 8.050 (0.009) 8.007 (0.010)
σ̂ 0.516 (0.006) 0.558 (0.007) 0.592 (0.007)
τ̂u 11,618 (257) 10,125 (251) 9,486 (293)
β̂ 0.962 (0.051) 1.039 (0.050) 1.136 (0.050)
log-likelihood -27,420 -29,312 -29,449
AIC 54,851 58,637 58,910
BIC 54,887 58,673 58,946

tdPGB2 distribution
α̂∗ 3.214 (0.156) 2.168 (0.384) 2.669 (0.299)
τ̂l
∗ 1,725 (171) 608 (52) 731 (107)

â 2.845 (0.047) 2.020 (0.026) 1.844 (0.024)
b̂ 3,656.925 (37.126) 2,343.883 (23.974) 1,996.868 (21.810)
p̂ 1.163 (0.027) 2.347 (0.037) 2.686 (0.043)
q̂ 1.149 (0.019) 1.422 (0.020) 1.400 (0.020)
τ̂u
∗ 13,941 (445) 14,178 (551) 14,520 (656)

β̂∗ 0.904 (0.054) 0.931 (0.055) 0.997 (0.058)
log-likelihood -27,420 -29,309 -29,441
AIC 54,855 58,633 58,899
BIC 54,902 58,682 58,947

which changes to 2.669 for the year 2017, having a value of 2.168 corresponding to 2007. On the other hand, the
upper Pareto exponent estimates are 0.904, 0.931 and 0.997, respectively. The Pareto exponents for the lower tail of
the tdPGB2 model fluctuate in time more than Pareto exponents for the upper tail for the 1992-2017 period. This
means that the population distribution among the UATs in the upper tail is less likely to change than the population
distribution among UATs in the lower tail. As an observation, all the locations in the upper tail are from the urban
area and hold approximative 50% of the total population for each year resulting in a small percent of places being in
the lower tail, between 0.09% (2017) and 1.30% (1992). The number of places in the upper tail has increased from
146 places in 1992 to 151 places in 2017, but the percentage has decreased slightly from 4.95% to 4.74%.

The estimates of lower tail switching point τ̂l
∗ are 1,725, 608 and 731, respectively, for all years 1992, 2007 and

9
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2017, while those of the upper cutoff are 13,941, 14,178 and 14,520, respectively. Comparison of our upper tail cutoff

point and lower tail switching estimates for 1992 data to that for 2017 data reveals that a smaller portion of cities and
population was in the GB2 body (2,573 places, 87.33% of all cities, or 48.85% percent of the population) most of
whom lived in the rural area (86.66% percent of the population) for the 1992 data relative to the 2017 data (2,990
places, 94% of all places, or 49.61% of the population out of which 86.51% lived in the rural area).

Let us remark that the PTLN and tdPGB2 models have in general different bodies, and the fit of the body is not
equal in general. Since the specifications are continuous everywhere, the overall fit of the distributions may imply
different values of the cutoff or threshold values by this mathematical requirement of continuity, and by the same
reason the values of the Pareto exponents may change as well among these two distributions.

Table 4. Zipf’s test results

t-statistic (p-value)
PTLN tdPGB2

1992 -0.745 (0.456) -1.778 (0.075)
2007 0.780 (0.435) -1.255 (0.210)
2017 2.72 (0.007) -0.052 (0.959)

Table 5. Vuong test results

Vuong statistic (p-value)
3LN vs PTLN 3LN vs tdPGB2

1992 1.248 (0.212) 1.221 (0.222)
2007 1.503 (0.133) 0.894 (0.372)
2017 1.875 (0.061) 0.315 (0.753)

Since the fulfillment of Zipf’s law is an issue of importance in the literature, that is, that the Pareto exponent
for the upper tail is equal to one, let us perform a simple t-statistic test to assess whether for the estimated cases
of the PTLN and tdPGB2 distributions we can reject that the upper tail Pareto exponents are one. The results are
shown in Table 4. In short, the null hypothesis of upper tail Pareto exponent equal to one is rejected at the 5% level
of significance only for the PTLN model in 2017. By contrast, the tdPGB2 model in the same year shows a clear
non-rejection of the null. In all other cases, the null is also non-rejected, so the proposed PTLN and tdPGB2 models
are capable of reproducing the Zipf’s law regularity for Romanian data to a great extent.

Looking at the information criteria given by the AIC and BIC, we notice that for years 1992 and 2007 the PTLN
model has the lowest BIC, thus, making it the more appropriate distribution among the three considered in this paper,
to fit the data. The 3LN model has the lowest AIC for all years, and the lowest BIC for year 2017 which is equal to
the BIC value of PTLN model. The Vuong tests’ results are displayed in Table 5 for 3LN model against PTLN and
tdPGB2 probability laws. Vuong’s closeness test for all three years yields that the 3LN model cannot be rejected to
be statistically equivalent to the PTLN and to the tdPGB2 models. The Bayes factor which can be approximated by
BF ' exp

(
1
2

(
BICu − BICr

))
can be interpreted using Jeffrey’s scale [34]. If BF < 0.1, then we have strong support

for model u, if 0.1 < BF < 1/3 then the support is moderate, while a Bayes factor greater than 1/3 suggests a weak
support for the model chosen. The results of the Bayes factor tests are displayed in Table 6. There is strong support for
the PTLN model for years 1992 and 2007, while for year 2017 there is weak support for either PTLN or 3LN models.
The latter suggests that for this year, all three models can be considered as suitable fits for the data, the differences
between the BIC values being small. However, the 3LN model has the lowest AIC. Also, there is a moderate support
for PTLN probability law against 3LN model for year 2007, while for 3LN model there is a strong support for years
1992 and 2007 against tdPGB2 model. The analysis so performed shows that the 3LN, PTLN and tdPGB2 models
fit very appropriately the Romanian city size distribution. The final preference for one over another may depend on
the desire for accuracy in the results versus the simplicity of the model. We have shown a slight statistical preference
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of the PTLN distribution over the other two, but if one prefers a model with the greatest simplicity of specification,
estimation and computation [22] one might choose the 3LN model instead, but then the modeling of the tails as Pareto
is lost.

Table 6. Bayes factor

1992 2007 2017

PTLN vs tdPGB2 <0.001 0.01 0.60
PTLN vs 3LN 0.018 0.13 1

3LN vs tdPGB2 0.03 0.08 0.60
3LN vs PTLN - - 1

For the sake of comparison, let us analyze in brief the results for the alternative PTLN-diff and tdPGB2-diff
models where differentiability at the threshold points is imposed by means of the constraints (7), (8) and (14), (15),
respectively. In Table 7 we show the estimated parameter values, the maximum log-likelihoods and the AIC and
BIC information criteria. We show only the quantities for the years 2007 and 2017 because we have not been able
to estimate the PTLN-diff model for the year 1992. As expected, since the differentiable models are nested into the
non-differentiable ones, the values of the maximum log-likelihoods are lower (or at most, equal) than for the non-
differentiable models. In Table 8 we show the results of the corresponding KS, CM and AD tests. There are more
rejections of the differentiable models than the non-differentiable ones, so the goodness-of-fit is in general worse for
the former ones. Nevertheless, we can observe that the goodness-of-fit of the differentiable models improves with
later samples of Romanian data. We have performed as well standard log-likelihood ratio tests between PTLN-diff
and PTLN distributions on the one hand and tdPGB2-diff and tdPGB2 distributions on the other hand to see if they
are statistically equivalent (that being the null hypothesis) or if the more complex models (the non-differentiable ones
at the threshold values) are favored. The results are shown in Table 9. The rejection of the null is clear always and the
non-differentiable models are significantly selected.

3.2. Graphical analyses
Figs. 3, 4 and 5 graph the rank-size plots for ascending and descending city sizes in log-log scale. The solid

green line represents the empirical city sizes, while the red, blue and purple lines depict the predicted city sizes using
Eqs. (3), (6) and (13), and the parameter estimates given in Table 3 for the 3LN, PTLN and tdPGB2 distributions,
respectively. These graphs show that all three models predict accurately the city sizes for the upper and lower tails.

4. Conclusion

Romania’s cities population is very well modeled by the 3LN, PTLN and tdPGB2 distributions. The statistical
tests KS, CM and AD provide substantial evidence that the Romanian’s cities size can be easily predicted by these
models. The Vuong tests prove that we cannot reject that the PTLN and tdPGB2 models are statistically equivalent
to the 3LN probability law for all years. In conclusion, there are models that are clearly not rejected for the same
samples, and only some of them have Pareto tails. Thus the question of having Pareto tails or not is quite interesting,
since both possibilities may occur at the same time [35]. For 1992 and 2007, the tests applied provide support for
the PTLN distribution. As for 2017, opting for one model or other is not quite easy as all of them provide similar
performances. If one selects the simpler model in terms of specification and computation [22] one might favour the
3LN distribution, but then the modeling of the tails as Pareto is lost.
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Table 7. Parameter estimates of Romania’s cities population for years 2007 and 2017

2007 2017
Parameter estimators (standard errors)
and criteria information

PTLN-diff distribution
τ̂l 1,291 (58) 1,167 (57)
µ̂ 7.999 (0.006) 7.945 (0.006)
σ̂ 0.506 (0.005) 0.537 (0.005)
τ̂u 4,424 (42) 4,344 (44)
log-likelihood -29,347.7 -29,464.6
AIC 58,703.3 58,937.2
BIC 58,727.6 58,961.5

tdPGB2-diff distribution
τ̂∗l 1,209 (76) 1,057 (102)
â 0.800 (0.006) 2.123 (0.021)
b̂ 6,614 (37) 2,408 (18)
p̂ 9.950 (0.045) 1.945 (0.025)
q̂ 18.845 (0.078) 1.147 (0.016)
τ̂∗u 4,282 (36) 4,470 (66)
log-likelihood -29,347.5 -29,464.5
AIC 58,707.1 58,941
BIC 58,743.4 58,977.4
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