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Preface xi

Preface

As everybody has experienced by looking at a mirror, light is almost com-
pletely re�ected by metals. But they also exhibit an amazing property that is
not so widely known: under some circumstances light can ��ow� on a metallic
surface as if it were �glued� to it. These �surface� waves are called Surface Plas-
mon Polaritons (SPPs) and they were discovered by Rufus Ritchie in the mid-
dle of the past century [1]. Roughly speaking, SPP modes generate typically
from the coupling between conduction electrons in metals and electromagnetic
�elds. Free electrons loose their energy as heat, which is the reason why SPP
waves are completely absorbed (in the visible range after a few tens microns).
These modes decay through so short lengths that they were considered a draw-
back, until a few years ago. Nowadays that situation has completely turned.
Nano-technology now opens the door for using SPP-based devices for their
potential in subwavelength optics, light generation, data storage, microscopy
and bio-technology.

There is a lot of research done on those phenomena where SPPs are in-
volved, however there is still a lot of work to do in order to fully understand
the properties of these modes, and exploit them. Precisely, throughout this
thesis the reader will �nd a part of the e�orts done by our collaborators and
ourselves to understand the compelling questions arising when light �plays�
with metals at the nanoscale. The outline of the thesis is:

i. Chapter 1: �Introduction�
First, the fundamentals of SPPs are introduced. In fact, SPPs will be
one of the most important ingredients in order to explain the physical
phenomena investigated in this thesis.
Our contributions, from a technical standpoint, have been carried out
with the help of two di�erent well known theoretical methods: the Finite-
Di�erence Time-Domain (FDTD) and the Coupled Mode Method (CMM).
In this chapter, we summarize the most relevant aspects of these two
techniques, looking for a better comprehension of the discussions raised
along the remaining chapters.
Concerning the rest of experimental and theoretical techniques used, it
is out of the scope of this thesis to rigorously describe all of them. Nev-
ertheless, most of those methods, which will not be presented in the
introductory chapter, will be brie�y explained when mentioned.

ii. Chapter 2: �Extraordinary Optical Transmission�
Imagine someone telling you that a soccer ball can go through an engage-
ment ring. At �rst, you could think that he or she has got completely
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mad. A situation like that could have been lived by the researchers who
�rst reported on the Extraordinary Optical Transmission (EOT) phe-
nomenon. Thomas Ebbesen and coworkers [2] found something like a
�big� ball passing through a hole several times smaller than it, although
there, the role of the ball was played by light. Before Ebbesen's discovery
light was not been thought of being substantially transmitted through
subwavelength holes. Until 1998, a theory elaborated by Hans Bethe [3],
on the transmission through a single circular hole in a in�nitesimally thin
perfect conducting screen, had �screened� out any interest in investigat-
ing what occurs for holes of subwavelength dimensions. Bethe's theory
demonstrated that transmission through a single hole, in the system de-
scribed above, is proportional to (r/λ)4 where λ is the wavelength of the
incoming light, and r is the radius of the hole. The proportionally con-
stant depends on hole shape, but it is a small number (∼ 0.24 for circular
holes). It is clear that whenever λ À r transmission is negligible. Nev-
ertheless, Ebbesen and coworkers experimentally found that light might
pass through subwavelength holes if they were periodically arranged on
a metal surface. More importantly, in some cases even the light directly
impinging into the metal surface, and not onto the holes, is transmitted.
The SPP modes were pointed to be responsible of EOT.
It is not strange that such a breakthrough sparked a lot of attention in
the scienti�c community. Furthermore, the EOT discovery is not only
interesting from the fundamental physics point of view, but from the
technological side as well.
The EOT phenomenon strongly depends on both geometrical parame-
ters and material properties. Moreover, EOT does not only occur in two
dimensional hole arrays (2DHAs), so other systems have been investi-
gated in the last years. In this way, this thesis is partly devoted to study
di�erent aspects of EOT:

(a) We begin by investigating the in�uence of the chosen metal on EOT
using the FDTD method. We analyze transmission spectra through
hole arrays drilled in several optically thick metal �lms (viz. Ag,
Au, Cu, Al, Ni, Cr and W) for several periods and hole diameters
proportional to the period.

(b) We also study the optical transmission through optically thin �lms,
where the transmission of the electromagnetic �eld may occur through
both the holes and the metal layer, conversely to the �canonical�
con�guration [2] where the metal �lm is optically thick, and the
coupling between metal sides can only be through the holes.

(c) On the other hand, since the �rst experimental and theoretical pa-
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pers some controversy arose over the mechanisms responsible to
enhance optical transmission through an array of holes. Two mech-
anisms lead to enhanced transmission of light in 2DHAs: excitation
of SPPs and localized resonances, which are also present in single
holes. In this chapter we analyze theoretically how these two mech-
anisms evolve when the period of the array is varied.

(d) There are systems displaying EOT di�erent from holey metallic
�lms. One of them is built by monolayers of close-packed silica
or polystyrene microspheres on a quartz support and covered with
di�erent thin metal �lms (Ag, Au and Ni). We show that the optical
response from this system shows remarkable di�erences as compared
with the �classical� 2DHA con�guration.

iii. Chapter 3: �Theory of NRI response of double-�shnet structures�
Veselago demonstrated that the existence of an isotropic, homogeneous
and lineal (i.h.l) medium characterized by negative values of both the
permittivity (ε) and the permeability (µ) would not contradict any fun-
damental law of physics [4]. A substance like that is usually called left-
handed material or alternatively, it is said to posses Negative Refraction
Index (NRI), and it behaves in a completely di�erent fashion from con-
ventional materials. At the interface between a NRI material and a
conventional dielectric medium interesting things would happen. For in-
stance, the current transmitted into a NRI medium would �ow through
an �unexpected� direction, forced by the Maxwell's equation boundary
conditions. Unluckily, no natural material is known to posses a nega-
tive value of its refractive index. To date, the only way to achieve NRI
materials is by geometrical means. Nevertheless the optical properties
of the constituting materials are still important. For instance, as the
dielectric constant of metals is �intrinsically� negative, NRI researchers
explore how to induce negative permeability on them by designing their
geometry in particular ways. This is the reason why these kind of ma-
terials are usually called �meta-materials� because their optical response
may be di�erent than the optical response of its bulk components.
In this chapter we investigate the optical response of one of these meta-
materials presenting NRI, a two-dimensional array of holes penetrating
completely through a metal-dielectric-metal �lm stack (double-�shnet
structure).

iv. Chapter 4: �Plasmonic devices�
The special properties of SPPs are being considered for potential uses
in circuits. Namely, the possibility of building optical circuits aimed by
SPPs has sparked a great interest in the scienti�c community. As SPPs
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on a �at surface propagate close to the speed of light, an hypothetical
optical SPP-device would be faster than its electronic counterpart. More-
over, di�erent frequencies do not interact, thus several channels would be
available for sending information. A last advantage, SPP-based technol-
ogy would be compatible to electronic technology since both share the
same supporting medium. Transporting optical signals and/or electric
ones would be then possible, depending on the characteristics of a speci�c
instrument.
On the contrary, two disadvantages in the use of SPPs instead of elec-
trons arise: i) SPPs are much more di�cult to control than electrons on
metallic structures (e.g. surfaces), being e�ciently scattered by defects
present on them, and ii) the �nite propagation length of SPP modes.
Note that the latter would not be an actual inconvenient in the case
of highly miniaturized circuits. Although the SPP modes are well posi-
tioned candidates, as we say, they are strongly scattered by any relief on
the surface and, due to the mismatch between freely propagating waves
and SPPs, they are di�cult to be properly excited. A lot of theoretical
and experimental works have been devoted on how to guide and generate
SPPs.
Regarding the coupling mechanism of light with SPPs, note SPPs can
not be excited by an incident plane-wave, because of their evanescent
character. There are various coupling schemes that allow light and SPPs
to be coupled: prism coupling, grating coupling and near-�eld coupling.
These setups for exciting SPPs are not always useful for certain appli-
cations. In Chapter 4 we discuss the advantages and disadvantages of
those methods, and we demonstrate a device that enables to create a
source for SPPs with remarkable advantages with respect to the other
proposals.
In the same chapter we explore di�erent ways for guiding SPP-like modes.
Devices for guiding SPPs by means of metallic bumps or holes drilled on
a metal surface have been suggested. Another possibility is to guide
electromagnetic waves by either a channel cut into a planar surface or a
metallic wedge created on it. These structures support plasmonic modes
called Channel Plasmon Polarions (CPPs) and Wedge Plasmon Polari-
ons (WPPs) respectively. The surface could be either a metal or a polar
dielectric, characterized by negative dielectric constant values. We inves-
tigate both CPPs and WPPs by means of rigorous simulations, aimed to
elucidate their characteristics, especially, at telecom wavelengths.
We use that information for suggesting a SPP ↔ WPP conversion
device. Lastly we study how gradually tapering a channel carved into a
metal surface enables enhanced electromagnetic �elds close to the channel
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apex.

v. Chapter 5: �Optical �eld enhancement on arrays of gold nano-particles�
Light scattering by arrays of metal nanoparticles gives rise to nanostruc-
tured optical �elds exhibiting strong and spatially localized �eld inten-
sity enhancements that play a major role in various surface enhanced
phenomena. In general, local �eld enhancement e�ects are of high inter-
est for fundamental optics and electrodynamics, and for various applied
research areas, such as surface enhanced Raman spectroscopy and mi-
croscopy, including optical characterization of individual molecules. Fur-
thermore, the highly concentrated EM �elds around metallic nanoparti-
cles are thought to enhance, in turn, non-linear e�ects, which can pave
the way for active plasmonic-based technologies. Also biotechnology can
take advantage of such high intensi�ed optical �elds. It is well known that
individual metal particles can exhibit optical resonances associated with
resonant collective electron oscillations known as localized surface plas-
mons (LSPs). Excitation of LSPs results in the occurrence of pronounced
bands in extinction and re�ection spectra and in local �eld enhancement
e�ects. Such nanoparticles periodically arranged, may cause additional
interesting e�ects. Besides, if nano-particles are deposited on a metal
surface, the emergence of a new channel for light being excited (SPPs)
may lead to new phenomena. In this chapter we investigate the opti-
cal response of arrays of gold nanoparticles on both dielectric and metal
substrates. By means of the FDTD method we analyze the experimen-
tal results consisting on: re�ection and extinction spectra measuraments
along with the non-lineal response known as two-photon excited (photo)
luminescence (TPL) generated by inter-band transitions of d-band elec-
trons into the conduction band.





Chapter 1

Introduction

1.1 Electromagnetic �elds bound to metals: Surface
Plasmon Polaritons

Our investigations have been motivated by the exciting phenomena arising
when light interacts with structured metallic systems at the nanoscale. Pre-
cisely, most of the physical mechanisms described and investigated in this
manuscript result from the interaction of a kind of electromagnetic wave called
Surface Plasmon Polariton (SPP) with objects of subwavelength size. In this
section, the basic properties of SPP modes are brie�y reviewed leaving out the
details that can be found elsewhere [5�8], including books on plasmonics [9, 10].

In physics we �nd plenty of examples that are described by di�erential
wave equations plus a set of boundary conditions. From a mathematical point
of view, a con�ned mode is a solution that exponentially decays far from the
de�ned boundaries. There is a vast number of physical phenomena led by
surface modes, but we are interested in those appearing in Plasmonics; the
extraordinary transmission of light [2] is a good example.

Much can be understood about an electromagnetic (EM) mode by exam-
ining their dispersion relation, i.e., the relationship between the angular fre-
quency (ω) and the in-plane wavevector (~k). This dispersion relationship can
be found in di�erent ways; for example, by looking for surface mode solutions of
Maxwell's equations under appropriate boundary conditions. We start suppos-
ing that an EM wave propagates on the interface between two di�erent media
(See Fig. 1.1(a)) characterized by their respective dielectric constants (εI , εII).
The magnetic permeability µ, is set to be one, which is a good approximation
for natural materials at the optical regime. Additionally, it is imposed that
this EM wave will propagate along the x-direction, being invariant through
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the y-direction, thus ~k = (kx, 0, kI,II
z ) , where kI,II

z =
√

εI,II(ω
c )2 − k2

x with
Im(kz) ≥ 0. Noticeably, as the system is invariant along one of the directions

I

I 1,

II

II 1,

ẑ

x̂

zE

yH xkxE

ẑ

x̂

nm

Ag= -17.6+0.82i

SPP nm

Labs~36.2( m)

m=24 nm

=422.3 nm

zk
II

ze
)|Im(|

zk
I

ze
)|Im(|

(b)
Re(Hy)|

6( m)

(a)

Figure 1.1: (a) Schematic of the system investigated. (b) Near �eld representation of
|Re(Hy)| for a SPP that propagates on the silver-air interface, being λ0 = 650nm. On
the same �gure the calculated values of its main de�ning properties are also shown.
(The SPP source (a magnetic dipole) is located a few microns from the outer left.)

in space, this allows us to distinguish between the two di�erent polarizations.
We denote as TM -polarization the one in which the magnetic �eld points along
the y-axis. The other polarization (TE ) is the one in which the electric �eld
points along the y-axis.

For the TM -polarization, in region I, the magnetic and electric �elds are
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de�ned as follows,

~HI = (0, A, 0)eikxxeikI
zze−iωt

~EI =
−A

ε0εIω
(−kI

z , 0, kx)eikxxeikI
zze−iωt (1.1)

where A is the amplitude of ~HI . The electric �eld results from the Maxwell's
curl equations (in the MKS system of units):

~k × ~E = µ0ω ~H

~k × ~H = −εε0ω ~E (1.2)

In the same way, the EM �elds in region II read,

~HII = (0, B, 0)eikxxe−ikII
z ze−iωt

~EII =
−B

ε0εIIω
(kII

z , 0, kx)eikxxe−ikII
z ze−iωt (1.3)

where B represents the amplitude of ~HII . On the surface interface (z = 0),
boundary conditions impose (Hx)I = (Hx)II and (Ex)I = (Ex)II , therefore

kI
z

εI
=
−kII

z

εII
(1.4)

Taking into account the dispersion relation in each medium,

(kx)2 + (kI
z)

2 = εI(
ω

c
)2

(kx)2 + (kII
z )2 = εII(

ω

c
)2 (1.5)

it can �nally be obtained the dispersion relation

kx = (
ω

c
)
√

εIεII

εI + εII
(1.6)

and therefore,

kI
z = ±(

ω

c
)

√
ε2
I

εI + εII

kII
z = ±(

ω

c
)

√
ε2
II

εI + εII
(1.7)

The sign of kz has to be chosen so that the �elds are forced to decay away
from the interface, so Im(kI,II

z ) ≥ 0.
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By repeating the later process we obtain the condition the TE case should
ful�ll.

kI
z = −kII

z (1.8)
As this condition is never satis�ed, the TE-polarization does not support con-
�ned waves. Therefore, as we are searching for EM modes bounded to the
surface, the subsequent analysis will go deeply into the TM -solution proper-
ties.

For the existence of a con�ned and propagating mode the real part of
kx [Eq. (1.6)] must be non-zero, and the imaginary part of both kI

z and kII
z

[Eqs. (1.7)] must be also di�erent from zero. These conditions ensure that a
propagating wave would decay inside both media, as Eq. (1.4) shows. Con-
�nement of EM waves depends on the sign of the real part of the dielectric
constant and whether the imaginary part takes di�erent values from zero. Let
us consider that medium I is a non-absorbing dielectric, in which case εI = ε

is a positive real number. The condition for a surface mode to exist can be
obtained from the requirement that the square root expression in Eq. (1.6) has
a positive real part, leading to

Re[εIεII ] < 0

Re[εI + εII ] < 0 (1.9)
Note that these conditions are valid whether the imaginary part of εII is neg-
ligible as compared to its real part (|Re(εII)| À |Im(εII)|). According to
Eqs. (1.9), materials characterized by a negative dielectric constant value may
bound an EM mode if it is in contact with a lossless dielectric. Precisely, metals
belong to this category. Before turning to metals, it is interesting to note that
also if Im(εII) 6= 0 EM �elds would decay whatever the sign of Re(εII). When
Re(εII) < 0, such a dielectric constant would describe an absorbing metal. In
contrast Re(εII) > 0 would describe a dielectric material for which absorption
has not been neglected. Therefore, the interface between a dielectric without
absorption and an absorbing dielectric supports con�ned modes, usually called
Brewster-Zenneck waves [11].

We now return to the case of metals. At optical frequencies (and lower),
metals behave like �plasmas�, i.e., as if they were gases of free charged parti-
cles [12]. The optical response of a free electron gas is approximately described
by the Drude model, �nding that

ε(ω) = εr −
ω2

p

ω(ω + ıγ)
(1.10)

The parameter εr gives the optical response at the range of high frequencies,
whereas γ is related to energy losses by heating (Joule's e�ect), and ωp is the
plasma frequency.
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Figure 1.2 shows an example. The �gure depicts both experimentally mea-
sured dielectric constant (circular symbols) and its �t to a Drude-like formula
(solid lines). As we can see, the agreement is quite good. Later on (e.g. in
Chapter 2) we will see that in order to express accurately the dielectric con-
stant of some metals, additional terms are needed. For the moment, the Drude
model contains all the elements required for illustrating the next discussion.

400 600 800 1000 1200
-80

-60

-40

-20

0

400 600 800 1000 1200
0

1

2

3

4

5  

(a)

Wavelength(nm)

(b)

Wavelength(nm) 

Ag-Drude
r=4.6

p=9.0eV
=0.07eV

Figure 1.2: For silver: (a) Re[εm] (b) Im[εm]. Circular symbols render experimental
data [13]. Solid lines �t the experiments to a Drude-like formula, de�ned by the
parameters shown in (a).

Therefore, if εI(= ε) is a real positive number and εII = εm, where the
subscript �m� states for metals, Eqs. (1.6) and (1.7) de�ne the propagation
properties of SPPs.

Figure 1.3 represents the dispersion relation of SPPs on the air-silver inter-
face, where the dielectric constant of silver has been modeled with the Drude
parameters appearing in Fig. 1.2. As expected, beyond certain energy values
the SPP dispersion relation is clearly distinguished from the light line, a feature
due to its intrinsic evanescent character. The anomalous dispersion observed
at high frequencies is due to absorption. For lossless metals an asymptotic
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5 10 15 20 25 30 35 40 45 50
1

2

3

4

 SPP (Ag-Drude)
 light cone

 

 
(e
V)

kx( m-1)
Figure 1.3: SPP dispersion relation for silver (solid line) �tted into a Drude-like
formula. We use the parameters shown in Fig. 1.2. The dashed line renders the light
cone.

regime is reached at large wave-vector values. In fact, the SPP frequency
tends to ωp/

√
1 + εr if the damping coe�cient γ is set to zero for the Drude

model [Eq. 1.10].
Hereafter we will take a general assumption that is useful for good met-

als (Ag, Au, Cu), namely that |ε′m| À ε′′m (εm = ε′m + ıε′′m), so εm ≈ ε′m.
There are other metals (Al,Ni,Co,Cr,Pb...) for which this approximation is no
longer valid, as we will see. In some cases, the condition |ε′m| À ε is a good
approximation as well.

The properties de�ning a SPP come from its dispersion relation and the
z-component of the ~k-vector. These properties tell us what is the spatial
�period� of a SPP, how long it takes before being absorbed, and how con�ned
a SPP is inside and outside the metal surface (For a review see [14]). The SPP
wavelength is de�ned as follows,

λSPP =
2π

Re(kSPP )
(1.11)

For good metals, it can be approximated by:

λSPP = λ0

√
ε + ε′m
εε′m

(1.12)

where λ0 is the wavelength in vacuum (ω
c = 2π

λ0
). It is easy to see that λSPP <

λ0, which it is another consequence of the singular dispersion relation of SPPs
(See Fig. 1.3).
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The length at which the energy carried by a SPP has decayed a 1/e factor
is called absorption length and is de�ned as

Labs = [2Im(kSPP )]−1 (1.13)

Again, we can make use of the approximation for good metals to obtain

Labs = λ0
(ε′m)2

2πε′′m
[
ε + ε′m
εε′m

]
3
2 (1.14)

If |ε′m| À ε, the last formula can be further approximated leading to

Labs = λ0
(ε′m)2

2πε′′m
(1.15)

This result means that metals with a large (negative) real part of the rela-
tive permittivity are better for guiding or for resonant processes (which require
long time to occur). It clearly shows the role played by the damping factor
of metals in the SPP behavior: Labs → ∞ when the imaginary part of the
dielectric constant (ε′′m) tends to zero, i.e., as the damping goes to zero too.

Interestingly, for good metals the SPP electric �eld is primarily transverse
in the dielectric and longitudinal in the metal, as the following expressions
demonstrate,

|Eε
z | =

√
|ε′m|
ε
|Ex|, |Em

z | =
√

ε

|ε′m|
|Ex| (1.16)

showing the hybrid nature of SPPs that combines the features of both propa-
gating EM waves in dielectrics and free electron oscillations in metals. Since the
SPP damping occurs due to ohmic losses (∼ ~j ~E), which in metals is related to
the charge current (~j) induced by the SPP �elds, it is the longitudinal electric
�eld component (Ex) of the SPP in the metal that determines absorption.

It is worth de�ning another magnitude which can deliver useful information
about the SPP nature: the penetration of the SPP �elds into each medium.
In the dielectric half-space it takes the form δε = [Im(kε

z)]
−1 and in the metal,

where it is called skin depth δm = [Im(km
z )]−1. For lossless metals, skin-depth

formulas can be rewritten in a compact manner,

δm ≈ λ

2π
√
|ε′m|

δε ≈
√
|ε′m|λ
2πε

(1.17)
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The penetration depth of the �eld into the dielectric gives us a measure
of the length scale over which the SPP mode is sensitive to the presence of
changes in refractive index, for example the presence of certain bio-molecules
in a biosensor. If we substitute in Eq. (1.17) the expression of εm using the
Drude formula (γ ∼ 0), and noting that we are working well below the plasma
frequency (ω ¿ ωp) one obtains for the penetration length into the dielectric

δε =
λ2

2πελp

δm =
λp

2π
(1.18)

where ωp = 2π/λp. Values for ωp are around ∼ 9eV, i.e., λp ∼ 137.7nm, so
in this case, the con�nement of a SPP could be considered subwavelength up
to ∼ 865nm, since δε < λ for shorter wavelengths. On the other hand, it is
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Figure 1.4: Characteristics of a SPP on the air-silver interface, panel (a) shows the
SPP absorption length for silver (described by a Drude term). Inset: ratio between
the wavelength of light and the SPP one. Additionally, the main �gure in panel (b)
depicts with solid line the SPP skin-depth in air. Inset: SPP skin-depth into the
metal. Dashed lines render their approximated values [Eqs. (1.15) and (1.17)]. Panels
(c) and (d) are as (a) and (b) but for SPPs on the air-nickel interface.

interesting that the penetration depth in metals depends rather weakly on the
wavelength, staying at the level of a few tens of nanometers (δm ∼ 22nm),
while that in dielectrics increases fast and nonlinearly with the wavelength.
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The penetration depth into the metal gives us a measure on the required metal
thickness that allows coupling to freely propagating light in the prism coupling
(Kretschmann) geometry (typically 50nm for silver and gold in the visible).
It also sets the length scale of the �lm thickness so that direct transmission
through the �lm occurs. Moreover, the skin depth gives information about the
coupling strength between SPPs at opposite sides of the �lm. The penetration
depth into metals also gives us an idea of the feature sizes needed to control
SPPs: as features become much smaller than the penetration depth into the
metal they will have a diminishing e�ect on SPP modes. In SPP investigations,
the small-scale (nm) roughness is associated with many of the fabrication tech-
niques that create the metal �lms. Due to this, a minor perturbation to the
SPP mode is provided.

All these quantities (λSPP , Labs, δm, δε) have been represented in Fig. 1.4
for two di�erent metals: silver (Panels (a) and (b)) and nickel (Panels (c) and
(d)). Nickel is considered a �bad� metal due to the huge imaginary part of its
dielectric constant. We can observe for both metals that at long wavelengths
λSPP → λ0, as Eq. (1.12) predicts. As we said, the imaginary part of εm is
greater for Ni than for Ag, which explains the di�erences between the calcu-
lated values of Labs. Nevertheless their skin depths are similar. As the �gure
clearly shows, the approximations that have led to approximated values for δm

and δε are no longer valid in the case of �bad� metals, as one could expect.

1.2 The Finite-Di�erence Time-Domain method

1.2.1 The FDTD algorithm

The Finite-Di�erence Time-Domain (FDTD) method belongs to the general
class of grid-based di�erential time-domain numerical methods. The time-
dependent Maxwell's equations (in partial di�erential form) are discretized
using central-di�erence approximations to the space and time partial deriva-
tives. Both the basic FDTD space grid and the time-stepping algorithm trace
back to a seminal 1966 paper by Kane Yee [15]. The resulting �nite-di�erence
equations are solved in a leapfrog manner: the electric �eld vector components
in a volume of space are solved at a given instant in time; then the magnetic
�eld vector components in the same spatial volume are solved at the next in-
stant in time; and the process is repeated over and over again until the desired
transient or steady-state electromagnetic �eld behavior is fully evolved.

Note that the FDTD technique is one of the most extensively developed and
used in computational electromagnetism [16]. It is now impossible trying to
cover all aspects of the FDTD method in an introductory chapter. Hence this
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section is not intended to be a complete FDTD guide, instead, our intention
is to give the reader a summarized version of the FDTD method. We will
emphasize those techniques that were developed in the course of the thesis and
which, to our knowledge, can not be found in the literature. Although these
technical issues have not been fully explained in our articles, they were of the
utmost importance for achieving the objectives therein.

To start with, we recall some of the most important bene�ts on the use of
the FDTD method:

i. Di�erent sort of material properties can be treated with FDTD, so we
are able to properly deal with dielectrics, metals, non-linear substances...

ii. There are a lot of available illuminating sources, for instance: plane
waves, dipole sources, gaussian beams...

iii. It is easy to retrieve the optical properties that describes the physical
response of a system: transmission and re�ection coe�cients, points at
dispersion relation curves, �eld maps in the frequency domain or what-
ever quantity depending upon the EM �elds.

iv. This method is fast and it does not consume excessive computer resources
compared with other numerical methods.

Let us turn to the FDTD algorithm itself. The starting point are the curl
Maxwell's di�erential equations for isotropic, homogeneous and lineal (i.h.l.)
media (MKS system of units)

∂ ~H(~r, t)
∂t

= − 1
µ0µ

∇× ~E(~r, t)

∂ ~E(~r, t)
∂t

=
1

ε0ε
∇× ~H(~r, t) (1.19)

Note that in principle there is not only a way to bring Maxwell's equations
from the �continuous" to the �discrete� space. In the end, the really impor-
tant question is whether the scheme used for, gives accurate results being free
of divergences, numerical instabilities,... The FDTD method is one among
other possibilities to solve numerically the curl Maxwell's equations. When
Maxwell's di�erential equations are examined, it can be seen that the change
in the E-�eld in time (the time derivative) is dependent on the change in the
H-�eld across space (the curl), and viceversa. Figure 1.5 shows an illustration
of a standard Cartesian Yee's cell used for FDTD, and how electric and mag-
netic �eld vector components are distributed [15]. Visualized as a cubic box,
the electric �eld components form the edges of the cube, and the magnetic �eld
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components form the normals to the faces of the cube. A three-dimensional
space lattice is comprised of a multiplicity of such Yee cells. A given structure
is mapped into the space lattice by assigning appropriate values of permittiv-
ity to each electric �eld component, and permeability to each magnetic �eld
component. Yee's scheme proposes a distribution in space for the EM �eld

Figure 1.5: Illustration of a standard Cartesian Yee cell used for FDTD, about which
electric and magnetic �eld vector components are distributed.

components. We will see that this leads to an algorithm for the spatial de-
pendence. However each Maxwell's curl equation is coupled to each other, so
it is not straightforward to decide the time-stepping. At any point in space,
the updated value of the H-�eld in time is dependent on the stored value of
the H-�eld and the numerical curl of the local distribution of the E-�eld in
space. Yee found that the iteration of E-�eld and H-�eld updates results in a
marching-in-time process, i.e., the electric �eld at time t depends on the elec-
tric �eld at t−δt and the magnetic �eld (via the curl) at t−δt/2 (δt is the time
step). Once the electric �eld at time t is know the process is iterated, this time
in order to solve the magnetic �eld at time t + δt/2, which in turn depends on
H(t− δt/2) and E(t). The last is usually called �leapfrog� algorithm.

Let us brie�y show how the basic FDTD algorithm is obtained. The integral
form of the Faraday's and Ampere's laws are the best way to get it,

∂

∂t

∫
~H(~r, t)d~s = − 1

µ0µ

∮
~E(~r, t)d~l

∂

∂t

∫
~E(~r, t)d~s =

1
ε0ε

∮
~H(~r, t)d~l (1.20)

As we see in Fig. 1.5 each component of the ~E �eld can be viewed as surrounded
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by a circulating current of ~H components, and viceversa. Precisely the EM
�eld component perpendicular to a given face of the Yee's cell represents its
averaged value on that surface. Interestingly, there is a connection between
Yee's discrete space and the simplest discretization of Faraday's and Amperes's
laws in its integral form.

Let us apply Faraday's law to one of the Yee's cell faces in order to calculate
Hy. The left hand side reads

∂

∂t

∫
~H(~r, t)d~s ≈ ∆x∆z

∂

∂t
[Hy|i+ 1

2
,j,k+ 1

2
] (1.21)

and the right side (counterclockwise integration),

− 1
µ0µ

∮
~E(~r, t)d~l ≈ 1

µ0µ
{∆x[Ex|i+ 1

2
,j,k+1 − Ex|i+ 1

2
,j,k]

+ ∆z[Ez|i,j,k+ 1
2
−Ez|i+1,j,k+ 1

2
]} (1.22)

thus,

∂

∂t
[Hy|i+ 1

2
,j,k+ 1

2
] =

1
µ0µ

{
Ex|i+ 1

2
,j,k+1 − Ex|i+ 1

2
,j,k

∆z
+

Ez|i,j,k+ 1
2
−Ez|i+1,j,k+ 1

2

∆x
}

(1.23)

The �leapfrog� algorithm alternates the update of E-�elds and H-�elds as
explained. This translates into the FDTD notation as ∂ ~E

∂t ≈ ~En+1− ~En

∆t and
∂ ~H
∂t ≈

~Hn+1/2− ~Hn−1/2

∆t . So �nally the Hy update is:

Hy|n+ 1
2

i+ 1
2
,j,k+ 1

2

= Hy|n−
1
2

i+ 1
2
,j,k+ 1

2

+
∆t

µ0µ
{
Ex|ni+ 1

2
,j,k+1

− Ex|ni+ 1
2
,j,k

∆z
+

Ez|ni,j,k+ 1
2

− Ez|ni+1,j,k+ 1
2

∆x
}

(1.24)

The rest of the electric and magnetic vector components, can be found
straightforwardly following this scheme. Once all the components are calcu-
lated, this �piece� of algorithm allows us to simulate propagation of EM waves
through i.h.l media, de�ned by the dielectric constant ε, and the magnetic
permeability µ.

For the topics covered in this thesis this �particular� FDTD algorithm is
of limited interest by itself, since it does not work with metals. However,
it appears everywhere in our codes because the studied systems are always
embedded in �vacuum� regions. The algorithm must satisfy some criteria in
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order to be numerically stable. For instance, it can be demonstrated that the
dispersion relation for a freely propagating plane wave through the discretized
�vacuum� space holds the following formula [16]:

4
∆t

sin2(
ω∆t

2
) = 4c2[

1
∆x

sin2(
kx∆x

2
) +

1
∆y

sin2(
ky∆y

2
) +

1
∆z

sin2(
kz∆z

2
)]

(1.25)
This result implies that the non-dispersive �continuous� free space becomes

dispersive when Maxwell's equations are de�ned into the time-space lattice.
Clearly, in the limit of both mesh size and time step going to zero, the disper-
sion relation in free space is recovered.

From the dispersion relation, by preventing ω from being a complex num-
ber, i.e., | sin2(ω∆t

2 )| ≤ 1 the stability criterium is obtained:

(∆t)2 < (
c2

∆x2
+

c2

∆y2
+

c2

∆z2
)−1 (1.26)

The last expression implies that we can not independently choose the mesh
size and time step. Once the mesh size has been �xed, the time step must be
such that the criterium of stability is ful�lled. For a given structure, the mesh
size will additionally depend on two important constrains:

i. When the structure to be simulated can not be exactly accommodated
in cartesian coordinates, the mesh size should be �ne enough to ensure
that the discrete structure represents the actual one.

ii. We must take into account the way EM �elds are described in the FDTD
algorithm. In the case of metals, the EM �eld decays in length scales of
the order of 25nm. The faithful representation of such fast variations is
a great challenge, forcing the mesh size to be usually smaller that 5nm.

1.2.2 Field sources in FDTD

Up to here, we have been devoted to show the basics of the FDTD algorithm.
However, the algorithm by itself it is not enough. If the EM �elds on the grid
at time t = 0 have not been de�ned, we will get a lot of zeroes as output after
iterating the FDTD loop. The subject of sources for FDTD is one of the most
challenging in this theoretical framework. Sometimes it is very di�cult to �nd
the proper way to illuminate a structure. For instance, in two-dimensional
periodic systems at normal incidence, it is very easy to use a wave-packet
(e.g. gaussian beam), while a monochromatic wave requires further e�orts.



14 Chapter 1. Introduction

Illumination by a plane-wave at non-normal incidence becomes an even more
di�cult task [16�18].

All sources implemented in our simulations are fully described elsewhere [16].
Here, we limit ourselves to say where and how the di�erent sources are useful.

i. Gaussian wave-packet
A gaussian wave-packet is a good source for illuminating 1D and 2D
periodic systems at normal incidence. It has the advantage to be compact
in space and broadband in the frequency domain. This source is settled
at t = 0.
Normal incidence is de�ned as the direction perpendicular to the �lm
where the lattice is de�ned. In our notation this direction coincides with
the z-direction. One dimensional periodic systems can be considered as
a particular case of the 2D-periodic case, where the system is invariant
along one of the in-plane directions. Furthermore, at normal incidence,
Ez = Hz = 0, so:

~E||(x, y, z, t) = ~Eo
||e

ı ωo
c

(z−zo−ct/n)e−(
z−zo−ct/n

D
)2 (1.27)

Here zo is the position where the initial gaussian �eld reaches its max-
imum value, where ωo = 2πc

λo
and n the refractive index. The initial

magnetic �eld is obtained from Maxwell's equations.
If we de�ne the Fourier's transformation as f(ω) =

∫ +∞
−∞ dt f(t)eıωt we

�nd that

~E||(x, y, z, ω) =
√

πnD

c
~Eo
||e

ı nω
c

(z−zo)e−(nD
2c

)2(ω−ωo)2 (1.28)

�Playing� with the D parameter it is possible to �t the gaussian wave-
packet to the available computational space. Note that in the limit of
D → ∞ [Eq. (1.27)] the wave-packet becomes a monochromatic plane
wave.

ii. Dipole sources
Dipole sources in FDTD are useful for calculating dispersion relations.
In these situations we want a source able to couple with all the EM
modes of a given structure, which we do not know beforehand. A dipole
source can be tuned to be broadband or monochromatic. Moreover, all
the k-vectors can be accessed with a dipole source. Dipole sources can
be settled to mimic either a magnetic or an electric dipole, so with such
a source we can take advantage of system symmetries. We will use three
types of dipoles:
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δ(~r − ~ro) × δ(t− to)

δ(~r − ~ro) × e−ıω0t

δ(~r − ~ro) × e−ıω0te−(
t−t0

τ
)2 (1.29)

The �rst type is broadband in frequency (and is switched on at t = 0).
The second and the third types must be updated in time. The second
type represents a monochromatic source while the third one is broadband
in frequency. These sources emit both propagating and evanescent waves,
thereby are useful in order to �probe� con�ned modes, unaccessible for a
propagating wave.

iii. Sum of Bloch's waves
In periodic systems the EM modes are a superposition of Bloch's waves.
The best way to access them is precisely by an illumination with a super-
position of such waves. This source was �rst used in FDTD by Chan et
al. [19]. Again we refer to Ta�ove's book [16] for a complete description.

1.2.3 Data processing

Calculation of optical spectra: �projection of EM �elds onto plane
waves�

Maxwell's equations are solved in real space and in time domain with FDTD,
in other words, a single FDTD simulation results in the knowledge of ~E(~r, t)
and ~H(~r, t). Nevertheless, these vectors do not provide the most relevant in-
formation about the optical properties by themselves. Actually, the optical
response of a certain structure is described in terms of scattering coe�cients,
transmission/re�ection spectra, near �eld maps, dispersion relations... The
optical response usually depends on the pumping frequency (even though the
materials involved are non-dispersive). To obtain a frequency dependent quan-
tity is mandatory to apply a Fourier's transformation to the EM �elds in the
time domain,

~E(~r, ω) =
1√
2π

∫ +∞

−∞
~E(~r, t)e−ıωt dt

~H(~r, ω) =
1√
2π

∫ +∞

−∞
~H(~r, t)e−ıωt dt (1.30)

which is not always straightforward as we will see.
Let us concentrate �rst on how transmitted and re�ected energy currents

from a material layer can be calculated with FDTD. In fact, these quantities
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are not di�cult to calculate, once the EM �elds (~E(~r, ω) and ~H(~r, ω)) are
known. The averaged Poynting vector �owing through a given surface, S,
reads (in the MKS system of units),

J(ω) =
1
2

∫

S
d~sRe[ ~E(~r, ω)× ~H∗(~r, ω)] (1.31)

Equation (1.31) provides the total energy current, at a �xed frequency. In
order to obtain transmission and re�ection spectra we would need to know the
incident EM �elds. For this, it is necessary to run an extra simulation without
scatterers if the incoming �elds are not analytically known. But here, we will
discuss a di�erent method to calculate the transmission and re�ection coe�-
cients in periodic systems, which improves to some extent the previous one. As
compared with it, this method is interesting for two additional reasons. It is
possible to obtain transmission and re�ection coe�cients which contain infor-
mation both in the frequency domain and in the reciprocal space. Moreover,
this method allows also to calculate separately transmission and re�ection from
a single simulation. The basic idea consists in �nding a way to isolate the cur-
rent that each ~k-vector of the reciprocal lattice carries, as a function of both
the wavelength and the polarization state (See Ref. [20] for further details).

The plane wave solution for Maxwell's equations have the following form:

~E(~r, t) = ~E0e
ı(~k~r−ωt), ~H(~r, t) = ~H0e

ı(~k~r−ωt) (1.32)

where ω = c|k|√
ε
, being the speed of light in vacuum, c, and ε the dielectric

constant of such media. Thus, curl Maxwell's equations (MKS system of units)
can be written as:

~k × ~E0 = µ0ω ~H0

~k × ~H0 = −εε0ω ~E0 (1.33)

For a given ~k vector there are two polarization states that must be con-
sidered, because Eqs. (1.33) are invariant under simultaneously change ~E →
−µ0

~H and ~H → εε0
~E. We use the usual notation for such states, that is,

s-polarized plane waves are de�ned as,

~Es ∝ ~k × ~n (1.34)
and for the p-polarization,

~Ep ∝ ~k × ~k × ~n (1.35)
where ~n is an arbitrary unit vector. The propagation ~k vector and ~n de�ne a
plane in space with respect to, the electric (magnetic) �eld oscillates perpen-
dicular for the s-polarization (p-polarization).
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We restrict our analysis to two dimensional (2D) periodically structured
systems, and to the transmission and re�ection coe�cients in the far �eld.
The 2D-lattice would de�ne the x−y plane, and ~n would be the unit vector ẑ.

At �xed frequency, a plane wave is completely described by the components
of the wave vector parallel to the surface (~k||) and its polarization. We use σ

for labeling the polarization state, which can be either +p, −p, +s or −s.
The sign accounts for the direction the plane wave propagates, i.e, as kz =
±

√
ε(ω

c )2 − ~k2
||, the ± signs denotes the plane waves propagating coming from

∓∞,respectively. Evanescent waves (kz = ı|kz|) do not carry energy to the far
�eld, so they will not be considered in the following.

Moreover, we are interested only in the EM �eld components parallel to
the x− y plane, which contain the necessary information to compute the time
averaged Poynting's vector �ow,

〈Sz〉 = ExH∗
y − EyH

∗
x (1.36)

As we have set ~n = ẑ = (0, 0, 1), taking into account Eq. (1.35) and Maxwell's
equations we �nd on one hand,

~E0
~k||,p

= βkz

(
kx, ky,− (k2

x+k2
y)

kz

)T

and
~H0

~k||,p
=

β

µ0ω
|k|2 (−ky, kx, 0

)T (1.37)

where T stands for transposition. On the other hand, by utilizing Eq. (1.34)
it can be shown that:

~E0
~k||,s

= β
(−ky, kx, 0

)T

and
~H0

~k||,p
=

β

µ0ω
kz

(
kx, ky,− (k2

x+k2
y)

kz

)T
(1.38)

The value for β can be arbitrarily chosen, however it is usually chosen so
that the current carried by the wave is the unity. A complete description of an
eigenvector in �free� space, at �xed frequency, can be expressed in this way:

〈~r|~k||, σ〉 = ~f r
~k||,σ

eı~k~r (1.39)

where we have used Dirac's notation, and ~f r
~k||,σ

denotes the di�erent polariza-
tion state of the right-vectors:

~f r
~k||,σ

=
(
ex, ey, hx, hy

)T (1.40)
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In the last expression the �eld components are those shown in the set of
Eqs. (1.37) and Eqs. (1.38). Note that for the particular case where ~k|| = ~0
we must choose the basis element by hand. We choose therefore at a �xed
wavelength, a bi-vector EM �eld, ~F (~r, ω), can be described as,

|F 〉 =
∫

d~k||
∑

σ

α(~k||, σ) |~k||, σ〉 (1.41)

In each time step, the FDTD method output is precisely the EM �eld at
this loop iteration. Within this framework, the EM �eld components at certain
z0 can be written as:

~F (~r||, z0, t) =
∫

dω ~F (~r||, z0, ω)e−ıωt (1.42)

where

〈~r|F 〉 = ~F (~r||, z0, ω) =
∑

σ

∫
d~k||

∫
dω α(~k||, ω, σ) 〈~r|~k||, σ〉 (1.43)

To obtain α(~k||, ω, σ) we must project |F 〉 onto the left-vector basis {〈~k||, σ|}.
Unfortunately, the right eigenvectors do not in general form an orthonormal
set, so the left ones must be found by inverting the matrix built with the
right-vectors [20].

In fact, the FDTD method has a great advantage over others: a single
simulation is enough to provide the optical response as a function of frequency.
However, Fourier's integral calculations are time consuming processes. To
avoid this drawback as much as possible, one can make use of the Fast Fourier
Transformation (FFT). Usually, the FFT method is the best choice in post-
processing. However the use of FFT methods to evaluate (1.30) or (1.42)
requires storing the �elds in the computer memory for all times, which is
usually prohibitive. Alternatively, if the Fourier's integral is done by adding
the contributions for each �time slice� as time evolves, �elds do not need to be
stored, but performing the Fourier Transform (FT) is computationally costly.
Therefore the best choice, depends on the problem we are studying and on the
computer resources (speed and available RAM memory).

For the type of structures investigated in next chapters, storing the EM
�elds of a typical simulation at each time step is a hard constrain. When
the system under study is large, i.e., when the computer RAM memory re-
quirements are too demanding, the FFT is not a feasible approach. From a
single FDTD simulation the left-hand side of Eq. (1.42) is obtained, leaving
the calculation of α(~k||, ω, σ) to the FFT post-processing. Let us show how this
way to proceed can not be followed for simulating transmission or re�ection
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spectra through 2D-systems. Typically, we investigate 2D-periodic structures
with periods ranging from 300nm to 1000nm. As we said before, the mesh
size must be quite �ne to ensure accuracy (5-10nm). The �lm where the array
is patterned is usually 25-500nm thick. Overall, the whole system (including,
vacuum, PMLs,...) is about X × Y × Z = 100× 100× 300 mesh points. Note
each point at this grid would imply to store six complex numbers (EM com-
ponents) plus certain auxiliary variables. A system like that would require
well over 2Gb RAM. For instance, to compute α(~k||, ω, σ) on a single layer of
constant z would mean storing a slice 100× 100, one for each time step. Con-
verged results are typically obtained within the range from 30000 to 120000
time steps, so it would needed an available memory between 200Gb to 400Gb!.
It is obvious that FFT can not be used for these systems. The best way to
proceed in this case consists on calculating the Fourier's integral directly:

α(~k||, ω, σ) =
∫

dt[
∫

d~r|| 〈~k||, σ|~r〉 ~F (~r||, z0, t)]eıωt (1.44)

Note that, �xed the frequency, ω, each pair (~k||,σ) de�nes an element of a
basis in which an arbitrary EM �eld can be expanded. At this point, we have
an in�nite number of eigenvector coe�cients to be calculated. However, in 2D
periodic systems, only a �nite number of such elements carry energy to the
far �eld. First, Bloch's theorem [12] imposes that only the reciprocal lattice
vectors contribute to the integral [21], thus:

|F 〉 =
∑

~G

∑
σ

α( ~G, σ) |~G, σ〉 (1.45)

where ~G runs over the reciprocal lattice vectors de�ned as ~G~R = δij , for
all lattice vectors ~R. Up to here, we have reduced the number of integrals to
calculate, although we still have an in�nite numerable number of them. Luckily
only a �nite number of these coe�cients represent propagative ~k vectors (for
which kz is a real number). Therefore, in most of the calculations only a
few coe�cients in (1.44) must be calculated in order to �nd transmission and
re�ection currents.

Band structure and dispersion relation calculations

Band structure and dispersion relation curves provide fundamental information
about the EM modes supported by a given structure. Next, we will discuss
how calculate them with the FDTD method.

It is not di�cult to implement an algorithm in order to calculate band
structures for periodic systems with FDTD. Fortunately, a periodic system
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can be represented by a single unit cell within FDTD. Bloch's boundary con-
ditions supply with the interactions between neighbor cells, thus providing the
optical response as a function of the incident k-vector along a chosen peri-
odic direction. The source of illumination used to be a sum of Bloch's waves,
though dipole sources (Section 1.2.2) work as well. The key point is that the
source �elds should somehow match the EM modes sustained by the struc-
ture. Fixed the boundary conditions (k-vector) and the �eld source, maxima
in spectra (calculated at �suitable� points in space) settle the EM modes of the
structure. Repeating the last procedure for each wave-vector belonging the
�rst Brillouin zone, it can be �nally obtained the band structure. Indeed, the
FDTD band structures calculated throughout this thesis were calculated using
this technique.

On the other hand, if the structure is invariant through a given direction
in space, the dispersion relation can be straightforwardly found using the same
method. Suppose that we are interested on the dispersion relation through
that direction, which is denoted as z, so kz = kz(ω) represents the wave-
vector through it as a function of the frequency, ω. The whole system can be
then �tted in a single �slice�, containing its pro�le, which repeats itself along
z. The slice plays the role of the unit cell of a periodic system for which
the period coincides with the mesh size. The initial problem of calculating a
dispersion relation is �mapped� onto a more easy problem, i.e., to calculate a
band structure within the �rst Brillouin zone, |kz| ≤ π/q, where q is the mesh
size. Note that the smaller the mesh size, the longer the �rst Brillouin zone in
k-space is. Because of q is usually very small as compared to the wavelength
(to ensure convergency, accuracy,...), the �rst Brillouin zone so de�ned spreads
over a wide range of k-vectors without being folded onto it. As an example, we
show in Fig. 1.6 the FDTD calculated dispersion relation of SPPs supported
by a semi-in�nite gold �lm (circular symbols). This 1D-dimensional problem
is one of the simplest that can be treated with FDTD. The system is divided
in two di�erent half spaces (metal and vacuum). A dipole just over the metal
surface is chosen to be the EM �eld source, so that its evanescent �elds overlap
with SPPs. The �probe�, at which the �eld amplitude of either the magnetic
or electric �eld is calculated, is positioned a few nanometers inside the metal.
As we see, there is good agreement between FDTD and the analytical SPP
dispersion relation (solid line). In this case case, the �rst Brillouin zone extents
as far as 630µm−1 (the mesh size used is 5nm), wide enough to cover the
frequency range of interest.

In general, the k-vector is a complex number (k = kr + ıki). Up to here
we have been concerned with the real part of the dispersion relation, i.e.,
kr = kr(ω). The imaginary part (ki) de�nes the propagation length. Hereafter,
we de�ne it as the distance at which the �eld intensity has decayed a 1/e factor,
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Figure 1.6: SPP dispersion relation for gold: analytical (solid curve) and calculated
with the FDTD method (circular symbols). The mesh size used is 5nm. The dashed
line depicts the light cone.

so labs = [2ki]−1. As we will see in next chapters, propagation length is one
of the most important properties of guided EM modes at the nanoscale. In
fact, one could calculate propagation lengths running 3D-FDTD simulations.
Illuminating the system (e.g. with a dipole) at a given �point� and then picking
the �eld up at several relevant points, the propagation length could be directly
obtained from �elds in real space. The last would require huge systems, and
even the problem of how the structure would be illuminated is di�cult to solve.
We have chosen another way to proceed that allow us extract both the real
and imaginary part of k running a single simulation. We assume that EM
�elds are harmonic in time, thus φ(t) ∝ e−ıωrte−ωit, where ωi must be chosen
positive so that the �elds exponentially decay. Additionally, let us express φ(t)
in the frequency domain, that is, φ(ω) ∝ ∫

dte−ı(ω−ωr)te−ωit ∝ 1
(ω−ωr)+ıωi

.
Therefore:

|φ(ω)|2 ∝ 1
(ω − ωr)2 + ω2

i

(1.46)

thus 2ωi = FWHM = ∆ω, where FWHM states for the acronym of Full-
Width at Half-Maximum. In this case, ki = ωi

vg
= ∆ω

2 vg
(vg being the group

velocity), so �nally:
labs =

vg

∆ω
(1.47)

In summary, because of time harmonic response of EM �elds, we are �prob-
ing� not only the location of the spectral positions at the kr(ω) plane with this
method, but also the propagation length, retrieved from the FWHM of the



22 Chapter 1. Introduction

spectrum resonances.
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Figure 1.7: SPP propagation length for gold: analytical (continuous curve) and cal-
culated with the FDTD method (symbols). The distance from the metal surface to
the corresponding PML is denoted by Nz, and Tmax renders the total time that a
simulation takes.

We turn to SPP properties. Figure 1.7 renders lSPP analytical values
(solid line) compared to those calculated with Eq. 1.47 by means of the FDTD
method (symbols). Di�erent curves render di�erent sizes of the vacuum half
space (Nz), for di�erent simulation times (Tmax). Interestingly, the calculated
propagation lengths are smaller than the analytical ones at large wavelengths,
all except for the case in which Nz = 50µm and Tmax ∼ 30800fs. The ex-
planation of this behavior is quite simple: at large wavelengths SPPs get less
absorbed within the metal, furthermore they are less con�ned in vacuum, so
SPPs can stand on the surface for a long time until the resonance builds up,
spreading a lot far from the surface. Note that our method relies on being
able to accurately calculate the FWHM from the spectral response, and pre-
cisely this magnitude strongly depends on the time the SPP stands on the
surface. This explains that so long time consuming simulations were needed to
get good results. On the other hand, if the space between PMLs and the metal
surface is smaller than a SPP skin-depth in vacuum, SPP may be absorbed
by the PMLs, broadening the resonance and thereby the FWHM too. This
explain the slightly improvement shown as the vacuum region expands from
Nz = 2µm to Nz = 25µm. Therefore, in order to calculate labs for an EM
mode that propagates through a given structure, one must carefully choose
the simulation time. Besides, space regions surrounding the system must be
allocated in the FDTD mesh ensuring they are large enough to �t it.
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1.2.4 Metals within the FDTD approach

The Perfect Electric Conductor approximation

A very useful approximation to investigate the EM properties of metals consists
on considering them as Perfect Electric Conductors (PECs). Roughly speak-
ing, the PEC approximation disregards the penetration of the EM �elds into
the metal. The latter considers the metal conductivity as in�nite, i.e., charges
inside the metal instantaneously respond to the optical excitation. The PEC
approach is a very good approximation for metals at microwave or terahertz
frequencies. At optical frequencies the PEC approximation misses some im-
portant phenomena (as the existence of SPPs). Nevertheless, even at optical
frequencies the PEC approximation is quite often an useful starting point for
the theoretical analysis.
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Figure 1.8: Zeroth-order transmission through a 2DHA of square holes (side=200nm),
perforated through a free-standing metal �lm (width= 100nm) approximated as it
were a PEC. The period is 400nm. The solid line depicts the calculation with the
FDTD method. The dashed line is obtained with the CMM (Section 1.3).

Apparently, this approximation could seem easy to implement within a
FDTD scheme: at the metal surface the electric �eld component parallel to it
must be set to zero. However, the EM �eld distribution induced by the Yee's
cell requires the implementation of this boundary condition to be handle with
care. Consider a structure where the PEC regions are in contact with other
materials, dielectrics for instance. In the continuous space, frontiers between
both media are well de�ned. However, when the continuous space is divided
in small cubes (like in the FDTD algorithm), we must �x them by hand. Let
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us explain this more precisely. The FDTD algorithm operates on a discretized
space, where the whole space is �lled by Yee's cubes. The faces of such cubes
provide us with suitable boundaries. This implies that some cells have some of
their EM components �on� the boundary while others are only close to. This is,
there are no �metal� cells and �dielectric� cells. Instead, the PEC boundaries
must be de�ned by Yee's cell faces. Once this is clear the implementation of the
PEC approximation on the FDTD code is a question of careful identi�cation of
those Yee's faces that require special treatment, for any given metal structure.
We have implemented the PEC approximation on the �home-made� FDTD
code used in this thesis and in order to show that it works, we compare in
Fig. 1.8 transmission spectra through a two-dimensional hole array (2DHA) of
square holes in a PEC �lm calculated with two di�erent techniques: FDTD
and the Coupled Mode Method (CMM) (See Section 1.3). For PEC metals
CMM is exact, and as we can observe FDTD recovers the exact result.

Dispersive materials

Dispersive materials require a special treatment in FDTD, as the dielectric
constant is local in the frequency domain but non-local in the time domain.
The Maxwell's equations for i.h.l media in the MKS system of units are

∇× ~E(~r, t) = −µ0
∂ ~H(~r, t)

∂t
(1.48)

∇× ~H(~r, t) =
∂ ~D(~r, t)

∂t
(1.49)

Non-locality in time-domain generally implies that ~D(~r, t) 6= α~E(~r, t),
where α is a constant. However, in the frequency domain the electric �eld
and the displacement vector are proportional

~D(~r, ω) = ε(ω) ~E(~r, ω) (1.50)
where the dielectric constant ε, links ~E and ~D, at �xed frequency ω.

Remember the FDTD algorithm operates in the time domain, so when
Maxwell's equations are discretized we should count on a time domain version
of (1.50), i.e., its convolution

~D(t) = ε0ε ~E(t) + ε0

∫ t

τ=0

~E(t− τ)χ(τ)dτ (1.51)

where χ(τ) is the �rst order electric susceptibility in the time domain (From
now on the explicit dependence in the space coordinates will be omitted.)
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Throughout this work we have used one of the methods for incorporating
dispersive properties available in FDTD [16]. The �rst FDTD approach for
simulating realistic dispersive materials was conducted by Luebbers et al. [22].
They started investigating substances with an optical response well described
by the Debye model. Next, they extended their conclusions to metals behaving
like plasmas [23]. Finally, they took also into account e�ects due to the inter-
band transition of electrons in metals [24]. They called this general procedure
Piece Linear Recursive Convolution (PLRC) method.

In the course of this thesis we have been mainly interested in how light
interacts with nano-structured metals, at wavelengths ranging from the visible
regime to the Terahertz regime. Metals at those frequencies are well described
by the Drude-Lorentz model, where the dielectric constant is �tted by several
Drude-like and Lorentzian terms:

ε(ω) = εr −
∑

j

ω2
pj

ω(ω + ıγj)
−

∑

j

∆εjΩ2
j

ω2 − Ω2
j + ıωΓj

. (1.52)

In fact, in the PLRC method an arbitrary number of Drude-Lorentz terms
can be straightforwardly incorporated, which constitutes the main advantage
of this method. Let us brie�y outline the PLRC method. In the PLRC method
a discretized version of the integral appearing in (1.51) is considered:

I(nδt) =
n−1∑

m=0

∫ (m+1)δt

mδt

~E(nδt− τ)χ(τ)dτ (1.53)

A very good approximation for the electric �eld value at time t is obtained
by choosing ~E(t) = ~Ei + [ ~Ei+1− ~Ei]

δt (t− iδt), where ~Ei = ~E(iδt). In other words,
the electric �eld is approximated by truncating the corresponding Taylor's
series up to the linear term

I(nδt) =
n−1∑

m=0

~En−m

∫ (m+1)δt

mδt
χ(τ)dτ

+
n−1∑

m=0

[ ~En−m−1 − ~En−m]
δt

∫ (m+1)δt

mδt
(mδt− τ)χ(τ)dτ (1.54)

It is convenient to de�ne

χm =
∫ (m+1)δt

mδt
χ(τ)dτ

ξm =
1
δt

∫ (m+1)δt

mδt
(mδt− τ)χ(τ)dτ (1.55)
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Therefore,

~Dn = ε0ε ~En + ε0

n−1∑

m=0

{χm
~En−m + ξm[ ~En−m−1 − ~En−m]} (1.56)

As we know the right hand side of Eq. (1.49) is approximated within the
FDTD formalism as ( ~Dn+1 − ~Dn)/δt, but evaluated at the same spatial posi-
tion. In this way the last equation can be readily written as follows

~Dn+1 − ~Dn = ε0(ε + χ0 − ξ0) ~En+1 + ε0(ξ0 − ε) ~En − ε0
~Ψn (1.57)

where

~Ψn =
n−1∑

m=0

[∆χm
~En−m + ∆ξm( ~En−m−1 − ~En−m)] (1.58)

∆χm = χm − χm+1

∆ξm = ξm − ξm+1

Furthermore, if we assume di�erent contributions to the electric suscep-
tibility in the form of χ(ω) =

∑p
i=1 χi(ω), in the time domain we will have

χ(t) =
∑p

i=1 χi(t). Finally, the expression for updating ~E(~r, t) reads,

~En+1 =
ε− ξ0

ε− χ0 + ξ0

~En +
δt/ε0

ε− χ0 + ξ0
∇× ~Hn+1/2 +

1
ε− χ0 + ξ0

p∑

i=1

~Ψn
i (1.59)

To implement a FDTD algorithm for dispersive materials, one should start
taking into account these expressions. However, a last ingredient is needed to
use them: the time domain response χ(t) for a given ε(ω). For a Drude term
the inverse Fourier's transformation (F−1) of ε(ω)− εr yields

F−1(− ω2
p

ω(ω + ıγ)
) ⇒ ω2

p

γ
(1− e−γt)U(t) (1.60)

where U(t) is the time-step function.
On the other hand, a Lorentz term results in

F−1(− ∆εΩ2

ω2 − Ω2 + ıωΓ
) ⇒ δ e−α tsin(βt)U(t) (1.61)

where

α =
Γ
2

β =
√

Ω2 − α2

δ =
∆εΩ2

β
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Luebbers et al. realized that ~Ψn could be recursively calculated if χ(t) is
represented as an exponential-in-time function. Otherwise, it would be nec-
essary to store ~En for a large number of previous time slices, which would
be very ine�cient. Therefore, the recursive updating of ~Ψn imposes a hard
constraint: only speci�c functional dependencies of the dielectric constant are
suited within the PLRC algorithm, as we will show next.

Each term ~Ψn in Eq. (1.59) can be expressed as two sums, and each one
can in turn, be represented as follows

ψn =
n−1∑

m=0

fn−mαm (1.62)

where we have disregarded the vector notation for simplicity. Here fn−mαm is
either ~En−m∆χm or ( ~En−m−1 − ~En−m)∆ξm in Eq. (1.59).

The updating of ψn is simpli�ed if αm+1 = kαm (being k a constant). In
the case of Drude terms, it is easy to demonstrate from Eq. (1.60) that both
∆χm and ∆ξm have such a form. Then, ψn+1 can be evaluated as:

ψn+1 =
n∑

m=0

fn+1−mαm = α0fn+1 +
n∑

m=1

fn+1−mαm (1.63)

taking j = m− 1 we �nd

ψn+1 = α0fn+1 +
n−1∑

j=0

fn−jαj+1 (1.64)

as αj+1 = kαj , we reach this �nal result

ψn+1 = α0fn+1 + k
n−1∑

j=0

fn−jαj = α0fn+1 + k ψn (1.65)

However, due to the form we express the Lorentz time dependence χ(t)
[See Eq. (1.61)], we can not recursively update the corresponding discrete con-
volution. Fortunately, we can de�ne a complex time-domain susceptibility like
this

χ̂(t) = −ı δ e−(α+ıβ)tU(t) (1.66)

so that χ(t) = Re[χ̂(t)].
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Figure 1.9: FDTD calculated transmission spectra at normal incidence through a
50nm thick gold �lm, for di�erent mesh sizes: (a)without and (b)with the PLRC
correction for updating complex �elds.

In the last case, if the EM �elds are real numbers, it is straightforward to
demonstrate that the equation for updating ψn becomes,

ψn+1 = Re[α̂0]fn+1 + k
n−1∑

j=0

fn−jRe[α̂j ] = Re[α̂0]fn+1 + k ψn. (1.67)

What does it happen in the case of complex �elds? Note that in that case:

ψn =
n−1∑

m=0

Re[fn−m]αm + ı
n−1∑

m=0

Im[fn−m]αm (1.68)

Provided αm is proportional to an exponential function (like in the Drude
case) the term involving Im[fn−m] does not add new di�culties. Nevertheless,
Lorentz contributions need to hold a previous condition, that is αm must be
expressed as a complex number. In order to �nd the updating formula we start
with the complex version of ψn

ψ̂n =
n−1∑

m=0

Re[fn−m]α̂m + ı
n−1∑

m=0

Im[fn−m]α̂m (1.69)

or ψ̂n = ψ̂n
R + ı ψ̂n

I , so ψn = Re[ψ̂n
R] + ı Re[ψ̂n

I ]. This is the correct updat-
ing expression when dealing with realistic metals and complex EM �elds in the
FDTD algorithm. To our knowledge, a PLRC algorithm has not been reported
so far for properly updating EM complex �elds in the general Drude-Lorentz
approximation of the dielectric constant of metals. To illustrate how advanta-
geous it is, we have plotted an example in Fig. 1.9. This �gure shows FDTD
calculations of transmission spectra at normal incidence through a 50nm thick



1.2. The Finite-Di�erence Time-Domain method 29

Table 1.1: Dielectric constant �tted parameters of Ag, Au, Cu, Al, Ni, Cr and W.
ωP , γ, Γ and Ω in electron volts.

Ag Au Cu Al Ni Cr W

εr 4.6 5.967 1.0 1.0 1.0 1.0 1.0
ωP0 9.0 8.729 8.212 10.83 4.621 4.406 5.955
γ0 0.07 0.065 0.03 0.047 0.021 0.047 0.027

ωP1 - - - - 6.929 - 2.286
γ1 - - - - 1.771 - 0.335

ωP2 - - - - 7.062 - -
γ2 - - - - 3.443 - -
Γ0 1.2 0.433 0.378 0.333 1.021 3.175 0.590
Ω0 4.9 2.684 0.291 0.162 1.458 0.121 0.984
∆ε0 1.10 1.09 84.49 1940.97 2.1 1191.85 12.0
Γ1 - - 1.056 0.312 2.410 1.305 1.653
Ω1 - - 2.957 1.544 3.443 0.543 2.066
∆ε1 - - 1.395 4.706 1.2 58.79 14.4
Γ2 - - 3.213 1.351 - 2.676 2.479
Ω2 - - 5.3 1.808 - 1.970 4.132
∆ε2 - - 3.018 11.39 - 34.21 12.9
Γ3 - - 4.305 3.382 - 1.335 -
Ω3 - - 11.18 3.473 - 8.775 -
∆ε3 - - 0.598 0.558 - 1.238 -
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gold �lm for di�erent mesh sizes. The dielectric constant of gold has been
taken from the experimental data and �tted to a Drude-Lorentz formula (Ta-
ble 1.1). If the �complex updating� is not done (Fig. 1.9(a)), the EM �elds are
updated as in the literature [24], and what it is obtained is disconcerting. The
expected trend in FDTD does not hold, i.e, the �ner the mesh size, the worse
the results. However, the results depicted in panel(b) are correct, where the
�complex� updating procedure [Eq. (1.69)] has been taken into account. In the
last case, the transmission curves calculated with the FDTD method converge
to the analytical one, with mesh sizes smaller than 10nm. As we said at the
introductory subsection, the FDTD accuracy in treating metals depends so
much on how the EM �elds are sampled inside the metal. Even so, a relatively
good agreement is achieved even for a 25nm mesh size, albeit the skin-depth
(δm) is of the same order.

1.2.5 Outer boundary conditions

Still, the FDTD method described up to now would have very limited applica-
bility. The reason is that most of the interesting phenomena have a resonant
nature, which implies that the optical response of the structure builds up over
a long period of time. Not only the time evolution of �elds at the structure
must be followed, but also the �elds that have been radiated away in previous
times. A sloppy treatment of these �elds would introduce spurious �elds back
into the system. For instance, setting them to zero at some distant region
from the system of interest would be equivalent to placing a perfectly re�ect-
ing mirror, not to the disappearance of these �elds. The ideal would be to
terminate the system with a sort of �material� able to perfectly absorb light,
but without being re�ected when light impinges on it. In FDTD there are
several ways to achive this. The most extended and used method is based on
the so-called Perfect-Matched-Layers (PMLs) �rst proposed by Berenguer [25].
We omit here the details that are fully developed in Ref. [16], and references
therein. Since the �rst algorithm by Berenguer, the PML boundary conditions
have been improved a lot. In fact, we use in our simulations Uniaxial PMLs
(UPMLs). Roughly speaking, these boundary conditions are equivalent to a
uniaxial and dispersive material with the above-mentioned optical properties.
However, these absorbing layers su�er from an important drawback, the ab-
sorbing e�ciency depends on the ~k-vector of the incoming light. Although
the claim that UPMLs do not re�ect light is absolutely correct, when light
travels through such media the absorption e�ciency impairs as the angle of
incidence grows, de�ned it with respect to the normal direction to the interface
between the UMPL layer and the empty space. This becomes a source of in-
accuracies for isolated systems if they are very elongated. In periodic systems
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it is also crucial to avoid re�ection, specially that light scattered at almost
grazing angles. This is important since in periodic systems a lot of interest-
ing phenomena occur at wavelengths close to grazing angle condition. Let us
illustrate this with an example. Figure 1.10 shows an schematic 1D-grating
deposited on gold. In a periodic system, the di�racted waves are characterized
by wavevectors satisfying

~kn
|| = ~ki

|| +
2π

∆x
nx̂ (1.70)

where ∆x represents the period of the array and, ~ki
|| is the incident k-vector.

Each di�racted mode has kz = ±
√

εg2 − ~k2
||, (g = ω/c). Note that if kz → 0,

~k becomes grazing. For normal incidence this occurs at λn =
√

ε∆x

n , and it is
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Figure 1.10: Re�ection spectra of a 1D-grating array (grating thickness= 50nm) on
a gold �lm (55nm) computed using two di�erent absorbing boundaries. The rest of
geometrical parameters are: ∆x = 740nm, dx = 370nm. Empty symbols render the
calculation in which the CCOM+UPML absorbing boundaries are used jointly. The
re�ection peak at λ ∼ 725nm is due to spurious re�ection at the �thin� UPML layer.

precisely at that condition one could expect that UPMLs do not properly work.
In Fig. 1.10, empty symbols show the re�ection spectrum when only UMPLs
are used. At 740nm wavelength there is a sudden jump in re�ection. This jump
is not physical. Interestingly this wavelength holds the condition λn = ∆x

n for
n = 1 (in the re�ection half-space ε = 1). To overcome this, we could try
to enlarge the UPMLs thickness until no re�ection from them was observed.
However, there is a better way to proceed. Besides the UMPLs boundary
conditions, we have implemented a di�erent sort of absorbing boundaries that
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complement the former. First introduced by Ramahi [26, 27], the basic premise
of the so-called complementary concurrent operators method (CCOM), is that
by applying a set of di�erential operators at the boundaries, the method is able
to cancel outer-boundary re�ections. The cancelation is possible by averaging
two independent solutions to the modeling problem. These two solutions are
obtained by imposing radiation boundary operators that are complementary
to each other. It is out of the scope of this section to deal with the technical
details (See [16] for further explanations). In any case, we would like to show
the reader how by using the CCOM method is obtained the correct optical
spectrum, which can be seen in Fig. 1.10 depicted with full symbols.

1.3 The Coupled Mode Method: an overview

Modal expansion methods rely on representing the �eld in terms of a base of
eigenfunctions for each di�erent �region�, in which the whole system is divided.
The solution is obtained after applying the proper boundary conditions. These
methods lay on the �a priori� knowledge of exact solutions in the di�erent
regions, considering that each one �lls in the whole space. In this thesis, we
will use a modal expansion method applied to electromagnetism problems.
Namely, the CMM will be used in Chapter 2, Section 2.4 when investigating
the Extraordinary Optical Transmission phenomenon, also in Chapter 3 where
Negative Refractive Index presented on the double-�shnet structure is studied,
and �nally in Chapter 4, Section 4.2 for designing a source for SPPs. It is not
pretended here to fully explain this technique for the aforementioned problems.
We limit to brie�y describe the general ideas behind the method instead.

The details can be found in several references. Let us mention some of
them, in order to give an idea of the type of problems that can be treated with
this method:

i. The phenomenon of EOT of light has been extensively investigated with
CMM : through slit arrays [28�30], hole arrays [31�35] and also through
quasi-periodic structures [36, 37].

ii. Optical response of single apertures are treated with the CMM approxi-
mation too. For example, it has been investigated resonant transmission
through single holes [38, 39] and through �nite chains of subwavelength
holes [40]. The CMM approximation can treat, in some cases, nonlinear
optical response as it was demonstrated in Ref. [41].

iii. Scattering of modes bounded to a surface (like SPPs) is another problem
where CMM is able to reach good results. It has been used in investi-
gating, for instance, the scattering of SPPs by one-dimensional periodic
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nano-structured surfaces [42] and in a fully 3D-problem, the scattering
of light and SPPs by arrays of holes [43].

iv. The CMM approximation can also be applied to problems not related
to optics, for instance, EOT mediated by surface sonic waves [44], and
even the transmission of cold atoms through optically induced potential
barriers [45].

To illustrate CMM, let us describe the theoretical formalism used for calcu-
lating optical spectra through 2DHAs drilled on PEC metallic �lms placed in
symmetric environments, i.e., between a substrate and a cover optically char-
acterized by the same dielectric constant, ε. An extended discussion of this
problem can be found in Ref. [34], and references therein.
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Figure 1.11: Schematic picture of a square array of rectangular holes of side ax and
ay perforated on a free-standing metallic �lm of thickness h. Parameter d de�nes the
period of the array. The apertures are illuminated by a p-polarized plane wave at
normal incidence.

The whole space is divided in three regions (See Fig. 1.11). The EM �elds,
or rather, their components lying on the xy-plane are expanded in plane waves
(region I and III), whereas in region II the �elds are chosen to be the modes
of an in�nite �hole� shaped waveguide. Next, the �elds have to be matched
by means of the proper boundary conditions. More precisely, the EM-�elds
are expressed in terms of plane waves |kσ〉, characterized by the in-plane
component of the wave-vector k = (kx, ky) and the polarization σ = p or s.
The representation of the modes in the dielectric half spaces then reads,

〈r|k p〉 = (kx, ky)T exp (ık r)/(N k)

〈r|k s〉 = (−ky, kx)T exp (ık r)/(N k) (1.71)

where r = (rx, ry), kz =
√

εg2 − k2 with g = 2π/λ (T standing for transposi-
tion). The normalization constant N = d for 2DHAs. Note also that H-�elds
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are obtained from E-�elds with the help of Maxwell's equations in the CGS
system of units (so in a uniform media with dielectric constant ε, ∇∧E = ıgH
and ∇ ∧ H = −ıεgE), so that impedances (quotient between magnetic and
electric �elds) are dimensionless. For an incident plane wave with parallel
wave vector k the in-plane EM �elds in the re�ection free space region (I) can
be written as,

|EI (z)〉 = |k0 σ0〉eik0z +
∑

kσ

rkσ |kσ〉e−ikzz

| − uz ∧HI (z)〉 = Yk0 σ0 |k0 σ0〉eik0z −
∑

kσ

Ykσ rkσ |kσ〉e−ikzz (1.72)

In this way, the EM �elds in the transmission region (III) are

|EIII (z)〉 =
∑

kσ

tkσ |kσ〉eikz(z−h)

| − uz ∧HIII (z)〉 =
∑

kσ

Ykσ tkσ |kσ〉eikz(z−h) (1.73)

Here rk and tk are the re�ection and transmission coe�cients and uz is the
unitary vector along the z-direction. On the other hand Yk s = kz/g and Ykp =
εg/kz. Note that the k-vector runs over the reciprocal lattice vectors. Usually
a few of them are enough to obtain accurate results. Inside the holes, EM-�elds
are expanded in terms of the TE and TM waveguide eigenmodes. However,
for subwavelength rectangular shaped holes good convergency is attained only
considering the less decaying TE mode (the fundamental waveguide mode).
Moreover, within this �minimal model� results can be worked out analytically,
which greatly helps the physical insight. From now on, this mode is labeled as
0-mode. Thus we can write,

|EII (z)〉 = |0〉 [A0 ei qzz + B0 e−i qzz]

| − uz ∧HII (z)〉 = Y0|0〉 [A0 ei qzz −B0 e−i qzz] (1.74)

where the quantity Y0 = qz/g corresponds to the admittance of the 0-mode,
being the propagation constant of the fundamental mode qz =

√
εholeg2 − q2

y ,
(qy = π/ay). In this case, the fundamental waveguide mode in real space
is: 〈r|0〉 = (1, 0)T sin[qy(y + ay/2)]/

√
M , M = axay/2 being a normalization

factor, whether r ∈ [−ay/2, ay/2]× [−ax/2, ax/2] and zero otherwise.
Note that when matching the EM �elds at the interfaces (z = 0 and z =

h), E-�eld components parallel to the surface must be continuous over the
whole surface. However H-�eld components parallel to the interfaces must be
continuous only over the aperture, due to the presence of surface currents in
the metal interface. This means that E-�elds must be projected onto {|kσ〉}
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set of eigenvectors, whereas H-�elds must be projected onto the fundamental
waveguide mode [34]. Coupling between the 0-mode and free-space modes
comes from overlap integrals, 〈kσ|0〉, which depends upon the speci�c hole
shape. For rectangular holes,

〈kσ|0〉 = fk,σ

√
axay

2d2
sinc[kxax/2](sinc[

(ky + qy)ay

2
] + sinc[

(ky − qy)ay

2
])

(1.75)
where fk,p = kx/k, fk,s = −ky/k, and sinc[x] = sin[x]/x.

By matching the EM �elds at the interfaces, we end up with a set of two
coupled linear equations for {E, E′}:

(G− Σ) E − GV E′ = I0

(G− Σ) E′ − GV E = 0 (1.76)

leading to the solution

E =
I0(G− Σ)

(G− Σ)2 −G2
v

, E′ =
I0Gv

(G− Σ)2 −G2
v

(1.77)

where the expansion coe�cients have been reorganized as follows, E = A0 +B0

and E′ = −(A0 ei qzh + B0 e−i qzh). These new coe�cients are the 0-modal
amplitudes of the electric �eld at the input and the output sides of the holes,
respectively.

The di�erent terms of these equations have a simple physical interpre-
tation. The term I0 measures the overlap between the incident plane wave
and the 0-mode inside the hole I0 = 2ıYk0,σ0 |〈k0 σ0|0〉|2. The term Gv in
Eqs. (1.77) controls the EM coupling between the input and the output sides
of the holes, Gv = 2ı Y0

e2iqzh−1
. The expression for the self-energy Σ is given by,

Σ = ıY0
e2iqzh+1
e2iqzh−1

.
Finally, the EM-coupling between a hole and the continuum of plane waves,

is mediated by the term G, which can be expressed as G = ı
∑

kσ Ykσ|〈kσ|0〉|2.
The real part of the Green function (Gr) controls the matching between the
0-waveguide mode and the evanescent EM modes in vacuum, and so does the
imaginary part (Gi) with the propagating modes.

The transmission at normal incidence T relates to {E, E′} coe�cients
from T = Gi|E′|2/√ε [34]. The last expression can be easily found if one
takes into account that the energy current crossing a unit cell at a given
z, J(z), can be computed by integration of the Poynting vector: J(z) =
1
2Re[

∫
druz ( ~E(r, z) ∧ ~H∗(r, z)] = 1

2Re[〈−uz ∧ H (z)|E (z)〉]. Using this ex-
pression, the incident current yields J0 = Yk0 σ0/2, thereby transmission in
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region III is then computed as T = JIII/J0, where JIII is the current eval-
uated at coordinate z > h. After some algebra we arrive to an analytical
formula for transmission

T =
|Io|2
4
√

ε

Gi

(Gi)2 + ( |G−Σ|2−|Gv |2
2|Gv | )2

(1.78)

CMM can take into account also realistic values for the dielectric constant
of metals. The last is done by approximating the �penetration� into the metal
surface by means of the Surface-Impedance Boundary-Conditions (SIBCs), ex-
cept for the vertical walls of the holes which are treated as perfect conductor
surfaces. Following the same procedure as for PEC metals it can be demon-
strated the transmission formula [Eq. (1.78)] holds also for real metals albeit
rede�ning some quantities [40]:

I0 =
2ıYk0,σ0

1 + ZsYk0,σ0

|〈k0 σ0|0〉|2

Gv =
2ıY0

eıqzh(1 + ZsY0)2 − e−ıqzh(1− ZsY0)2

Σ = ıY0
eıqzh(1 + ZsY0) + e−ıqzh(1− ZsY0)

eıqzh(1 + ZsY0)2 − e−ıqzh(1− ZsY0)2

G = ı
∑

kσ

Ykσ

1 + ZsYkσ
|〈kσ|0〉|2 (1.79)

where Zs = 1/
√

εm ( being εm the dielectric constant of the metal), is termed
Surface Impedance. The 0-modal amplitudes of the electric �eld at the input
and the output sides of the holes in this case are E = A0(1− ZsY0) + B0(1 +
ZsY0) and E′ = −[A0(1 + ZsY0)eıqzh + B0(1− ZsY0)e−ıqzh].

We would like to pay a bit more attention over how Maxwell's equations
are approximated within SIBC. In the cgs system of units and considering
harmonically oscillating �elds (∼ e−ıωt) inside metal

~E =
i

gεm
∇∧ ~H =

i

gεm




∂yHz − ∂zHy

∂zHx − ∂xHz

∂xHy − ∂yHx




~E// =
i

gεm

(
∂yHz − ∂zHy

∂zHx − ∂xHz

)
' i

gεm

∂

∂z

(−Hy

Hx

)

=
i

gεm

∂

∂z
[ûz ∧ ~H//] (1.80)
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owing to EM �elds quickly decay into metals, the derivative of �elds along the
direction perpendicular to the surface is dominant over the other ones

|∂yHz| ¿ | ∂zHy|
|∂xHz| ¿ | ∂zHx| (1.81)

these are the so-called SIBCs that have been applied to obtain (1.80).
We are looking for EM solutions inside the metal in the form of

~H//(~r) = ~Hoe
i~k~r

~E//(~r) = ~Eoe
i~k~r (1.82)

where ~k = (~k||, kz). Taking into account (1.80) we obtain the approximated
relationship between ~E// and ~H//:

~E//(~r) ≈ − km
z

gεm
[ẑ ∧ ~H//(~r)]

~Eo ≈ km
z

gεm
[−ẑ ∧ ~Ho] = Zs(g)[−ẑ ∧ ~Ho] (1.83)

Here km
z =

√
εmg2 − k2

//, and ẑ is a unitary vector pointing perpendicularly
to the surface, from outside to inside the metal.

Notice that, within SIBC the in-plane E-�eld is proportional to the in-
plane H-�eld inside the metal. More importantly, since ~E// is continuous at
the interface, Zs(g)[−ẑ∧ ~H//] will be continuous too. This is the key to improve
CMM from the PEC approximation to the SIBC approximation. In order to
obtain Eqs. (1.79) we must impose a �new� set of boundary conditions, at
z = 0, namely |EI (z)〉 − Zs(g)| − uz ∧HI (z)〉 must be continuous, while at
z = h the new boundary condition reads |EI (z)〉+Zs(g)| −uz ∧HI (z)〉. Note
that ẑ = −uz in the latter case.

Finally, we would like to discuss how accurately SIBC represents optical
properties of metals. Usually, when dealing with the SIBC approximation
km

z is approximated by √εmg, therefore Zs = 1/
√

εm. However, in order to
e�ciently incorporate SPPs we could approximate km

z =
√

εmg2 − k2
SPP (

kSPP = g
√

εεm
ε+εm

) obtaining an accurate surface impedance, Zs = 1/
√

ε + εm.

In Fig. 1.12 we present an example of transmission spectra carried out with
CMM within the �minimal model� approximation (only one waveguide mode
inside holes) and we show how it compares with the �exact� FDTD calculation.
The structure is an array of square holes de�ned by the parameters d = 500nm,
ax = ay = 250nm and h = 200nm. The agreement between FDTD and CMM
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Figure 1.12: Transmission spectra at normal incidence through an array of square
holes(d = 500nm, ax = ay = 250nm and h = 200nm) drilled on a free-standing
silver �lm as calculated with FDTD and CMM. With CMM the two approximations
described for simulating metal properties (PEC and SIBC) are shown.

is good. As expected, it is better for silver than for the PEC case. However,
notice that these calculations are conducted under the following approximation:
the hole walls are considered as PEC even when SIBC operates. In order to
overcome the latter, in Fig. 1.12 the hole side is actually widened as much as
one skin-depth to mimic the penetration of the EM �elds into the metal walls.
A better solution consists in using the propagation constant of the real metal
waveguide, as we will see in Chapter 2.



Chapter 2

Extraordinary Optical
Transmission

2.1 Introduction

Anyone of us has experimented that light spreads in all directions upon inter-
acting with objects. Another matter is how it does it. Di�raction theory is
an old problem in optics, which goes back the works by Thomas Young and
Augustin-Jean Fresnel in the 19th century. In 1944 an important landmark in
that widely studied topic was put on the map by Hans Bethe [3]. He found
that, at �rst approximation, the normalized-to-area transmission through a
circular hole perforating an in�nitely thin perfect conductor plate is

T ≈ 64
27π2

(
r

λ
)4 (2.1)

where λ is the wavelength of the incoming light, being r the radius of the hole.
It was a great surprise indeed, because most of the well established theories at
that time gave a (r/λ)2 dependence. Furthermore he found the pre-factor, not
only that unexpected dependence. Bethe's theory shows that a subwavelength
hole (λ À r) is a poor device for transmitting light through.

Therefore, it is not strange that the discovery of the phenomenon of Ex-
traordinary Optical Transmission (EOT) through subwavelength holes by Ebbe-
sen and co-workers [2] has been one of most important �ndings in the �eld
of Optics in the last years. The basic structure in which EOT phenomenon
emerges is a two-dimensional periodic array of subwavelength holes (2DHA)
perforated on an optically thick metallic �lm. This phenomenon is charac-
terized by the appearance of a series of transmission peaks and dips in the
transmission spectrum. It is commonly accepted EOT occurs when the nor-
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malized to area transmission is larger than unity. On the other hand, when
the transmission per hole in an array is larger than for an isolated hole is
called enhanced transmission. Here we will not di�erentiate between these two
cases. From the beginning, it was realized that the spectral locations of those
resonant features coincide with the corresponding ones of surface plasmon po-
laritons (SPPs) [46]. This link between EOT and SPPs has been corroborated
by subsequent theoretical works [31, 47] and now it is widely accepted that
the excitation of those surface electromagnetic (EM) modes is at the origin of
EOT.

The EOT mechanism has sparked considerable interest for its fundamental
implications and also from the applied point of view, as many potential appli-
cations based on this phenomenon have been proposed [48]. EOT observed in
symmetrically perforated thin metal �lms [2, 47, 49, 50], the squeezing of the
optical near-�eld by plasmon coupling resulting in focusing light into very small
volumes [51], and beaming of light via a single slit (or hole) in thin metal �lms
surrounded by a grating like structure [52] are only a few of many interesting
examples. A vast number of applications have been suggested and some are
currently in use, e.g., wavelength tunable �lters, subwavelength lithography,
near-�eld microscopy, surface enhanced Raman spectroscopy, etc. Obviously,
it is out of the scope of this chapter to review so wide �eld of research. We
recommend for further reading Ref. [35, 48, 53], and references therein.

Throughout this chapter, we just summarize a part of the contributions
to EOT done during the course of this thesis [54�57]. In these works our
aim was trying to understand some important aspects of the EOT when the
parameters de�ning the structure presenting EOT are varied. It what follows
we will discuss how EOT depends on: the metal chosen, the shape of the holes
and the �lm thickness. The study will focus on the optical response of 2DHAs
drilled on metal �lms. Additionally, we will investigate a quite di�erent system
that also displays EOT. The chapter is organized as follows:

a In Section 2.2 we present a theoretical study, based on the Finite Di�er-
ence Time Domain (FDTD) method, of the optical response of circular
hole arrays drilled in several metal �lms (Ag, Au, Cu, Al, Ni, Cr and
W). Two series of structures are studied. In the �rst one, transmittance
peaks are analyzed as all geometrical parameters de�ning the system
are scaled, except the metal thickness which is kept constant, showing a
good agreement with existing experimental data. In the second series,
also the metal thickness is scaled. These is no available experimental data
for this case, but its theoretical consideration allows a clear distinction
in the behavior of di�erent metals.
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b A theoretical study is developed on the optical transmission through
square hole arrays drilled in optically thin �lms in Section 2.3, by means
of the FDTD method. Nano-structures containing thin �lms are inter-
esting because transmission may occur through both the holes and the
metal layer. Moreover, the EM bounded modes supported by thin �lms
are not the same that those supported by thick �lms.

c It is known two mechanisms leading to enhanced transmission of light in
2DHAs: excitation of SPPs and localized resonances that are also present
in single holes. In Section 2.4 we analyze theoretically how these two
mechanisms evolve when the period of the array is varied. Along with the
FDTDmethod this work was also done with the aim of the Coupled Mode
Method (CMM). This method was adapted to this problem by Dr. A.
Mary at the Departamento de Física Teórica de la Materia Condensada
- Universidad Autónoma de Madrid.

d Finally, in Section 2.5, the spectral dependence of the extraordinary
transmission through monolayers of close-packed silica or polystyrene mi-
crospheres on a quartz support, covered with di�erent thin metal �lms
(Ag, Au and Ni) is investigated. Measured spectra are compared with
modeled transmission spectra using FDTD calculations. The optical re-
sponse of this system shows remarkable di�erences as compared with the
�classical� 2DHA con�guration.
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2.2 In�uence of material properties on EOT through
hole arrays

Pioneering attempts to understanding EOT pointed out to SPP modes [2,
47, 58, 59] as responsible for the phenomenon. More generally, it has been
shown that EOT-like behavior occurs whenever two surface modes are coupled
between themselves and weakly coupled to a continuum [47], allowing a Fano-
like description of the process [60]. Examples of this general mechanism are the
cases of wave transmission aided by: Brewster-Zenneck waves in hole arrays
drilled in Tungsten [61], guide cavity modes on slit arrays covered by a dielectric
layer [62], surface electromagnetic waves in photonic crystals [63�65], surface
sonic waves [44], and even the transmission of cold atoms through optically
induced potential barriers [45].

Back to the case of 2DHAs, many studies have been devoted to study
the dependence of EOT on the di�erent parameters de�ning the system. As
regards to geometrical parameters, it has been found that the hole shape can
strongly in�uence both the polarization properties and the intensity of the
transmission. This has been related to the presence of single-hole transmission
resonances that couple to the SPPs [38, 56, 66�69].

With respect to the material properties, it is known that some metals (no-
tably Au and Ag) are best suited for EOT than others (Ni, Co,...) [2, 46].
However, a systematic comparative between di�erent metals was lacking un-
til the experiments performed by Przybilla et al. were reported [70]. These
experiments analyzed EOT through 2DHA made of circular holes drilled in op-
tically thick metal �lms, deposited on a glass substrate. The study considered
di�erent metals and analyzed the peak transmittance as a function of lattice
parameter which, in turn, controlled the resonant wavelength. If the system
were a perfect electric conductor (PEC) the transmission would not depend
on lattice parameter, provided all length scales in the system are scaled in
the same way. Therefore, deviations from this behavior re�ects the e�ect of
material properties. In the experiments [70] the hole radii were scaled with
the lattice parameter but, due to practical limitations, the metal thickness was
kept constant, which makes the analysis even more complex. Another possible
complication is that �nite size e�ects, surface quality and imperfections in hole
shape in a real system could depend on the metal considered.

In this section we present a theoretical study of EOT in periodic hole
arrays drilled in di�erent metals. First we compare with the experimental
results presented in Ref. [70]. Additionally, we present a study in which all
lengths are scaled with the lattice parameter. In both cases, comparison with
the PEC case helps to understand the e�ect of material properties in the light
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transmission through 2DHA.

2.2.1 Theoretical approach

Our calculations are performed with the FDTD method (See Section 1.2).
In�nite periodic 2DHA are simulated by applying Bloch conditions at the
boundaries of the unit cell and imposing �uniaxial perfect matched layers� at
surfaces parallel to the metal �lm. In the FDTD method Maxwell's equations
are discretized in both space and time. Therefore, convergence depends on
both mesh size and temporal step. In order to properly calculate the in�uence
of material properties, the rapidly decaying �elds inside the metal should be
accurately computed. This, together with the proper representation of circular
holes in cartesian coordinates (which are the natural choice for square arrays in
a �lm), impose very small mesh sizes. In this section we use mesh sizes ranging
from 2nm to 5nm. The dielectric constant in cells at the metal-dielectric inter-
face is taken as that of the medium with largest volume inside that particular
cell.

For the calculation of the transmittance, the structures were excited by
a gaussian wave-packet composed of normally incident plane-waves (with the
electric �eld pointing along one of the axes of the square array) and all frequen-
cies of interest (Section 1.2.2). Spectra were calculated after projection onto
di�racted modes (Section 1.2.3). In the comparison with experimental data,
only the zero order mode was considered in the post-processing, as experimen-
tal intensities were collected in a small solid angle centered around the normal
direction. Additionally, in our study we will correlate transmittance features
to the dispersion relation of modes supported by the corrugated slab. For this,
the band structure is calculated exciting the system with a superposition of
Bloch's waves with a well de�ned crystal momentum, and imposing Bloch's
theorem at the boundaries (Section 1.2.3).

Metals require a special treatment in FDTD method because of the dielec-
tric constant is local in frequency domain but non-local in the time-domain, as
explained in Section 1.2.4. We have used the �piece linear recursive convolution
method�, which can e�ciently treat dispersive media, provided their dielectric
constant ε(ω) can be expressed as a sum of Drude and Lorentz terms:

ε(ω) = εr −
∑

j

ω2
Pj

ω(ω + ıγj)
−

∑

j

∆εjΩ2
j

ω2 − Ω2
j + ıωΓj

. (2.2)

We have considered the following materials: Ag, Au, Cu, Al, Ni, Cr, and
W, taking the values for the parameters in the Drude-Lorentz form either
from the literature (when available) [71, 72] or from �ts to data in Palik's



44 Chapter 2. Extraordinary Optical Transmission

400 500 600 700 800 900
-70

-60

-50

-40

-30

-20

-10

0

10

400 500 600 700 800 900
0

10

20

30

40

50

Im
(ε

m
)

 

R
e

(ε
m
)

Wavelength(nm) 

 Ag

 Au      
 Cu      
 Al      
 Ni

 Cr

 W

Figure 2.1: Dielectric constant for Ag, Au, Cu, Al, Ni, Cr and W, as a function of
wavelength (obtained with Eq. (2.2) from data in Table 1.1).
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handbook [13, 73]. The �tting parameters used were given in Table 1.1, and
the wavelength dependence of the dielectric constant obtained from them is de-
picted in Fig. 2.1 for reference. Also for future reference, Fig. 2.2 renders both
the skin depth, δ = [Im(km)]−1 (with k2

m = εmω2/c2) and the SPP absorption
length, LSPP = [2Im(kSPP )]−1, being kSPP = (ω/c)(εSεm/(εS + εm))1/2 the
SPP longitudinal wavevector. Here εm and εS are the metal dielectric con-
stant and the substrate dielectric constant, respectively. We stress here that
the dielectric constants used in this study are taken directly from experimental
data on bulk. No attempt has been made to improve the comparison between
computed and experimental transmission spectra by incorporating additional
�tting parameters.
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Figure 2.2: Spectral dependence for di�erent metals of (a) skin depth for a plane wave
impinging at normal incidence on the metal surface (b) absorption length for SPP on
the metal-dielectric interface.
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2.2.2 EOT peak related to the metal-substrate surface plas-
mon

Peak position

Figure 2.3 renders the FDTD results for the transmittance spectra of an array
(lattice parameter P = 400nm) of circular holes with diameter d = P/1.75 ∼
230nm in di�erent metal �lms. In all cases, the metal thickness is w = 250nm,
and the �lms are deposited on a substrate with dielectric constant εS = 2.25.
The �gure clearly shows the di�erence in transmittance spectra between dif-
ferent metals. We also include the calculation for W which, in the considered
frequency range, is a dielectric, i.e., Re(εW ) > 0. Notice that the heights of
EOT peaks in W are even smaller than those of the �bad� metals (Ni and Cr).
Notice also that W has a transmission maximum very close to the Rayleigh con-
dition, λR =

√
εSP , wavelength at which the (1, 0) di�raction order changes

character from evanescent to radiative, while the corresponding one in the
metallic case is red-shifted (by as much as ≈ 125nm in the case of the �good�
metals in the optical regime: Ag, Au, Cu). In the rest of this section, and
following Ref. [70], EOT is characterized by the transmittance peak appearing
close to λR. More precisely, in the metallic case, this peak is related to the
spectral location of the SPP of the corrugated structure [47, 70, 74]. Here we
will label this peak as S1,0. Figure 2.4 shows the S1,0 peak spectral position
(de�ned as λ1,0) as a function of the period, for the parameters considered in
Ref. [70] (w = 250nm; d = P/1.75). In addition, Fig. 2.4 also renders the light
line in the substrate (continuous line) and the results obtained by considering
the metal as a PEC, i.e. a metal with ε = −∞, with the same nominal param-
eters (asterisk data points). Notice that a �at metal surface does not support
EM modes, but a periodically corrugated one behaves as if it had a Drude-like
dielectric response in which the e�ective plasma frequency depends only on
the geometrical parameters [32, 75, 76]. Thus, comparison with the PEC case
allows to discern geometrically induced e�ects from the ones due to material
properties. In any case, the agreement between these calculations and the ex-
perimental measurements (see Fig. 3 in Ref. [70]) is remarkable. The small
di�erences could be attributed to variations in the actual dielectric constant
from the bulk value, to �nite size e�ects [40], and/or to irregularities on hole
shape and size related to the small uncertainties from Focused Ion Beam (FIB)
lithography technique (which has an accuracy of the order of 10nm). In our
opinion, the agreement obtained validates FDTD calculations as a predictive
tool in this kind of systems. These results also con�rm that, in the experiments
considered, the e�ect of possible inhomogeneities in hole shape and size was
not relevant. Notice that the good agreement with the experimental data was
obtained by using the bulk dielectric constant, despite the fact the dielectric
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Figure 2.3: A representative case of computed transmission spectra, for the di�erent
metals considered. The geometrical parameters de�ning the array are: period P =
400nm, metal thickness w = 250nm and hole diameter d = P/1.75.
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Figure 2.4: (1,0) substrate peak position, λ1,0, as a function of the array period, both
for the metals investigated and for a perfect electrical conductor. Hole radius is scaled
with the period as d = P/1.75 but �lm thickness is kept constant at w = 250nm.

properties at the surface could have been modi�ed by the processing related
to drilling of the holes.

In order to obtain further insight on the origin of EOT phenomena, Fig. 2.5
renders the dependence with period of λ1,0 for the metals Ag and Al, and
also for W. In this �gure, we have also included the spectral location of the
minimum which appears associated to the S1,0 peak, slightly blue-shifted from
the maximum. Results are presented for the case of constant �lm thickness,
w = 250nm. In the same �gure we represent both λR and the folded dispersion
relation for the SPP of a �at metal-dielectric interface (given by the expression
(ω/c)(εSεm/(εS + εm))1/2 = 2π/P ).

In the case of metals, the correspondence between transmittance minima
and SPP of the �at surface (with no holes) is evident from the �gure, with
the maxima following the same trend at slightly longer wavelengths. In the
case of the dielectric (W), both maximum and minimum have much smaller
amplitudes with respect to the transmission background than in the case of
metals (see Fig. 2.3), with the very weak minimum appearing at λR. Both
maximum and minimum are related to the surface EM modes of the corrugated
structure. More precisely, each surface EM mode has associated a maximum
and minimum transmission, characterized by a resonant Fano-like function
times a smooth function related to the coupling of the incident wave with the
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Figure 2.5: Dependence on period of signatures related to the (1,0) substrate peak:
maximum (circular symbols) and minimum (square symbols). Hole radius is scaled
with the period as d = P/1.75 but �lm thickness is kept constant at w = 250nm.
The solid red line represents the SPP dispersion relation for a �at metal-dielectric
interface, while the dashed black line corresponds to the dielectric light line.
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surface mode. At normal incidence, the incident wave can couple to SPPs in
the periodically corrugated structure which originate from plane waves di�ering
from ~k‖ = 0 by a reciprocal lattice vector. This is con�rmed by Fig. 2.6, which
renders the folded light line, the folded SPP dispersion relation of the �at
metal-vacuum interface, and the FDTD calculation for the band structure of
surface EM modes of the corrugated surface.
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Figure 2.6: SPP dispersion relation in the Γ−X direction of the �rst Brillouin zone,
for the dielectric-silver interface. Circular symbols (blue line) show the FDTD band
structure for a 2DHA with period P = 500nm and metal thickness w = 250nm. Flat
surface SPP dispersion relation is depicted with a solid red line. Dashed black line
represents the light line. The spectral position of the (1,0) transmission maximum,
λ1,0, is depicted by a dashed horizontal green line.

Transmission Intensity

Up to here we have concentrated on the dependence of the spectral position of
transmission anomalies with the period of the array. The results for the peak
intensities are presented in Fig. 2.7, which renders the maximum transmittance
of the S1,0 peak, T1,0, as a function of its spectral position (i.e. for di�erent
periods) for several materials. In panel (a) all lengths de�ning the system are
scaled with the period, except the metal thickness, which is kept constant at
w = 250nm (this is the case considered in Ref. [70]).

In panel (b) all lengths are scaled with the period. In this latter case, if the
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metal were a PEC, the peak transmittance would not depend on period (line
with asterisks). A real metal presents two main di�erences with respect to a
PEC, each of them having an opposite e�ect on the transmittance. On the one
hand, real metals absorb energy, which reduces the transmittance. This is more
apparent in resonant processes, which require the EM �eld to stay for a longer
time at the surface. As this resonance time is inversely proportional to the
peak width, absorption has a larger in�uence on the narrowest transmittance
peaks. On the other hand, the EM �eld penetrates in a real metal, e�ectively
increasing the hole area accessible to the �eld and, therefore, increasing the
transmittance. Several approximations can be envisaged in order to take into
account the e�ective hole area. For instance, the hole can be considered as
a �nite portion of a waveguide. E�ective areas can then be related to the
propagation constants and the EM �elds of di�erent modes in the waveguide
[77]. A simpler, phenomenological, approach is implemented by enlarging the
hole radius by a factor (of order unity) times the skin depth [47]. This is a
good approximation, provided the correction (skin depth) is much smaller than
the hole radius. In any case, the e�ective hole area depends on the dielectric
constant which, in turn, depends on wavelength. Therefore, from a electromag-
netic point of view, even when all nominal lengths are scaled with the period,
the �e�ective� surface percentage covered by holes does not remain constant.
In what follows, we will show how the comparison with the PEC case allows
to distinguish which of these two competing mechanisms (absorption and en-
largement of the e�ective area) dominates for a particular circumstance. Let
us start with the case of silver. The computed peak transmittance for silver
is even larger than the corresponding one in a PEC with the same nominal
parameters, as shown in Fig. 2.7. This suggest that, in this case, the "en-
largement of e�ective area" mechanism is more important than absorption. In
order to con�rm this point, we have computed the transmittance peak inten-
sities for 2DHA in PEC, but with the hole radius enlarged by the skin depth
in Ag (computed at the wavelength at which the peak appears). We will refer
to this as the �Corrected-PEC model�. Figure 2.8 renders the results of these
calculations, as well as the corresponding ones for 2DHA in Ag. Discontinuous
lines represent the case in which all lengths in the system have been scaled
with the period, except the metal thickness, which has been kept constant
at w = 250nm. The continuous lines render the case where also the metal
thickness has been scaled with the period, as w = P/2. In all cases, the di�er-
ence in transmission peak intensities between 2DHA in Ag and the enlarged
holes in PEC is less than 30%. Notice that the Corrected-PEC model provide
much more accurate results at large periods than at smaller ones, which can
be associated to the increasing e�ect of absorption occurring at shorter periods
and, correspondingly, smaller wavelengths. This is further corroborated by the
fact that, at small periods, the Corrected-PEC model overestimates the peak
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Figure 2.7: Peak transmittance intensity, T1,0, as a function of the peak spectral
position, λ1,0 for di�erent metals and lattice periods. In both panels, hole diameter
is scaled with period as d = P/1.75. In panel (a) metal thickness is kept constant at
w = 250nm. In (b) w is also scaled as w = P/2.0.
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Figure 2.8: Peak transmittance, T1,0, as a function of the lattice period for silver
(circular symbols) and PEC (asterisks). Solid line represents the case of scaled thick-
ness (w = P/2.0), while the dashed line is for constant w = 250nm. In the PEC
case, the hole radius was enlarged by one silver skin depth (Fig. 2.2), evaluated at
the corresponding wavelength.

transmittance.
This analysis helps understanding the results presented in Fig. 2.7 (b), and

therefore the relative importance of the previously described mechanisms for
di�erent metals. At peak positions larger than λ1,0 ≈ 700nm, the dependence
of T1,0 on λ1,0 for Au is similar to that of Ag, re�ecting their similar skin-depths
and absorption lengths. As λ1,0 decreases, the di�erence in skin-depths in Au
and Ag remains constant, but the ratio of their absorption lengths decreases.
Correspondingly, due to absorption, T1,0 in Au is smaller than that in Ag in
this frequency regime. At the shorter λ1,0 computed for Au this decreasing
tendency is reversed, re�ecting the increase in the skin-depth of Au (notice
that the �attening out of the λ1,0 vs. period curve prevents exploring shorter
values of λ1,0, see Fig. 2.4). To summarize, optical transmissions through
2DHA in Ag and Au are similar: in both cases the resonant transmission
is larger than in a PEC with the same nominal parameters, the e�ect being
caused by �eld penetration inside the metal, which e�ectively enlarges the hole
area. Absorption is not the main factor for these metals. On the other hand,
2DHA in Cu have transmittance peak characteristics similar to those in Ag or
Au, but with smaller values, re�ecting the smaller absorption lengths in Cu
than in the other two noble metals analyzed.

A completely di�erent behavior occurs for a 2DHA in Ni or Cr: in both
cases, the peak transmittance is always much smaller than that in Ag (or in a
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PEC). This behavior occurs although the skin depth in these metals can even
be larger than in Ag, and is due to the large absorption present in both Ni and
Cr.

Hole arrays in Al have transmittance peak characteristics more similar
to the PEC case, re�ecting the fact that the skin depth in Al is, at optical
frequencies, much smaller than those of the other metals. Even so, T1,0 depends
on λ1,0 for 2DHA in Al: the skin depth in Al remains approximately constant
with wavelength, implying an �e�ective area� correction which is relatively
smaller at larger hole areas (i.e., larger periods and larger λ1,0 in the case
in which all nominal lengths are scaled). This explains why, in this case, T1,0

decreases with λ1,0 even if the absorption length slightly increases (see Fig. 2.2).
Notice that this behavior of the absorption length in Al is also very di�erent
to that in noble metals, where the absorption length increases strongly with
wavelength. As a consequence, the absorption length in Al is, at λ ≈ 750nm,
smaller than that in noble metals. This, combined with the unusually small
skin depth makes that T1,0 in Al has values of the order of those of �bad metals�
(Cr, Ni) at the higher end of the spectral window considered. Finally, a 2DHA
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Figure 2.9: Dependence on period of features of the S1,0 peak in W: Maximum (cir-
cular symbols) and minimum transmittance (square symbols). All lengths have been
scaled as in Fig. 7(a).

perforated in W present a very di�erent transmission spectrum. As previously
stated, in the considered spectral range W is a lossy dielectric. Transmission
resonances are aided by Zenneck waves [61, 78], which are more weakly bound
than SPPs. The resonances are much weaker, with a much smaller �visibility�:
the minima are not very deep and the maxima are not as high as in the case of
metals (see Fig. 2.9). Also, as mentioned before, the spectral position of T1,0
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in W (appearing very close to λR) is di�erent to that of the metallic case.

Full-Width-at-Half-Maximum

The previous analysis on the relative importance of the skin depth and absorp-
tion length on the transmittance through 2DHA, based on the peak intensities,
is reinforced by the spectral dependence of the peak linewidth. Figure 2.10 ren-
ders Γ1,0, de�ned as the the full width at half maximum (FWHM) of the S1,0

transmittance peak, as a function of λ1,0. The calculations were performed
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Figure 2.10: Full Width at Half Maximum for the S1,0 peak, Γ1,0, for 2DHAs in
di�erent metals. All lengths have been scaled as in Fig. 7(a)., i.e. the metal thickness
is kept constant at w = 250nm).

for the con�guration where all lengths are scaled, except the metal thickness
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which is kept �xed at w = 250nm. Agreement between experiment [70] and
theory is quite good, although experimental peaks are wider due to �nite size
e�ects and/or sample imperfections. The behavior of Γ1,0 for a 2DHA in Au,
Ag and Cu is similar. In this case, and for the parameters considered, radi-
ation is the main loss channel for the surface EM mode, absorption being a
(non-negligible) correction. Absorption is responsible for both the di�erence
in Γ1,0 between di�erent metals and the decrease of Γ1,0 with λ1,0 (following
the increase of the absorption length with wavelength). In the cases of 2DHA
in either Cr or Ni, Γ1,0 is much larger than that for noble metals, as expected,
given that absorption lengths are much smaller in the former cases. Again, the
case of Al is quite di�erent from that of other metals: it goes from presenting
the narrowest resonant peaks at small λ1,0 to having values of Γ1,0 of the order
of those of �bad metals� for the larger λ1,0 considered.
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2.3 EOT through hole arrays in optically thin metal
�lms

As we have stated in the last section, since the discovery of EOT [2], numer-
ous works have explored di�erent parameter con�gurations of 2DHAs [48]. In
the now �canonical� con�guration [2] the metal �lm is opaque. In this case,
the EOT process involves surface modes at each side of the �lm which couple
through the holes [47]. On the other hand, continuous metal �lms (thin enough
to be translucent) also present transmission resonances when periodically cor-
rugated. In this con�guration, resonant spectral features are related to SPPs
of the thin �lm [79, 80], the so called Short Range SPPs (SRs) and Long Range
SPPs (LRs) [81].

The transmission of electromagnetic radiation through 2DHA, for thick-
nesses of the metal �lm ranging from less than 1 to 2-3 skin depths has been
studied in the THz regime [82, 83]. These works showed how the intensity
of the EOT peak developed with metal thickness, its spectral position being
mainly determined by the lattice parameter. In this section, we extend the
study to the optical regime. We analyze the optical response of 2DHAs on
metal thickness, w, going from optically thick �lms to �lms as thin as approx-
imately one �skin depth� (∼ 20nm).

To provide mechanical stability, actual thin �lms must lie on a substrate,
which we take to be glass. We consider two di�erent dielectric con�gurations:
the asymmetric (εI = εII = 1.0 ; εIII = 2.25) and the symmetric one (εI =
εII = εIII = 2.25), which can be experimentally obtained by using an index
matching liquid. Throughout this section we consider square lattices of square
holes; the period, P , is chosen to be 400nm (in order to obtain EOT in the
visible). The metal is gold (with a frequency dependent dielectric constant,
εm taken from Table 1.1). A schematic picture of the structure is shown as an
inset in Fig. 2.11(c).

Figure 2.11 renders the computed zero-order transmittance spectra through
2DHAs with di�erent thicknesses, for both (a) asymmetric and (b) symmetric
con�gurations. Calculations have been conducted with the FDTD method.
For optically thick �lms, we observe the �canonical� EOT resonant features
appearing at wavelengths slightly red-shifted from the Rayleigh wavelength
(λR =

√
εIII P = 600nm). As the �lm thickness is reduced, both maximum

and minimum transmittance red-shifts by even hundreds of nanometers, while
keeping high peak visibility.

In order to understand these spectral shifts, we analyze the EM modes
bounded to the metal �lm. A �at unperforated optically thick metal layer
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Figure 2.11: Zero-order transmittance through 2DHAs in gold, as a function of the
�lm thickness (P = 400nm, a = 160nm) (a) εI = εII = 1.0 ; εIII = 2.25 (b) εI =
εII = εIII = 2.25. The spectral position as a function of w for both the EOT
maximum (triangular symbols) an the EOT minimum (circular symbols) are shown
in panel(c). Dashed lines summarize data obtained from panel (a), while solid lines
are used for data taken from panel (b). The horizontal dashed line renders λ
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supports a SPP on each surface. When the �lm thickness is reduced, these
two modes interact, and are substantially coupled whenever the �lm thickness
is smaller than 2− 3 skin-depths. In this case, the dispersion relations of �lm
modes can greatly di�er from that of the SPP, while in the THz regime they
remain close to the light line. We denote by ~qmode(λ) the in-plane wavevector
of these �lm modes (where the label �mode� can be either SPP, LR or SR) as
a function of the wavelength λ. These �lm modes couple to external radiation
and may lead to transmission resonances which, for small corrugations, are
therefore expected to occur close to wavelengths satisfying:

(
kin

x +
2πn

P

)2

+
(

kin
y +

2πm

P

)2

= q2
mode(λ) (2.3)

Here, the in-plane component of the incident wavevector is ~kin = (kin
x , kin

y ),
and n and m are integers. From now on, we denote by λ

(n,m)
mode a wavelength

that holds Eq. (2.3) at normal incidence (~kin = 0), for some given values of
n and m. Figure 2.11(c) shows the spectral positions of both minimum and
maximum of the EOT peak appearing at largest wavelengths. We �nd that
when the �lm is thick enough the EOT minimum very approximately coincides
with λ

(±1,0)
SPP [84]. In contrast, both maximum and minimum red-shift as �lm

thickness reaches the �optically thin� regime.
To analyze whether the EOT phenomenon through optically thin 2DHAs

has its origin in the excitation of an EM mode bounded to the �lm, we focus
on the symmetric con�guration with w = 20nm. Figure 2.12(a) shows the
transmission spectra for 2DHAs with di�erent hole sizes. Vertical dashed lines
mark di�erent SR di�racted orders together with λ

(±1,0)
LR . The EOT spectral

positions of both maximum and minimum wavelength approach λ
(±1,0)
SR as the

hole size decreases. At the same time, the EOT peak visibility is progressively
reduced as the hole size decreases (the dashed line shows the result for the
uniform �lm). Additionally, there are several small dips in the transmission
spectra, which will be discussed later.

In order to assign even more conclusively EOT features to EM modes of the
perforated �lm, we have calculated the band structure of surface modes in the
holey �lm. The result is depicted in Fig. 2.12(b) (circular symbols), for a 2DHA
with a = 60nm. The dispersion relations for the bounded modes of a �at �lm
(folded into the �rst Brillouin's zone), are represented with continuous lines.
As usual, due to the presence of holes, the modes are coupled at the Brillouin's
zone edges leading to band-gaps. In the wavelength window shown here, only
the mode at the high-λ edge (labeled as λ̃SR) is related to an EOT peak at
normal incidence, due to the structure symmetry [85, 86]. The dependence
with hole size of λ̃SR, together with that of the spectral positions of both
maximum and minimum transmittance is displayed in Fig. 2.12(c). For each
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Figure 2.12: For a holey thin �lm with w = 20nm (P = 400nm and εI = εII =
εIII = 2.25), panel (a) shows transmittance versus wavelength for di�erent hole sizes.
Vertical dashed lines display several values of λ

(n,m)
LR and λ

(n,m)
SR (see text) at ~kin = 0.

(b) 2DHA dispersion relations along the x direction for a = 60nm (Circular symbols).
Solid lines represent the folded dispersion relations of LR and SR modes for the
unperforated �lm. The inset in panel (b) shows a |E| �eld map in the x-z plane
(y = P/2) at the EOT wavelength. (c) EOT maxima (square symbols), minima
(circular symbols) and λ̃SR (triangular symbols) as a function of the hole size.
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hole size λ̃SR lies between the spectral positions of the transmission maximum
and minimum. Nevertheless, as the hole size shrinks to zero, the minimum of
transmittance tends to λ̃SR. The inset of Fig. 2.12(b) renders a |E| �eld map
at the EOT peak wavelength, showing that the �eld enhancement around the
holes [58, 74] is also present in optically thin �lms.

Interestingly, LRs do not noticeably contribute to transmission in the FDTD
calculations (Fig. 2.12(a)). Notice that, due to the antisymmetric charge dis-
tribution of the LR, its �eld is almost negligible inside metal and it is less
bounded to the surface than a SR mode. Therefore, the LR is both less ab-
sorbed and worse coupled to radiation than the SR. In short, the LR �eld is
perturbed very weakly by the holes, so the coupling with the incident light di-
minishes. A consequence of this, is that the LR band structure for the drilled
�lm virtually coincides with the unperforated one (Inset Fig. 2.12(b)). This
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Figure 2.13: Transmission spectra for two di�erent �lm widths obtained with the
approximate analytical method: w = 10nm and w = 8nm (a = 160nm). Inset: zoom
close to the LR wavelengths (Corresponding λ

(±1,0)
LR wavelengths are represented by

vertical dashed lines).

weak coupling to radiation modes implies long times of the EM �eld standing
at the surface. This suggest that the LR resonance could have been missed
given the �nite simulation time available. To be sure that LRs are not related
to the shallow transmission dips, we have developed an approximate method
for solving Maxwell's equations. In this method, the �eld is represented as a
Fourier-Floquet series in the x-y plane and a power series in the coordinate
perpendicular to the layer, z [86]. This approach works only for extremely
thin metal �lms (thinner than what is experimentally achievable in a con-
tinuous �lm nowadays), so it has mainly academic value. Nevertheless, it is
useful for understanding the underlying physics. Figure 2.13 renders trans-
mission spectra calculated with the approximate method for a 8nm and 10nm
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thin �lms. The zoom in wavelengths close to λ
(±1,0)
LR (inset to Fig. 2.13) re-

veals that extremely narrow peaks can be associated to LR modes. Anyway,
spectral resolution within the FDTD method does not allow LR peaks to be
resolved. The detection of this transmittance peaks due to LR plasmons would
be even more di�cult from the experimental point of view due to the �nite
size of the samples. In any case, this analysis shows that the small dips found
with the FDTD method at short wavelengths are exclusively related to higher
SR di�racted orders.
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2.4 The role of hole shape on EOT through arrays of
rectangular holes

Several works shown that the shape of the subwavelength aperture also has
a great importance in the transmission spectra [66�68, 87, 88]. These stud-
ies demonstrated that elliptical or rectangular holes dramatically in�uence not
only the resonant wavelength but also the polarization and the �nal transmit-
tance. On the other hand, several experimental and theoretical works have
shown that even a single rectangular hole exhibits a localized transmission
resonance emerging at around the cuto� wavelength, λc, of the hole waveg-
uide [38, 69, 77, 89]. This resonance can be understood as a Fabry-Perot
resonance in which the propagation constant inside the hole is zero.

The aim of this section is to analyze in detail the interplay between these
two types of transmission resonances (SPP and cut-o� resonance) that are
operating in a 2D array of rectangular holes. Figure 2.14 shows schematically
the system under study: an in�nite array of rectangular apertures of sides ax

and ay perforated on a free-standing silver �lm of thickness h. The structure
is illuminated by a p-polarized plane wave at normal incidence (i.e. incoming
electric �eld is pointing along the short edge of the holes). In our calculations,
we use the same geometrical parameters as those of the experiments carried
out in Ref. [68]: ax = 200nm, ay = 260nm and h = 400 nm. The period of the
array, d, will be varied between 500 and 900nm.
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Figure 2.14: Schematic picture of a square array of rectangular holes of side ax and
ay perforated on a free-standing silver �lm of thickness h. Parameter d de�nes the
period of the array. The apertures are illuminated by a p-polarized plane wave at
normal incidence.

Figure 2.15(b) shows the normalized-to-area transmittance spectra corre-
sponding to the geometrical parameters of Ref. [68], calculated with the Couple
Mode Method (CMM) (Section 1.3). To treat the metal properly, surface-
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d=500 nm
d=600 nm
d=700 nm
d=800 nm
d=900 nm

(a)

(c)

(b)

Figure 2.15: (a) Normalized-to-area transmittances calculated with the FDTD
method for di�erent values of the lattice period d. Panels (b) and (c) show the
normalized-to-area transmittances calculated with the CMM. In panel (b), the di-
electric function is that of silver whereas in (c) absorption of silver is neglected
(Im ε(λ) = 0).
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impedance boundary conditions (SIBCs) are imposed on the metallic bound-
aries, except on the vertical walls of the holes which are treated as perfect
conductor surfaces. To consider only the fundamental TE eigenmode (TE01)
in the modal expansion within the holes gives accurate results for the trans-
mittance spectrum. As it was stated in Section 1.3, in order to improve the
accuracy of the method realistic values for the propagation constant of the fun-
damental mode, qz, are incorporated into the formalism by using the e�ective
index method [90]. Note that the electric �eld of the TE01 mode points along
the x-direction, i.e., it is parallel to the short side of holes (ax) and perpendicu-
lar to ay. The properties of the two parallel real metal plates TM mode are the
starting point of the method. From its characteristic equation, it is obtained
an e�ective dielectric constant (εd) as the ratio between the propagation con-
stant of that mode and the vacuum one. This procedure follows to match the
boundary conditions of the electric �eld across the long sides (ay), for this rea-
son the metal surfaces are separated by a distance ax. Next, the e�ective index
method takes into account the penetration of the electric �eld at the short axis
by assuming the propagation constant of the TE mode (in the same system),
but being in this case ay the distance between surface faces. Finally, the value
of qz is obtained after solving the characteristic equation of such mode where
the dielectric constant of the region between surfaces is set to εd. Note that
by analyzing the location in which qz changes from being a real quantity to
a purely imaginary magnitude, we can calculate λc within this approach. For
the particular set of geometrical parameters of the holes forming the 2D array
here chosen, λc = 695nm. Di�erent curves correspond to di�erent periods of
the 2D square array (ranging from d = 500nm to d = 900nm). To compare
them with the FDTD method results (Section 1.2), Fig. 2.15(a) depicts the
corresponding transmission spectra obtained. It is clear that CMM is able
to capture accurately the main features observed in the FDTD spectra. The
locations and linewidths of the several peaks are well reproduced within the
CMM approach. The heights of the transmission peaks are higher in CMM,
mainly due to the fact that absorption within the vertical walls of the holes is
neglected. It is also important to note that the theoretical results of panel (b)
are in very good agreement with the experimental data [68].

Now we concentrate on analyzing the physical origin of the di�erent trans-
mission peaks appearing in Fig. 2.15(b) by just studying this simple formula
for transmission (See Section 1.3):

T =
|Io|2
4
√

ε

Gi

(Gi)2 + ( |G−Σ|2−|Gv |2
2|Gv| )2

(2.4)

For rectangular holes and within the SIBC approximation the di�erent
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terms in Eq. (2.4) are:
The term I0 measures the overlap between the incident plane wave and the

0-mode inside the hole:

I0 =
ı 4
√

2
π(1 + Zs)

√
axay

dxdy
(2.5)

The term Gv controls the coupling between the input and output sides of
the holes:

Gv =
2 i Y0 eiqzh

e2iqzh(1 + ZsY0)2 − (1− ZsY0)2
(2.6)

The expression for the self-energy Σ is given by:

Σ = i Y0
e2iqzh(1 + ZsY0) + (1− ZsY0)

e2iqzh(1 + ZsY0)2 − (1− ZsY0)2
(2.7)

Finally, the EM-coupling between the holes forming the 2D array is medi-
ated by the term G, which can be expressed as:

G =
i ax ay

2 dx dy

l=+∞∑

l=−∞

+∞∑
m=−∞

k0 (k0 + Zskz)− k2
m

(kz + Zsk0) (k0 + Zskz)
(2.8)

× sinc2(
kl ax

2
)[sinc(

kmay + π

2
) + sinc(

kmay − π

2
)]2

with kl = 2π
dx

l, km = 2π
dy

m, kp =
√

k2
l + k2

m and kz =
√

k2
0 − k2

p.

Here Zs = 1/
√

εm ( being εm the dielectric constant of the metal), and ε

the dielectric constant of the surrounding media (in this case vacuum). On
the other hand, Y0 = qz/k0 corresponds to the admittance of the fundamental
mode with k0 = 2π/λ.

It can be demonstrated from Eq. (2.4) that transmission maxima and min-
ima coincide with solutions of |G−Σ| = |Gv|, for 2DHAs at λ >

√
ε d. In other

words, as in a typical resonant phenomenon the transmittance is governed by
the behavior of the denominator. In Figure 2.16 we show the dependence of
both |G−Σ| and |Gv| versus wavelength for two limiting values of d, d = 500nm
and d = 800nm [notice that Gv does not depend on d]. Interestingly, the spec-
tral locations of the transmission peaks in Fig. 2.15(b) are marked by the cuts
between |G − Σ| and |Gv|. It is worth comparing the behavior of |G − Σ| for
the periodic arrays with d = 500, 800 nm with the corresponding |G−Σ| for a
single rectangular hole (dashed line in Fig. 2.16). The transmittance through
a single rectangular hole is also governed by Eq. (2.4) but with a di�erent
G-term (the sum over di�ractive modes in Eq. (2.8) is replaced by an integral
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over the continuous spectrum of plane waves). For d = 500nm, |G − Σ| (full
black line) at the wavelength region of interest (near λ = 700nm) is close to the
single hole counterpart. It is expected then that the nature of the transmis-
sion resonances will be similar for a 2D array and for an isolated rectangular
hole. However, there is a di�erence between the single hole case and the 2D
array for this value of d. Whereas in the 2D array, |G − Σ| = |Gv| at two
di�erent wavelengths (leading to two transmission peaks), for the single hole
there is only one transmission peak appearing at a wavelength in which the
di�erence between |G − Σ| and |Gv| is minimal. The reason of this distinct
behavior stems from the Fabry-Perot nature of this transmission resonance.
In a Fabry-Perot cavity, the spectral locations of the transmission resonances
strongly depend on the re�ectivity at the edges of the cavity. Our results in-
dicate that the presence of a 2D array modi�es the re�ectivity of the metallic
interface when compared to the single hole case, leading to the appearance of
two transmission peaks. For d = 800nm (blue line), |G−Σ| present additional

Σ G −     |         |

VG|      |

Wavelength  (nm)

d = 500 nm

d = 800 nm

single hole

600400 800 1000

1
10

Figure 2.16: Absolute values of |G−Σ| and |Gv| terms (in logarithmic scale) for two
di�erent lattice constants of the hole array (d = 500nm and d = 800nm) and also for
a single hole.

features located at λ ≈ 600nm and λ ≈ 800nm. These correspond to zeroes of
the denominator of G (see Eq. (2.8)), appearing at the condition kz +Zsk0 = 0.
This condition is nothing else than the equation for the excitation of a SPP
on a non-corrugated (no holes) surface of a metal �lm within the SIBC ap-
proach. Note that the cuts between |G− Σ| and |Gv| appears at wavelengths
slightly larger than this condition. Therefore, the character of the two trans-
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mission peaks for d = 800nm emerging at λ ≈ 830nm will be quite similar to
a SPP. The two transmission peaks are associated with the symmetric and the
anti-symmetric combinations of the two SPPs at the two surfaces which are
evanescently coupled through the holes, as explained in Ref. [47].

As a general conclusion about the nature of the transmission resonances
appearing in 2D arrays, we could state that the two mechanisms leading to
EOT (localized resonance and SPP-based) cannot be simply separated as done
in previous studies [89](see comment by Cheng-ping Huang and Yong-yuan
Zhu, arXiv:0706.0250v1(unpublished)) and [91]. Even for the shortest and the
longest period considered here, the transmission resonances bene�t from both
mechanisms. Therefore, these transmission resonances have a hybrid charac-
ter. Hybrid resonances have already been observed and studied previously in
lamellar [92, 93] and bottle-shaped gratings [94]

(a) (b)

(c) (d)
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|/|
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Figure 2.17: Electric �eld amplitude calculated at the resonant wavelength and evalu-
ated at the z = 0− plane for (a) d = 600 nm, (b) d = 700 nm, (c) d = 800 nm and (d)
d = 900nm. The white lines mark the positions of the holes. The E-�eld magnitude
is normalized to the incident one.

The physical picture described above is reinforced when looking at the evo-
lution of the electric �eld patterns associated with the resonant process as a
function of d. In Fig. 2.17 we plot the E-�eld amplitude at resonance (nor-
malized to that of the incident plane wave) evaluated at the z = 0− interface.
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Four periods are considered here: d = 600, 700, 800 and 900 nm. The electric
�eld amplitude for d = 600nm is mainly concentrated over the holes as corre-
sponds to the excitation of a localized resonance (cut-o� resonance) inside the
holes. As d is increased, the character of the resonance changes gradually. For
d = 800, 900nm, the E-�eld intensity maxima are along the ridges of the holes
as corresponds to a SPP wave propagating in the x-direction. For d =700nm,
there is a mixing between the two mechanisms as �ngerprints of the SPP wave
begins to emerge at the edges of the holes. The near �eld distribution exhibits
an intermediate character between the two limiting behaviors (SPP and cut-o�
resonances).

Finally, we would like to address the question of why there is a kind of opti-
mum value for d when looking at the evolution of the transmission peaks with
the period of the array (see Fig. 2.15(a)-(b)). In our calculations this optimum
d is around 650− 700nm, close to the cut-o� wavelength, 695nm. Naively, this
could imply that the optimum d appears when the resonant wavelengths of the
two mechanisms (SPP and cut-o� resonance) coincide. However, panel (c) of
Fig. 2.15 demonstrates that the explanation is more complex. If the absorption
in the metal is neglected, the heights of the transmission peaks grow with d like
d2, as it would correspond to a perfect transmission (100%) per unit cell [95].
Therefore, EOT associated with SPP excitation is only limited by absorption.
As explained above, absorption along the walls of the holes is not taken into
account in the approximated model. However, we have checked that for all d

analyzed in this study, E-�eld intensity maxima are located at the horizontal
metallic surfaces, where SIBCs are imposed within the modeling. Therefore,
considering only absorption on top and bottom surfaces of the metallic �lm is
a reasonable approximation when analyzing the evolution of the heights of the
transmission peaks as a function of d.

Within this approach, it is worth de�ning two di�erent lifetimes operating
during the transmission process. By looking at the linewidth of the trans-
mission peaks with no absorption (Fig. 2.15(c)), we can extract the lifetime
associated with the resonant process, τres. This quantity is related with the
radiation losses as a result of the coupling of holes to radiation. It is depicted
in Fig. 2.18 as a function of the period of the array for three values of ax

(200, 100 and 260nm). As expected, when d is increased, resonant lifetime
grows rapidly. On the other hand, absorption introduces another time into
the problem. From the knowledge of ε(λ), we can estimate the time taken for
a photon to get absorbed, τabs. This lifetime is almost independent on λ, as
shown in Fig. 2.18 (dotted line). It is expected that optimum d would appear
where τres(d) ≈ τabs(d). The line of reasoning leading to this naive rule is
the following. When τres(d) is much smaller than τabs(d), photons are mainly
transmitted and they are not absorbed by the metal. Absorption plays a minor
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role in the transmission process and the normalized-to-area transmittance at
resonance increases when d is increased, as seen in Fig. 2.15(c). In the other
limit (τabs(d) being much smaller than τres(d)), photons are absorbed by the
system before the resonance is built up. As τres(d) grows quadratically with
d, a decrease of the transmittance at resonance versus d is expected to occur
in this limit. When interpolating between these two limits, it is clear that
the curve displaying the transmittance at resonance versus d should present a
maximum for an optimum value of d. As τres(d) evolves very rapidly with d

whereas τabs(d) is almost independent on d, optimum d should appear close
to the condition τabs(d) = τres(d). Figure 2.18 demonstrates that this last
condition marks the location of the optimum d for the three di�erent values of
ax analyzed. Therefore, we can safely conclude that the physical origin of the
optimum d observed in calculations stems from the absorption present in the
metallic �lm.

maxτ res

xa

ax
ax

 =100

 =200

 =260

,T        :

τ abs

Figure 2.18: Absorption lifetime τabs (dotted line) and lifetime of the resonant process
τres versus period of the hole array for ax=100nm (dashed line), ax=200nm (solid
line) and ax=260nm (dot-dashed line). Inset: Transmittance calculated at resonance
versus d.

Note that in the experiments [68], the �nite size of the hole array introduces
a third lifetime associated with the spatial extension of the array, τsize [40].
As the absorption in the metal, it also acts as a limiting factor in the �nal
transmittance. If the number of holes is large enough, τsize is greater than τabs

and then the limiting factor would be the absorption by the metal, as in the case
of an in�nite array. However, if the array is very small, τsize would be smaller
than τabs and �nite size e�ects would control the optimum d. Then the cut
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between τres(d) and τsize would mark the location of optimum d. If this is the
case (τsize < τabs), then the cut would appear at a shorter d. This seems to be
the case in the experiments reported in Ref. [68] as the experimental optimum
d is of the order of 600 nm, instead of a value close to 700 nm obtained from
our calculations for an in�nite array of holes (see Fig. 2.18).
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2.5 EOT through metal-coated monolayers of micro-
spheres

Several papers on EOT involve experiments and simulations of metal �lms
and gratings of rather simple geometry [2, 47, 50, 67, 96�101]. One drawback,
considering applications, with these structures is that they are usually pro-
duced using a material removal focused ion beam and/or complex lithographic
methods. In this section we analyze a quite di�erent structure, namely, slabs
of self-assambled arrays of dielectric microspheres covered with thin metal-
lic layers. As we will see, these kind of systems present many similarities in
their transmission properties with those in perforated metal �lms, with the
advantage of being easily deposited over relatively large areas. Moreover, the
following metal deposition can be done by standard techniques.

Monolayers of close-packed arrays of microspheres behave like two dimen-
sional photonic crystal slabs (PCS) with photonic modes that may couple to
the incident light. It has been shown that the strength of coupling and the po-
sition of the observed transmission dips could easily be altered by deposition of,
e.g., amorphous Si onto the microsphere arrays [102, 103]. If the microsphere
array is instead covered with a thin metal �lm, EOT through the slab has
been observed [104]. Di�erent mechanisms could be responsible for the EOT-
like transmission features: Mie resonances of the spheres, transmission through
the empty spaces left by the spheres after covering them with the metal,...[104].
In order to clarify the actual origin of the resonances observed, in this section
we analyze a set of experimental results carried out in the group led by Prof.
D. Bäuerle, from the Institute of Applied Physics Johannes-Kepler-Universitat
in Linz (Austria). For this, we use the FDTD method discussed in Section 1.2.
The good agreement between measured and modeled spectra allows further
in-depth interpretation of the origin of the di�erent features observed in the
measured transmission spectra, highlighting the relevance of waveguide modes
in the microsphere array on the EOT properties.

2.5.1 Methods

Experiment

Microspheres of di�erent materials have been utilized in various �elds of re-
search in the past few years. Examples of applications are micro-resonators
with high quality factors [105], in mask lithography [106], and also as lens ar-
rays for di�erent types of laser-induced micro- and nano-patterning of material
surfaces. In the case of laser-induced applications, close-packed 2D-lattices of
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usually transparent microspheres are used as a lens array allowing single step
large area parallel processing [107�111]. Among those are patterns generated
from metal-coated monolayers of microspheres by laser-induced forward trans-
fer (LIFT) [112�115].

Through the experiments, close-packed monolayers of amorphous silica (a-
SiO2) or polystyrene (PS) microspheres (diameters d = 0.39, 0.78, 1.0, and
1.42 µm) were deposited on quartz supports (1 mm thick) using colloidal sus-
pensions. The monolayers were covered with di�erent metals (Ag, Au, Ni) and
�lm thickness (30 - 300 nm) using standard evaporation techniques. A typical
metal covered monolayer is shown in Fig. 2.19. The metal �lms cover approxi-
mately the upper half of single spheres, while the lower half remains uncoated.
At the top of spheres the thickness of the coating (75 nm) is about equal to
that measured with a nearby quartz crystal microbalance (QCM). Towards the
edge of spheres the �lm thickness slightly decreases. In the interstices between
the spheres, the coating is placed on the quartz support. Within these areas,
the �lm thickness measured by means of an atomic force microscope (AFM), is
equal to that measured by QCM. The areas of close-packed monolayers were,
typically, of the order of ∼cm2. Because of certain size dispersion of the micro-
spheres and the deposition technique employed [116], the monolayers exhibit
a polycrystalline structure with a typical domain size of about 50-100 µm.
Transmission experiments were performed at normal incidence both on bare
PCSs and on the covered with metal slabs. The transmission measurements
were done in the far-�eld, in a con�guration that only collected the zero-order
transmission. Since aperture diameters of 1 − 3 mm were used for the trans-
mission measurements, any polarization dependent e�ects could not be probed
and non-polarized light was used.

FDTD Modeling

Simulations were performed by using the FDTD method. A small grid size of
6 nm was used in all reported results. The dielectric constant of the di�erent
metals considered were taken from their bulk values, and approximated by a
Drude-Lorentz functional form (Table 1.1). Dielectric constants for the quartz
support, and the silica and polystyrene microspheres were assumed wavelength
independent and set to 1.52, 1.392 and 1.572, respectively. As the geometry
of the metal layer is not precisely known, for simplicity the thickness of the
metal �lm on the top of each sphere was assumed to be constant (72nm). We
expect that this simpli�cation of the metal geometry will induce at most some
small spectral displacements of the transmission resonances and of the aver-
age transmittance, but will otherwise have a negligible e�ect on the overall
transmission properties of the system. In order to compare with the experi-
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2 µm

Figure 2.19: Scanning electron microscope (SEM) picture of a Ni-coated monolayer
of quartz (a-SiO2) microspheres of diameter d = 0.72 µm. The support is a 1.0 mm
thick a-SiO2 platelet.

mental transmittance, only transmission into the zeroth di�raction order was
computed.

2.5.2 Results and Discussion

Figure 2.20 compares measured and modeled spectra for silica sphere arrays
covered with Ni, Ag and Au metals. Overall, the modeled spectra reproduce
quite well the observed features with respect to both the absolute transmission
values and peak positions. The main di�erence that can be observed is the
additional peak at around 1300 nm in the calculated spectra. For the case of
Ni, this peak seems to be hidden under the shoulder of the main peak. For
Ag and Au it seems to be absent in the measured spectra. All peaks in the
measured spectra are also slightly broader, likely because of the size-dispersion
of the spheres and the polycrystalline structure of the array. Nevertheless, the
overall good agreement suggests that this simple fabrication route leads to
structures where disorder is small enough as not to spoil the optical transmis-
sion resonances expected in perfect arrays.

In the optical regime, the di�erent behavior of the metals is notable. The
peaks for Ni are less pronounced, while Ag and Au presents more detailed �ne
structure in both measured and modeled spectra. This e�ect is related to the
di�erence in optical properties of these metals. As discussed in Section 2.2,
Nickel is a less �ideal� metal than Ag and Au, with relatively high absorption
in the wavelength region of interest, resulting in less pronounced features in
both measured and modeled spectra. The calculated spectra for gold and silver
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Figure 2.20: Measured (black) and calculated (red) zero order transmission through
metal coated MLs of a-SiO2 microspheres (d = 1.42 µm).
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have more de�ned (and stronger) peaks in comparison to the measured ones
at shorter wavelengths. This may be due to the presence of disorder in the
sample, where not all unit cells are strictly equal. Also, �lms deposited onto
the microsphere arrays exhibit a poly/nano-crystalline structure, which may
alter the optical properties of the metal relative to bulk values used in the
calculations. Both such alterations impair resonant behavior, being therefore
more evident in Ag and Au than in Ni (where resonances are already hampered
by intrinsic absorption of the metal).

The situation is di�erent in the telecom regime (transmission peaks appear-
ing around 1600nm in Fig. 2.20). In this case, the transmission level for all
metals considered is similar, being even larger for Ni than for Au or Ag. Notice
that, in this case, the full-width-at-half-maximum (∆λ) is very very similar for
all three metals considered: 163nm for Ni, 154nm for Ag and 126nm for Au.
Given that the dielectric constant of Ni is very di�erent from that of Ag and Au,
this implies that the time that the electromagnetic �eld stays at the structure
is limited by radiation, more than by absorption. This time can be estimated
as T = λ2

max/(c∆λ) and the distance that the EM �eld travels on the surface
as LT = λ2

max/∆λ, where λmax is the spectral position of the transmission
maximum and c the speed of light. From the simulation we can estimate LT=
16.2µm, 17.4µm and 12.6µm for Ni, Ag and Au, respectively. This values are
smaller than, for instance, the propagation lengths of surface plasmon polari-
tons at λ=1600 nm (which approximately are 25µm for Ni, 360µm for Ag and
360µm for Au), which reenforces the hypothesis that radiation losses dominate
over absorption. Notice also that the larger absorption in the case of Ni could
be compensated by the larger skin depth (33nm in Ni, 22nm in Ag and 23nm in
Au for λ ≈ 1600nm), which implies both a larger direct transmission through
the metal layer and a larger e�ective hole radius.

To further study the behavior of this composite structure and the validity
of using the FDTD method, di�erent parameters were investigated. Here, the
refractive index of the spheres was changed by considering polystyrene micro-
spheres. The sphere diameters (periodicity) was also altered, see Fig. 2.21.
As expected, by using monolayers of polystyrene spheres (with a higher re-
fractive index than a�SiO2) with di�erent diameters, one �nds that the main
peak shifts with the periodicity of the array. Again, measured and modeled
spectra show good agreement (Fig. 2.21). We associate the higher values for
the calculated peaks both to disorder in the actual sample and to the fact that
absorption in the PS spheres was neglected in the calculations.

The main peak is further red-shifted relative to the diameter by about a
factor of 1.3d, whereas a factor of 1.2d was observed for the silica spheres
(Fig. 2.20). This is related to the higher refractive index of the polystyrene
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spheres relative to silica. The same e�ect is observed for PCS without metal,
that is, a higher �e�ective� refractive index red-shifts the main minima (dip)
in transmission [102, 103]. Additionally, the main dip in the dotted curves in
Fig. 2.21, that show the transmission of the bare MLs, and the main trans-
mission peak of the metal coated arrays show a clear correlation. The main
transmission peak is slightly red-shifted compared to the main dip. This be-
havior implies that the transmission is related to the supported modes of the
bare (uncoated) 2D-PCS as suggested earlier [104]. The transmission spectra
of the bare PCSs are also included in the graphs where, once again, the di�er-
ences in the transmission curves can be seen. The modeled spectra show much
narrower main dips than the measured ones, again pointing to the in�uence of
absorption in the PS spheres, and also to size dispersion of spheres and grain
boundaries within the monolayers. In any case, the fabrication method allows
for simple scaling (positioning) of any transmission peak (or dip) of interest,
as can be seen in Fig. 2.21. It is also demonstrated in Fig. 2.21(c) that the
main peak can be easily shifted to the visible wavelength region. This could
be interesting with possible application for these composite structures as, e.g.,
for the fabrication of relatively narrow band �lters.

Importantly, the close spectral correspondence between transmission dips
in the uncoated system and transmission peaks in the coated one is also present
in the calculation, even more clearly so, as spectral features are narrower here
than in the experiment. The thickness of the metal deposit was also varied
for both Ag and Au metals on silica spheres, see Fig. 2.22. For both metals,
the intensity of the main transmission peak decreases roughly exponentially.
Notice that the measured transmission is higher for thicker deposits compared
to modeled spectra, which we associate to the assumption of homogenous �lm
thickness in the calculations. Again, quite large discrepancies can be observed
between measured and calculated spectra in the short wavelength region. Also,
the main peak red shifts as the thickness is increased (More pronounced for
the measured spectra). Possibly, this can be related to coupling of the modes
on the two interfaces; PCS/metal and metal/air. For �lms with thickness less
than 50 nm, two peaks can be observed in the calculated spectra, whereas only
one peak is observed for the thicker deposits, suggesting a coupling/decoupling
behavior of the two modes as the thickness is increased.

The rest of the section is devoted to ascertain which are the relevant mech-
anisms for the transmission resonances in this system. Notice that the compos-
ite slab is quite complex, and transmission resonances could be due to one or
several factors, like: surface plasmons coupled either through the holes in the
interstices or through the metal (if the metal �lm is optically thin), photonic
crystal modes in the sphere layer (weakly or strongly coupled), Mie resonances
of the spheres, particle plasmon modes of the triangular metal deposit on
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Figure 2.21: Measured (black) and modeled (red) zero order transmission through
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the quartz support, etc. The good agreement between measured and calcu-
lated spectra allows us to study of the relevance of these di�erent mechanisms,
through the modeling of similar but simpler systems.

To start with, two di�erent but related structures were modeled: Metal
coated sphere arrays without any metal on the support and sphere arrays fully
covered with metal (and consequently no metal on the support either). The
calculated results are shown in Fig. 2.23. Interestingly, the calculations reveal
that the metal deposit on the support has negligible in�uence on the over-
all transmission and, more importantly, that the transmission spectra remains
practically unaltered if the holey metal cap covering the spheres is replaced by
a continuous metal cap. So, for this parameter range, the coupling across the
metal �lm is mainly due to coupling through the metal, and not through the
holes. This calculation also shows that there is no need for improvements in
the fabrication process in order to get rid of the deposited metal particles in
the substrate. In order to investigate the importance of a PCS and its guided
modes as support to the metal �lm, the spheres were simply removed in the
model system by introducing a uniform refractive index below the corrugated
metal �lm (both with and without holes). In this case, the transmission process
can be explained by a resonant model involving surface plasmon excitations
and tunneling through the corrugated thin metal �lm [47, 74]. The results
are depicted in Fig. 2.24. Remarkably, in the uniform dielectric case, abso-
lute transmission values are much lower than those obtained for the sphere
system. In addition, we have computed the transmission for a thin planar
�lm with triangular holes (with the same size as those in the experiment) in
graphene symmetry. Again transmission values are low when compared with
those in the capped sphere system. These �ndings suggest that the presence
of the photonic crystal layer is of great importance in the overall transmission
mechanism. The close spectral correspondence between transmission peaks
in the coated case and transmission dips in the uncoated one, already points
to the possible relevance of guided modes in the photonic crystal. This rele-
vance is corroborated by the computed electromagnetic �eld distributions (see
Fig. 2.25 for a representative case), which present strong �eld con�nement at
the location of the spheres.

It is interesting to highlight the di�erences on the transmittance between
guided modes in a photonic crystal and guided modes in a uniform dielectric
slab. The �rst di�erence is related to the "energetics". A �rst estimation of
the spectral position at which EOT features appear can be obtained by com-
puting the frequency of the surface mode involved, at a wavevector equal to
the shortest reciprocal lattice vector (for the case of normal incidence consid-
ered here). Similarly, dips in the corrugated dielectric are expected to appear
at the same condition, as Fig. 2.21 shows. Let us start by considering the
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2.5. EOT through metal-coated monolayers of microspheres 81

ε
ε

ε

1

2

3

(1)

(2)

(3) 500 750 1000 1250 1500
Wavelength [nm]

0

20

40

60

80

100

T
ra

ns
m

is
si

on
 [

%
]

bare PCS
metal coated (1)
metal coated (2)
metal coated (3)

d = 0.78 µm
72 nm Au

ε1 = 1.0
ε2 = 1.572

ε3 = 1.392

Figure 2.23: Calculated transmission curves for bare PCS and with di�erent metal
coverage (1)-(3).

uniform dielectric slab. The point here is that the guided modes in a vacuum-
metal-dielectric �lm-substrate (VMDS) waveguide are di�erent from the ones
in a vacuum-dielectric �lm-substrate (VDS) con�guration, due to the large
di�erences between the Fresnel coe�cients for metal/dielectric and metal/air
interfaces. Therefore, features in a corrugated dielectric and a corrugated
metal, each of them placed on top of dielectric slab, should appear at di�erent
wavelengths. To illustrate this point, we have computed the wavelengths of
the guided modes in both VMDS and VDS con�gurations, for the following
parameters (motivated by the experimental setup): the dielectric �lm has a
dielectric constant ε = 1.572 and a thickness t = 780 nm. The substrate has
a dielectric constant ε = 1.52. The considered wavevector is k = 2π/t (in a
sphere array the inter-distance between spheres is equal to the dielectric �lm
thickness). The metal thickness is 70 nm and its dielectric constant is taken
as εmetal = −50 (approximately the value for Au at λ ∼ 1000nm). We obtain
that the wavelengths of the guided modes are: 1176 nm for the VDS con�gura-
tion and 1235 nm for the VMDS case. On the contrary, the dispersion relation
of guided modes in the photonic crystal (composed by the two-dimensional ar-
rays of dielectric spheres) is weakly a�ected by the presence of the metal �lm
(calculations not presented here estimate that the di�erence between the wave-
lengths of the guided mode in the metal capped and uncapped con�gurations
is of the order of 5nm). This is so because, in this case, the z-component of the
electric �eld (which is the relevant one for guided modes) is more concentrated
close to the center of the spheres (see Fig. 2.25), so a smaller fraction of the
�eld senses the di�erent Fresnel coe�cients alluded above.

The second di�erence is related to the coupling of the light, passing through
the metal �lm in the presence of guided modes, to the di�erent radiation orders.
Guided modes in photonic crystals represent a weaker coupling to radiation
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Figure 2.24: Calculated transmission curves for corrugated (with and without holes)
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in a homogeneous media. The metal considered is Au and the lattice parameter is
d = 780 nm.

modes than either guided modes in a dielectric or surface plasmons (again due
to the previously cited concentration of the electric �eld in the photonic crystal
guided modes, which places the EM �eld away from the radiation region).
Notice that radiation damping impairs the resonant transmission process, so
this feature of photonic crystal modes explains why the con�guration of metal
�lm on top of a photonic crystal is so e�cient for EOT phenomena (Compare
Fig. 2.23 with Fig. 2.24).

It must be noted that we have concentrated on the transmission peak ap-
pearing at larger wavelengths. At shorter (optical) wavelengths there is also
a close correspondence between transmission dips in the uncoated system and
transmission peaks in the coated one, pointing to again to the relevance of
guided modes. These modes could be due either to remappings (aided by a
reciprocal lattice vector) of the fundamental guided mode or to higher order
guided modes. No attempt has been made here to assign a de�nite origin to
these modes as they give rise to small transmission peaks.
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Figure 2.25: Contour plots for the modulus of the z-component of the electric �eld
across a plane passing through the center of the spheres. The system under study is
the one considered in Figure 2.21 (b). Panel (a): uncoated case at the wavelength
of the main transmission dip (λ = 944nm). Panel (b): coated case at the main
transmission maximum (λ = 1002nm)
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2.6 Conclusions

In conclusion, we have investigated three di�erent questions that strongly a�ect
EOT: the metal chosen, the metal thickness and the hole shape.

To elucidate about the in�uence of the metal chosen on EOT we have in-
vestigated theoretically the resonant optical transmission through circular hole
arrays drilled in di�erent metals. We have performed two series of calculations.
In both of them all lengths except the metal thickness are scaled by the same
factor. In one of the series the metal thickness is kept �xed, while in the other
the metal thickness is also scaled. In the �rst case, for which there is experi-
mental data available [70], the comparison between experiment and theory is
very good. These results con�rm that, in the experiments, the e�ects of possi-
ble inhomogeneities in hole shape and size were small. Also the metal surface,
despite the processing that has received when creating the holes, is well de-
scribed by a dielectric constant close to its bulk value. Moreover, FDTD is
validated as a predictive tool for this kind of systems, as the comparison with
experimental data did not require any �tting parameter. The case in which
all lengths were scaled allowed the comparison of the transmission properties
of real metals with those of a perfect conductor. The analysis reveals di�erent
types of behavior of the transmittance in hole arrays in di�erent sets of metals:
in Ag, Au or Cu, the transmittance is even larger than in the perfect conductor
case, re�ecting that absorption is low and the penetration of EM �elds e�ec-
tively enlarges the hole area. In Ni and Cr, although the e�ective area is as
large as in the previous metals, absorption strongly reduces the resonant trans-
mittance. Aluminum behaves very much like a perfect conductor at the lower
wavelength end of the optical regime but for peak wavelengths ≥ 700nm the
resonant transmittance characteristics are dominated by absorption, as in the
case of Ni and Cr. Finally, tungsten, which in the spectral range considered is
a dielectric, presents transmission resonances with maxima much smaller than
those of even the worse metals (Ni, Cr).

In the study of EOT when the �lm thickness is varied, we have shown that
the EOT peak can be tuned to longer wavelengths (by even hundreds of nm) by
decreasing the �lm thickness without strongly a�ecting neither transmission
intensity nor peak visibility (which is still large at w ∼ 20nm). We have
demonstrated that only SRs modes are responsible for the EOT phenomenon
in optically thin metallic 2DHAs. This may be of interest in the �elds of EOT
and Negative Refractive Index (which has been obtained in stacked optically
thin 2DHAs [117]).

From our study on the hole shape dependence of EOT, we have explained
theoretically the interplay between two di�erent mechanisms that enhance the
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transmission of light through 2D arrays of rectangular holes: SPP-based ex-
traordinary transmission and enhanced transmission assisted by the excitation
of a localized resonance, spectrally located at the cut-o� wavelength of the hole
waveguide, λc. We have shown that when d < λc the transmission resonance
has a localized nature mainly, i.e. it is mainly governed by the behavior of a
single hole. In contrast, for d > λc, SPP governs the transmittance through
the structure, We have also demonstrated that in this last case, resonant trans-
mission is mainly limited by the absorption in the metal.

Finally, the 2D-photonic crystal structure composed by periodically ar-
ranged microspheres and covered with thin metal �lms, has been found to
present EOT. Measured spectra have been compared with spectra calculated
with FDTD and the good agreement has allowed modeling of slightly modi�ed
structures to get further information about possible transmission mechanisms.
The calculations indicate that the guided modes in the PCS are mainly re-
sponsible to the relatively large transmission values observed (especially for
the main peak). In contrast, the small holes in the thin metal �lm (at the in-
terstices between three adjacent spheres) and metal deposit onto the support do
not strongly in�uence the main transmission peak. The high transmission val-
ues, straightforward fabrication and easy up-scaling of the metal covered slabs
together with simple peak positioning in a broad wavelength region (VIS/IR)
make these structures a good candidate for application purposes.





Chapter 3

Theory of
Negative-Refractive-Index
response of double-�shnet
structures

3.1 Introduction

In the last years we have seen how a new sort of man-made materials with
�exotic� optical properties (not found in nature) could be designed. In turn,
this has opened amazing prospects for future technological applications. One
relates to the design of structures with Negative Refractive Index (NRI). In
these NRI metamaterials, �rstly proposed by Veselago [4], both the electric
permittivity and the magnetic permeability are negative, leading to a refrac-
tive index that is negative. Metamaterials presenting NRI are expected to
lead to important applications, as the perfect lens proposed by Pendry [118].
Furthermore, NRI metamaterials are thought to be the bricks for solving a
long lasting question in optics: Is it possible to make an object �invisible�?
Predicted independently by Ulf Leonhardt [119] and Pendry et al. [120], such
an �invisibility cloak� was demonstrated in the microwave regime [121].

Veselago demonstrated that an isotropic, homogeneous and lineal (i.h.l)
medium characterized by negative values of both the permittivity (ε) and the
permeability (µ), does not contradict any fundamental law of physics. In
fact, a substance like that behaves in a completely di�erent fashion that a
conventional material (See Ref. [122] for a complete review).

Plane waves traveling through i.h.l media at �xed frequency (ω) can be
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expressed as follows: ~E(~r, t) = ~E0e
ı(~k~r−ωt) and ~H(~r, t) = ~H0e

ı(~k~r−ωt). In this
case, by applying Maxwell's equations we obtain:

~k × ~E0 = µµ0ω ~H0

~k × ~H0 = −εε0ω ~E0 (3.1)

in the international system of units (MKS). As usual, ω2 = c2|k|2
εµ , being c the

speed of light in vacuum. From Eqs. (3.1) is obvious that the set {~k, ~E, ~H}
de�nes a right-handed (RH) triplet of vectors whether ε > 0 and µ > 0.
Conversely, if ε < 0 and µ < 0 they constitute a left-handed (LH) set. Note
that Eqs. (3.1) remain invariant by changing the signs of the permittivity, the
permeability and the ~k-vector (~k → −~k, which de�nes the phase velocity),
simultaneously. Hence, a plane wave will propagate within LH material with
opposite phase velocity as it were traveling through a RH one. The energy
�ux carried by a plane wave is determined by the Poynting vector ~S, which is
given by

~S = ~E × ~H (3.2)

The ~S vector always forms a RH set with ~E and ~H, thus the �ow of energy
is opposite to the phase velocity in LH media. We arrive at the same conclusion
taking into account that ~S = | ~E|2

µµ0ω
~k = | ~H|2

εε0ω
~k.

Another important discussion is about the energy carried by an EM �eld
in LH materials. The total energy of an EM �eld at point in space reads,
U = 1

2ε ~E2 + 1
2µ ~H2, for i.h.l and non-dispersive media. Clearly, this expression

is not compatible with negative values of ε and µ. Therefore, both quantities
must depend on frequency, and the proper de�nition of total energy is given
by U = 1

2
∂(εω)
∂ω

~E2 + 1
2

∂(µω)
∂ω

~H2.
Up to here, we have revisited the propagation properties of light inside

LH materials. Note that if the whole universe were made of LH materials
rede�ning the phase velocity (~k → −~k), all the electromagnetic phenomena
would be exactly the same as in a RH universe. In the end, it would be
a matter of agreement as regards to the sign of the parameters (ε, µ,~k, ...).
Really, the key point is how light behaves passing from a RH medium to a
LH medium, or viceversa. When light travels from a medium to another, the
boundary conditions for EM �elds,

E1
t = E2

t

H1
t = H2

t

ε1E
1
n = ε2E

2
n

µ1H
1
n = µ2H

2
n (3.3)
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Figure 3.1: Two possible paths to follow a ray passing through the boundary between
a RH medium and a LH one. Only the refracted ray rendered to the left has physical
sense.

must be satis�ed, independently of whether or not the media have the same
�rightness� (integer numbers label di�erent media). The superscripts t and n

refers to the tangential and normal to the surface �eld components, respec-
tively. In the RH medium the incoming ray will be labeled with a i subscript
and r for the re�ected one. As we can deduce from the boundary conditions
[Eqs. (3.3)], the tangential �eld components maintain their directions, whereas
the normal components change, and not only their relative values, but their
directions as well. We depict in Fig. 3.1 the refraction-re�ection construction
for a TM-plane wave traveling from a RH medium to a LH medium. As we
can see, the Poynting vector (represented by dashed arrows) �ows from the
RH medium to the LH medium so that energy is conserved. Taking into ac-
count both the proper direction the ~k-vector follows in each media and the �eld
boundary conditions, only the ray refracted to the left of Fig. 3.1 has physical
meaning.

Additionally, it can be seen from Fig. 3.1 that the usual Snell's law should
be given more precisely,
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RH → RH (3.4)
sin(φin)
sin(φout)

=
√

ε2µ2

ε1µ1
(3.5)

RH → LH (3.6)
sin(φin)
sin(φout)

= −
√

ε2µ2

ε1µ1
(3.7)

showing the di�erence between RH refraction (φout > 0) and LH refraction
(φout < 0). In particular, the index of refraction of a LH medium relative to
vacuum is negative, so they are called NRI media. That negative values of ε

and µ give raise to negative values of n can be also demonstrated as follows.
Let us write ε = εr + ıεi and µ = µr + ıµi, where we take into account the
absorbing properties of the medium (εi > 0 and µi > 0). The refractive index
is n = ±√εµ or explicitly, n = ±

√
(εr + ıεi)(µr + ıµi). This expression can

be approximated n ≈ ±
√

εrµr + ı(εiµr + µiεr) ≈ ±√εrµr[1+ ı εiµr+εrµi

εrµr
]. The

radiation condition ( the �eld must vanish at in�nity) imposes that ni > 0, so
if εr < 0 and µr < 0 at the same time, then the negative sign must be chosen.

No natural material known possesses negative magnetic permeability. To
date, the only way to achieve the above-mentioned behavior is by combin-
ing di�erent materials, built with di�erent geometries. The system arising
is usually called a �meta-material� because its optical response may be dif-
ferent than the optical response of its components in bulk. An example of
a meta-material displaying negative µ was �rst reported by Pendry and co-
workers [123]. They proposed to build arrays of split-ring resonators. The
e�ective negative magnetic susceptibility found in them paved the way in the
search of structures presenting NRI (For a recent review on negative-index
metamaterials see Ref. [124]) .

In 2005 Zhang and co-workers [117, 125] proposed and demonstrated a neg-
ative index metamaterial working at near infrared frequencies with a design
very similar to the structure showing EOT. This metamaterial is composed
by a two-dimensional (2D) array of holes penetrating completely in a metal-
dielectric-metal �lm stack, the so-called double-�shnet (DF) structure. This
structure has received a lot of attention for its optical response as NRI ma-
terial at visible [126] and near infrared frequencies [127, 128]. Other studies
have shown that this NRI metamaterial design also operates in the microwave
frequency regime [129, 130]. Besides, serious attempts to get truly 3D-NRI
metamaterials have been engineered based on it [131].

We present here an alternative physical view to the well established �cir-
cuitry� model of the NRI in DF structures [124] summarizing two works pub-
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lished in our group [132, 133]. Again, we take advantage of two di�erent theo-
retical techniques: the Finite-Di�erence Time-Domain (FDTD) method (Sec-
tion 1.2) and an adapted version of the Coupled Mode Method (CMM) (Sec-
tion 1.3) for the DF structure, which was carried out by A. Mary at the Depar-
tamento de Física Teórica de la Materia Condensada (Universidad Autónoma
de Madrid). Within these formulation, these structures can be interpreted as
holey plasmonic metamaterials instead of wire fabrics.



92 Chapter 3. Theory of NRI response of double-�shnet structures

3.2 Theory of Negative-Refractive-Index response of
double �shnet structures

A DF structure can be described as three �lms (metal-dielectric-metal) drilled
with a square array of rectangular holes, with hm and hd being the thickness of
the metallic �lms and the dielectric layer, respectively. In our study, we analyze
two very distinct frequency regimes. First, we consider that the metal behaves
as a perfect electrical conductor (PEC), which is a very good approximation
for metals at microwave or terahertz frequencies. When analyzing this limit,
we will use the period, d, as the unit length. We also present results for silver
at optical and near infrared frequencies. In this case, we take the dielectric
function of silver from Table 1.1 and we choose d = 600nm. The structures are
illuminated by a p-polarized plane wave (i.e., the in-plane component of the
incident E-�eld pointing along the short edge of the holes). When analyzing
perforated silver �lms at optical frequencies, we use the �nite di�erence time
domain (FDTD) method (See Section 1.2) which, as previously described, is
virtually exact provided that a small enough mesh-size is chosen to account
for the rapid variations of the EM �elds. Along with the FDTD method we
also use CMM within the Surface Impedance Approximation (SIBC) (See Sec-
tion 1.3). In order to analyze 2DHA and DF structures made of PEC material,
we apply CMM as well. The great advantage of CMM is that, when dealing
with subwavelength holes, a very good approximation to the transmission and
re�ection properties can be achieved by considering only the least decaying
evanescent mode inside the holes (the TE01 mode for the chosen polarization
of the incident plane wave). This allows a semi-analytical treatment and to
extend the formalism to study a large number of metallic �lms, as done at the
end of this chapter, that would be di�cult with the FDTD method. For a
complete description of CMM applied to DF structures see Ref. [133].

3.2.1 E�ective parameters of 2DHAs

Schematic pictures of the two systems under study (2DHA and DF) are shown
in the insets of �gures 3.2(a) and 3.3(a), respectively. The 2DHA structure
is an in�nite square array (period d) of rectangular holes of sides ax and ay,
perforated on a freestanding metallic �lm of thickness h1. To further simplify
the analysis without loosing generality, the dielectric between the two metal
�lms is chosen to be vacuum or air. The geometrical parameters are: ax =
0.33 d, hm = 0.05 d, hd = 0.05 d and h1 = 2hm + hd = 0.15 d. The long edge
of holes ay will vary between 0.33d and 0.98d. These values are representative
of those used in the experimental samples showing NRI [127].
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First, we revisit the transmission properties of a 2DHA made of rectangular
holes. Figure 3.2(a) renders the corresponding normal incidence transmittance
spectra as a function of wavelength (λ) and ay for the PEC case. For small
holes, two transmission peaks (leading to 100% transmission), whose spectral
locations appear close to d, emerge in the spectrum. These two resonances
correspond to the symmetric and antisymmetric combinations of the two sur-
face EM modes associated with the two interfaces of the structure [47]. Note
that, as the metal behaves as a PEC, these modes are not real SPPs but
geometry-induced surface EM modes, the so-called spoof SPPs [34, 75]. As
ay is increased, the extremely narrow peak associated with the antisymmetric
combination remains unaltered at λ ≈ d. However, the symmetric combination
of SPPs strongly hybridizes with the cuto� resonance, which has been discussed
in Section 2.4. For rectangular holes appears close to the cut-o� wavelength of
the fundamental mode (TE01 mode) of the hole waveguide, λC = 2ay. From
now on, we name cuto� resonance to this hybridized mode that is combina-
tion of the symmetric surface EM mode and the Fabry-Perot resonance. From
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0,8

1,2
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 Re( eff) = 0
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Figure 3.2: (a) Transmittance versus both ay and λ for a 2DHA perforated on a
PEC �lm, with geometrical parameters: ax = 0.33 d and h1 = 0.15 d. Inset contains
an schematic picture of the 2DHA. (b) Re [εeff ] as a function of λ and ay. Solid
line: Cuto� wavelength, λ = 2ay. Dashed line: λ that satis�es the condition Re
[εeff (λ)] = 0. In the inset, the corresponding FDTD results for silver-2DHA with the
same parameters as in panel (a) and d = 600nm are displayed.

the knowledge of the zero-order transmission and re�ection coe�cients, it is
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possible to retrieve bi-univocally the e�ective optical parameters [134]. The
method described in Ref. [134] is reliable provided the zero-order di�racted
beams are the only ones propagating in both the re�ection and transmission
regions (for normal incidence this implies λ > d). The real part of the e�ec-
tive permittivity, εeff , of the 2DHA structure is shown in Fig. 3.2(b). Dashed
and solid lines indicate the wavelength in which Re[εeff ] = 0 and the cuto�
wavelength, respectively. Note that except in the region λ ≈ d, there is a close
correspondence between these two wavelengths. This kind of coincidence can
be understood by revisiting the concept of spoof SPP modes. As explained in
Ref. [75], the dielectric response (in the e�ective medium limit in which di�rac-
tion e�ects are neglected) of a semi-in�nite holey PEC presents a Drude-like
behavior in which the plasma frequency of the electron gas is replaced by the
cut-o� frequency of the hole waveguide. Regarding the magnetic response, the
e�ective magnetic permeability, µeff takes a constant value. In mathematical
terms, these two last sentences translate into:

εeff =
1
S2

(
1− ω2

p

ω2

)
, µeff = S2 (3.8)

where S = 2
√

2 ax ay/πd and ωp = πc/ay. Therefore, in the e�ective medium
approximation (λ >> d), a holey semi-in�nite PEC is characterized by a
Re[εeff ] that changes from negative (λ < λC) to positive values (λ > λC), and
by a µeff that remains constant and positive (Here λC = 2ay).

Figure 3.2(b) shows that the relation between λC and the condition Re[εeff ] =
0 also holds for a very thin PEC �lm and for λ slightly larger than d. Moreover,
this link is maintained when moving to frequencies in the optical regime, as
shown in the inset of Fig. 3.2(b). Here the spectral locations of both the cuto�
wavelength of the hole waveguide (black line) and the condition Re[εeff ] = 0
(green dashed line) are rendered as a function of ay, for the same geometrical
parameters as in panel (a), and d = 600nm. Notice however that for a silver-
2DHA in the limit ay → d, the condition Re[εeff ] = 0 is linked to the cuto�
wavelength calculated with the FDTD method for waveguides forming a 2D
periodic array (blue dashed line in the inset of Fig. 3.2(b)). In this limit, the
cuto� deviates from the one of an isolated waveguide, due to the cross-talk
between waveguides through the vertical metal walls.

3.2.2 The Double-Fishnet structure

The rest of this chapter is devoted to analyze the optical properties of the
DF structure. Inset of Fig. 3.3(a) renders the normal incidence transmission
spectra for the PEC case. The two transmission peaks previously described
for a 2DHA also appear in the DF structure. Fig. 3.3(a) shows the spectral
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Figure 3.3: Panel (a) shows the evolution of the spectral locations of both the cuto�
wavelength (black line) and the condition Re[εeff ] = 0 (green dashed line). The
regions of negative Re[µeff ] (red vertical lines) and Re[neff ] (black horizontal lines)
are also displayed as a function of ay for the PEC-DF case. Inset: transmittance
versus both ay and λ for a PEC-DF structure with the geometrical parameters as in
Fig. 3.2. Solid curve renders λ = 2ay line. (b) As in panel (a), but for a silver-DF
structure with d = 600nm. A contour plot of the FOM is rendered in this panel, for
the regions where Re[neff ] < 0.
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location of the condition Re[εeff ] = 0 (green dashed line), and the regions in
which Re[µeff ] (red vertical lines) and Re[neff ] (black horizontal lines) are
negative. Notice that the cuto� resonance wavelength also controls Re[εeff ]
in the case of a PEC-DF structure, as shown in Fig. 3.3(a). On the other

(b)(a)

(c)
(d)

Figure 3.4: Panels (a) and (b) render the electric �eld amplitudes at the magnetic
resonance evaluated in the xy plane just in the middle of the dielectric slab (z =
0.075 d). Panels (c) and (d) show these amplitudes in a xz plane (y = 0.25 d).
The geometrical parameters are as in Fig. 3.3 with ay = 0.5 d. Panels (a) and (c)
correspond to the PEC case whereas (b) and (d) are for the silver-DF structure with
d = 600nm. White lines mark the positions of the holes.

hand, the presence of a second metal layer and a dielectric gap results in the
emergence of additional resonant features (transmission peak and dip) in the
transmission spectra. Associated with this new resonant behavior, Re[µeff ]
presents negative values (see panel (a)). As expected, the e�ective refractive
index is negative when both Re[εeff ] and Re[µeff ] are negative. This condition
is only satis�ed when ay <0.58 d (for this set of geometrical parameters). For
larger holes, as the magnetic resonance appears at a shorter wavelength than
the cuto� peak, the regions of Re[µeff ] appear where Re[εeff ] is positive,
leading to positive values for Re[neff ].

The behavior of the e�ective optical parameters is very similar for a silver-
DF structure. Panel (b) of Figure 3.3 shows the same quantities as in panel (a)
but now for a DF structure made of silver with the same geometrical parameters
as in Fig. 3.3(a), and d = 600nm. As in the PEC case, the link between the
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condition Re[εeff ] = 0 and the cuto� wavelength is clearly observed. Moreover,
a band of negative Re[µeff ] presenting a smooth linear dependence with ay

also appears. The disappearance of this band for small ay is due to absorption
(calculations for a lossless silver show regions of negative Re[µeff ] for small ay).
Absorption also explains why, as a di�erence with a PEC-DF, the region of
negative Re[neff ] is larger than the one in which both Re[εeff ] and Re[µeff ]
are negative. Note that the general condition for having Re[neff ] < 0 is
Re[εeff ]|µeff | + Re[µeff ]|εeff | < 0 (for more details see Ref. [135]). Notice
however that the �gure-of-merit (FOM), de�ned as the modulus of the ratio
between the real and imaginary parts of neff , is maximum inside the region
in which both Re[µeff ] and Re[εeff ] are negative.

The physical origin of the magnetic resonance described above clearly
emerges when looking at the corresponding E-�eld patterns. In Figure 3.4
we plot the E-�eld amplitudes for the DF structure evaluated at a xy plane
between the two metal �lms [panels (a) and (b)] and at a xz plane that cuts the
holes through their centers [panels (c) and (d)]. Panels (a) and (c) correspond
to the PEC-DF case whereas (b) and (d) present the results for silver-DF.
In these calculations, the long edge of the holes is �xed at ay = 0.5d and
the E-�elds are evaluated at the wavelength of the magnetic resonance. In the
two frequency ranges analyzed (PEC and optical regimes), the E-�eld is mainly
concentrated in the gap region between the metallic �lms and also has a strong
standing wave character in the x-direction. The E-�eld intensity maxima are
along the ridges of the holes, suggesting that in both cases two SPP-like modes
that counter-propagate in the x direction are involved in the formation of the
resonance.

A dielectric gap placed between two metallic �lms supports the propagation
of SPP-modes that are usually called gap-SPPs [81]. For two non-perforated
silver �lms of thickness hm = 30nm and separated by a 30nm-vacuum gap
(geometrical parameters of the silver-DF structure), the spectral location of
the gap-SPP mode that could be excited by a normal incident plane wave can
be calculated by evaluating the gap-SPP dispersion relation at kx = 2π/d.
This calculation leads to λres = 1050nm= 1.75d, that nicely coincides with the
limit ay → 0 of the magnetic resonance leading to negative neff displayed in
Fig. 3.3(b). Folding of the gap-SPP dispersion relation at kx = 4π/d originates
the small NRI-region located at λ ≈ 1.3d for small ay observed in Fig. 3.3(b).
When the metal is a PEC, gap surface EM modes that are very similar to
the gap-SPP modes in the optical regime are created due to the presence of
a hole array drilled in the PEC �lms, even though non-perforated PEC �lms
do not support the propagation of gap-SPP modes. The dispersion relation
of these geometry-induced gap-SPP modes lies very close to the light line,
explaining why the magnetic resonance band for a PEC-DF appears very close
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to λ = d (see Fig. 3.3(a)). The connection between the resonant magnetic
response and the excitation of gap-SPP modes is highlighted for the PEC case
in Fig. 3.4(c). The electric �eld is pointing at opposite directions at the two
sides of the dielectric slab, generating a displacement current that resembles
that of the one created by a magnetic dipole parallel to the y-direction. This
is the standard explanation of the magnetic behavior in DF structures, as
described in Ref. [124]. But interestingly there is a link between the resonant
magnetic response of a DF structure with the excitation of gap-SPP modes,
both in the PEC and optical regimes.

(b)

(a)
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Figure 3.5: Transmittance as a function of both incident wavenumber (k0) and parallel
momentum (kx) for ay = ax = 0.33 d (a) and ay = 2ax = 0.66 d (b). White dashed
lines show the spectral locations of the gap-SPP modes in the holey structure. Insets:
corresponding dispersion relations for the gap-SPP modes in DF structures made of
silver with d = 600nm.

If gap-SPP modes are involved in the resonant magnetic response, it is
expected that this response will be very sensitive to the angle of incidence.
This is demonstrated in the main panels of Fig. 3.5 that renders contour-plots
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of the transmittance versus wavenumber (k0 = 2π/λ) and parallel momentum
(kx) for two di�erent PEC-DF structures. In panel (a), ay = 0.33d whereas
panel (b) shows the case ay = 0.66d. The spectral locations of the transmission
resonances due to the excitation of gap-SPP like modes (leading to negative
µeff ) are underlined with white dashed lines. Due to the folding of the disper-
sion curves of the gap SPP-like modes inside the �rst Brillouin zone, there are
three branches that present resonant magnetic response. For small holes, these
curves highly disperse with kx (angle of incidence), specially the lower branch.
As ay is increased (see panel (b)), the hybridization of the gap SPP-like modes
with the cuto� resonance decreases the dispersion of the gap SPP-like modes
with kx. Insets in Fig. 3.5 show the corresponding results for the silver-DF
structures. The locations of the optical gap-SPP modes (and their associated
NRI) also disperse with parallel momentum, although this dispersion is less
pronounced than the one found in the PEC case.

3.2.3 3D metamaterials: stacked DF structures

The fact that DF structures display NRI behavior at near-infrared and optical
frequencies is quite interesting but, however, they are not truly 3D metama-
terials as their thicknesses are much smaller than the operating wavelength
[136]. Therefore, the question on what happens to the NRI behavior of DF-
based structures when many metal-dielectric-metal stacks are added is timely
and important from both the fundamental and applied points of view. In
what follows, we address this issue by making use of the CMM in which the
inclusion of many multilayers is straightforward. In Figure 3.6 we plot the
evolution of the transmission spectra as the number of dielectric layers, N , is
increased from 1 (the case we have analyzed up to now) to 4. The geomet-
rical parameters of the 2D hole array we have used in these simulations are
ax = ay = 0.33d and εd = 1.0. The metal is approximated as a PEC. As
clearly seen in this �gure, the inclusion of more and more layers results in the
appearance of additional resonant features in the transmission spectrum. The
number of these new features exactly coincides with the number of dielectric
layers, N . Associated with these transmission peaks, resonant behaviors of the
magnetic response, µeff , leading to negative values are also observed. Note
that the EOT peaks associated with the two surface EM modes of the entrance
and exit surfaces of the structure are still present in the transmission spectrum
but their linewidths are strongly reduced as N is increased. The fact that
the number of transmission peaks coincides with N suggests that the origin
of the multiple transmission peaks stems from the electromagnetic coupling
between the spoof gap-SPP modes running at the air gap regions. These lo-
calized modes are electromagnetically connected via the 2D hole arrays of the
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N=1
N=2
N=3
N=4

Figure 3.6: Transmittance versus wavelength for DF-based structures in which the
number of air gaps, N , is increased from 1 to 4. Here ax = ay = 0.33d and εd = 1.0

PEC layers. This hypothesis is nicely corroborated in Fig. 3.7 which shows the
E-�eld amplitude patterns (evaluated at a xz plane that passes through the
center of the holes) for the �rst four resonances appearing for the case N = 10.

These patterns look like the di�erent waveguide modes appearing in a
Fabry-Perot cavity. They present standing wave character both in the x-
direction (coming from the the interference between two counter-propagating
gap SPP-like modes) and in the z direction, typical of Fabry-Perot like res-
onance. The �rst resonance (appearing for this set of parameters case at
λ = 1.049d) is the fundamental mode in which no nodes are present in the
z-direction. As the wavelength is increased (see panels (c)-(e)), more and more
nodes emerge in the pattern. These four panels highlight the collective nature
of the EM modes involved in the NRI response of multilayered DF-structures.
In the structure analyzed in Figure 3.7 (N = 10), the thickness of the whole
structure is still of the order of the wavelength.

The �nal system we want to present is a truly DF-based 3D metamaterial
made of silver. In Figure 3.8 we render the transmission spectrum (in this
case transmission versus photon energy in eV) for a DF-based structure with
N = 200 air gaps. The geometrical parameters are the same as in previous
cases and we have used d = 600nm as the period of the hole array. As expected,
many transmission peaks located within a very narrow energy range emerge in
the spectrum. The linewidth of this NRI band (marked with label 2 in Fig. 3.8)
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Figure 3.7: (a) Transmittance versus wavelength for the case N = 10. The geometrical
parameters are the same as the ones used in previous cases. Panels (b)-(e) display
the amplitude of electric �eld patterns for (b) λ = 1.049d (1st peak), (c) λ = 1.066d

(2nd peak), (d) λ = 1.081d (3nd peak) and (e) λ = 1.092d (4th peak) evaluated in a
xz plane that cuts the holes passing through their centers.
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Figure 3.8: Transmission versus photon energy (in eV) for a multilayered DF-based
structure in which the number of air gaps is N = 200. The 200 peaks within the
energy window 1.87 − 1.98eV should reach 100% transmission. The inset shows the
dispersion relations (energy versus momentum in the z-direction) for the two NRI-
bands as calculated with the FDTD method.

is of the order of 50nm.
Interestingly, there is another NRI band (marked with label 1) appearing

at higher frequencies. These results are corroborated by FDTD calculations
on the in�nite DF-structure. The inset of Fig. 3.8 displays the dispersion
relation (frequency versus momentum in the z-direction) of these NRI bands
as calculated with the FDTD method. There is an excellent agreement between
the FDTD and modal expansion results that shows again the reliability of our
theoretical framework. More importantly, these results demonstrate that the
NRI behavior in DF structures is maintained as the number of DF-layers is
increased. Note that in real metals in the optical or near-infrared regimes, the
presence of absorption within the metal layer would limit strongly the NRI
response in multilayered DF-based structures.
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3.3 Conclusions

In conclusion, we have presented a complete theory of the NRI response of
double-�shnet structures by analyzing two very distinct frequency regimes.
Our results show that these structures can be interpreted as holey plasmonic
metamaterials. Their electric permittivity is governed by the cuto� frequency
of the hole waveguide. Negative values of the magnetic permeability are as-
sociated with the excitation of gap-SPP modes in the dielectric �lm. Finally,
we have also analyzed how the negative refractive index response evolves when
many double-�shnet units are stacked together. Multiple magnetic resonances
emerge in these structures originated from the electromagnetic coupling be-
tween the di�erent gap surface modes of the dielectric gaps. These results
show the negative refractive index behavior is maintained in a truly 3D DF-
based metamaterial.





Chapter 4

Plasmonic devices

4.1 Introduction

The emerging �eld of Plasmonics is based on exploiting the coupling between
light and Surface Plasmon Polaritons (SPPs). Because of SPP modes are not
constrained by the optical di�raction limit, it is hoped they could enable the
construction of ultra-compact optical components [137�139]. Among these
components would have SPP sources and waveguides for sending information
through, from one place to another on a hypothetical Plasmonic-chip.

During this thesis, we have been working on these very interesting topics
in the potential use of SPPs as we will see below:

a The �rst topic is addressed in Section 4.2, which is related with the
inherent di�culty of exciting SPPs in an e�cient manner [140, 141].
Given that SPPs cannot be directly excited due to the mismatch mo-
mentum with freely propagating light, the light-plasmon coupling e�-
ciency becomes of crucial importance for the success of any plasmonic
device. In these works, we investigated a nano-structured metallic sys-
tem that allows SPPs being unidirectionally excited from the source, in
this case, a slit drilled through a metal �lm. It is vital for the realiza-
tion of SPPs nano-optical components that the relatively poor light-SPP
coupling is improved. Another di�culty in plasmonic circuits is that the
incident light, which is conventionally used to launch SPPs in a metal
�lm [142�145], is a signi�cant source of noise, unless directed away from
a region of interest which then decreases the signal and increases the
system's size. Back-side illumination of subwavelength apertures in op-
tically thick metal �lms [146�152] eliminates this problem but does not
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ensure a unique propagation direction for the SPP.
In Section 4.2 we present a novel back-side slit-illumination method which
incorporates a periodic array of grooves carved into the front side of a
thick metal �lm. Bragg re�ection enhances the propagation of SPPs
away from the array, enabling them to be unidirectionally launched
from, and even focused to, a localized point. We also show a com-
prehensive study on the modulation (enhancement or suppression) of
such coupling e�ciency. Our approach is based on simple wave interfer-
ence and enables us to make quantitative predictions which have been
both numerically and experimentally con�rmed at both the near infra-red
and telecom ranges. From the theoretical standpoint we use the Finite-
Di�erence Time-Domain (FDTD) method (Section 1.2) and a Coupled
Mode Method (CMM)(Section 1.3) version adapted for investigating the
optical response of �nite set of 1D-indentations. The CMM method has
been conducted by Dr. F. López-Tejeira at the Departamento de Física
de la Materia Condensada (Universidad de Zaragoza).

b In Section 4.3 the second topic is investigated, which relates with our
ability to control light on a surface once it has been �launched�. In ref-
erences [153�155] we presented a theoretical study on two di�erent pro-
posals for guiding EM �elds, namely the modes supported by a carved
triangular groove in metal and, in a way, the �complementary� struc-
ture, a triangular metal wedge. This challenging matter, the guiding
of light within a subwavelength cross section, is especially compelling
due to the ever increasing demands for miniaturization of photonic cir-
cuits. Therefore, the realization of subwavelength guiding structures is
a key factor for miniaturization, because these components would per-
mit denser waveguide packaging without crosstalk, and lower waveguide
bending loss.
Light may be con�ned in the direction perpendicular to a �at metallic
surface at energies below the metal plasma frequency if it couples to
SPPs. Various geometries have been proposed to achieve con�nement
of the plasmon-polariton in the plane transverse to the propagation di-
rection [156�161]. Among these proposals, the plasmon-polariton guided
by a V-shaped groove carved in a metal (channel plasmon-polaritons,
CPPs) and the modes supported by a metallic wedge (wedge plasmon-
polaritons, WPPs) are particularly interesting. CPPs were theoretically
suggested by Maradudin and coworkers [162] and subsequently studied
in the visible regime [158, 163]. CPPs have been experimentally inves-
tigated at telecom wavelengths [164], displaying strong con�nement, low
damping, and robustness against channel bending. Thanks to these prop-
erties, prototypes of basic devices could be demonstrated [165]. On the
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other hand, WPPs were also shown to support strongly localized plas-
mons, which has been demonstrated both theoretically [154, 159] and
experimentally [159, 166].
The �rst devices were developed with the help of e�ective index approxi-
mations. An e�ective index approximation can deliver information about
the dispersion relation, but it is expected to be inaccurate for frequen-
cies close to the mode cuto� and is unable to determine modal shape
and polarization. The functionality of many devices relies on the over-
lapping of electromagnetic �elds at various sites inside the device. For
this reason the knowledge of the modal shape is essential to provide a
solid foundation for the design of CPP-based devices.
In Section 4.3, we present rigorous simulations of guided CPPs andWPPs
aimed at elucidating their characteristics at telecom wavelengths, includ-
ing full vectorial modes, dispersion, and losses. The simulations were per-
formed with two rigorous electrodynamic techniques: the FDTD method
(Section 1.2) and the multiple multipole method (MMP) [167], this lat-
ter carried out by Dr. E. Moreno at the Departamento de Física Teórica
de la Materia Condensada, Universidad Autónoma de Madrid. Our goal
thus is to understand the fundamental CPP and WPP modes guided
by realistic structures at telecom wavelengths [164]. Nevertheless, in or-
der to comprehend the behavior in this regime, which is close to cuto�,
we will consider a broader spectrum, higher order modes, and a num-
ber of di�erent geometries. Finally, we design optical devices which rest
on the results previously found. In this way, we propose a WPP to SPP
geometry-driven conversion device. Besides, it is demonstrated both the-
oretically and experimentally that �tapered� CPP supporting structures
can enhance EM �elds near the surface.
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4.2 An e�cient source for surface plasmons

Because of the so-called �excess of momentum� with respect to light of
the same frequency, SPPs cannot propagate away from a planar surface and
are thus bound to and guided by it. As a consequence of such binding, SPP
modes can be laterally con�ned below the di�raction limit, which has raised the
prospect of SPP-based photonic circuits [137, 138, 168]. To build up this kind
of circuits one would require a variety of components in which incident light
would be �rst converted in SPPs, propagating and interacting with di�erent
devices before being recovered as freely propagating light. Hence, a great deal
of attention has been devoted to the creation of optical elements for SPPs
[165, 169�173], as well as to the e�cient coupling of freely-propagating light
into and out of them. This latter issue constitutes the fundamental bottleneck
that must be overcome in order to fully exploit the potential of SPPs, given that
established techniques for SPP generation (which make use of prism [142, 143],
grating [144] or nanodefect [145] coupling) require that the system's size be
well out of the subwavelength scale in order to obtain a neat SPP signal. On
the other hand, p-polarized back-side illumination of subwavelength apertures
in optically thick metal �lms [146�152, 174] prevents both damping and signal
blinding but it does not ensure only a propagation direction for the generated
SPPs.

In the present section we present a back-side slit-illumination method based
on drilling a periodic array of indentations at one side of the slit. It will be
demonstrated that the SPP beam emerging from the slit to its corrugated side
can be back-scattered in such a way that it interferes constructively with the
one propagating in the opposite direction, thus obtaining a localized unidirec-
tional SPP source. We provide a comprehensive version of such proposal and
discuss in some extent its range of validity.

4.2.1 Description of the proposal

A picture of the proposed structure is shown in Fig. 4.1. The starting
point for such a design can be found in a previous work on 1D SPP scattering
by means of the CMM [42, 175]. In order to cope with SPP launching, it
was considered a single slit �anked by an array of indentations (rectangular
grooves) placed in the output surface of a thick metallic �lm. Eventually, the
distance between the slit and indentations was taken to be in�nity. In this way,
the slit merely played the role of a theorist's SPP-launcher, as far as it can be
shown that the �eld created by the slit corresponds to SPP illumination into
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Figure 4.1: Parameters {ai, h, w, d, P} de�ning the geometry of the system are also
shown.

the grooves. Besides, it was also found a simple geometrical condition for the
groove array to behave as a perfect Bragg mirror, associated to the low-λ edge
of the plasmonic band gap for the periodic system. For narrow subwavelength
indentations, the spectral locations of these edges can be approximated by
folding the dispersion relation of SPPs for a �at metal surface into the �rst
Brillouin zone [176]. Such folding results in

kpP = k0Re[qp]P = mπ, m = 1, 2 . . . (4.1)

where P is the period of array and kp holds for in-plane plasmon wave-vector.
Combining these two elements, one can obtain a remarkably simple scheme

for the modulation of SPP coupling-in: given an incident wavelength, let us
place at a distance d from one of its sides a groove array for which re�ectance
rises to a maximum. Hence, any SPP emerging from the slit will be mainly
back-scattered and interfere either constructively or destructively with the one
leaving the slit by its opposite side. This interference can be tuned by adjusting
the separation d between the slit and the �rst groove of the array, de�ned centre
to centre. The total phase di�erence, φ, between the interfering SPPs will then
consist of the phase change upon re�ection plus the additional shift resulting
from the two di�erent path lengths along the metal:

φ = φR + 2Re[kp]d, (4.2)



110 Chapter 4. Plasmonic devices

According to Eq. (4.2), constructive or destructive interference should occur
for those phase values equal to, respectively, even or odd multiples of π.

We have found that φR is close to π over a wide range of groove depths for
a/λ ≤ 0.2 at both NIR and telecom ranges, as stated in Ref. [141]. Taking this
result into account and substituting for kp from Eq. (4.1) into Eq. (4.2) yields

φ(λR) = (2md/P + 1)π, (4.3)

which reduces the design of our proposed scheme to a suitable choice of the
d/P ratio.

However, the key point of the proposal still relies on the properties of SPPs.
The EM �elds radiated by the slit cannot be considered �purely plasmonic� at
distances smaller than several wavelengths, where the �eld consist partly of
a di�erent wave that decays as x−1/2, the so-called �creeping wave� [42, 177].
This makes necessary detailed computations that go beyond the simple model
described before. On the other hand, SPPs have been thought to dominate the
EM �eld beyond this region. However, irrespectively of the metal considered,
the long-distance asymptotic limit of the EM �eld at metal surface is not the
SPP but a di�erent type of wave known as Norton wave (NW) [178]. This wave
decays as x−3/2 for 2D-dipole sources and as x−2 for 3D-dipoles, a behavior
substantially di�erent from the exponential decay of SPPs. Note nevertheless
that contribution to the surface �eld of NWs is negligible at distances smaller
than ∼ 5 times the corresponding SPP propagation length [178]. At the near
infrared and telecom the propagation length of a SPP is greater than 100
microns by far, so NWs do not play a signi�cant role.

In order to characterize the e�ciency of the slit + array system as a SPP-
launcher for any slit-to-array separation, we introduce its �e�ciency ratio", ER:
given that the array be located at the left side of the slit (see Fig. 4.1), ER is
de�ned as the quotient between the current intensity of right-propagating SPP
with and without the grooves. Strictly speaking, ER provides the e�ciency of
the output side of the device. The total e�ciency, de�ned as the percentage
of incident energy transferred onto the plasmon channel, strongly depends on
the illuminating setup. ER should vary within the interval [0, 4] showing a
dependence on the distance between the illuminating slit and the groove array.
More importantly, ER > 2 implies that the right-propagating SPP current in
the presence of grooves is larger than the total SPP current (left- plus right-
moving) in the single slit case, so some of the power radiated out of plane is
redirected onto the SPP channel. According to this simple wave interference
model,

ER ≈ |1 + re2ikpd|2, (4.4)

where r is the complex re�ection coe�cient of the groove array for SPPs. To
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check the validity of Eq. (4.3) and Eq. (4.4) for slit-to-array separations outside
the asymptotic regime, we have carried out numerical calculations of EM �elds
by means of both CMM (Section 1.3) and FDTD (Section 1.2). The system
under consideration is intended to operate at a wavelength of 800nm on a gold
�lm (Table 1.1). We consider an array of 10 grooves with a period P = 390 nm.
The depth of the grooves is chosen to be w = 100 nm, while the width of both
grooves and slit is a = 160 nm, which are typical experimental parameters.
Figure 4.2(a) shows the comparison between Eq. (4.4) and numerical evalu-
ations of ER, as well as the location of interference maxima (vertical lines)
predicted by Eq. (4.3) for m = 1. The agreement between CMM and FDTD
results is excellent, except for very small distances (d ≈ 2a) between the slit
and the array, when intra-wall coupling between the slit and the �rst groove
has to be taken into account. As can be seen, the locations of maximum ER

are accurately predicted by Eq. (4.3), which allows us to design SPP-launchers
without elaborate numerical calculations. Moreover, the simpli�ed model of
Eq. (4.4) provides a good approximation to ER with the sole input of r. This
also implies that non-plasmonic contributions to groove illumination play a
minor role in the occurrence of either constructive or destructive interference,
for this particular structure choice, which is clearly described by Eq. (4.4) with
the except of minor shifts.

In addition to the e�ciency ratio, �eld patterns in both minimum and max-
imum condition were also calculated using the FDTD method. As shown on
Fig. 4.2(b), SPPs are completely absent from the left side of the slit whereas
�eld intensity at its right side is clearly modulated by the slit-to-array sepa-
ration, which also governs the spatial distribution of the �eld that is radiated
into the vacuum.

4.2.2 Results

Near-infrared

To test experimentally the proposal, several samples were prepared at Labora-
toire de Nanostructures, ISIS, Universitè Louis Pasteur, in the group of Prof.
T.W. Ebbesen. Using a focused ion beam in 300-nm-thick gold �lms they made
samples for di�erent values of d, with all other geometrical parameters being
the same as in the previous calculations. Each sample consists of a single long
slit �anked by a �nite periodic groove array that extends over only half of the
slit length (see Fig. 4.3).

This sample design allows the quantitative experimental study of the SPP
launching e�ciency, as the �isolated� slit (upper part) can be used as an in-
chip reference. The set of samples was imaged by a photon scanning tunnelling
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Figure 4.2: Numerical results for the SPP launcher at wavelength λ = 800 nm. (a)
Dependence of the e�ciency ratio ER on the slit-to-array distance. The geometrical
parameters de�ning the system are: slit and groove widths a = 160 nm, groove depth
w = 100 nm and array period P = 390nm. The �gure renders the curves obtained
by means of FDTD (solid), CMM (dashed) and Eq. (4.4) (short-dotted). Vertical
lines mark the positions of ER maxima according to (4.3). (b) Calculated |Re[Hy]|
distributions over xz plane for two di�erent distances corresponding to minimum and
maximum values of ER at λ = 800 nm.
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Figure 4.3: Scanning electron micrograph and schematic diagrams of the proposed
structure.

microscope at Laboratoire de Physique de l'Universitè de Bourgogne, (Dijon,
France) in the group of Prof. A. Dereux, making use of an incident focused
beam illumination for frequencies in the [765,800] nm interval. Owing to spe-
ci�c features of the experimental set-up used for measurements in the optical
regime, the incident laser beam was directed on the sample (attached to a
prism) under an angle of 430 with respect to the normal. However, it should
be noted that the choice of angle of incidence is not critical for the spatial dis-
tribution of transmitted energy, as a subwavelength slit in an optically thick
metal �lm transmits only in the fundamental mode. For each distance, d, a pair
of images was recorded by scanning at a constant distance of about 60-80nm
from the sample surface. The �rst image of the pair, corresponding to the
SPP launching by a single slit, was obtained by focusing the laser beam on the
upper part of the slit. For the second image, the laser beam was moved to the
lower part to collect the data for the slit+grating case. Image for d = 585nm
is shown in Fig. 4.4(a). This �gure clearly shows that the grating increases
the intensity of the right-propagating SPP for d = 585nm. To quantify this
e�ect, an average longitudinal crosscut of each image is obtained by using 20
longitudinal cross-cuts, corresponding to di�erent coordinates along the slit
axis. Then, the relative position of the two average cross-cuts composing each
image pair is adjusted so that the saturated areas (that is, the signal taken
right on top of the slit) are superimposed. Finally, the experimental e�ciency
ratio, ER, is extracted by averaging the ratio between the two curves along
the longitudinal cross-cut. Figure 4.4(b) shows experimental results for ER

for the �ve di�erent samples fabricated. The agreement between the experi-
mental data and the FDTD predictions is quite remarkable (especially when
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Figure 4.4: Experimental measurement of ER at λ = 800 nm for the same geomet-
rical parameters as in Fig. 4.2. (a) Photon Scanning Tunneling Microscope (PSTM)
micrographs recorded for a sample with d = 585 nm at both �single slit� (top) and
slit+array con�gurations (bottom). The right panel shows the two cross-cuts from
which ER is obtained. Vertical lines de�ne the interval along the ratio is averaged.
(b) Experimental (circles) and numerical (solid line) values of ER as a function of
slit-to-array distance. The error bars represent the standard deviation over a set of
di�erent structures with the same nominal parameters.
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taking into account that each experimental point corresponds to a di�erent
sample), showing that the presence of the grating modulates the coupling into
the right-propagating SPP.

Telecom

Similar samples to those used in the NIR measurements were designed to oper-
ate at the telecom range by up-scaling the period of the array and its separation
from the slit (see Fig. 4.5(a)). Telecom measurements were conduced by I.P.
Radko and Prof. S.I. Bozhevolnyi in Aalborg (Denmark) at the Department
of Physics and Nanotechnology. During the experiments, they found an insta-
bility in the illumination setup that resulted in a noticeable variation of SPP
intensity while taking place the near-�eld scan process, which took about 45
minutes per image. As a consequence of those intensity jumps, the technique
used to evaluate the �e�ciency ratio� in the NIR became unsuitable. Instead,
ER was found as the SPP signal ratio taken from each pair of near-�eld images
(with and without side grooves) at the same distance from the slit. This refer-
ence distance (≈ 50µm) is chosen so that the non-plasmonic �eld contribution
can be disregarded, whereas the SPP signal is still substantial for the quanti�-
cation. To decrease the uncertainty of the measured e�ciency, a series of scans
were performed for every structure and wavelength measurements, conducting
independent adjustments, and the subsequent averaging of the ER values ob-
tained. Hence, the error ER represents a statistically estimated deviation.

A typical pair of near-�eld optical images is presented in Fig. 4.5(b) and
Fig. 4.5(c). For telecom wavelengths, the SPP propagation length is increased
up to ≈ 200µm. Panel (c) features a strong SPP beam propagating away from
the slit in the direction opposite to the array and thereby demonstrating uni-
directional SPP excitation. Averaged results and estimated errors for ER are
rendered in Fig 4.5(d). Notice that the validity of our proposal is now tested
in a di�erent way: for a given slit-to-array separation, ER is measured within
the wavelength range 1500-1620 nm, so that the phase di�erence described by
Eq. (4.2) changes as the wavelength increases, providing the conditions for con-
structive or destructive interference. This spectral dependence of the e�ciency
is di�erent for di�erent slit-to-array separations. For the case of the sample
with d = P + P/2 = 1125nm, ER decreases as the wavelength increases (with
the only exception of the data point at 1520nm), evolving from a favorable
regime (ER ≈ 2) to one in which coupling into SPPs is clearly diminished by
the array ( ER < 1). Conversely, ER ≈ 2 for the sample with d = 3P/4 = 562
nm all over the range. As can be seen, the comparison between experiments
and CMM is rather satisfactory.
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Figure 4.5: Spectral dependence of ER at the telecom range. (a) Scanning electron
micrograph of the sample. The geometrical parameters are: slit length L = 50µm, slit
width a0 = 400 nm, groove width a = 200 nm, groove depth w = 100 nm and array
period P = 750 nm. (b) Near �eld image recorded with the laser beam focused at
the �isolated slit� position of a sample with d = 3P/2 = 562 nm. (Size = 70×26µm2,
λ = 1520 nm). (c) Same for slit+array focusing. (d) Spectral dependence of ER for
slit-to-array distances of d = 3P/2 = 1125 nm (experiment: squares; theory: solid
line) and d = 3P/4 = 562 nm (experiment: circles; theory : dashed line).
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Finally, we have to mention that the proposed approach for the excitation
of localized unidirectional SPP beams can also be combined with the appro-
priate design modi�cations to create functional components for SPP focusing
to a spot or tuning the SPP beam divergence. If ER ≥ 2 is expected for a
given slit+array set, its circular bending may produce a converging gaussian
beam whose waist length and radius can be adjusted changing the curvature.
Several curved SPP focusers have been studied previously [179�183], but our
scheme presents the advantage of preventing SPPs to escape in the opposite
direction to the focus. Although the rigorous modeling of SPP coupling at
curved structures is rather complicated, we expect Eq. (4.3) to still provide
a good estimation for the proper design of the structure, for moderate curva-
tures. On that assumption, several samples were fabricated consisting of an
arc-of-a-circle slit �anked by the corresponding array of parallel bent grooves
(see Fig. 4.6(a)-(c)). Geometrical parameters a0, a, w, P are the same as in
Fig. 4.5, whereas slit-to-array distance is set to d = 3P/2 = 1125 nm.

Figure 4.6: (a) Scanning electron micrograph of the curved structure, characterized
by slit and groove widths of 400 and 200 nm, respectively, groove periodicity P = 750
nm, groove depth w = 100 nm and slit-groove distance d = 1125 nm. Film thickness
h = 280 nm, curvature radius R = 30µm and slit chord length L = 40µm. (b), (c)
Same for R = 45µm and R = 60µm. (d), (e), (f) Far �eld images of SPPs excited
on the structures(a), (b) and (c), respectively, recorded with a charge-coupled device
camera.

As shown in Fig. 4.6(d)-(f), the e�ect of SPP launching and focusing can
be appreciated already at the stage of far-�eld adjustment due to weak out-of-
plane SPP scattering by surface roughness. Near-�eld images of SPP excitation
on those structures recorded at free-space wavelength of 1520 nm are presented
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Figure 4.7: (a), (b), (c) Near-�eld images (size 64× 32µm2) of SPPs excited on the
structures in Fig. 4.6 at λ = 1520 nm. Lower left panel depicts cross cuts obtained
from (a) by dissecting the SPP focal spot along longitudinal and transversal directions.

in Fig. 4.7. These images clearly demonstrate the ability of a curved slit to
excite a convergent SPP beam, this e�ect being su�ciently enhanced due to the
side grooves (cf. [180, 181]). With the smallest radius of curvature (30 µm),
focusing to a con�ned spot having size 3×3 µm2 is observed (see the cross cuts
in the lower left panel of Fig. 4.7). The SPP beams excited on the less curved
structures present an extended waist (Fig. 4.7(b) and Fig. 4.7(c)), which scales
(at least visually) according to expectations, providing a wider, and hence less
divergent, SPP beam. This might be useful for particular applications, e.g. in
sensing of elongated biological samples or in coupling to low-numerical-aperture
waveguides.
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4.3 Guiding and focusing EM �elds with CPPs and
WPPs

As we said, CPPs are electromagnetic modes supported by grooves carved in
metallic surfaces whereas WPPs are the corresponding modes sustained by
metallic wedges. Roughly speaking, one could say that the electromagnetic
�eld of CPP and WPP modes is guided along the bottom of the groove or the
edge of the wedge, respectively.

Behavior of electromagnetic �elds next to corners and edges has arisen the
interest of scienti�c community since a long time. The �rst report dealing
with these geometries within the context of surface plasmons was published by
Maradudin and coworkers [184]. The mentioned paper considers an idealized
geometry in the electrostatic approximation. The next landmark, in 2002, was
a complete treatment including retardation for realistic geometries [162]. After
this year the number of works, both theoretical and experimental, reporting
on CPPs and WPPs has rapidly increased. We can mention the following rea-
sons for this interest. First, the achievement of tightly con�ned modal �elds
and long propagation lengths count among the main design goals. We will
see that CPPs and WPPs feature good con�nement and a reasonable prop-
agation length, and are therefore promising candidates. Second, the planar
paradigm is preferred from a technological perspective, and the modes studied
in this chapter �t well with planar metallic structures. From a more funda-
mental point of view, let us remark that edges and corners appear in other
structures. In this sense CPPs and WPPs constitute building blocks that
show up in other kinds of plasmonic guides such as stripes, trenches, gaps,
and so on. Thus, understanding the properties of CPPs and WPPs is very
useful for the design of another kind of plasmonic waveguides. Let us mention
that, in spite of the di�culties to fabricate narrow angle CPPs and WPPs,
these have been already demonstrated and CPP-based functional devices have
been reported [185]. Recently, CPPs have been experimentally investigated at
telecom wavelengths [164], displaying strong con�nement, low damping, and
robustness against channel bending. Thank to these properties, prototypes of
basic devices have been demonstrated [165].

The mentioned devices have been developed and analyzed with the help
of the e�ective index approximation. The e�ective index approximation can
deliver information about the dispersion relation, but it is expected to be
inaccurate for frequencies close to the mode cuto� and is unable to determine
either the modal shape, the polarization and the propagation length, as we
have said in the introduction.

As mentioned above, the goal of this section is to provide an understanding
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of the properties of CPP and WPP modes beyond the e�ective index approx-
imation. We will describe the behavior of modal �eld, dispersion, modal size,
propagation length, and the dependence of these magnitudes on various pa-
rameters by means of rigorous computational electrodynamics techniques.
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Figure 4.8: Schematics of structures supporting channel and wedge plasmon polari-
tons.

4.3.1 Channel Plasmon Polaritons

The functionality of many devices relies on the overlapping of electromagnetic
�elds at various sites inside the device. For this reason the knowledge of the
modal shape is essential to provide a solid foundation for the design of CPP-
based devices. Here we present rigorous simulations of guided CPPs aimed to
elucidate their characteristics at telecom wavelengths, including full vectorial
modes, dispersion, and losses.

Nevertheless, in order to comprehend the behavior in this regime, which
is close to the waveguide cuto�, we will consider a broader spectrum, higher
order modes, and a number of di�erent geometries. The simulations have
been performed with two rigorous electrodynamic techniques: MMP [167] and
FDTD (Section 1.2). Within the MMP method the corners are rounded (10 nm
radius of curvature). FDTD results were converged for a mesh of about 5 nm.
Such �ne meshes are essential, specially for wavelengths shorter than ≈ 0.8µm.
The grooves are carved in gold and we employ experimentally measured values
(Table 1.1) of the dielectric permittivity ε.



4.3. Guiding and focusing EM �elds with CPPs and WPPs 121

Figure 4.9: Dispersion relation for various modes. Black thick line: SPP mode on a
�at surface. Green lines (squares): CPP(∞) modes for an in�nitely deep groove. Red
line (open circles): WPP(∞) mode for an in�nitely deep wedge. Right insets: time
averaged electric �eld amplitude of the two CPP(∞) modes at 0.6 µm. Left inset:
same for the WPP(∞) mode. The lateral size of the insets is 2 µm.
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Figure 4.9 shows the dispersion relation for a non-truncated groove with an
angle of φ = 25◦ and in�nitely long sides. This structure sustains two modes,
being termed CPP(∞) (see right insets), which are outside the dispersion line
of the SPP at a �at surface. The modal shape (time averaged electric �eld
amplitude) is shown in the right insets for a wavelength of λ = 0.6µm. In
the �gure it is also plotted the dispersion relation for a non-truncated metallic
wedge of angle φ = 102.5◦ and in�nitely long sides. The corresponding wedge
mode running along the edge is termed WPP(∞) (see left inset). WPP(∞)
for this φ will be relevant when we later truncate the above groove at a �nite
height: it corresponds to the edges at both sides of the �nite-height groove.
The WPP(∞) modal �eld at 0.6µm is shown in the left inset. For increasing
wavelength all three modes approach the SPP line (none of them has a cuto�).
In this process modal shapes remain qualitatively the same, the only di�erence
being that the �elds are expelled away from the groove or wedge corners.

Figure 4.10 represents a similar plot but now a groove of �nite height is
considered, being arbitrarily chosen 1.17µm (however it is of the order of typ-
ical experimental values). The CPP modes exhibit now a cuto� at di�erent
wavelengths (∼ 1.44 µm for the �rst mode and ∼ 0.82 µm for the second one).
This was advanced in Ref. [186], and it is a consequence of the above men-
tioned behavior of the �elds for increasing wavelength. As the wavelength
increases, the �eld is pushed out of the groove and, after a certain threshold,
it can no longer be con�ned by the groove sides and is radiated in the form
of SPPs along the contiguous horizontal metal surfaces. It is important to
realize that, before reaching the SPP dispersion line, both modes approach
and cross the WPP(∞) line. This means that close to cuto� the CPP modes
must be hybridized with the modes running on the edges at both sides of the
groove. This idea is visualized in the insets, that render the modal shapes
(time averaged electric �eld amplitude) at 0.6µm. At this wavelength the �rst
mode is not close to WPP(∞) and the hybridization does not take place, but
it is already happening for the second mode. The described phenomenon is
even more distinct in Fig. 4.11 displaying the fundamental mode for increasing
wavelengths. It is observed that the CPP mode becomes more and more mixed
with the WPP(∞). Close to cuto� (at about 1.44µm) the mode is not guided
at the groove bottom anymore but rather at the groove edges. A hint of this
possibility was mentioned in the �rst experimental work [187]. In the exper-
iments, the edges at both sides of the groove have larger radius of curvature
than in the previously presented simulations. We have veri�ed that this does
not alter our conclusion by repeating the same computation with a radius of
curvature of 100nm at the groove edges (while keeping a radius of curvature
of 10 nm at the bottom). Figure 4.11(d) shows the instantaneous transverse
electric �eld amplitude for this case and it is clear that hybridization with edge
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modes still occurs. The transverse electric �eld is approximately horizontal in-
side the channel (an assumption used by the e�ective index approximation),
but it is not horizontal near the edges where the �eld is maximum. Let us
note in passing the excellent agreement between of the two techniques em-
ployed here (the residual discrepancy in Fig. 4.10 for the fundamental mode
at 0.6µm is due to di�erent rounding schemes of the groove bottom in the
two methods). From the point of view of fabrication it is useful to mention
that, for λ ∈ (0.6µm, 0.8µm), the dispersion relation is extremely sensitive
to the �ne details of the groove bottom (e.g., rounding), as concluded after a
large number of simulations where the details of the bottom were subjected
to small perturbations. On the other hand, this does not happen for telecom

Figure 4.10: Dispersion relation for various modes. Black thick line: SPP mode on
a �at surface. Blue lines (full circles): CPP modes for a groove of height 1.17 µm
(computed with MMP method). Triangles: same as before computed with FDTD
method. Red line (open circles): WPP(∞) mode for an in�nitely deep wedge. Insets:
time averaged electric �eld amplitude of the two CPP modes at 0.6 µm. The lateral
size of the insets is 2 µm.

wavelengths (as expected from the modal shape), a circumstance that has also
been observed experimentally [165]. Note that the calculated cuto� wavelength
of the fundamental mode is somewhat lower than the wavelengths used in the
experiments. This discrepancy can be ascribed to (small) di�erences in the
groove geometry, both in the groove shape (angle, side �atness) and in the
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groove depth, and/or di�erent dielectric permittivity of gold. We have veri�ed
(not shown here) that slightly less negative ε or/and smaller groove angle φ

leads to a higher cuto� wavelength. Finally, the experiments were conducted
at ambient conditions so that water condensation could not be excluded (a
very thin water layer can signi�cantly increase the cuto� wavelength).

The e�ect of absorption is summarized in Fig. 4.12 that renders the prop-
agation length l = [2Im(kz)]−1 versus wavelength, for the various structures
considered (kz is the modal wave vector). The propagation lengths are in all
cases smaller than that of SPPs at a �at surface. This is a consequence of
the �eld enhancement at the corners and the �eld con�nement that decreases
the portion of �eld propagating in air. When comparing the CPP modes
it is observed that the e�ect of truncation at a �nite height is only impor-
tant for wavelengths larger than 1µm, which is reasonable because the �eld is
strongly con�ned at the groove bottom for smaller λ. For longer wavelengths
the CPP propagation length is decreased as compared to that of CPP(∞). At
λ = 1.4 µm we �nd that lCPP = 53µm and lCPP = 35µm with MMP and
FDTD (See Section 1.2.3 for further details), respectively. To explain this

Figure 4.11: Modal shape of the CPP fundamental mode for increasing wavelength λ.
(a) λ = 0.6 µm, (b) λ = 1 µm, (c) λ = 1.4 µm (close to cuto�). These panels display
the time averaged electric �eld amplitude. (d) Instantaneous transverse electric �eld
amplitude at λ = 1.4 µm for a structure with groove edges rounded with 100 nm
radius of curvature. All panels have a lateral size of 2 µm.

discrepancy between the two methods, we must take into account that high
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lCPP values are a consequence of the �long-lasting� processes being involved
in building the resonance up. The di�erent rounding schemas used, while not
a�ecting the dispersion relation spectral position of CPPs at telecom wave-
lengths, become nevertheless an important issue when propagation lengths are
calculated. Note that the experimental values reported in Ref. [164] at 1.55µm
are larger than the computed ones. The discrepancy can be again ascribed to
slight di�erences in geometry and/or dielectric permittivity that rise the cuto�
wavelength. If the trend of the line corresponding to the CPP is extrapolated,
we �nd good agreement with the reported data. It must be noticed that the
propagation length of WPP(∞) is signi�cantly higher, a fact that could �nd
obvious applications as we will show later.
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Figure 4.12: Propagation length versus wavelength for various modes. Black thick
line: SPP mode on a �at surface. Blue line (full circles): CPP fundamental mode for
a groove of height 1.17 µm with the MMP method. Green line (squares) : CPP(∞)
fundamental mode for an in�nitely deep groove. Red line (open circles): WPP(∞)
mode for an in�nitely deep wedge. The FDTD calculation is plotted with square
black symbols for the truncated groove.
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4.3.2 Wedge Plasmon Polaritons

The basic structure studied here is a metallic wedge surrounded by vacuum. It
has an in�nitely long edge, which is the propagation direction (Z axis) for the
supported electromagnetic modes (the edge is rounded with radius of curva-
ture r). The wedge angle is denoted as φ. We consider both wedges truncated
at a certain height y = h (as shown in Fig. 4.8(b)), and non-truncated wedges
(h → ∞). The modes corresponding to non-truncated wedges will be named
WPP(∞), as before. The considered metal is gold. The size of the considered
structures is su�ciently large so as to use bulk dielectric functions and neglect
additional damping due to electron scattering at the metal surface. The ef-
fective index model allows one to argue that a metallic wedge sustains modes
that are localized close to its edge and propagate along it, but numerical sim-
ulations are needed to determine accurately the modal characteristics. The
results presented in this section have been obtained with FDTD and MMP.

After an early analysis of WPPs in the electrostatic approximation [184],
these modes were studied by Pile et al. [159] in the visible regime, where the
mode propagation length is very short. Here the emphasis is on telecom wave-
lengths where losses are much lower (see also [188]). Figure 4.13 displays the
modal behavior of WPP(∞) modes for a wedge with angle φ = 20◦ and radius
of curvature of the edge r = 10 nm. Panel (a) shows the dispersion relation
(red line) of the fundamental mode. As corresponds to a non-radiative mode,
it lies outside the shaded area bounded by the dispersion relation of a SPP
mode. The mode has no cuto� wavelength. The modal shape for wavelengths
at both ends of the considered spectrum is plotted in the insets. Modal size
and propagation length as a function of wavelength are presented in panel (b)
(left and right axes, respectively). Here the modal size is de�ned as the trans-
verse separation between the locations where the electric �eld amplitude of
the mode has fallen to one tenth of its maximum value. The factor 1/10 in
this de�nition is somehow arbitrary but it is su�cient for our mode character-
ization purposes. The modal size (red dashed line) grows as λ increases, but
subwavelength guiding is achieved in the whole regime. As mentioned above,
the propagation length (black line) is very short in the visible region of the
spectrum (' 0.5µm at λ = 0.6µm), but it rises to about 40µm in the telecom
regime.

Wedge and channel plasmon-polaritons are now compared at λ = 1.5µm.
In order to have a meaningful comparison, we consider exactly the same geom-
etry for both structures, simply exchanging the metallic and vacuum regions
(Fig. 4.14). The angle and radius of curvature are the same as above, but
we now compute more realistic structures with �nite height (h = 1.2µm, a
typical value for experiments with CPPs). The corners where the �at horizon-
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Figure 4.13: (a) WPP dispersion relation. Black thick line, SPP mode on a �at
surface; red line (squares), WPP(∞) mode supported by a non-truncated wedge.
Insets: time-averaged electric �eld amplitude of WPP(∞) mode at wavelengths λ =
0.6 µm, and λ = 1.6 µm. The lateral size of the insets is 0.5 µm. (b) Modal size (red
dashed line) and propagation length (black solid line) of WPP(∞) mode as a function
of λ. Inset: diagram of the truncated wedge.
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Figure 4.14: Transverse electric �eld amplitude of (a) CPP mode, and (b) WPP
mode, both at λ = 1.5 µm. The geometry of both structures is identical (see main
text) exchanging the metallic and vacuum regions. The lateral size of panels is 2 µm.

tal surface meets the triangular structure are also rounded (with a radius of
curvature R = 100 nm, also typical for experimental CPPs). The transverse
electric �eld amplitude of both CPP and WPP modes is plotted in Fig. 4.14.
The modal size of the WPP is 0.46µm, signi�cantly smaller than that of the
CPP (2.5µm). This is mainly due to the fact that the CPP mode is hybridized
with wedge modes supported by the edges at both sides of the groove, as stated
in the previous section. These edges correspond to wedges with a large angle
(φ′ = 100◦) and radius of curvature (R = 100 nm), and for which the corre-
sponding WPP modal sizes are larger, as will be shown below. Despite the
di�erent modal sizes, the computed propagation lengths are quite similar for
both modes: 37µm for the WPP, and 34µm for the CPP. It is worth men-
tioning that the CPP mode is very close to cuto� and for a height h = 1µm
the mode is no longer guided, whereas the WPP is guided whenever the height
veri�es h > hc ' 0.2µm.

Let us now consider the dependence of the modal characteristics of WPPs
as a function of the most relevant geometric parameters. The following data
correspond to λ = 1.5µm. The dependence with the height h of the wedge is
summarized in panels (a) and (b) of Fig. 4.15, whereas the dependence with the
angle φ of a WPP(∞) is presented in the lower panels (c) and (d). The modal
e�ective index ne� (i.e., modal wavevector divided by wavevector in vacuum)
is displayed in panel (a). As h decreases, ne� tends to the e�ective index of a
SPP on �at surface (for h < hc, ne� reaches the e�ective index of a SPP and
the mode is no longer guided). Note that a low e�ective index is equivalent
to a more extended �eld, as con�rmed in panel (b) where the modal size is
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Figure 4.15: WPP modal characteristics as a function of wedge height or angle. In
(a) and (b) the height is varied and the wedge angle is constant, φ = 20◦. In (c) and
(d) the wedge angle is varied (the wedge is not truncated). The radius of curvature
is r = 10 nm in all cases. (a) Solid line, e�ective index of WPP mode. (b) Red
dashed line, modal size of WPP; solid line, propagation length of WPP. (c) Solid line,
e�ective index of WPP(∞) mode. (d) Red dashed line, modal size of WPP(∞); solid
line, propagation length of WPP(∞).
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plotted (red dashed line). The propagation length is also shown in panel (b)
(black line), increasing when the cuto� height is approached. The behavior of
the WPP(∞) modal characteristics as the angle φ increases is reminiscent to
what occurs when the height h decreases. There is however a major di�erence:
there is no critical angle above which the mode is not longer guided. As φ is
increased towards 180◦, propagation length, ne�, and modal size tend to those
of a SPP on a �at surface. Modal size rapidly increases as the angle grows, but
our numerical simulations show waveguiding no matter how large the angle is
(whenever φ < 180◦).
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4.3.3 CPP and WPP based devices

A WPP to SPP conversion device

Up to this point we have only been concerned with waveguiding, �nding
that WPPs display better con�nement as compared to CPPs, while keeping
both similar propagation lengths. In this section we present strategies for
WPP↔SPP conversion. A device with this functionality should convert the
shape and size of a WPP into that of a SPP. The task can be also understood
as focusing a SPP to a WPP (if the time arrow is reversed). Since SPPs on
�at surfaces have in�nite transverse extension, the main challenge is the large
modal mismatch. Here, conversion will be achieved by deforming the metal
surface from a wedge geometry to a �at geometry in a continuous way along
the mode propagation direction (Z axis). In other words, the wedge height
or angle become functions of the z-coordinate, h(z), φ(z). It is clear from
Fig. 4.15(a) and Fig. 4.15(c) that, as the angle φ increases or the height h

shrinks, the e�ective index is reduced, leading to a growth of the modal size.
If this conversion were done adiabatically, radiation and re�ection losses would
be negligible, but absorption losses would be large. We hope that a conversion
performed within a few wavelengths would strongly reduce absorption losses,
while maintaining low re�ection and radiation. In order to verify this scenario
we have performed three dimensional (3D) FDTD simulations for structures
with constant wedge angle (φ = 20◦) and various h(z) pro�les. The tight con-
�nement of the mode requires very �ne meshes (we used a mesh of 10 nm).
The simulation domain is a parallelepiped surrounded by perfect matched lay-
ers (PMLs). The simulations are performed at λ = 1.5µm in continuous-wave
mode. All structures have an initial section with constant wedge height (See
Fig. 4.16). The input WPP mode is excited by a source (located at z = 0.5µm
in front of the wedge and buried inside a cavity to prevent direct illumination
from the source to the conversion device).

After a short spatial transient (z < zt = 2 µm), the �eld settles down to a
propagating WPP mode. We �rst simulate a set of test structures all of them
with constant height, h ∈ (0.2, 0.48) µm (structures I). These computations
will allow the evaluation of losses in later structures, and serve as a test of the
FDTD simulations (as the comparison with MMP results, which were done
for 2D systems, is very good). After the initial transient, the exponential
modal decay found is solely due to absorption in the metal, and not in the
PMLs. Modal re�ection at the domain boundary is very small (re�ected power
less than 0.1%). Thus, for structures I, the �eld computed at z = 9.0µm
(shortly before the simulation domain boundary) is a pure WPP mode without
radiation. Structure II has h = 0.48µm for z < 3.9 µm, and then the wedge
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Figure 4.16: Electric �eld amplitude in the WPP→SPP transition (geometries are
detailed in the main text). (a) and (b) longitudinal cross sections for structure II
(dashed line in (a) is the location of longitudinal section (b)). Transverse cross sections
(XY plane, at various z-coordinates) for structure II are rendered in (c), (d), (e),
and (f) (dashed lines in (b) show the position of these transverse cross sections).
Longitudinal cross sections for structure III are rendered in (g) and (h). The cartesian
axes are shown in Fig. 4.8(b). The wavelength is λ = 1.5 µm. The size of all panels
along X and Y directions is 1.4 µm.
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height decreases linearly to zero along a distance ∆z = 3.3µm (h(z) is zero
beyond this point). Figure 4.16(a) shows a longitudinal cross section at the
ZY plane (side view), while Fig. 4.16(b) shows the same but at the ZX plane
at a height h = 0.3µm (top view) of the electric �eld amplitude. The mode
runs from left to right. From panels (a) and (b) re�ection seems to be very
low. As the wedge height decreases, the modal size expands. This is observed
in panels (c) to (f), which display the corresponding transverse cross sections
(XY planes at various z-coordinates). For comparison, we have considered
structure III, which is identical to structure II for z < 4.6µm but with a
wedge height abruptly becoming zero after this point (side and top view in
panels (g) and (h), respectively). In this case we observe strong re�ection at
the discontinuity.

We now want to evaluate non-ohmic losses during WPP→SPP conversion
in structure II. To this end, for every transverse cross section z < zc ' 5.8µm
(zc being the coordinate corresponding to the modal cuto� height hc), we have
computed the overlap of the �eld in structure II at that z, and the �eld of a
WPP mode with the height of structure II at z (these �elds are available from
our computations of type I structures). Let us brie�y describe the method
used here to calculate �eld overlaps. It can be shown that the electromag-
netic eigenmodes supported by the translational symmetric structure (e.g., a
wedge of constant height) are mutually orthogonal [189]. Let us denote such
eigenmodes as

|n〉 = |n(rT)〉 = {En(rT),Hn(rT)} (4.5)
where n = ±1,±2,±3, .... The fundamental mode is n = ±1, and negative
indices correspond to modes propagating in the negative z direction. {En,Hn}
stands for the electric and magnetic �eld, and rT = (x,y) are coordinates in
the transverse plane. Eigenmode orthogonality reads

〈n|m〉 = 〈n(rT)|m(rT)〉
=

∫ ∫

XY plane
dxdy ezEn(rT)×H∗

m(rT) = sgn(n.m)δ|n||m|

(4.6)

where ez is a unit vector along the longitudinal Z axis, the star denotes complex
conjugate, and sgn(.) stands for the sign function. Let us remark that: (i) the
dependence on the z coordinate, exp(iknz), has been omitted (kn is the modal
wave vector), (ii) orthogonality applies both for guided and radiation modes
(continuous indices should be used to label radiation modes, but we will avoid
this to simplify notation), (iii) counter propagating modes with the same index
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(e.g., |1〉 and | − 1〉 ) are not orthogonal, (iv) the scalar product of a mode
with itself is proportional to the power carried in the longitudinal Z direction,
(v) in general, the integral should be carried out in the in�nite transverse XY

plane. Nevertheless, when one of the modes is guided the integrand is non-
negligible only in a �nite part of the XY plane, due to transverse localization
of the guided mode. Thus, in our computations of scalar products shown later,
the integration area will be the transverse FDTD simulation window, (vi) in
�ber and guided optics, orthogonality conditions are routinely used even when
small losses are present. For a general non-cylindrical structure (e.g., a wedge
with height varying along the z coordinate), a generic solution |f(x, y, z)〉 can
be expanded in eigenmodes. For each z the eigenmodes corresponding to that
particular transverse cross section, |n(x, y, z)〉, should be used:

|f(x, y, z)〉 =
∑

n

an(z)|n(x, y, z)〉 (4.7)

where the coe�cients an(z) in the linear expansion are related to the projec-
tions (also termed overlaps) of the solution |f〉 on the various eigenmodes |n〉.
For instance, the overlap with the fundamental WPP mode (n = +1) is

〈f |1〉(z) = 〈f(x, y, z)|1(x, y, z)〉 =
∫ ∫

XY plane
dxdy ez{Ef (x,y, z)×H∗

1(x,y, z)}
(4.8)

When absorption is present, it is convenient to normalize both |f〉 and
|1〉 in a particular way that simpli�es the bookkeeping of radiation leakage.
Namely, at every transverse cross section, z = const, the functions |f〉 and |1〉
are normalized to unity in the chosen �nite integration area. In the following
we will plot the square of the overlap integral, |〈f |1〉(z)|2, for the structures
considered here. Notice that, since |1〉 and | − 1〉 are not orthogonal, this
function may include an oscillating term whenever re�ection occurs, due to the
interference of both eigenmodes and the subsequent formation of a standing
wave. On the other hand, the function should be constant for single mode
propagation, with no re�ection and negligible radiation losses (the mentioned
constant is unity with the chosen normalization). This function is also smaller
than unity when the linear expansion of |f〉 includes other modes di�erent
from | ± 1〉. In other words, |〈f |1〉(z)|2 is smaller than unity when radiation is
present (in the chosen �nite normalization area). This is expected in regions
close to the source. As we move away from it, it is expected the contribution
of radiation to the total �eld diminishes, thereby |〈f |1〉(z)|2 should tend to a
unit value.

Figure 4.17 renders the function |〈f |1〉(z)|2 for the three mentioned struc-
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tures. For the function associated to structure I (black line) we distinctly
observe three phenomena: (i) small ripples, (ii) a value lower than unity for
z < zt = 2µm, and (iii) a value about unity for z > zt. The ripples are due to
the interference of the incoming WPP and a re�ected (counter propagating)
WPP at PMLs. The spatial period of the oscillation is consistent with the
WPP wave vector. From the amplitude of the ripples it can be computed that
the re�ection coe�cient is 0.1%. The function being smaller than unity for
z < zt is due to the fact that, in our FDTD simulations, the source excites
both WPP and radiation modes. The displayed behavior of |〈f |1〉(z)|2 shows
that the contribution of radiation modes to the total �eld |f(x, y, z)〉 is negli-
gible (in the transverse simulation window) after the excitation transient (i.e.,
for z > zt). Finally, a value of the function about unity for z > zt demonstrates
that, after the excitation transient, radiation does not leak anymore (ohmic
absorption is the only source of losses after the excitation transient in structure
I). The analysis of structure II (red line) is analogous: the re�ection is still
very small (0.2%) and not important for our purposes. This tiny re�ection
is most likely caused by the discontinuity (at zd = 3.9µm) in our conversion
device. The radiation losses in the excitation transient are similar to those
discussed for structure I. Finally, the function |〈f |1〉(z)|2 is plotted as long as
the WPP mode exists (i.e., for z < zc = 5.8µm).

Figure 4.17: Squared overlap integral |〈f |1〉(z)|2 as a function of the longitudinal z

coordinate for various structures. Black solid line: structure I, red line: structure
II, green dotted line: structure III. The schematics on top of the graph shows the
height pro�le for the three structures considered and the physical processes involved.
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The graph demonstrates that radiation leakage induced by our conversion
device is very small: less than 5% for zt < z < zc. These are the important
results of this section: our WPP → SPP conversion device produces very
little amount of re�ection and radiation up to the coordinate zc, where the
WPP mode reaches the cuto� and the �eld extends outside the simulation
window. The data corresponding to structure III (green dotted line) show
large oscillations due to the re�ection of the WPP mode at the abrupt height
discontinuity (zIII = 4.6µm). Re�ection is estimated to be about 20% in this
case. In summary, re�ection and radiation can be estimated with the help of
overlap integrals. The performed tests show that the WPP → SPP conversion
device with varying height produces very small re�ection and radiation losses.

Besides, quantitative comparison between the �eld computed for struc-
ture II in the transverse cross section at z = 9 µm and that of a pure SPP shows
that the �eld is mainly a SPP at this coordinate. It is di�cult to distinguish
between radiation, SPP, and WPP along the remaining length available in the
simulation domain, as all these modes have similar wavelengths at the chosen
telecom wavelength (λ = 1.5µm). As an aid for the visualization Fig. 4.18
shows a cross section of the real part of the electric �eld dominant component
(the vertical one). Qualitatively, the �eld after the end of the ramp very much
resembles a SPP. A quantitative proof that a SPP is excited follows. We have
compared the decay along the vertical (Y) direction of the �eld computed for
structure II at various z-coordinates, and the same decay for a pure SPP on a
�at surface (we have done the comparison for all vector components for both
E and H �elds). Figure 4.19 renders the dominant (vertical) component of
the electric �eld along vertical lines located at increasing z-coordinates (col-
ored curves) and the same magnitude for a SPP (computed analytically, black
curve). Two comments are in order: (i) for increasing z the decay of the curves
resembles more and more an exponential function, which would not be the case
if the �eld was pure radiation. In other words, this suggests that, for increasing
z, as radiation escapes, the �eld is more akin to a SPP, (ii) the agreement is
not perfect for large Y, which is also expected since interference with a certain
amount of radiation is still present (the behavior of the other important �eld
component (Hx) is very similar). The �eld at the transverse simulation window
at z = 9µm is, strictly speaking, a superposition of SPP and radiation, but
the main contribution is plasmonic (Fig. 4.19). This information can be used
to estimate the power carried by SPPs through this transverse cross section.
We have seen that the radiation contribution at the surface (z = 9µm, y = 0)
is negligible and there the �eld is essentially a SPP. Assuming that the �eld
at the surface (z = 9µm, y = 0, obtained from the simulation) corresponds to
a pure SPP mode, the power carried by this SPP can be evaluated as 29% of
the input power. This value �ts very well with that obtained in the simulation
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for the transmitted power.
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Figure 4.18: Near �eld image of the vertical (dominant) component of the electric
�eld.
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Figure 4.19: Dominant (vertical) component of the electric �eld along vertical lines
located at increasing z-coordinates (colored curves) and the same magnitude for a
SPP (computed analytically, black curve)

This agreement is consistent with the similarity of the �elds shown in Fig-
ure 4.19, (power scales with the square of the �eld). We can thus conclude that
the power through the simulation window at z = 9µm is essentially carried by
SPPs. Notice that, at the end of the device, an (in-plane) angular spectrum
of SPPs is excited, so that the total power coupled as SPPs may be larger
than 29%. The �nite size of the simulation domain impedes the calculation of
the total power coupled to SPPs propagating in all directions in the horizontal
plane. In any case, the goal of the device is converting the WPP mode into a
SPP propagating collinear with the Z-axis.

Finally, in structure II, WPP modes do not exist for h < hc. Moreover, such
a device converts a WPP mode to SPPs propagating with an in-plane angular
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Figure 4.20: Focusing of the WPP(∞) modal �eld as the wedge angle φ is slowly
decreased from φ = 180◦ (SPP mode on a �at surface) to φ = 20◦. The panels
display the transverse electric �eld at a wavelength of 1.5 µm. The lateral size of the
panels is 2 µm. The radius of curvature of the tip is r = 10 nm. The color scale of the
various panels is not the same.

spectrum. For both reasons the coupling of WPP to Z-propagating SPP may
be reduced. These restrictions should not apply for WPP(∞) modes when the
angle is the control parameter along the Z-axis. Therefore, we expect a better
performance for a structure where the wedge angle φ is continuously varied
from a �at surface (φ = 180◦) to a wedge with φ = 20◦. Three-dimensional
simulations of this case are inherently very di�cult because, by construction,
the modal size grows increasingly fast as φ → 180◦. Thus, the mode cannot
�t in the simulation domain, which is constrained by the available computer
memory. Nevertheless, the idea is illustrated in Fig. 4.20, that plots the trans-
verse electric �eld for decreasing wedge angles (2D MMP simulations). Note
how the �eld is concentrated close to the edge. The previously shown FDTD
computations and other studies [190], lead us to expect that focusing (without
radiation or re�ection) can be achieved in a short length also in this case.

The plasmonic �candle�

Nanoguiding and concentrating optical radiation with SPP modes supported
by metal nanostructures is a main strategic research direction in Plasmon-
ics [139, 191], with implications ranging from quantum optics [192] to nano-
sensing [193]. Various con�gurations have been suggested for SPP nanofocus-
ing [154, 194�198], all of them supporting progressively more con�ned SPP
modes in the limit of in�nitely small waveguide cross sections. However, ex-
perimental demonstrations of SPP nanofocusing [199, 200] have so far been
indirect (based on far-�eld observations of scattered [199] or frequency upcon-
verted [201] radiation) and inconclusive with respect to the �eld enhancement
achieved in the focus. Here we report a mechanism for radiation nanofocusing
with CPPs that propagate along subwavelength metal grooves being gradually
tapered synchronously both in depth and width. E�cient CPP nanofocusing
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at telecom wavelengths is directly demonstrated.
The idea of radiation nanofocusing (and thereby of greatly enhanced elec-

tromagnetic �elds) by gradually decreasing a waveguide cross section has al-
ways been very appealing due to its apparent simplicity. Its realization however
requires for the corresponding waveguide mode to scale in size along with the
waveguide cross section, a nontrivial characteristic that is not readily acces-
sible and, for example, cannot be achieved with dielectric waveguides due to
the di�raction limit. The physics of SPP guiding is fundamentally di�erent
and intimately connected with the hybrid nature of SPP modes, in which
electromagnetic �elds in dielectrics are coupled to free electron oscillations
in metals [7]. Several SPP guiding con�gurations exhibit, in the limit of in-
�nitely small waveguide dimensions, the required scale invariance, i.e. the
mode size scaling linearly with that of the waveguide. The appropriate SPP
modes are supported, for example, by thin metal �lms (short-range SPPs)
and narrow gaps between metal surfaces (gap SPPs) [81], and by correspond-
ing cylindrical, i.e. rod and coaxial, structures [156, 202]. Note that their
nanofocusing [194�198] is conceptually simple only at a fairly basic level and
requires dealing with several rather complicated issues, such as excitation of
the proper SPP mode [199] and balancing between SPP propagation losses
(that increase for smaller waveguide cross sections) and focusing e�ects [203].
The situation becomes even more complicated if one considers SPP modes
whose scaling behavior is not straightforward. Thus CPP guides, which can
be e�ciently excited with optical �bres and used for ultracompact plasmonic
components [165], exhibit rather complicated behavior with respect to their
geometrical parameters, as we have seen in Section 4.3.1, and their potential
for nanofocusing of radiation has not yet been explored. An important quan-
tity in waveguide theory is the so-called �waveguide parameter�, V , , which is
a measure of the �eld con�nement in a particular waveguide. This parameter
was previously used for planar thin-�lm waveguides as a basic parameter that,
along with the asymmetry parameter, allowed charting universal dispersion
curves for TE modes [204]. In this case the normalized waveguide parame-
ter is in the form: V = k0w

√
εf − εs, w being the �lm thickness, εf and εs

the dielectric constants of the �lm and the substrate, respectively. Based on
the last expression, we approach the problem of CPP nanofocusing by making
use of the following (approximate) expression for the normalized (CPP-based)
waveguide parameter [205]:

VCPP
∼= 2

√
k0dεd

√
|εd − εm|

|εm|tan(θ/2)
≡ 4d

√
πεd

√
|εd − εm|

λw|εm| (4.9)

λ is the light wavelength (k0 = 2π/λ), d and w are the V-groove depth and
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width, θ is the groove angle so that tan(θ/2) = 0.5w/d, εd and εd are the
dielectric constants of dielectric and metal (See Fig. 4.21(a)). It has been
demonstrated that V-grooves with di�erent dimensions and operating at di�er-
ent wavelengths but having the same waveguide parameter feature very similar
�eld con�nement [205]. If the CPP waveguide groove depth and angle are grad-
ually and synchronously decreased, the corresponding waveguide parameter
[Eq. (4.9)] could be kept constant. In this case (and within the same approxi-
mation [205]), one can show that the CPP e�ective index of nanometer-sized
V-grooves diverges towards the taper end: nCPP ≈ (k0d)−1, i.e. it behaves
in the same manner as that of the SPP mode of a tapered nanowire [195]. In
the adiabatic approximation, the CPP �eld is continuously squeezed by the
walls of a tapered V-groove with the maximum �eld being limited only by
the CPP propagation loss. In general and similarly to the nanofocusing with
nanowires [203], the �eld enhancement at the taper end is a result of the inter-
play between CPP dissipation (contributed to by CPP absorption, re�ection
and out-of-plane scattering) and �eld squeezing.

In order to gain further insight and reveal the potential of CPP nanofo-
cusing, we have conducted 3D-FDTD simulations for V-grooves terminated
with tapers of di�erent lengths. In the considered con�guration, the metal
(gold) surface is deforming from the straight channel geometry to a �at sur-
face in a continuous way along the mode propagation direction, i.e. along
the z − axis (Fig. 4.21(a)). In other words, the channel parameters are kept
constant (d0 = 1µm, φ0 = 28o, w0

∼= 450nm) during the initial 20-µm-long
propagation and then become functions of the z − coordinate. We considered

d

w

a b

d(z)

Z

Y

t

Figure 4.21: (a) Schematic of the V-groove geometry and (b) the taper region.

linear tapering with respect to the groove depth: d(z) = d0(1 − (z − z0)/t),
where t is the taper length, z0 is the starting coordinate of the taper and
z0 < z < z0 + t (Fig. 4.21(b)). At the same time, the groove width was
adjusted following four di�erent dependencies:
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w(z) = w0(d(z)/d0)n (4.10)

for n = 0, 1, 2 and 3. Consequently, the normalized waveguide parameter
introduced in Eq. (4.9) varied as follows: VCPP (z) = V 0

CPP (d0/d(z))0.5n−1.
Therefore, as the channel tip is approached, the parameter V was maintained
constant for n = 2, while V 7→ 0 for n = 1 (constant-angle tapering) and n = 0
(constant-width tapering), �nally V 7→ ∞ for n = 3.

The tight con�nement of the mode requires very �ne meshes (we used a
mesh of 10nm), for a working wavelength in the telecom regime. The simu-
lation domain is a parallelepiped surrounded by PMLs to avoid spurious re-
�ections on the system boundaries. The fundamental CPP mode is excited
by a monochromatic oscillating magnetic dipole source pointing along the z

direction and located at z = 1µm into the channel. Such a light source has
the same E - �eld symmetry of a CPP, so it e�ciently couples to CPPs. The
excitation wavelength is chosen to be 1480nm.

Near �eld information can be readily retrieved once the stationary state is
reached, as it is shown in Fig. 4.22. In this �gure we can see �eld distributions
through the lateral (y − z plane) cross sections where the groove width and
depth decrease in accordance with the di�erent dependencies described with
(a) n = 0, (b) n = 1, (c) n = 2, (d) n = 3. We have chosen the 2µm long
taper because it features the best enhancement in all cases, as we will see later
on. Besides the occurrence of a very bright spot in near-�eld (Fig. 4.22), these
simulations show the increase of the standing wave pattern contrast for the
taper with n = 2 (that is obviously related to a corresponding increase of the
re�ection e�ciency of the taper) as well as a strong scattering in the taper
region (especially for n = 0 and 1). However, the simulated V-groove taper
(with optimum parameters: t = 2, n = 2) characteristics are much better with
respect to the �eld enhancement.

Normalized to the non-tapered channel CPP optical signals (|E|2) for dif-
ferent n values are shown in Fig. 4.23(a). These optical signals are extracted
from Fig. 4.22 along the dashed line drawn in panel (a) as reference, which is
placed at 10nm above the metal surface. As we can see, the best performance
(with respect to the �eld enhancement achieved at the taper end) is found for
n = 2, obtaining a maximum value of ∼ 1000. This result is reinforced by
the dependence of the optical signal at its maximum value through the direc-
tion normal to the surface, which is depicted in Fig. 4.23(b). In this �gure is
clearly seen the evanescent character of �elds above the surface for n = 2 and
3. In contrast, for the cases n = 0 and n = 1 the �eld near the surface does
not decay exponentially because radiation dominates over re�ection at the ta-
per end. The �eld near the surface does not exponentially decay because of
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Figure 4.22: Main �gure: 3D-FDTD simulations of CPP �eld distributions through
the lateral (y− z plane) cross sections calculated for 2µm long tapers (λ = 1480nm).
The groove width and depth decrease in accordance with the di�erent dependencies
described by Eq. 4.10 with (a) n = 0, (b) n = 1, (c) n = 2, (d) n = 3. Insets show
the corresponding near-�eld maps at sample surface plane ∼ 10nm over the surface
(indicated with dashed line in the main �gure of panel (a)).
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radiation dominates. The theoretical �ndings agree well with our qualitative
considerations in the sense that the groove tapering should be conducted so
that the groove depth and width decrease in accord, keeping the normalized
CPP parameter [Eq. (4.9)] constant.

Concerning the optimum taper length, we believe that its value is mainly
controlled by the constructive interference of the propagating (towards the
taper) and re�ected CPP modes, though it is a�ected by the CPP propagation
loss as well. Figure 4.24 shows di�erent cross sections of the �eld amplitude
(|E|) along the propagation direction at 10nm above the metal surface (y ∼
1µm) for di�erent taper lengths, for the case n = 2 (Note that the beginning
of the ramp is in this case placed at z = 1µm). As we advanced, the greatest
enhancement is achieved for the 2µm long taper.

For the experimental veri�cation of the idea, di�erent samples were fab-
ricated using focused ion-beam (FIB) milling by the group of Prof. T.W.
Ebbesen at the Laboratoire de Nanostructures, ISIS (Universitè Louis Pas-
teur). The samples were done in a 1.8 − µm-thick gold layer, deposited on
a glass substrate coated with ITO. Several straight 150 − µm-long V-grooves
were milled with the angles close to 28o and depths of 1.1 − 1.3µm, which
were gradually tapered out over di�erent distances t = 2, 3, 4, and 6µm. The
fabricated structures were characterized with a collection scanning near-�eld
optical microscope (SNOM) by the group of Prof. S.I. Bozhevolnyi in Aalborg
(Denmark) at the Department of Physics and Nanotechnology. Experimental
details on the SNOM setup can be found elsewhere [165].

The SNOM investigations showed that all fabricated structures exhibited
the e�ect of signal enhancement at the taper end, with the near-�eld optical
images featuring subwavelength-sized bright spots located at the taper end as
judged from the (simultaneously recorded) topographical images (Fig. 4.25(a)
and (b)). The largest enhancement of the signal was observed for the 2µm

and 3µm long tapers (Fig. 4.25 (c) and (d)) in accordance with FDTD results.
The CPP propagation length was estimated to be ≈ 50µm. This values was
obtained from the exponential �t to the optical signal variation along the
CPP propagation, for di�erent tapered V-grooves excited at the wavelength
of 1480nm. While this value is consistent with previous observations [165],
it does not agree with the theoretical one appearing in Fig. 4.23, which is
about 14µm. This discrepancy may be due to the theoretical structure having
a more acute angle which, as we have investigated in Section 4.3.1, implies
higher absorption levels. The experimental value is also consistent with the
measured signal enhancement Γ, de�ned as the ratio between the maximum
signal in the tapered V-groove and that expected at the taper end coordinate
in the absence of tapering (Fig. 4.25(e)).
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Figure 4.23: Panel (a) depicts the normalized CPP optical signal at 10nm distance
over the �at metal surface (y ∼ 1µm) along the propagation direction (z), for the
2µm long taper and di�erent n values. The dashed line shows the exponential �tting
of the optical signal along the non-tapered channel. Panel (b) shows the optical signal
through the direction perpendicular to the surface (y) at maxima of panel (a).
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Figure 4.24: Cross sections of the �eld amplitude along the z direction at 10nm above
the metal surface for di�erent taper lengths, being n = 2.

In any case, we should emphasize that the relationship between near-�eld
optical signal distributions and �eld intensity distributions existing near the
sample surface (in the absence of a SNOM probe) is very complicated [206],
as it is not obvious how the EM �elds couple to the SNOM tip. Even in a
very simple approximation of the dipole-like detection (taking place at the po-
sition of an e�ective detection point inside a �bre probe) [207], di�erent �eld
components contribute di�erently to the detected signal, making it impossible
to directly relate the near-�eld intensity distributions and the corresponding
SNOM images. In this situation, it is extremely important to control that
the detected signal does originate from the evanescent �eld components (and
thereby is associated with the focused CPP �elds), since the detection of prop-
agating waves, such as scattered at the taper, is much more e�cient than that
of evanescent ones [207]. Near-�eld optical images were recorded with shear
force feedback, a few nanometers away from the surface, and then with the
SNOM �bre probe scanning along a plane located ≈ 100 nm from the sample
surface (Fig. 4.26).

A drastic signal decrease, and signi�cant image blurring, observed with the
increase of the probe-surface distance signi�es unambiguously that the bright
spots seen on the SNOM images are indeed the result of detection of evanes-
cent (CPP) �eld components. It is further seen that, for the 2-µm-long taper,
the maximum optical signal (at the bright spot) decreased by a factor of ≈ 6
(cf. Fig. 4.26(b) and Fig. 4.26(c)) while the CPP-related signal measured away
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Figure 4.25: Plasmonic candle. Panels (a), Topographical and (b), (c), show near-�eld
optical (λ = 1480 nm) SNOM images in di�erent presentations in order to emphasize
the signal enhancement Γ realized at the taper end. Panel (d) shows the optical
SNOM image obtained with the 3µm long taper. Panel (e) renders the normalized
cross sections obtained with the optical images (similar to those shown in (c) and (d))
recorded for the tapered V-grooves, with di�erent taper lengths.
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from the taper region decreased only by a factor of ≈ 2. It is reasonable to
assume that, in both cases, the optical signals (being proportional to the �eld
intensity at an e�ective detection point [207]) decrease exponentially with the
probe-surface distance but at di�erent rates, because the corresponding optical
�elds are laterally con�ned to the di�erent widths. The latter implies that the
observed intensity enhancement decreases also exponentially with the height
of observation plane. Finally, taking into account the circumstance that the
e�ective detection point is located typically ≈ 150 nm away from the tip end
[207], we obtained ≈ 90 as a ballpark estimate of the �eld intensity enhance-
ment realized at the sample surface with the 2-µm-long taper. It is worth

t = 2 m

h ~ 100 nm

t = 3 m

Smax~9.2 V Smax~1.6 V

1 m

h ~ 100 nm

Smax~7.3 V Smax~1.5 V

a b c

d e f

Figure 4.26: In�uence of evanescent �eld components at telecom (λ = 1480 nm).
Panels (a) and (d) depict topographical images for the 2µm and 3µm long taper
samples, respectively. Their corresponding near�eld optical SNOM images (with shear
force feedback) are shown in panels (b) and (e). Panels (c) and (f) show the same
as in (b) and (e) but at 100-nm distance from the sample surface with the tapered
V-grooves. The decrease in signal and the signi�cant image blurring when increasing
the probe-surface distance reveal the dominance of evanescent �eld components in the
images obtained.

to mention that the simulation results are consistent with the experimental
observations, which feature (i) the strongest enhancement for the 2µm long
taper, (ii) the occurrence of a very bright spot in near-�eld optical images
and (iii) the interference fringes indicating the CPP re�ection and scattering
in the taper region (cf. Fig. 4.26 and Fig. 4.22(c)). At the same time, the
�eld enhancement estimated from the calculations is much larger than even
the ballpark estimate. Indeed, using the same de�nition as before one obtains
(Fig. 4.23(a)) the computed �eld intensity enhancement of ≈ 1000 for the 2-
µm-long taper with n = 2. Interestingly the maximum values is reached inside
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the channel, as Fig. 4.23(b) shows. On the other hand, some di�erence should
be expected given the limited FIB resolution and the fact that the maximum
�eld intensity is calculated to be fairly close to the taper end with the taper
width being only ≈ 50 nm (while the groove depth is still ≈ 300 nm).

Finally, it have been explored the prospect of realization of a multichannel
con�guration for delivering nanofocused and enhanced CPP �elds to several
di�erent spatial locations by making use of consecutive Y−splitters (Fig. 4.27).
The level of signal enhancement observed with the SNOM images was fairly
constant for the four tapers amounting to a factor ≈ 5 with respect to the
signal at the input channel, which is consistent with the enhancement of ≈ 20
observed for the individual 2-µm-long taper (Fig. 4.25(c)), given the power
distribution between four channels. This experiment demonstrates that the
suggested approach for radiation nanofocusing is rather versatile and robust,
features that are extremely important for future applications.
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Figure 4.27: Plasmonic candlestick. (a) SEM image of a multichannel con�guration
for delivering nanofocused and enhanced radiation to four spatial locations via con-
secutive 5-µm-long Y-splitters terminated with 2-µm-long tapers (see the inset with
an overview SEM image). (b) Microscope image of a coupling arrangement superim-
posed with the far-�eld image taken at the excitation wavelength λ = 1500 nm with
an infrared camera, showing the track of CPP propagation and four bright spots at
the tapers. (c) Near-�eld optical (λ = 1500 nm) SNOM image demonstrating signi�-
cant signal enhancements realized at the four groove tapers, with signal levels being
similar and exceeding greatly even the signal level at the input channel.
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4.4 Conclusions

First, we have proposed an e�cient unidirectional source for SPPs. The way
to achieve this is coupling-in with SPPs by means of a subwavelengt aperture
in the back-side illumination montage. This proposal allows the modulation of
such coupling-in by means of a �nite array of grooves. Our approach is based
on a simple wave interference model that, despise of the simpli�ed description
of some of the physics involved, has been found in good agreement with both
sophisticated computer simulations and experimental measurements at NIR
and telecom ranges.

Additionally, we have investigated the guiding properties of the plasmonic
modes supported by straight metallic grooves and wedges. We have brie�y
discussed the results obtained by two di�erent rigorous numerical techniques.
The dependence on various geometric parameters of the modal dispersion, size,
polarization, and losses have been analyzed. The knowledge of these properties
can be of great help for the analysis of plasmonic devices featuring edges and
corners. Both CPP and WPP modes are quite well con�ned in the transverse
plane and their losses are reasonably low. These properties make them very
interesting candidates for plasmonic interconnects.

Finally, we have also explored the possibility of light focusing via the
geometry-driven conversion of a standard SPP into a tightly con�ned WPP.
On the other hand, based on CPP supporting structures we have demonstrated
that intense EM �elds can be achieved by tapering a channel in a proper man-
ner. This approach has been found rather versatile and robust as it would be
desired for future applications. Indeed, one can envisage further development
of these concepts for other plasmonic waveguides based on gap SPP modes
[205] as well as applications for miniature bio-sensors.



Chapter 5

Optical �eld enhancement on
arrays of gold nano-particles

5.1 Introduction

Light scattering by arrays of metal nanoparticles gives rise to nanostructured
optical �elds exhibiting strong and spatially localized (on a nanometer scale)
�eld intensity enhancements that play a major role in various surface phenom-
ena. The local �eld enhancement e�ects are of high interest, in general, for
fundamental optics and electrodynamics [208], and for various applied research
areas, such as surface enhanced Raman spectroscopy [209] and microscopy in-
cluding optical characterization of individual molecules [210]. Furthermore,
the highly concentrated EM �elds around metallic nanoparticles are thought
to enhance, in turn, non-linear e�ects, which could pave the way for active
plasmonic-based technologies. Also biotechnology can take advantage of such
high intensi�ed optical �elds as for instance, it has been demonstrated in trap-
ping living cells [211]. Individual metal particles can exhibit optical resonances
associated with resonant collective electron oscillations known as localized sur-
face plasmons (LSPs) [212]. Excitation of LSPs results in the occurrence of
pronounced bands in extinction and re�ection spectra and in local �eld en-
hancement e�ects. On the other hand, random arrangements of gold particles
on gold �lm are well known substrates for the observation of strong surface en-
hanced e�ects like surface enhanced Raman scattering (SERS) [209, 213] or sur-
face enhanced luminescence [214, 215]. The physical mechanism responsible for
the surface enhanced e�ects is at least partly related to the strong optical near
�elds close to resonantly driven surface plasmons on nano-structured metal
(usually gold or silver) surfaces [212]. On random substrates (e.g. deposited
colloid, electrochemically roughened or evaporated �lms) so-called �hot-spots�
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are observed, i.e strongly localized areas on the substrate, where the enhance-
ment is particularly strong [213]. For these hot-spots record enhancement val-
ues for SERS of up to 1014 have been reported [209]. These huge enhancements
are considered to be related to narrow gaps between neighboring nanoparticles,
which are electromagnetically coupled across the narrow gap thereby causing
huge �elds inside the gap [213]. This interpretation is qualitatively supported
by di�erent simulations, but a detailed understanding of the e�ect is still miss-
ing. On one hand, numerical simulations are challenging due to computational
limits causing restrictions to the minimal cell size and due to the limited knowl-
edge of the (non)local behavior of the metal dielectric function in these size
regimes. On the other hand, these very narrow gaps are also experimentally
demanding, both in the exact metrological characterization below the 10 nm
range and the reproducible fabrication of such structures with nm precision or
better. These drawbacks might be addressed by arranging the particles. In
this way, the enhancement e�ects present in random particle distributions on
gold may be further enhanced due to resonant interactions between particles
periodically arranged. For metal particles placed on a metal surface, inter-
particle interactions can be mediated by Surface Plasmon Polaritons (SPPs),
whose resonant excitation can be achieved by tuning the array periodicity.

The search for con�gurations ensuring reliable realizations of strongly en-
hanced local �elds is often conducted with the help of linear extinction/re�ection
spectroscopy, where minima in the transmitted/re�ected light intensity are as-
sociated with the excitation of system resonances (see [216] and references
therein). This characterization technique is considered reliable but lacking
spatial resolution, since the spectra are in�uenced by a whole illuminated area
containing many nanoparticles. In addition, the information obtained is not
direct, since the relation between the extinction/re�ection minima and local
�eld enhancements is rather complicated. For example, the extinction is de-
termined not only by the absorption and scattering of individual particles but
also by the scattering diagram of a given particle array [217]. A more di-
rect approach for the evaluation of local �eld intensity enhancement has been
recently developed [218]. This technique is based on the fact that strongly
enhanced local �elds due to the excitation of LSPs in gold nano-structures
give rise to two-photon absorption. This, in turn, leads to a broad emission
continuum generated by inter-band transitions of d-band electrons into the
conduction band known as two-photon luminescence (TPL) [219�222]. It has
been demonstrated that nonlinear scanning optical microscopy, in which the
TPL excited with a strongly focused laser beam is detected, can be used for
characterization of the local �eld intensity enhancement in gold nanoparticles
(bow-tie nano antennas) and at their surfaces [218]. However, it was di�cult to
ascertain the accuracy of a main formula used in the developed approach, since
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a crucial parameter, viz., the area of TPL origin, had to be found in the course
of simulations [218]. It would be advantageous to verify this approach by using
the same modeling tool for the (same) scattering system investigated not only
with the TPL but also with another, preferably well-established experimental
technique (e.g., extinction spectroscopy).

In this chapter, we summarize our results [223�225] on the optical response
(extinction spectroscopy and TPL emission) of regular arrays of rectangular
gold nanoparticles deposited either on glass (Section 5.3) or on gold (Sec-
tion 5.4) substrates, which are investigated from the theoretical and experi-
mental point of view. In order to model the optical response, we use the �nite-
di�erence-time-domain (FDTD) approach (See Section 1.2). The nanoparticle
samples were made by Dr. A. Hohenau and Prof. J.R. Kreen at the Karl-
Franzens University and Erwin Schrödinger Institute for Nanoscale Research
in Graz (Austria). They also characterized the samples by using linear ex-
tinction spectroscopy. The TPL measurements were carried out by Dr. J.
Beermann and Prof. S.I. Bozhevolnyi from the Department of Physics and
Nanotechnology at Aalborg University.
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5.2 Sample description and methods

5.2.1 Simulations

The structures consist either on gold particles on top of an semi-in�nitely ex-
tending glass substrate (gold-on-glass) or on gold particles on top of a 55 nm
thick gold �lm deposited also on a glass substrate (gold-on-gold). The �elds
were calculated in a box of Λx×Λy×1.3µm with periodic boundary conditions
at the walls perpendicular to the substrate and an �uniaxial perfect matched
layer� (UPML) at the walls parallel to the substrate. Additionally, the Comple-
mentary Concurrent Operators Method (CCOM) layers were also added to the
UPML layers (Section 1.2.5). The parameters de�ning the CCOM layers were
chosen complementary to the UPML layers. In this way, one can use thinner
UPML layers and still absorb better the energy �owing at grazing incidence.
This is of special importance in the considered system, as small SPP peaks in
re�ection have to be resolved and small errors in the re�ection of grazing modes
due to unwanted lack of absorption by the absorbing layers could be attributed
spuriously to SPP resonances. Typically the cell size was 5×5×5nm in space
and the time steps were 0.0077 fs (corresponding to a Courant-Friedrich-Levy
factor of 0.8), to guarantee the numerical stability of the (3D) simulations.
Moreover, we found that after a simulation time of 100 fs, convergency was
guaranteed. As usual, the dielectric function for gold was approximated by
a Drude-Lorentz formula (See Section 1.2.4). In the simulations, the struc-
tures were excited by a Gaussian wave-packet composed of plane waves with
wave-vector k perpendicular to the substrate and all frequencies of interest
(Section 1.2.2).

Spectra were calculated after projection onto di�racted modes (Section 1.2.3).
In the comparison with experimental data, only the zero order mode was con-
sidered in the post-processing, as experimental intensities were collected in a
small solid angle centered around the normal direction.

For the calculation of the TPL enhancement, we assume that the TPL
signal originates from the �top� layer (∼ half a skin depth deep) of the covered
gold areas following the surface topography. The achievable TPL intensity
enhancement factor α(λ) can be evaluated from the electric �eld amplitudes
E by

|α|2(λ) =

∫ ∫
Acell

|E(x, y, zb, λ)|4dxdy∫ ∫
Acell

|E(zm, λ)|4dxdy
, (5.1)

where the quantity |E(x, y, zb, λ)|4 integrated over the top layer of the gold
surface (bump or unit cell) is assumed to be proportional to the TPL-signal
from the array and compared to |E(zm, λ)|4 integrated over the same size of
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area, but from a smooth gold �lm without particles. Using simulated intensity
enhancement maps as those will be shown later, but obtained for several ex-
citation wavelengths, it is possible to estimate the spectral dependence of the
achievable TPL enhancement.

5.2.2 Experimental

The gold-on-glass particle samples consist of 2D-arrays of nominally rectan-
gular gold particles on top of a 0.5mm thick glass-substrate (Fig. 5.1) pro-
duced by electron beam lithography [226]. The dimensions of nanoparticles
(∼ 150 × 150 × 50 nm3) were chosen to realize the LSP resonance with a po-
larization parallel to the substrate close to the wavelength of 750 nm, so that
its in�uence could be observed both, in optical spectra and TPL images. On
the other hand, the gold-on-gold particle samples consist of 2D-arrays of nom-
inally rectangular, 50 nm high gold particles on top of a 55 nm thick gold �lm
on glass-substrate (inset Fig. 5.11 (b)) produced also by electron beam lithog-
raphy. The overall size of the arrays is 100× 100 µm2. The lateral dimensions
of the particles and the grating constants of the arrays were varied to system-
atically study their in�uence on the optical extinction and re�ection spectra
and the TPL signal.

Figure 5.1: SEM images of the investigated arrays of rectangular gold nanoparticles
on glass substrate with (a) Λx = Λy = 740 nm and dx = dy = 130 nm (type A), (b)
Λx = 2Λy = 740 nm and dx = dy = 130 nm (type B) and (c) with Λx = Λy = 740 nm
and dx = 0.5dy = 130 nm (type C). (d) Sketch of the arrays de�ning the di�erent
parameters. The array and particles dimensions were varied between the di�erent
samples in the range of (all dimensions in nm): 130 ≤ dx ≤ 160, 65 ≤ dy ≤ 320
h = 25 or 50, 740 ≤ Λx ≤ 860 and 370 ≤ Λy ≤ 1740.

Extinction spectra were recorded by a Zeiss MMS-1 micro-spectrometer
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attached to a conventional optical microscope equipped with a 2.5×, 0.075
numerical aperture objective. To control the polarization of the incident light,
a polarizer is inserted in the optical path of the microscope. The extinction is
calculated from the transmission of the arrays on the substrate (T ) with ref-
erence to the transmission of the bare substrate (Tglass) as log10 (Tglass/T ), for
the gold-on-glass samples. Importantly the reference for the re�ection spectra
was taken on the plain, unstructured gold �lm outside the areas covered with
particle arrays, for the gold-on-gold samples.

The experimental setup for TPL scanning microscopy enables to simultane-
ously record the TPL signal (detected by a photomultiplier) and the backscat-
tered light (detected by a photodiode) as a function of the sample position
with the resolution determined by a focal spot size of the excitation laser at
the sample surface (∼ 1 µm) [227, 228]. In these experiments, it was used
a 200 fs Ti:Sapphire laser at a repetition rate of 80 MHz with a linewidth of
∼ 10 nm and an adjustable polarization plane. The laser wavelength can be
tuned between 720−900nm, which permits to make spectrally resolved studies
of TPL e�ciency. The typical average incident power is in the range of 0.1 to
50 mW.
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5.3 Spectroscopy and TPL of Au nanoparticle arrays
on glass

In this section, we combine the results of TPL microscopy (in the wavelength
range of 720− 800 nm) with theoretical modeling based on the FDTD, where
only the independently determined geometry and dielectric functions of the
sample were used as input without any adjustable parameters. Additionally,
the theoretical results are compared carefully to experimentally recorded ex-
tinction spectra (in the wavelength range of 450−950nm) to verify the quality
of the modeling. In general, the individual LSP resonances of nanoparticles
can be tuned by varying both, particle dimensions and shapes [229], while the
resonances stemming from multiple interactions within the grating of parti-
cles (scatterers) can be tuned by varying the grating period or gap between
particles [216, 218, 230]. We pay special attention to the case when the in-
dividual LSP resonance is matched to the grating resonance since one could
expect a strong modi�cation of the �eld intensity enhancement compared to
the �normal� case [208, 218].

5.3.1 Spectroscopy

We �rst investigate numerical extinction spectra compared to the experimental
results of the fabricated arrays of gold particles on glass substrate, aiming at
identi�cation of the LSP resonances and understanding of their interrelations
with the particle shapes and sizes as well as the array periods in analogy to
the previous studies of arrays of ellipsoidal particles [212, 217].

To demonstrate the in�uence of particle shape and array parameters on
the extinction spectra, we focus in the following on three di�erent types of
arrays (see Fig. 5.1): (A) arrays with Λx = Λy and dx = dy (quadratic array
of quadratic particles), (B) arrays with Λx = 2Λy and dx = dy (rectangular
array of quadratic particles), and (C) arrays with Λx = Λy and 2dx = dy

(quadratic array of rectangular particles). For all arrays, we kept Λx = 740nm
and recorded spectra for dx = 130, 140, 150 and 160 nm.

Figure 5.2 depicts the experimental and simulated extinction spectra of
arrays of type A. The dominating feature in the experimental spectra is one
broad extinction peak with a maximum between 710 and 810 nm, depending
on the polarization and particle size. In analogy to ellipsoidal particles, this
extinction peak can be attributed to the excitation of the LSP resonance with
dominating dipolar character. Since the particles are rectangular in shape, we
can assume that several excited LSP-eigenmodes contribute to this extinction
peak [212]. With increasing lateral particle dimensions (the particle height was
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kept constant) we observe a red-shift and an increase in extinction strength,
as it would be the case for arrays of simple ellipsoidal particles of increasing
size as well. The slight blue shift of the spectra recorded with polarization
parallel to the y-axis compared to those recorded with polarization parallel to
the x-axis stems from a slight asymmetry in the actual x and y-dimension of
the particles.

Figure 5.2: Experimental (a) and simulated (b) extinction spectra of type A arrays
with Λx = Λy = 740 nm and dx = dy = 130, 140, 150 and 160 nm.

The simulated spectra (Fig. 5.2(b)) agree very well, both quantitatively
and qualitatively, with the experimental spectra, thought exhibiting small (but
distinct) additional dips at 740 nm and at 550 nm. These dips coincide with
the excitation of the �rst grating orders propagating (nearly) parallel to the
sample interface on the air and substrate sides of the particles, respectively.

In the case of type A arrays, due to the large grating constant, optical
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near-�eld interactions between the particles only weakly in�uence the spectral
position of the LSP resonances [231]. This was veri�ed by comparing the
recorded extinction spectra of type A arrays with grating constants ranging
from 740 to 860 nm (not shown). Nevertheless, a considerable e�ect of the
grating constant is observed for arrays of type B, whose extinction spectra
exhibit not only the expected red shift for increasing particle sizes but also a
remarkable di�erence between the spectra obtained for x- and y-polarizations
(see Fig. 5.3). Such a strong e�ect can be explained as follows.

Figure 5.3: Experimental (a) and simulated (b) extinction spectra of type B arrays
with Λx = 2Λy = 740 nm and dx = dy = 130, 140, 150 and 160 nm.

For type B arrays, the grating constant parallel to the y-axis Λy is only
370 nm, i.e., the array periodicity is lower than the wavelength of light in air
for (vacuum-) wavelengths larger than 370 nm and of light in the substrate
(refractive index n = 1.52) for (vacuum-) wavelength larger than 550 nm.
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Therefore, the coherently excited (dipolar) LSPs can emit in the y-z-plane
only to the 0th grating order. In addition, for the polarization parallel to the
x-axis, di�raction into the �rst grating order in the x-z-plane is weak due to
the dipolar far-�eld emission characteristic. Therefore, the radiation damping
for x-polarization is considerably reduced, resulting in narrower widths and
stronger maxima observed for the corresponding extinction peaks (compare
Figs. 5.2 and 5.3). At the same time, for y-polarization, the �eld scattered
by one particle is of comparable strength and approximately in counter phase
(due to retardation and the phase shift between LSP and exciting �eld) with
the incident �eld at the position of its next neighbors in y-direction, thereby
decreasing the total �eld experienced by the particles. This leads to a decrease
of the extinction (normalized to the particle density) compared to arrays of
type A.

Also in case of type B arrays we �nd good agreement of the simulated
extinction spectra (Fig. 5.3(b)) with the experimental ones, except for the
behavior observed at 740 nm, where the simulations show strong dips or peaks
related to the occurrence of a grazing grating order on the air side. For y-
polarization, we �nd a similar dip in the spectra as for type A arrays, but
for x-polarization we observe a sharp peak in case the extinction peak of the
particles coincides with the grating constant (d = 160 nm; thick, dash-dotted
curve).

This behavior can be qualitatively accounted for by the aforementioned
e�ect of coherent superposition of the LSP �elds (driven by the incident �eld)
with the �elds scattered by the neighboring particles. For the array with the
particle size d = 160nm, the particle separation in terms of light wavelength λ

at the LSP extinction peak are Λy = λ/2 and Λx = λ, respectively. Assuming
the LSP scattered �elds to be qualitatively similar to the �elds emitted by a
point dipole, the electric �eld in the direction of the induced LSP is dominating
over that in transverse direction (in this distance regime). Due to retardation,
the scattered �eld of one particle at the position of its next neighbor (in the
direction of the dipole) has a phase shift close to π for y-polarization or 2π

for x-polarization, respectively. Therefore either destructive or constructive
interference occurs which is responsible for the dip or peak in the extinction
spectrum. This e�ect is clearly seen in the distributions of optical near-�eld
intensity calculated for di�erent polarizations. For x-polarization (Fig. 5.4),
there is constructive interference of the LSP �elds of one particle and the
�elds scattered by its neighboring particles, similar to the resonance of a se-
ries resonant circuit. Therefore the �eld intensities at the top corners of the
particle are very strong. In contrast, for y-polarization (Fig. 5.5), we �nd (due
to destructive interference) very weak �eld intensities at the top corners of
the particle, similar to the antiresonance of a parallel resonant circuit. This
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spectrally sharp constructive or destructive interference of the calculated local
�elds also changes the �eld strength within the particles and is therefore rec-
ognized in the far-�eld by a decrease or increase of the extinction. However,
this e�ect is not readily observed in the experimentally recorded spectra. We
will explain this along with other observed discrepancies between experiments
and theory in Section 5.5.

Figure 5.4: Simulated distribution of the local �eld intensity enhancement |Ebump(r,λ)|2
|Efilm(λ)|2

around a single gold particle (dx = dy = 160 nm, height dz = 50 nm) positioned on
a glass substrate in a type B lattice with Λx = 2Λy = 740 nm and obtained for a
x-polarized (resonant case) exciting electric �eld E as indicated on each image. The
distributions are taken in planes either through the center of the particle (a, b) or
from the top (c) and bottom (d) surface of the particle as indicated by coordinate
axes on each image. The maximum levels are (a) ∼ 102, (b) ∼ 820, (c) ∼ 2300, and
(d) ∼ 20000.

Finally, let us consider the in�uence of the particle shape on the spectra.
Figure 5.6 displays the experimental and simulated extinction spectra for type
C arrays with Λx = Λy = 740 nm and rectangular particles with dy = 2dx.
Whereas for x-polarization the extinction looks similar to that of type A arrays
but with somewhat broader peaks, for y-polarization (parallel to the largest
particle dimension) the extinction is very low, featuring a weakly pronounced
peak (in both experimental and simulated spectra) close to 570 nm, which we
attribute to multipolar LSP excitation. Due to the changed particles geometry
with doubled y-dimension, the dipolar LSP peak (that can be excited with
y-polarization) is shifted to the near-infrared wavelengths (at ∼ 1200 nm) as
revealed by simulations in a spectrally extended region (see inset in Fig. 5.6(b)).
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Figure 5.5: The same as Fig. 5.4, but obtained for a y-polarized (antiresonant case)
exciting electric �eld E as indicated on each image. The maximum levels are (a) ∼
138, (b) ∼ 13, (c) ∼ 157, and (d) ∼ 3100.

5.3.2 TPL microscopy

The good agreement found between the simulated and experimental extinction
spectra encouraged us to apply the developed modeling tool for simulations of
the �eld intensity enhancement and subsequent comparison with the results ob-
tained with the TPL microscopy. For a �rst comparison, we decided to choose
a sample exhibiting the most pronounced e�ects, i.e., large extinction values
and strong polarization in�uence. Within the range of geometrical parameters
studied here, we found the sample having square 160× 160 nm2 nanoparticles
but di�erent grating constants Λx = 860 nm and Λy = 430 nm ful�lling best
the premises. The experimentally measured extinction spectra as well as the
results of FDTD simulations for this array are shown in Fig. 5.7.

The TPL images were recorded at di�erent wavelengths (730, 745, 760, 775
and 800 nm) of the fundamental harmonic (FH) illuminating the sample along
with the FH re�ection images. Figure 5.8 displays exemplarily the result for
the FH wavelength of 760 nm obtained for two polarization con�gurations of
incident FH and detected TPL radiation indicated by arrows on the images
(the sample orientation corresponds to that shown in Fig. 5.1(b)). The image
size is 15 × 15 µm2 with 75 × 75 points and the incident power was kept at
∼ 3 mW to avoid sample damage.

The FH and TPL images (Fig. 5.8) were obtained starting ∼ 3 µm out-
side the array of particles. This relatively long distance turned out to be very
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Figure 5.6: Experimental (a) and simulated (b) extinction spectra of type C arrays
with Λx = Λy = 740 nm and dx = 0.5dy = 130, 140, 150 and 160 nm. The inset in (b)
depicts the simulated extinction spectrum for dx = 160 nm and y-polarization in the
spectral range from 900 to 1400 nm.
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Figure 5.7: Experimental (a) and simulated (b) extinction spectra of a gold nanopar-
ticle array with Λx = 860 nm, Λy = 430 nm, dx = dy = 160 nm.

important in order to get an accurate signal reference from bare glass. The re-
�ection from the glass substrate is rather weak compared to the re�ection from
gold particles and appears dark in the images. The individual bumps are only
resolvable along the x-axis where the separation between them is ∼ 700 nm.
This is expected as the resolution in FH and TPL images has previously been
determined to approximately 1 µm and 0.7 µm, respectively [227]. Overall,
the FH images appear similar for the investigated polarization directions and
wavelengths, while the TPL images are more di�erent. For x-polarized excita-
tion and detection the average TPL signal from the gold particles is relatively
high and homogenous, while the y-polarization produces lower average TPL
signal but with a few bright spots appearing clearer on the dark background.
With respect to the TPL dependence on excitation wavelength, the highest
signal was observed for x-polarization and with a resonance around 745 nm.
For y-polarization, no pronounced maxima were observed and the signal was
considerably weaker (in agreement with the spectroscopy measurements). It
should be noted that, in general, the absolute TPL signal levels were found to
be very sensitive to the focus adjustment and possible gradual damage of the
sample [208].

Based on the method previously used [218, 228], the average (over the par-
ticle area) intensity enhancement factor α observed in the TPL measurements
can be estimated by comparing the TPL signals from gold nanoparticles to
those from smooth gold �lms. The appropriate relation is given by

α =

√
TPLbump

TPLfilm

< Pfilm >2

< Pbump >2

Afilm

Abump
, (5.2)

where TPL is the obtained TPL signal, < P > is the used average incident
power, and A is the area generating the TPL signal. Using this relation for the
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Figure 5.8: FH (a,c) and TPL images (b,d) of a gold particle array on glass with
Λx =860 nm, Λy =430 nm, and dx = dy =160 nm obtained using 3 mW of incident
power at the wavelength of 760 nm for the polarizations indicated by arrows on the
images. The maximum TPL signal is (b) ∼ 6200 and (d) ∼ 2000 cps.

TPL-measurements with the Abump-area kept constant, one obtains Fig. 5.9.
At the 745nm resonance we �nd an average intensity enhancement of∼ 111 and
a maximum (measured at one of the bright spots in Fig. 5.8) of∼ 250. For sam-
ple con�guration (Λy = 430 nm) there are two rather than one particle within
the focal spot of the exciting laser beam. This larger density of particles can be
accounted for in the estimated enhancement by using Abump = 2× (160 nm)2,
resulting in the average intensity enhancement of ∼ 80 and a maximum of 177.
This indicates, that the particle near-�eld interaction of this sample plays only
a minor role for the generation of the TPL signal for x-polarization.

5.3.3 FDTD-Results on TPL

In Fig. 5.10 the intensity enhancement values estimated from the simulations
are depicted for the wavelength range 450-1100nm with 20nm steps. As seen
in Fig. 5.10 the simulated TPL intensity enhancement for square particles
(160×160nm2) in a rectangular lattice geometry (Λx = 860nm, Λy = 430nm)
exhibits the same clear polarization dependence as observed in the TPL mi-
croscopy measurements (See Fig. 5.9). Furthermore, for both simulated and
measured intensity enhancements the ratio between x- and y-polarization is
of the same order of magnitude, though the absolute levels are di�erent. The
di�erence in the peak enhancement levels and the slightly shifted to shorter
wavelengths peak position (around 750nm) will be also explained in Section 5.5.
The most interesting feature in this context is that, in the simulated �eld en-
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Figure 5.9: Experimental spectral dependence of the average TPL enhancement
[Eq. (5.2)] obtained from the particle array on glass. Solid and dashed lines rep-
resent x- and y-polarization, respectively.
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Figure 5.10: Simulated spectral dependence of the average TPL enhancement ob-
tained from the particle array on glass.
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hancement spectra, one observes a clear red shift of the maximum with the
increase of the array period (Fig. 5.10). We found a similar linear shift also
for other array periods (not shown). Note that the extinction spectra depend
only weakly on the period in this range. Overall, there are indications that the
extinction and �eld intensity spectra of particle arrays might reach maxima at
di�erent wavelengths, but this conjecture would require a separate study that
can corroborate its existence and explain its origin.



168 Chapter 5. Optical �eld enhancement on arrays of gold nano-particles

5.4 Spectroscopy and TPL of Au nanoparticle arrays
on gold �lms

In this section, we apply again the techniques of re�ection spectroscopy and
TPL microscopy along with the FDTD modeling to study gold nanoparticle
arrays placed on a gold surface, aiming at optimizing the array geometry for
TPL enhancement and elucidating the roles played by LSP and SPP resonances
in local �eld enhancement e�ects as well as gaining further insight into the
electrodynamical processes involved in TPL generation.

5.4.1 Re�ection spectra

We �rst consider the far-�eld re�ection spectra of the particle arrays to con-
�rm that the FDTD method is applicable to this system and leads to results in
reasonably good agreement with the experiment. Figure 5.11 depicts the ex-
perimentally recorded and FDTD simulated re�ection spectra for arrays with
particles of approximately 150× 150× 50 nm3 in a square array with periods
Λx = Λy = 740, 780, 820 and 860 nm. Due to the symmetry of the arrays,
the spectra for x- and y-polarization look identical. In very good agreement
between experiment and simulations, the re�ection spectra display distinct fea-
tures in three wavelength regions: A) a single, broad re�ection dip at ∼ 550nm
independent of the array period, B) a dip at the long wavelength wing of the
550 nm dip and C) a dip (in case of the experimental spectra with a shoulder
∼ 20 nm to the blue of the dip) at a light wavelength close to the value of the
array period (740− 860 nm). Whereas the independence of dip A on the array
period points towards the excitation of a mode localized to the single particles,
i.e., the LSP mode, the dip structures B and C clearly depend on the array
period and can therefore be related to coupling between the particles. A closer
analysis of the spectral dip positions allows to clarify their origin (Fig. 5.12).

Dip C as well as dip B are exactly at the position expected for grating
coupling to SPPs on the air-gold interface in the [10] mode and [11] mode (the
SPP dispersion relation on the array is assumed to follow that of the SPP on
an unstructured surface of a 55 nm thick gold �lm [232]). The experimentally
observed shoulder ∼ 20 nm to the blue of dip C in turn is close to the spectral
position expected for coupling to grazing grating orders in air. The slight
blue shift of its observed spectral position compared to the �ideal� position is
due to the far-�eld emission pattern of dipoles or multipoles above a plane
interface, which show considerable strength only close to the grazing angle but
are vanishing in the direction parallel to the interface [233]. This shoulder
appears much weaker in the simulations and is not discernible in Fig. 5.11(b).
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Figure 5.11: (a) Measured and (b) calculated re�ection spectra of particle arrays of
square gold particles (dx = dy = 150 nm, height dz = 50 nm) on a 55 nm thick gold
�lm on top of glass (see inset part (b)) for di�erent array periods: Λx = Λy = 860nm
(solid line), Λx = Λy = 820 nm (dash-dotted line), Λx = Λy = 780 nm (dashed line),
Λx = Λy = 740 nm (dotted line). The curves are vertically o�set for clarity. The
inset in (a) depicts the measured extinction spectra which show features at the same
spectral position as observed in the re�ection spectra. The spectra are identical for
x- and y-polarization.
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To gain information on the parameters which determine the spectral po-
sition and strength of the LSP resonance and the grating coupling dips, we
produced and investigated samples with di�erent particle shapes and array ge-
ometries. For example, rectangular particles created by either bisecting (not
shown) or doubling (dash-dotted curves, Fig. 5.13) the y-dimension of the par-
ticles lead to a slight splitting of the LSP resonance (peak A) for di�erent
polarizations.

Figure 5.12: Position of the di�erent dips observed in the re�ection spectra vs. array
period as measured from Fig. 5.11 (circles: experiment; crosses: simulation). The
lines represent the expected dip positions for grating coupling to the [1 1] (solid line)
and the [1 0] (dashed line) surface plasmon mode, the excitation of a grazing light
mode (dotted line). The horizontal lines re�ect the independence of a localized mode
on the array period (dash-dotted lines).

For the latter case we observe a red shift (∼ 20 nm) of the resonance for a
polarization parallel to the long particle axis (y-polarization, thin dash-dotted
curve in Fig. 5.13) and a blue shift (∼ 5 nm) for a polarization parallel to
the short particle axis (x-polarization, thick dash-dotted curve in Fig. 5.13).
In addition, the experiments for this polarization show a comparably strong
occurrence of dip B (grating coupling to the SPP along the [1 1] direction)
combined with a slight red shift, for this polarization. For the polarization
parallel to the long particle axis (y-polarization) it seems that the e�ciency
of coupling to grating modes is enhanced while the coupling to the LSP mode
gets slightly weaker. These e�ects are reproduced by the simulations but their
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origins remain to be clari�ed and would require further study.
Finally, by bisecting the array period in y-direction (Λx = 2Λy = 860 nm)

a complete suppression of the [1 1] SPP modes can be demonstrated (dashed
curves, Fig. 5.13). This e�ect can be qualitatively understood by considering
the grating coupling mechanism and the optical properties of the gold �lm.
The SPP wavelength determined by the grating mode and the array period
(i.e. 385 nm for the [1 1] mode) requires a frequency that is larger than the
onset of the gold d-band absorption. SPPs excited within this absorption
range are strongly damped and have propagation lengths smaller than their
wavelengths and the grating periodicity. Consequently, no resonant grating
excitation of these SPP modes can occur.

It is interesting to note the di�erences in the spectra of these arrays of
gold particles on a 55 nm thick gold �lm to the spectra of similar particles
on glass substrate, studied in the last section. The spectra of the particles
on glass substrate are dominated by the (shape-dependent) LSP resonance
of individual particles, whose strength and spectral width is in�uenced by
the array in terms of suppression of di�erent allowed or forbidden di�raction
modes. In contrast, for the particles on gold �lm, we �nd a LSP resonance
whose spectral position only weakly depends on the particle shape and size
(Fig. 5.13) and is always close to ∼ 550 nm. Additionally, we observe di�erent
features corresponding to grating coupling to SPPs on the gold-air interface
and the excitation of grazingly di�racted light modes in air. The spectral
position of these features naturally depends mostly on the array period but
their strength can be in�uenced by the particle shape and size.

5.4.2 Optical near-�eld pattern

We now turn to the calculated optical near-�eld pattern and analyze them for
the array with Λx = Λy = 740 nm and particles dimension dx = dy = 150 nm
and height dz = 50 nm. For this array the LSP resonance and the [1 1] SPP
resonant excitation coincide spectrally, leading to an enhanced SPP excitation
and, therefore, a stronger signature in the optical near-�elds. We consider
�rst the optical near-�eld intensities in a x − y plane at the surface of the
gold �lm for illumination at the wavelengths of 563 nm (Fig. 5.14(a)) and
752 nm (Fig. 5.14(b)), corresponding to the resonant grating excitation of the
[1 1] and [1 0] SPP modes, respectively (See Fig. 5.11). The images clearly
show standing wave patterns which result from the interference of the excited
SPP modes and corroborate the interpretation derived from the spectra. In
the �rst case (excitation at 563 nm), four equivalent SPP modes are excited:
[1 1], [1 − 1], [−1 1] and [−1 − 1]. The interference of these four modes
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Figure 5.13: (a) Measured and (b) calculated re�ection spectra of particle arrays
with Λx = Λy = 860 nm; dx = dy = 150 nm (solid line), Λx = 2Λy = 860 nm;
dx = dy = 150 nm (thick and thin dashed line for x- and y-polarization, respectively)
and Λx = Λy = 860 nm; dx = 1

2dy = 150 nm (thick and thin dash-dotted line for
x-polarization and y-polarization, respectively). The particle height for all arrays is
dz = 50 nm. The insets show electron micrographs of the corresponding arrays.
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which propagate in the diagonal directions leads to the characteristic pattern
observed. Due to the partly longitudinal nature of the SPP �eld, no SPP modes
propagating perpendicularly to the polarization direction of the incoming light
can be excited [170]. Therefore, in the case of the excitation at 752 nm (x-
polarization), only the [10] and [−10] SPP modes are excited whose interference
leads to a standing wave pattern with wavefronts parallel to the y-direction,
as clearly observed in Fig. 5.14(b).

Figure 5.14: Calculated optical near-�eld enhancement images for the array with
Λx = Λy = 740 nm, dx = dy = 150 nm (See Fig. 5.11), in the x-y plane at the
surface of the gold-�lm when excited at (a) 563 nm ([1 1] mode) and (b) 752 nm ([1 0]
mode). The corresponding images in the x− z plane through the particle center are
rendered at (c) 563nm and (d) 752nm. The plotted quantity is log

(|E(r, λ)/E(λ)|2),
where E(r, λ) is the electric �eld amplitude of the array and E(λ) is the electric �eld
amplitude in the top layer of a �at surface.

The optical �elds are in both cases vertically well-con�ned to the surface
region (Figs. 5.14(c) and (d)) manifesting thereby their evanescent nature,
inherent to SPP modes. In addition to the SPP �elds covering a large part of
the array surface, strongly localized near-�elds are observed close to the upper
edges of the particles in both cases (Figs. 5.14(c) and (d)). These local �eld
enhancements are due to the lightning rod e�ect (i.e., �eld enhancements close
to sharp tips or corners) being further enhanced in the �rst case due to the
LSP resonance.

By comparing the near �eld intensities just below and above the metal
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surface in the cross-cuts of either Fig. 5.14(c) or Fig. 5.14(d), one can realize
the strong intensity jumps over the gold-air interface in some regions. This is
related to the fundamental di�erence of the continuity condition for the electric
�eld components parallel and perpendicular to the interface. In regions where
the electric �eld is mostly parallel to the metal-air interface, the �elds are
continuous across the interface, but in regions where the electric �eld also has
a considerable component vertical to the metal-air interface, this component is
larger in air by the ratio of the dielectric constants of gold to air (for example
at 752nm excitation εAu ' −20.2+1.3i which can cause a maximum intensity
jump of |εAu|2 ' 411 in case of an electric �eld purely perpendicular to the
interface). This detail highlights the complementary nature of TPL signals,
which probe the �eld inside the metal, vs. other methods probing the near
�eld (e.g. surface enhanced Raman scattering or any type of optical near �eld
microscopy) just outside the metal.

5.4.3 TPL enhancement

The intensity enhancement values estimated from the simulations are shown
in Fig. 5.15 in the wavelength range 480 to 950 nm exemplarily for the arrays
with dx = dy = 150 nm and Λx = Λy = 860 nm (solid line) and Λx = Λy =
740 nm (dotted line). The TPL enhancement factor roughly resembles the
spectral features in the re�ection spectra, i.e. a broad peak (i) at ∼ 575 nm
corresponding to the LSP mode but slightly shifted to the red compared to
the dip in the extinction spectrum (see Fig. 5.11), and peaks (ii) at 635 (solid
line) corresponding to the excitation of the [11] SPP mode, and (iii) at 880nm
(solid line) and 750 nm (dotted line), corresponding to the excitation of the
[1 0] SPP mode.

Also for the other arrays investigated up to here (TPL spectra not shown),
the major contribution to the TPL signal is predicted to be at ∼ 575 nm.
We have noted previously that the LSP resonance wavelengths deduced from
the re�ection/extinction (far-�eld) spectra might di�er from the TPL enhance-
ment maxima found from near-�eld calculations (Section 5.3). In the current
case, the red shift might be due to the circumstance that the re�ection dip is
associated with the absorption of the resonantly excited LSP mode (and the
absorption drastically increases towards shorter wavelengths) whereas the TPL
enhancement peaks up at the maximum of the LSP �eld.

It transpires from the preceding considerations that the insofar investigated
arrays are not expected to lead to strong TPL enhancements or signi�cant
spectral features in the experimentally accessible spectral range between 730
and 820 nm (Fig. 5.15). Indeed, TPL measurements showed enhancement
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Figure 5.15: Calculated TPL enhancement spectra for the arrays with Λx = Λy =
860nm; dx = dy = 150nm (solid line), Λx = Λy = 740nm; dx = dy = 150nm (dashed
line). For clarity the curves are vertically o�set by 100. The inset depicts a closeup
of the spectral region of 735− 950 nm (no o�set between curves).

factors of ∼ 10 to 20, with spectrally �at characteristics (not shown). For
a more valuable comparison of simulated and measured TPL signals, it is
necessary to investigate arrays exhibiting pronounced (resonant) TPL features
in the spectral range accessible to the experimental setup.

In order to design and fabricate an appropriate sample, we �rst optimized
the array parameters by simulations and found that arrays with Λx = Λy '
750nm (similar to the arrays investigated in the previous section) and particle
dimensions close to dx = dy ' 465nm should have a relatively strong resonance
associated with the [1 0] SPP excitation in the spectral region relevant for the
experiment (Fig. 5.17 (b)). For this sample, the images of the optical near
�eld intensity at the two SPP resonances [580nm ([1 1]-resonance) and 800nm
([10]-resonance)] are depicted in Fig. 5.16, in x-y planes 5nm below and above
the gold-air interface, and in the x-z planes through the center of the particles.
In this case, similar to the smaller particles near �eld patterns are observed.
Again, close to the [1 1]-resonance (∼ 580nm), four equivalent SPP modes are
excited: [1 1], [1 -1], [-1 1] and [-1 -1], i.e., four SPP waves which propagate in
the diagonal directions, leading to a characteristic interference pattern depicted
in the inset of Fig. 5.16(a). In the case of the excitation at a light wavelength
of 800 nm, only the [1 0] and [-1 0] SPP modes are excited whose interference
leads to a standing wave pattern with wavefronts parallel to the y-direction,
which in case of a �at interface would lead to the pattern depicted in the inset
of Fig. 5.16(b). Here, qualitatively similar patterns are observed, but there are



176 Chapter 5. Optical �eld enhancement on arrays of gold nano-particles

also geometrically induced strongly localized near-�elds at the particle edges,
which considerably contribute to the overall near �eld intensity and lead to a
less obvious appearance of the characteristic [1 1] and [1 0] pattern [Fig. 5.16
(a) to (d)]. As it will be shown, TPL enhancement is higher for the larger
particles as compared to the smaller ones, which is intimately related with
the strongly localized near-�elds found on them. The re�ection spectra of the
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Figure 5.16: Optical near-�eld enhancement images (De�ned as in Fig. 5.14) for the
[1,1] (a), (c) and (e) and [1,0] (b), (d) and (f) resonance for the array with Λx = 760nm,
Λy = 750nm and dx = dy = 465nm,in cross-cuts parallel to the substrate, 5nm below
[(a),(b)] and above [(c),(d)] the �lm surface and in cross-cuts perpendicular to the
substrate through the center of the particles [(e),(f)]. The insets in (a) and (b) show
the interference pattern of similar SPP-waves on a �at interface.

correspondingly fabricated sample (Fig.5.17 (a)) exhibit close similarities to the
simulations, except for the experimentally observable much stronger occurrence
of the dip attributed to the excitation of light scattered at grazing angle to
substrate (a close analysis of the simulated spectra reveals also the presence
of this feature but as very weak shoulder of the [1 0]-grating coupling dip).
This di�erence as well as the weaker and broader experimentally observed dips
compared to the simulations were already observed with the previous samples
and can be explained similarly (Section 5.5).

TPL spectra from arrays with particle sizes dz = 50 nm and dx = dy =
160 nm, 265 nm, 364 nm, and 465 nm for polarization parallel to y, and seven
di�erent wavelengths (730, 745, 760, 775, 790, 805 and 820 nm) recording
re�ected FH and TPL microscopy images were measured in the group of Prof.
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Figure 5.17: (a) Measured and (b) calculated re�ection spectra of particle arrays with
Λx = 760 nm, Λy = 750 nm and dx = dy = 160 nm (solid line), dx = dy = 265 nm
(dashed line), dx = dy = 364 nm (dash-dotted line) and dx = dy = 465 nm (dotted
line). The particle height is dz = 50 nm and the polarization is parallel to y.
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S.I. Bozhevolnyi. The typical FH and TPL images obtained from the area with
465nm-sized particles are displayed in Fig. 5.18 for the excitation wavelength of
745nm. For every wavelength, the FH and TPL images were obtained starting
∼ 3 µm outside the array of particles. This relatively long distance was used
in order to get an accurate reference from smooth gold surface areas. Note
that the FH images have been recorded in the cross-polarized con�guration.
This means that the smooth gold �lm (re�ecting the FH radiation with the
maintained polarization) will appear dark in the FH images, while the gold
particles (scattering and changing the light polarization) will appear bright.

Figure 5.18: (a) FH and (b) TPL image of a gold particle array with Λx = 760 nm,
Λy = 750 nm, and particle size dx = dy = 465 nm and dz = 50 nm obtained using
∼ 0.3 mW of incident power at the wavelength of 745 nm. The maximum TPL signal
is ∼ 1600 cps and the polarization of excitation and detected TPL is parallel to y as
indicated by arrows on the images.

Applying the method used in Section 5.3, the intensity enhancement fac-
tor α observed in the TPL measurements can be estimated by comparing the
area averaged TPL signals from the arrays to those from smooth gold �lms.
The used relation is

α =

√
Sarray

Sfilm

< Pfilm >2

< Parray >2

Afilm

Aarray
, (5.3)

where S is the obtained TPL signal, < P > is the used average incident power,
and A is the area generating the TPL signal. The average TPL enhancement es-
timated from the recorded TPL images using this relation is shown in Fig. 5.19
as a function of the FH wavelength for all four investigated samples along with
the calculated values of the TPL enhancement. It is clearly seen from the ex-
perimental results, that the array with dx = dy = 465nm produces the highest
average TPL enhancements of ∼ 100, whereas the arrays with smaller particle
sizes result in lower enhancements with their peak positions moving towards
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shorter wavelengths. A qualitatively similar behavior can be observed in the
enhancement spectra calculated with the FDTD approach.

Figure 5.19: Measured (�lled circles) and calculated (open circles) spectral depen-
dence of the average TPL enhancement [Eq. (5.3)] obtained from the particle arrays
with Λx = 760nm, Λy = 750nm and dx = dy = 160nm (solid lines), dx = dy = 265nm
(dashed lines), dx = dy = 364 nm (dash-dotted lines) and dx = dy = 465 nm (dotted
lines). The particle height is dz = 50 nm. Inset: TPL-microscopy image of the latter
sample recorded o� resonance at 745 nm.

It should be mentioned that the maximum TPL enhancement observed
from a few individual particles in the array, behaving di�erently from the
average nanoparticles, is ∼ 225. However, at the same time these few par-
ticles (bright spots in the TPL images) seem to be more sensitive to dam-
age/reshaping than the remaining particles. Since we aim here at the evalua-
tion of reproducible �eld enhancements, this damage and reshaping of partic-
ularly luminous (individual) positions is neglected in order to allow the excita-
tion power necessary to observe reliable TPL signals from average nanoparticles
in the arrays. Note that the incident power used here is between∼ 0.3−0.6mW
for the largest particles (dx = dy = 465 nm, dx = dy = 364 nm) and up to
∼ 1.7 mW for the smallest particles (dx = dy = 265 nm, dx = dy = 160 nm).
These values should be compared to ∼ 3 mW used in the previous TPL mea-
surements from arrays with gold particles on glass.

One can further observe that, except for the smallest particle size, the mea-
sured maximum TPL enhancements actually agree with the calculation results
within a factor of 2. However, the experimental TPL peaks are broader and
less pronounced as compared to the calculated ones, a di�erence which is con-
sistent with the tendency observed when comparing measured and simulated
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re�ection spectra.
Finally, let us elucidate the issue of spatial con�nement of the TPL signals

and �eld enhancement, respectively. In particular, considering the near-�eld
intensity distributions in Fig. 5.14 and Fig. 5.16, the question on the e�ective
surface zone responsible for the TPL signal arises, i.e. if it is the particle
alone which emits the TPL signal. This issue can be clari�ed by plotting ρ =
Spart/Stot, the relative contribution of the simulated TPL signal originating
from the particle surface only (Spart) to the simulated total TPL signal (Stot)
as a function of the excitation wavelength (Fig. 5.20).

Figure 5.20: (a) Average TPL enhancement α and (b) relative contribution ρ of the
particle area to the overall TPL signal for arrays with Λx = 760nm, Λy = 750nm and
dx = dy = 160 nm (solid line), dx = dy = 265 nm (dashed line), dx = dy = 364 nm
(dash-dotted line) and dx = dy = 465 nm (dotted line). The particle height for all
arrays is dz = 50 nm and the polarization is parallel to y. The thin dotted line in
part (a) depicts the enhancement factor α calculated on the air side of the gold-air
interface of the array with dx = dy = 465 nm.

It transpires from the computed TPL signal that, although the peak at
about 800 nm comes from the SPP excitation (i.e., related to delocalized SPP
�elds), the TPL originates primarily from the particles whenever the enhance-
ment factor α is of considerable strength. The reason for this is that the excited
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SPPs provide additional �illumination� of the particles, contributing thereby
to the formation of strong �elds inside the particles (particularly around the
edges) which are then responsible for the TPL and near �eld enhancement
inside the gold. To emphasize the relation of the near �eld enhancements on
both sides of the gold-air interface, we additionally depict for comparison in
Fig. 5.20 the unit-cell average of the enhancement factor α calculated over a
layer just above the gold surface (which re�ects e.g. the gain in surface en-
hanced Raman scattering) for the array with dx = dy = 465 nm (thin dotted
curve). As can be seen in the graph, it roughly reproduces the general shape
of the average TPL enhancement below the gold surface (dotted curve), but
is larger by one order of magnitude. As discussed in detail in Section 5.4.2,
this is due to the continuity relations, which require a jump of the electric �eld
component perpendicular to the surface.
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5.5 Confrontation of simulations to experiments

Despite the good qualitative agreement between simulations and experiments,
there are also signi�cant deviations. The observed di�erences between the ex-
perimental and simulated re�ection spectra: Figs. [5.2, 5.3, 5.6, 5.7] (gold on
glass) and Figs. [5.11, 5.13, 5.17] (gold on gold), and the TPL-enhancement
spectra on glass Figs. [5.9, 5.10] and on gold Fig. 5.19, may originate from
several reasons: (i) experimental variations in particle size and array period,
(ii) the �nite numerical aperture of the spectrometer setup (not considered
in the simulations), (iii) the TPL excitation and detection geometry, (iv) de-
viations of the dielectric function of gold between the actual sample and the
Drude-Lorentz �t used for FDTD simulations, including non-locality e�ects
and spatial variations, (v) surface roughness (not considered in the simula-
tions), and (vi) in�uences of the FDTD boundary conditions and the �nite
array size. A detailed consideration of the di�erent possibilities leads to the
following estimations of the di�erent contributions.

i. Experimental variations in the particle size and array period: Due to
the fabrication tolerances, the geometrical parameters of the samples
investigated may vary in the order of ∼ 10 nm, i.e., by 2%. This causes
small phase mismatches in case of the grating coupling to SPP and related
to that a weakening and broadening of the corresponding resonances. The
changes in the peak position caused by such variations are at maximum
∼ 15nm and can therefore partly account for the experimentally observed
broader peaks. However, for the localized resonance at ∼ 520nm on gold
particles on gold, these variations are not su�cient to explain the larger
experimental observed peak width in the re�ection-loss spectra, since this
peak is basically independent on variations of the particle shape in this
range.

ii. The �nite numerical aperture of the spectrometer setup leads to an an-
gular spread of the incident light. At inclined incidence of a plane wave,
the re�ection-loss peaks caused by grating coupling to SPP-modes split
into a blue- and a red-shifted contribution. For an angular spread cor-
responding to NA=0.075 as in the experiments this would cause a peak
broadening of at maximum ∼ 120 nm at a light wavelength of ∼ 800 nm,
depending on the e�ective NA of the illumination path (angular intensity
distribution).

iii. From the experimental point of view, the TPL excitation and detec-
tion geometry sources of disagreement between experiments and theory
might be justi�ed as follows. The observed di�erence with the simula-
tions might partly be due to the fact that the TPL measurements use
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a tightly focused beam with a (correspondingly) wide angular spectrum
and a small spot-size of only ∼ 1 µm. This can result in both, a broad-
ening of the peaks and an increase of the background, by facilitating
for example, SPP excitation at about any wavelength in the wavelength
range (contrary to what one has in simulations). Moreover, the TPL
radiation originating from gold areas with strong �eld enhancements has
unknown angular distribution and interacts with the scattering system
(i.e., particle array), so that the detected TPL is in fact also subject to all
scattering phenomena (scattering at surface roughness, coupling to SPP
resonances,...) considered above for the illuminating radiation. However,
for coupling to SPP modes we do not expect any relevant in�uence of the
grating, since the propagation length of SPP's at the spectral range be-
low 550nm is too low to lead to any grating e�ects with the array periods
consider here [234]. Additionally, the experimental results are a�ected by
the circumstance that the rather weak TPL signals exhibit considerable
uncertainties, especially for longer wavelengths, due to inaccuracy in the
focus adjustment, possible gradual damage of the sample, etc. Finally,
the fact that the TPL enhancement levels measured far from the reso-
nances (for instance the dx = dy = 160 nm-particle array in Fig. 5.19)
do not approach unity should be related to the TPL response from cor-
rugated surfaces (here, due to the surface processing when fabricating
particles), which will always be larger than from the �at surface.

Ex(z=k-1)

Ex(z=k)

Ez(z=k-1)

Ez(z=k)

Ey(z=k-1)

x

yz Metal

Surface

5(nm)

Ey(z=k)

Figure 5.21: Yee's cell.

From the theoretical standpoint, we expect TPL emission being propor-
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tional to |E|4. But it is not clear how to count how many photons will be
able to leave the metal and reach the detector, and how the probability
for this process depends on both the direction of the electric �eld and the
depth at which this process takes place. So a proper comparison with
experiments may be much more complex. For instance, results could
depend on whether the TPL emission comes from inside the metal, so
it should be somehow considered in theory. Clearly, this should bring
into account geometrical factors related to the emission and detection
of TPL photons; for instance, are photons emitted close to the bump
base detected?. Therefore, the �eld inside the whole metal should be
included, specially as TPL is emitted at shorter wavelengths, for which
the skin depth is larger than for the excitation wavelength. Without a
better theory for the TPL enhancement, it would be worth to estimate
the importance of this factors by calculating separately the contribution
from di�erent places of the structure. Figure 5.21 shows Yee's cell (Sec-
tion 1.2.1). In this cell, di�erent electric �eld components are represented
in di�erent spacial points. We have chosen the parallel components to
be represented at the interface, while the cell perpendicular components
are chosen to lie either inside or outside. In Fig. 5.22, we revise a result
already shown in Fig. 5.10. In this �gure, the curve depicted with square
symbols is that the E-�elds are estimated just outside the top surface of
the metal particle. Circular symbols show what we obtain only consider-
ing the top surface just inside the metal (Ex and Ey at the interface and
Ez evaluated at 2.5nm depth inside the metal, as the mesh size is 5nm).
The latter estimation for α is smaller than the former, as the Ez compo-
nent is a factor ε(ω) smaller than in the previous calculation. The rest
of the curves are estimations for α considering the �elds inside the metal
up to the the distance to the top surface indicated by the labels. Notice
that in these calculations we include the contribution from the side metal
interfaces. The integration is up to a depth of 37.5nm, since we do not
expect the TPL signal reaching the metal surface if it is generated at
the bottom. In any case, there is still a strong polarization dependence
in the calculated α, for the di�erent depths chosen. Figure 5.23 ren-
ders the same plot as Fig. 5.22, but for the other structure considered in
Fig. 5.10. In this case, α is much smaller when Ez contributes from in-
side than when it does from just outside. The point is that if the electric
�eld is mainly along the z direction, on the top surface it is decreased
by a factor ε(ω), but on the lateral sides it is not. This is the case here,
and the main contribution comes from a �belt� of high Ez at about half
depth of the metal bump. Here the variation with integration depth is
very fast. In the case of gold particles on gold, the key point is that α,
when TPL contributions are taking into account inside the metal, gives
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Figure 5.22: Estimation of the integrated TPL enhancement up to di�erent �depths�
inside the metal surface, obtained from particle arrays on glass (∆x = 2∆y = 740nm,
dx = dy = 160nm, x-pol).

a result close to what we obtain without doing that, but only for the
particle resonances. The �pure SPP� peaks appearing are no longer so
strong, as the �elds in this case have mainly Ez component.

iv. Deviations of the dielectric function of gold between the actual sample
and the Drude-Lorentz �t used for FDTD-simulations: For the FDTD-
simulations, the frequency dependent data of the experimentally mea-
sured dielectric function of gold are �tted with a Drude-Lorentz behav-
ior (See Section 1.2.4). This leads to a very good approximation at
larger wavelength, but increasing mismatch with decreasing wavelength
in the range below 500nm. This mismatch can account for deviations be-
tween simulated and measured re�ection spectra at shorter wavelength
and could be reduced by e.g. adding a second Drude-term to the �t.
Additionally, the e�ective dielectric function of the gold-�lm and gold-
particles could deviate from the literature values (e.g., due to surface
morphology, see below).

v. Surface roughness: By a detailed analysis of the SEM image of the gold
particle arrays on gold [Fig. 5.13(a)] on can realize a structural di�erence
between the polycrystalline gold �lm and particle surfaces, i.e., there are
smaller grains (∼ 20nm in diameter and ripples on the particles compared
to larger crystallites in the size range of∼ 50 to 500nm on the �lm outside
the particles. This qualitative di�erence in the gold nanostructure comes
from the surface processing when fabricating the particles and might
cause changes in the e�ective dielectric function, especially an increase of
the imaginary part due to enhanced surface scattering. This contributes
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Figure 5.23: Estimation of the integrated TPL enhancement up to di�erent �depths�
inside the metal surface, obtained from particle arrays on glass (∆x = 2∆y = 860nm,
dx = dy = 160nm x-pol).

to the less pronounced, weaker peaks in the experimental re�ection and
TPL spectra. Additionally, the surface corrugations lead to additional
localized resonances, which are best visible in TPL images recorded o�
resonance (inset Fig. 5.19) by the randomly distributed bright spots,
whose positions depend on the excitation wavelength. In average over a
larger area, these resonances do not lead to spectrally con�ned features,
but are responsible for the o�set in measured TPL compared to simu-
lations and for the fact that the TPL enhancement levels measured far
from the resonances (especially for the dx = dy = 160 nm-particle array)
do not approach unity.

vi. In�uences of the boundary conditions: On the vertical walls of the unit
cells, the simulations consider strictly periodic boundary conditions, i.e.,
in�nite arrays, but the experimentally investigated arrays are certainly
�nite (100×100µm2). However, since the propagation length, and there-
fore the interaction distance between the particles (∼ 20 µm at 800 nm
wavelength), is much smaller than the arrays size, we do not expect rel-
evant modi�cations of the results. On the bottom and top boundary
of the volume considered in the FDTD simulations, absorbing boundary
conditions realized by a combination of a UPML and a CCOM layer (Sec-
tion 1.2.5) at a distance of ∼ 0.6 µm above and below the gold �lm are
applied. This is to better absorb the energy �owing at grazing incidence,
which is of special importance in the considered system, as small SPP
peaks in re�ection have to be resolved and small errors in the re�ection
of grazing modes due to unwanted lack of absorption by the absorbing
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layers could be attributed spuriously to SPP resonances. Since this com-
bination of UPML and CCOM is carefully chosen and tested for the
simulations, we also do not expect artefacts in the spectra or near �elds
arising from these boundaries.
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5.6 Conclusions

In conclusion, we have investigated the electrodynamical processes involved in
the generation of TPL from arrays of rectangular gold nanoparticles deposited
either on a glass substrate or on a thin gold �lm. FDTD simulations have
been combined with linear extinction spectroscopy and TPL-microscopy to
gain insight into this particular problem.

For gold nanoparticles on glass, the simulations show pronounced e�ects
when the particle resonances spectrally overlap with array resonances. Such
e�ects are not well captured by the experiments. We attribute this to the
geometrical imperfections of the samples and the measurement process. TPL
enhancements were found to be in the range of 102 with a sharp spectral
response. The FDTD calculations reproduce well the experimental TPL ex-
citation spectra considering E4 integrated over the �top� layer (∼ half a skin
depth) of the particles as the origin of the TPL signal. Additionally, we found
indications that the spectral position of the maximum near �eld intensity en-
hancement might di�er considerably from the position of the maximum seen
in the extinction spectra, depending on the period of the particle array.

In the case of gold nanoparticles on top of a thin gold �lm, the dimensions
of the nanoparticles and the array periods were systematically varied to opti-
mize the strength of the SPP resonance in the wavelength range accessible to
the experimental characterization techniques. On the optimized array a TPL
enhancement up to ∼ 200 has been observed with a relatively broad spectral
response. It could be demonstrated that TPL enhancement is well described
by our simulations also for this con�guration, where we assume that it is re-
lated to the �eld intensity enhancement just below the gold surface, i.e., inside
the gold. We could show, that even if the optimized resonance at ∼ 800 nm
is due to a resonant excitation of a delocalized SPP mode, the maximum �eld
enhancement (an thereby the origin of the TPL signal) is localized at the parti-
cles. This is due to a combination of geometrical �eld enhancement (lightning
rod e�ect) and the better penetration of the �eld into the metal at the particle
edges. Additionally, our simulations reveal, that the enhancement factor cal-
culated just outside the gold (as it would be probed by e.g. surface enhanced
Raman scattering) is in average one order of magnitude larger than inside the
gold. The origin of this can be found in the continuity relation across the
gold-air interface, which requires the electric �eld component perpendicular to
the interface to be enhanced by the ratio of the dielectric functions.

In addition, by a careful comparison of experimental results vs FDTD sim-
ulations, we have identi�ed the parameters responsible for the di�erences be-
tween experiment and theory. To overcome these di�erences between simula-



5.6. Conclusions 189

tions and experiment, an improved experimental control of surface structure
and crystallinity of the gold �lm and particles and a better knowledge of the
gold dielectric function are crucial. For the simulations the possibility include
also surface roughness would lead to a substantial improvement. However,
the generally reasonable well agreement of simulations and experiments can
be interpreted in a way, that macroscopic Maxwell equations as solved by the
FDTD code are suitable for a detailed description of similar systems.
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This is a list of the acronyms used in the text:
AFM Atomic Force Microscope
CCOM Concurrent Complementary Operators Method
CMM Coupled Mode Method
CPP Channel Plasmon Polariton
DF Double Fishnet
EM Electromagnetic
EOT Extraordinary Optical Transmission
FDTD Finite-Di�erence Time-Domain
FFT Fast Fourier Transform
FH Fundamental Harmonic
FIB Focused Ion Beam
FOM Figure Of Merit
FT Fourier Transform
FWHM Full Width at Half Maximum
LH Left Handed
LIFT Laser Induced Forward Transfer
LR Long Range Surface Plasmon Polariton
LSP Localized Surface Plasmon
NA Numerical Aperture
NIR Near Infrared
NRI Negative Refractive Index
NW Norton Wave
MMP Multiple Multipole method
PCS Photonic Crystal Slab
PEC Perfect Electric Conductor
PLRC Piece Linear Recursive Convolution method
PML Perfect Matched Layer
PS Polystyrene
PSTM Photon Scanning Tunneling Microscope
QCM Quartz Crystal Microbalance
RH Right Handed
SEM Scanning Electron Microscope
SERS Surface Enhanced Raman Scattering
SIBCs Surface Impedance Boundary Conditions
SPP Surface Plasmon Polariton
SR Short Range Surface Plasmon Polariton
TE Transverse Electric
TM Transverse Magnetic
TPL Two Photon Luminescence
UPML Uniaxial Perfect Matched Layer
VDS Vacuum-Dielectric �lm Substrate
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VMDS Vacuum-Metal-Dielectric �lm Substrate
WPP Wedge Plasmon Polariton
2DHA Two Dimensional Hole Array
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