
CUDA implementation of integration rules within

an hp-Finite Element code.

Author: Adrián García 11,
Directors: David Pardo 2*, and Ricardo Celorrio3+

*Departamento de Matemática Aplicada, UPV/EHU University
+Departamento de Matemática Aplicada, Zaragoza's University.

September 4, 2012

1garciaprado.adrian@gmail.com
2dzubiaur@gmail.com
3celorrio@unizar.es

2

Contents

1 Introduction. 7

1.1 High Performance Computing. And Parallelization. 8
1.1.1 Amhdal's law. 8
1.1.2 Parallel computing. 8

1.2 Why CUDA. 10
1.2.1 GPU E�ciency. 11
1.2.2 Architecture & Programming Model. 14

1.3 Finite Element Problem. 16
1.3.1 Poisson's Equation Variational Formulation. 17
1.3.2 hp-FEM. 19

2 Problem and Proposed Solutions. 21

2.1 Transformed Space. 21
2.2 Shape Functions, Lagrange's Polynomials. 22
2.3 Gaussian Quadrature, integration method. 23

3 Code Implementation. 25

3.1 Lagrange's polynomials. 25
3.2 Integration. 26

3.2.1 b Integration. 26
3.2.2 A Integration. 28

3.3 System integration. 32
3.4 Matrix Assembly. 32

4 Results. 35

5 Conclusions And Future Work. 37

3

4 CONTENTS

Abstract

With the introduction in 2006 of CUDA architecture for Nvidia GPUs, a
general purpose parallel computing architecture. A new programming model
where scientist and engineers had found and answer to their claim of high
performance computation with moderate cost. This thesis work begin with
the motivations that underline parallel computation and high performance
computation. Later it is discussed why CUDA architecture and General
Porpoise Graphics Processor Units (GPGPU) had modi�ed the high perfor-
mance computation world and why it is turning into GPGPU computing.

The author has chosen this new language because of its multiple and
countless possibilities focusing in engineering applications. CUDA's novelty
it is both a motivation and an obstacle because to the lack of support and
documentation speci�cally to engineering applications.

This work has two main goals. First one is to implement a FEM in-
tegration code in a GPU architecture using CUDA language and a Nvidia
graphic device. This code performance will be compared to a parallelized
CPU code developed by the same author. Second, once the integration has
been done the obtained solution is transform into a CRS compress matrix
which is the beginning of another work, solve the system described by that
particular matrix. The performance of matrix assembly in GPU it is also
measured and compared to its respective code in parallelized CPU.

5

6 CONTENTS

Chapter 1

Introduction.

Since the early days of computers, computer graphics had been essential to
make possible a better human-machine interaction. While some applications
only need 2D graphics many other start using 3D graphics. This applications
whose most representative are computer games, photography& video edition,
have evolved in applications who demand a huge computation capability.
As this applications require more and more resources standard CPUs were
not enough to support their function. That was the main reason to build
up a device speci�cally dedicated to graphics, General Porpoise Graphics
Processor Units (GPGPU / GPU) were born.

GPU microprocessor were born to draw points inside a de�ned screen
what is basically linear algebra operations. Within the years GPU advanced
and 3D computer graphics became an integral part of many computer appli-
cations. The 3D to every application resulted in a huge market of a�ordable
3D graphics cards. Devices prices get lower and lower and its compute ca-
pability higher and higher. Few years ago GPUs outperformed the number
of �oat points operations per second that CPUs were capable, this was the
trigger to a new era. GPUs could now be used to high performance appli-
cations within a moderate cost. That was particularly bene�cial to science
and engineering world who is always looking for more compute capabilities.

Science and engineering world turned into this kind of computation ob-
taining incredible results to many problems and realizing in some other areas
that making use of large number of cores with less compute capability it is
not always a panacea. The main problem of GPU computing it is closely
related to Amhdal's law (section 1.1.1). This computational law says.
The speedup of a program using multiple processors in parallel computing
is limited by the sequential fraction of the program.

In this articles two master students will implement a Finite Element code,
which is a solution largely utilized in engineering to simulate structures. And
compare the results of running this program in both CPU and GPU.

7

8 CHAPTER 1. INTRODUCTION.

1.1 High Performance Computing. And Paralleliza-

tion.

It was 2006 when Intel launched its Core Duo into the market. This was
the beginning of a revolution, many years of investigation ended with a
single CPU with two cores. Single processor units or mono-cores rapidly
died because of the signi�cant computational advantages of utilizing several
cores. CPUs had continued evolving and nowadays are available even to
commodity computers to home utilization counting on several cores. But
is this growth in the number of cores inside a single processor the solution
to every problem in high computation problems? The answer is no. If we
take a look to Moore's Law, the number of transistor inside a microprocessor
doubles every 18 months. Does it mean that microprocessors duplicates its
velocity every 18 months? One more time the answer is no. CPU's velocity
relies on internal clock frequency inside each microprocessor. Anyway it is a
fact that with more microprocessor the program performance increases. This
section will make a brief introduction to Amhdal 's law. And after introducing
Amhdal 's law we will have another introduction to the techniques used in
CPU parallel computing.

1.1.1 Amhdal's law.

It was 1967 when Gene Ahmdal proposed the following observation. The
speedup of a program using multiple processors in parallel computing is
limited by the time needed for the sequential fraction of the program. Am-
dahl's law is a model for the relationship between the expected speedup of
parallelized implementations of an algorithm relative to the serial algorithm,
under the assumption that the problem size remains equal when parallelized.
In case a part of the algorithm can not be parallelized, the program speedup
will improve only because of the part that is possible to run in parallel. And
the improvement will depend in how much of that algorithm can be paral-
lelized. More technically, the law is concerned with the speedup achievable
from an improvement to a computation that a�ects a proportion P of that
computation where the improvement has a speedup of S.

1

(1− P) + P
S

(1.1.1)

1.1.2 Parallel computing.

Parallel computing is a form of computing where many cores execute the
same program at a once. It has been widely used long time ago but it was
not until 2006 that processors with multiple cores were accessible to non

1.1. HIGH PERFORMANCE COMPUTING. AND PARALLELIZATION.9

Figure 1.1: The speedup of a program using multiple processors in parallel
computing is limited by the sequential fraction of the program. For example,
if 95% of the program can be parallelized, the theoretical maximum speedup
using a parallel algorimth would be 20x as shown in the diagram.

professional users. Before 2006 parallel programs had to run in physically
separated computers, this still is a technique widely used nowadays.

Carry out the computation simultaneously turns into an improvement
of required time to execute the program. First approximation to parallel
computers can be divided in two groups. Processes that run parallel inside a
single machine and processes that require several computers to perform the
task, to this group belong computer cluster, grids and MMP's. Closer this
article main goal are multi-core, multi-processor machines and symmetric
multiprocessing techniques. Who are inside the category of parallel execution
using only one computer.

Multi-core processor.

This are nowadays processors, they count with several cores, inside a single
silicon component with two or more cores. The improvement in performance
gained by the use of a multi-core processor depends on the software algo-
rithms used and their implementation. Possible gains are limited by the
fraction of the algorithm that can be run in parallel. Best case, so-called
embarrassingly parallel problems may realize speedup factors near the num-
ber of cores, or even more if the problem is split up enough to �t within each
core's cache, avoiding the use of main system memory which is much slower.
But this is not usual neither real, this problems exist mostly as laboratories
examples.

10 CHAPTER 1. INTRODUCTION.

Symmetric multiprocessing.

When two or more identical processors are connected via bus to a single
shared main memory and are controlled by a single OS. This is a very chal-
lenging type of parallel programming because it requires two distinct modes
of programming, one for the CPUs themselves and one for the interconnect
between the CPUs. Main advantage comes because each processor can make
di�erent calculus, making possible to run in parallel di�erent parts of the
program at a time.

General Purpose Graphics Processor Units (GPGPU).

This is by far the newest paralelization technique and is the one that it
is going to be used along this work. To implement a program which ob-
jective is to simulate a 3D grid with hp-Finite Elements. GPUs are co-
processors that have been heavily optimized for computer graphics process-
ing. Computer graphics processing is a �eld dominated by data parallel
operations�particularly linear algebra matrix operations. In the early days,
GPGPU programs used the normal graphics APIs for executing programs.
However, several new programming languages and platforms have been built
to do general purpose computation on GPUs like CUDA for Nvidia GPUs
and Stream SDK for ATI GPUs.

1.2 Why CUDA.

Gaming industry and high-de�nition 3D graphics application make the Graphic
Processor Unit to evolve into a highly parallel, multithreaded, manycore
processor with tremendous computational power and very high bandwidth.
With the advent of multicore processors software pieces should now be writ-
ten so as to exploit these resources as much as possible. This parallel pro-
gramming era has arrived because of customers great demand on more and
more applications on their PCs, laptops and on their portable gadgets. Users
want better GUI (Graphics User Interface), HD quality video, faster virus
scanners, real time network security systems, better realism in video games
and faster access to data base. Moreover, the engineering and scienti�c com-
munity is, for example looking for deeper insights into the biological cells at
molecular level.

Aiming the scope to scienti�c and engineering high performance appli-
cation CUDA technology o�ers an extraordinary base line to develop high
performance simulations involving calculations with hundreds of GFLOPS
(Giga Floating Point Operations Per Second). Thanks to hundreds of cores
in modern GPUs and software architecture, developers can think of exploit-
ing these valuable resources and develop applications that run 100 times and
even faster. It is remarkable to say that GPU architectures has the most ad-

1.2. WHY CUDA. 11

vantage relation of GFLOP's per Dollar and also one of the best GFLOP's
per watt all of this inside a small socket which gives one of the best ratio
GFLPO's per square millimetre. This is incredibly important when talking
about maintenance and cost of GPUs.

Thus there is a great pressure on designers to develop applications which
should run many times faster than CPUs applications. Above all the compat-
ibility with the C programming language turns the learning curve very steep,
and the hardware abstraction provided by CUDA makes the programmer's
life easier than ever before. The programmer does not need to be aware of
the graphics APIs and can use C programming language to launch thousands
of threads running in parallel on hundred's of cores.

The speed of the GPU is increasing at a a much higher rate as compared
to the CPU (see below) making the GPUs as a co-processor for handling
large number of calculations per second demanded by the customers.

1.2.1 GPU E�ciency.

GPUs are emerging as potential compute devices, with vendors such as
Nvidia claiming orders of magnitude better performance than conventional
solutions. In part, this advantage was due to rather di�erent power bud-
gets. GPUs plateaued at roughly 250-300W, whereas few commodity CPUs
exceeded 130W. Similarly, high-end GPUs tended to max out the available
area, while CPUs were constrained to less area. To make a reasonable com-
parison between di�erent CPUs and GPUs analysis is focused on e�ciency
and normalized performance by the area and power consumption. Few years
ago GPUs were immature the comparison showed that GPU and CPU were
more or less at the same level of computing capabilities. Some GPUs were
less e�cient that CPUs on the same process technology while other GPUs
were far more e�cient.

The comparison now in 2012 is much more strait forward. GPUs are a
much more acceptable part of the computing landscape and are at a mid-
point in terms of maturity. Although there are still a number of factors to
take into account.

• GPUs and CPUs typically require additional chips to make a complete
system. To obtain a good e�ciency factor in GPU a good CPU its
needed, and to obtain a good e�ciency in CPU a good bother board
and RAM memory are essentials.

• GPU programming models are still restrictive compared to CPUs.

• GPU power often includes board-level components such as memory
and VRMs; CPUs do not.

• Server processors tend to invest considerable power and area into co-
herency, memory capacity and large caches to enable scalability, whereas

12 CHAPTER 1. INTRODUCTION.

Figure 1.2: 2009 performance per watt and performance/mm2 of silicon for
various CPUs and GPUs. To help make more sense of all this data, and
highlight key di�erences, GPUs are marked with squares and CPUs with
diamonds. 65nm products are shown in orange, 55nm in green and 45nm in
blue.

client CPUs and GPUs do not.

• Most importantly, theoretical compute power does not translate into
actual workload performance. CPUs have a much higher utilization
than GPUs.

Looking at �gure 1.3 we can see that the best throughput processor
(Fermi) has a 68% area and 77% power advantage compared to the best
CPU (Ivy Bridge), despite using an older process technology. And there is
also remarkable IBM's Blue Gene/Q conclusively demonstrates that a CPU
designed for throughput can match and even exceed the power e�ciency of
GPUs. There is still a gap in terms of area e�ciency, but smaller than the
data suggests given that Blue Gene/Q includes a large cache and robust
interconnects that are not found in a GPU.

In late 2012 and early 2013, there should be a number of new products
that change the overall picture. New processor technology will reach to GPUs
with high performance 32/28nm microprocessors. Realistically, these new
products should widen the gap between CPUs and throughput processors
making super computing available to commodity PCs.

1.2. WHY CUDA. 13

Figure 1.3: 2012 performance per watt and performance/mm2 of silicon for
various CPUs and throughput devices. Conventional microprocessors are
shown with diamonds, while squares denote throughput processors. The
color indicates the process technology, with blue representing 22nm, yellow
for 40nm and brown indicating 45nm.

14 CHAPTER 1. INTRODUCTION.

1.2.2 Architecture & Programming Model.

In November 2006, NVIDIA introduced CUDA, a general purpose parallel
computing architecture � with a new parallel programming model and in-
struction set architecture. That hastened the parallel computation within
NVIDIA GPUs to solve many complex computational problems in a more
e�cient way than CPUs. This advantage comes from GPUs to be able to
reach the Amhdal's law limit in highly parallelizable problems. As GPU are
nowadays manufactured with an incredibly large number of cores. When
developing the parallel code is important to make use of the largest possi-
ble number of cores because GPUs single cores are much slower than CPUs
cores. Thus the performance lies in the number of GPU cores utilised.

Figure 1.4: Basic structure of a typical CPU (left) and GPU (right).

CUDA programming model is based on C code and despite the di�er-
ences it will be relatively familiar to C developers. CUDA C extends C by
allowing the programmer to de�ne C functions, called kernels. Kernels when
called are executed N times in parallel by N di�erent CUDA threads, as
opposed to only once like regular C functions, �gure 1.6 it is shown how the
main program executes sequentially and when CUDA kernel it is called the
program executes inside GPU device in parallel.

As it is possible to see kernels when executed create a grid of blocks.
Which at the same time are a grid of threads. This is an important concept
because a thread is the minimum piece of code that is paralellizable, and it

can not be divided. Threads are closely related to Amhdal's law, and they
dictate program's performance. The smaller the threads are, the better to
GPU performance. As it has been said GPUs has an incredible large number
of cores, this implies an incredibly larger number of threads that can be
implemented at a time.

Blocks are grouped threads that execute in a single core inside the gpu.
Threads inside a block are executed in warps of 32 threads at a time and
can share data via Block's cache. Anyway it has to taken into account that
in case of exceed cache memory the performance will be seriously a�ected.

1.2. WHY CUDA. 15

Figure 1.5: Host and device execution of GPU code.

Figure 1.6: Execution inside a GPU device. Grid is divided in Blocks which
are build of Threads that are executed in Warps of 32 Threads every clock
cycle.

16 CHAPTER 1. INTRODUCTION.

Coalesced Memory Access.

When the kernels are been executed Blocks and Threads have access to device
global memory (�gure 1.4). Memory access it has always being important
both in CPU and in GPU to ensure e�cient code. In GPU programming
case this is a particular problem, to be handled with care.

A coalesced memory transaction is one in which all of the threads in a
half-warp access global memory at the same time. This is oversimple, but
the correct way to do it is just have consecutive threads access consecutive
memory addresses.

So, if threads 0, 1, 2, and 3 read global memory 0x0, 0x4, 0x8, and 0xc,
it should be a coalesced read.

In a matrix example, keep in mind that you want your matrix to reside
linearly in memory. You can do this however you want, and your memory
access should re�ect how your matrix is laid out. So, the 3x4 matrix below.

0 1 2 3
4 5 6 7
8 9 a b

could be done row after row, like this, so that (r, c) maps to memory
(r · 4 + c).

0 1 2 3 4 5 6 7 8 9 a b
Suppose you need to access element once, and say you have four threads.

Which threads will be used for which element? Probably either.

thread 0: 0, 1, 2
thread 1: 3, 4, 5
thread 2: 6, 7, 8
thread 3: 9, a, b

or

thread 0: 0, 4, 8
thread 1: 1, 5, 9
thread 2: 2, 6, a
thread 3: 3, 7, b

Which is better? Which will result in coalesced reads, and which will
not?

Either way, each thread makes three accesses. Let's look at the �rst access
and see if the threads access memory consecutively. In the �rst option, the
�rst access is 0, 3, 6, 9. Not consecutive, not coalesced. The second option,
it's 0, 1, 2, 3. Thus is consecutive and therefore coalesced.

1.3 Finite Element Problem.

The physical concept on which the �nite element method is based has its
origins in the theory of structures. The idea of building up a structure by
�tting together a number of structural elements was used in the early truss

1.3. FINITE ELEMENT PROBLEM. 17

and framework analysis approaches employed in the design of bridges and
buildings in the early 1900s. By knowing the characteristics of individual
structural elements and combining them, the governing equations for the en-
tire structure could be obtained. This process produces a set of simultaneous
algebraic equations. The limitation on the number of equations that could
be solved posed a severe restriction on the analysis. The introduction of the
digital computer has made possible the solution of the large-order systems
of equations.

Finite Element methods are based on di�erential equations to solve prob-
lems. Di�erential equations arise in many areas of science and technology,
areas so disperse as classical mechanics, electromagnetism, �uid mechan-
ics and basically any science and technology area. Di�erential equations
strength rely on their capability to link together a physical variable and its
variation. This simple concept makes this mathematical tool one of the most
essential mathematical knowledge to every scientist and engineer.

Di�erential equations are mathematically studied from several di�erent
perspectives, mostly concerned to the set of functions that satisfy the equa-
tion. Only the simplest di�erential equations have explicit solution formulas.
Moreover most of the systems that involve di�erential equations study do
not have an exact solution form. When it is not possible to �nd an explicit
solution it may be numerically approximated using computing techniques.
The theory of dynamical systems puts emphasis on qualitative analysis of
systems described by di�erential equations, while many numerical methods
have been developed to determine solutions with a given degree of accuracy.

This makes the coupling of di�erential equations and high performance
computing an incredible tool to approximate solutions in engineering prob-
lems. While the governing equations and boundary conditions can usually
be written to these problems but di�culties introduced by irregular geome-
try or other discontinuities render the problems intractable analytically. To
obtain a solution simplifying assumptions must be performed, reducing the
problem to one that can be solved, or a numerically approximated. Numer-
ical methods provide approximate values of the unknown quantity only at
discrete points in the region. In the �nite element method, the region of in-
terest is divided up into numerous connected subregions or elements within
which approximate functions which are usually polynomials and are used to
represent the unknown quantity.

1.3.1 Poisson's Equation Variational Formulation.

(WP)

{
−∆u = f, x ∈ ΩR2

u|Γ = 0
(1.3.1)

To solve the problem written in weak formulation to Poisson's equation

18 CHAPTER 1. INTRODUCTION.

it is necessary to �nd a function which Laplacian equals,

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
1

(1.3.2)

Using Green's formula.∫
Ω

∆u · vdx = −
∫

Ω
∇u · ∇vdx+

∫
Γ
v
∂u

∂n
dγ (1.3.3)

Where the gradient is equal

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

= ux1x1 + ux2x2

∇u =

(
∂2u

∂x2
1

,
∂2u

∂x2
2

)
= (ux1 , ux2)

(1.3.4)

The product of the gradients

∇u · ∇n = (ux1 , ux2)(vx1 , vx2) = ux1 , vx1 + ux2 , vx2 (1.3.5)

And the derivative respect to −→n .

∂u

∂n
= ∇u · n = ux1 · n1 + ux2 · n2 (1.3.6)

to �nd a variational formulation, �rst a trial space is needed.

(V P)

{
v ∈ ΩR

l0(Ω)
(1.3.7)

If we take a function and apply scalar product

−
∫

Ω
(∆u) · vdx =

∫
Ω
f · vdx;∀v ∈ V

Green's function∫
Ω
∇u∇vdx−

∫
Γ
v
∂u

∂n
dγ =∫

Ω
∇u∇vdx− 0 =

(1.3.8)

This trial space must satisfy continuity and boundary conditions vΓ = 0.
It is known that if a solution exist is unique.

Making the problem discontinuous, is equal as it is done in one dimension.
A trial space Vh is needed, and this space has to satisfy.

Vh ⊂ V s.t. dim(Vh) <∞ (1.3.9)

This space will have a base ϕ1, ϕ2, . . . , ϕM in Vh. As proved before the
system could be proposed in two formulations, and is easier to solve in vari-
ational formulation. The steps needed to solve the problem, are.

1.3. FINITE ELEMENT PROBLEM. 19

1. Find a suitable base in the trial space.

un =
M∑
j=1

ujϕj(x) (1.3.10)

2. Find the sti�ness matrix and load tensor.

(V Ph)


un ∈ R

a

 M∑
j=1

uj∇ϕj(x),∇ϕi(x)

 = L (ϕi(x)) i = 1, . . . ,M

(1.3.11)

And operations needed to perform this task are.

A = (ϕj(x), ϕi(x))

∫
Ω
∇ϕj · ∇ϕi

b = L(ϕi(x))

∫
Ω
f · ϕidx

(1.3.12)

1.3.2 hp-FEM.

hp-FEM is a general version of the �nite element method FEM . This nu-
merical method is based on polynomials approximations that makes use of
elements of variable size h and polynomial degree p. The origins of hp-FEM
date back to the pioneering work of Ivo Babuska who discovered that the
�nite element method converges exponentially fast when the mesh is re�ned
using a suitable combination of h-re�nements which is make by dividing el-
ements into smaller ones and p-re�nements increasing polynomial order in
shape functions. This exponential convergence makes the method one of the
best possible choice when implementing a numerical simulation.

hp-FEm e�ciency relies on the capability of approximate functions with
larger polynomial order or smaller piecewise-linear elements. This capability
is also extended to all the elements inside the grid. And what is more
important di�erent elements may have di�erent size h or di�erent polynomial
order approximation p and that is known as hp-adaptivity. hp-adaptivity as
a combination of h-adaptivity splitting elements in space while keeping their
polynomial degree �xed and p-adaptivity increasing their polynomial degree.

Related to work's problem, the code implemented must have this capa-
bility and be able to properly simulate di�erent situations where h and p
can vary as the user likes. Up to the �rst version polynomial approximation
is fully implemented up to 9th order polynomials. And h implementation
forces h to be equal to the three directions in space, making this way an
homogeneous grid.

20 CHAPTER 1. INTRODUCTION.

Chapter 2

Problem and Proposed

Solutions.

The main goal of this article is to measure the ratio of execution times of
two calculus algorithms for the same problem. One of them is a C code with
CPU parallelelized implementation. The second code makes the same calcu-
lations inside aGeneral Purpose Graphics Processor Unit (GPGPU).
Both codes runs under the same execution, as will be explained later in this
work.

The code simulates a time static and homogeneous three dimensional
grid. Distance between elements h and polynomial order approximation p is
�xed at compilation time as well as the number of elements per side which
will give the total number of elements. This allows to simulate di�erent grid
sizes and polynomial approximations to compare executions times.

Solutions to the main di�culties arisen when creating the algorithms will
be now brie�y discussed.

2.1 Transformed Space.

As seen in section 1.3.1. It is easier to solve the problem inside a trans-
formed space. The space chosen is an homogeneous three dimensional cube
in coordinates [−1 : 1], [−1 : 1], [−1 : 1]. This space has the advantage to
perfectly �t the selected integration method which is Gauss Quadrature
de�ned between [−1 : 1]. Gauss quadrature can be utilised in [a : b] spaces,
transforming that space. So the advantage to directly transform,

[xa : xb][ya : yb][za : zb]→ [−1 : 1][−1 : 1][−1 : 1] (2.1.1)

is to make only one space transformation. To transform space is easy in this
particular case where the grid is cubic and homogeneous. Let xc, yc, zc be the
coordinates in the center of the element inside the weak formulation space.

21

22 CHAPTER 2. PROBLEM AND PROPOSED SOLUTIONS.

Then the coordinates in variational formulation space to a point x, y, z, will
be.

ξ =
x− xc
h

η =
y − yc
h

ζ =
z − zc
h

(2.1.2)

Where ξ, η, ζ de�ne the coordinates inside transformed space.

2.2 Shape Functions, Lagrange's Polynomials.

Shape functions choice it is not trivial. Shape functions must have value
ϕij = 1 when i = j and have value ϕij = 0 in any other case. Furthermore it
is mandatory to take into account the calculus succession necessary to obtain
a correct result.

The program implements Lagrange's polynomials as shape functions.
Given a set of points xi, yi Lagrange polynomial is the polynomial of the
least degree that at each point xi assumes value yi.

Given
(x0, y0), . . . , (xj , yj), . . . , (xk, yk) (2.2.1)

where no two xi are the same, the interpolation polynomial in the Lagrange
form is a linear combination.

`j(x) :=
∏

0≤m≤k
m 6=j

x− xm
xj − xm

=
(x− x0)

(xj − x0)
· · · (x− xj−1)

(xj − xj−1)

(x− xj+1)

(xj − xj+1)
· · · (x− xk)

(xj − xk)

(2.2.2)

Given the initial assumption that no xi are equals, every xi − xj 6= 0, so
the expression it always properly de�ned. As requested in equation ??,
Lagrange's polynomials satisfy that particular condition.

For all i 6= j, `j(x) includes the term (x − xi) so the numerator will be
zero at x = xi

`j 6=i(xi) =
∏
m6=j

xi − xm
xj − xm

=
(xi − x0)

(xj − x0)
· · · (xi − xi)

(xj − xi)
· · · (xi − xk)

(xj − xk)
= 0

(2.2.3)

On the other and, if i = j.

`i(xi) :=
∏
m6=i

xi − xm
xi − xm

= 1 (2.2.4)

There is one more main reason to use Lagrange's polynomials. It is re-
lated to high performance computing. Shape functions must be hierarchical.
When to obtain the n− esime value of a polynomial is fn(x) = fn−1(x) · x.

2.3. GAUSSIAN QUADRATURE, INTEGRATION METHOD. 23

As an example let assume that we need to evaluate function f(x). Then
f(x) is a hierarchical function if can be evaluated like.

f1(x) = 1

f2(x) = x

f3(x) = x2

f4(x) = x3

(2.2.5)

And continue evaluating until the polynomial ends. As can be seen any
polynomial like, f(x) = a + bx + cx2 + . . . + nxn+1 can be hierarchically
computed. And there is a huge mistake on trying that approach in high
performance computing, and at any computing problem in general. The fact
is when approaching a polynomial result with that method x it is very likely
to reach extreme values, zero or in�nite. Inside our particular case. The
program uses a transformed space between [−1 : 1], and up to 9th order
polynomials so succession xn will reach zero value returning a wrong result.
By using Lagrange's polynomials this issue does not appear because there
is no more potency to be evaluated. Instead subtractions are evaluated and
multiplied and x value is no longer modi�ed. On the other and Lagrange's
polynomials introduce a di�culty when its gradient is calculated. Because
it is necessary to introduce an if condition which is not advisable at all, but
it is a minor issue when compared to the evaluation point reaching to zero.

This is an easy and systematic method of generating shape functions of
any order now can be achieved by simple products of Lagrange polynomials
in the two or more coordinates. Thus, in three dimensions, if we label the
node by its column and row number, I, J and K we have.

Na ≡ NIJK = lnI (ξ)lmJ (η)lpK(ζ) (2.2.6)

where n, m and p stand for the number of subdivisions in each direction.

2.3 Gaussian Quadrature, integration method.

A quadrature rule is an approximation to a de�ned integral. To perform
the integration task the program uses Gaussian Quadrature method. This
method evaluates a weighted sum of the function evaluated in certain points.
More speci�cally if the evaluating function is a polynomial, Gaussian quadra-
ture reach an exact solution within N = 5 evaluation points. Gaussian
quadrature to one dimension.

∫ 1

−1
f(x)dx ≈

N∑
i=1

wif(xi) (2.3.1)

24 CHAPTER 2. PROBLEM AND PROPOSED SOLUTIONS.

As the program runs inside a three dimensional space, quadrature has to
approximate a space in three dimensions.∫ 1

−1
f(x)dx

∫ 1

−1
f(y)dy

∫ 1

−1
f(z)dz ≈

N∑
i=1

N∑
j=1

N∑
k=1

wiwjwkf(xi)f(yj)f(zk)

(2.3.2)
This integration method o�ers an exact solution to a polynomial when eval-
uated up to �ve points. So the program implements a �ve-point Gauss
quadrature function to obtain the best possible solution. It should be noted
the di�erences when implementing the calculus of elements aij and bi. If we
look equation 1.3.12 the di�erences between both implementations will be
noticed. To implement bi algorithm shape function is evaluated itself. But
when performing aij calculus shape function is not evaluated. It is the two
shape's functions gradient product to be evaluated. And as said earlier that
particularity introduces an if condition which is not desirable but inevitable.

Despite the gradient calculus inconvenient Gaussian quadrature method
o�ers a good e�ciency to high performance computing and it is remarkable
that Gaussian quadrature is an exact solution when evaluating polynomials.

Chapter 3

Code Implementation.

In chapter 2 several problems were discussed. This chapter the solutions
used while implementing the code. Sections are dedicated to each of the
main issues that have been found while working in this program.

3.1 Lagrange's polynomials.

Lagrange's polynomial theory was exposed in 2.2. To implement Lagrange's
polynomials it is not a di�cult task. As the grid point is known, it is direct
to transform a given point and its nearest neighbours to transformed space.
If we denote as k point to have value 1, to implement Lagrange's polynomials
inside a three dimensional space three more points are needed. This points

25

26 CHAPTER 3. CODE IMPLEMENTATION.

will have value 0 and will be denoted as x0, y0, z0.

for p← 0 to p− order do
temp← 1.0;
step← 2.0/(p+ 1);

lpolx ← x0;
lpoly ← y0;
lpolz ← z0;

temp∗ ← kx − lpolx;
temp∗ ← kx − lpoly;
temp∗ ← kx − lpolz;
for i← 0 to p+ 12 do

lpolx ← kx + i ∗ step;
lpoly ← ky + i ∗ step;
lpolz ← kz + i ∗ step;
temp∗ ← kx − lpolx;
temp∗ ← ky − lpoly;
temp∗ ← kz − lpolz;

end

lpolcoef ← temp;

end
Algorithm 1: Lagrange's polynomials implementation in a three dimen-
sional grid.

3.2 Integration.

To obtain the solution there are two instants where the code need to make
an integration. This integrations are calculated with Gaussian quadrature
because as commented this method gives an exact result with only 5 points of
evaluation. And it is important to say that as the code has been developed,
Gaussian quadrature can not be paralellized. This is a main issue to GPU
but on the other hand if paralellized gauss quadrature uses a large amount
of memory which is a limited resource in GPU computing.

3.2.1 b Integration.

Equation 1.3.12 show that b vector is obtained by integrating the known
solution with the shape functions in each point. As the shape function is
composed by one Lagrange's polynomial to each polynomial order. So when
integrate to obtain b vector with a p polynomial approximation. Then p

points will be obtained.

3.2. INTEGRATION. 27

b =



n0


p0

p1

. . .
pp−order

n1


p0

p1

. . .
pp−order

. . .

nM


p0

p1

. . .
pp−order



So �rst loop need to go over the polynomial approximation order (p-
order). And to each point the integration.

b =

∫
Ω
f · ϕidx (3.2.1)

Known solution is expressed as a polynomial. Earlier in this article was
said that using polynomials to approximate shapes functions was not a good
choice, because the value could get extreme values very fast. But as this im-
plementation it is only to explore the bene�t of GPU computation. Known
solution has been chosen to avoid extreme values despite of been a polyno-

28 CHAPTER 3. CODE IMPLEMENTATION.

mial.

for p← 0 to p− order do
for i← 0 to 5 do

temp← 1.0 ;
tempx ← 0.0;
for j ← 0 to KnownXsize do

tempx+← temp · knownSolX[j];
temp∗ ← gausspoint[i];

end

temp← 1.0 ;
tempy ← 0.0;
for j ← 0 to KnownY size do

tempy+← temp · knownSolY [j];
temp∗ ← gausspoint[i];

end

temp← 1.0 ;
tempz ← 0.0;
for j ← 0 to KnownZsize do

tempz+← temp · knownSolZ[j];
temp∗ ← gausspoint[i];

end

for j ← 0 to p do
tempx ← gausspoint[i]− lpolx[j];
tempy ← gausspoint[i]− lpoly[j];
tempz ← gausspoint[i]− lpolz[j];

end

tempx∗ ← gausscoef [i];
tempy∗ ← gausscoef [i];
tempz∗ ← gausscoef [i];

resultx+← tempx;
resulty+← tempy;
resultz+← tempz;

end

bn(p)← resultx·resulty ·resultz
lpoldenominator

end
Algorithm 2: Calcule b vector single element.

3.2.2 A Integration.

As in previous section, equation 1.3.12 which is the necessary calculus to ob-
tain each matrix element aij . A is a diagonal matrix made up by boxes. This
boxes size is equal to polynomial approximation order (p−orderxp−order).
This way the interaction between one point and its nearest neighbours is

3.2. INTEGRATION. 29

calculated to every polynomial combination.

aij =

∫
Ω
∇ϕj · ∇ϕi (3.2.2)

A =



n0 n1 . . . nM

n0


p0 p1 . . . pp−order

p0 a00
00 a00

01 a00
0p

p1 a00
01 a00

11 a00
1p

. . .
pp−order a00

0p a00
1p a00

pp

.

n1


p0 p1 . . . pp−order

p0 a01
00 a01

01 a01
0p

p1 a01
01 a01

11 a01
1p

. . .
pp−order a01

0p a01
1p a01

pp

.

.

nM


p0 p1 . . . pp−order

p0 a0M
00 a0M

01 a0M
0p

p1 a0M
01 a0M

11 a0M
1p

. . .
pp−order a0M

0p a0M
1p a0M

pp

.



Before get into integration calculus it is advisable to perform an algorithm
who obtain the gradient of a given Lagrange's polynomial. Lets assume that
given polynomial has order p, then the algorithm will be. Let assume that
p equals 3 in this case.

ϕ =
1

C
(x− x1)(x− x2)(x− x3)

(y − y1)(y − y2)(y − y3)

(z − z1)(z − z2)(z − z3)

∇ϕ =
1

C
{(x− x2)(x− x3) + (x− x1)(x− x3) + (x− x1)(x− xM−1)} · lylz

{(y − y2)(y − y3) + (y − y1)(y − y3) + (y − y1)(y − yM−1)} · lxlz
{(z − z2)(z − z3) + (z − z1)(z − z3) + (z − z1)(z − zM−1)} · lxly

(3.2.3)

30 CHAPTER 3. CODE IMPLEMENTATION.

gradx ← 1.0;
grady ← 1.0;
gradz ← 1.0;

for i← 0 to p+ 1 do
for j ← 0 to p+ 1 do

if i 6= j then
gradx[i]∗ ← gaussx[point]− lpolx[j];
grady[i]∗ ← gaussx[point]− lpoly[j];
gradz[i]∗ ← gaussx[point]− lpolz[j];

end

end

end
Algorithm 3: Calculate the gradient of a Lagrange polynomial lpol at a
given integration point inside gauss quadrature point.

Now it is time to calculate the gauss quadrature. When two polynomials
ϕn
i ϕ

m
j interact, their interaction goes to a point in the matrix A this point

is inside a box which represents the interaction between element NiNj . The
box is a square matrix of side equal to the polynomial approximation order
p − order. And element anmij represents the interaction between element i

3.2. INTEGRATION. 31

and j, when evaluating shape functions n and m.

for p− order1← 0 to p− order do
for p− order2← 0 to p− order do

for i← 0 to 125 do
derivatex ← 0;
derivatey ← 0;
derivatez ← 0;

grad1 ← calculategradientoflpol1;
grad2 ← calculategradientoflpol2;

for p1← 0 to p− order1 do
for p2← 0 to p− order2 do

derivatex+← gradx[p1]− gradx[p2];
derivatey+← grady[p1]− grady[p2];
derivatez+← gradz[p1]− gradz[p2];

end

end

for p1← 0 to p− order1 do
derivatex∗ ← gaussx[i]− lpol1y[p1];
derivatex∗ ← gaussx[i]− lpol1z[p1];

derivatey∗ ← gaussx[i]− lpol1x[p1];
derivatey∗ ← gaussx[i]− lpol1z[p1];

derivatez∗ ← gaussx[i]− lpol1x[p1];
derivatez∗ ← gaussx[i]− lpol1y[p1];

end

for p2← 0 to p− order2 do
derivatex∗ ← gaussx[i]− lpol2y[p2];
derivatex∗ ← gaussx[i]− lpol2z[p2];

derivatey∗ ← gaussx[i]− lpol2x[p2];
derivatey∗ ← gaussx[i]− lpol2z[p2];

derivatez∗ ← gaussx[i]− lpol2x[p2];
derivatez∗ ← gaussx[i]− lpol2y[p2];

end

derivatex∗ ← gausspoint[i];
derivatey∗ ← gausspoint[i];
derivatez∗ ← gausspoint[i];

result← erivatex·derivatey ·derivatez
lpolCoef1·lpolCoef2

;

end

ap−order1p− order2← result;
ap−order2p− order1← result;

end

end
Algorithm 4: Gaussian quadrature for two Lagrange's polynomias gradi-
ent in a 3D grid.

32 CHAPTER 3. CODE IMPLEMENTATION.

3.3 System integration.

Once we have build the di�erent algorithms needed to solve the system it is
time to develop a piece of code that uses those algorithms to solve the prob-
lem proposed in equation 1.3.12. It is important to remark that A matrix
is made by boxes. Each row is formed by several boxes which represents the
interaction between two element. Inside a row we will �nd the box that rep-
resents the interaction with the element itself, and the boxes who represents
the element interaction with its nearest neighbours.

for idx← 0 to Number of Elements do

tSpace← Get Transformed space associated to idx;

for li← 0 to 4 do
lpol← Get Lagrange′s polynomials;

end

b← Integrate tSpace0 with lpol0;
A0 ← Integrate tSpace0 with lpol0;

for li← 1 to 4 do
Ali ← Integrate tSpaceli lpolli;

end

end
Algorithm 5: Calculate A matrix and b vector. A matrix is made of
boxes

3.4 Matrix Assembly.

Before facing system solving, it is necessary to assembly A matrix. Already
we have the values of the integrations but they are not properly distributed.
As mentioned before A is formed by boxes, this step turns this box-formed
matrix into a Compressed Storage Row (CRS) matrix. The main problem to
perform this task is to handle memory directions properly. There are several
ways to do it and in this work I have chosen a solution that implies look for
every value twice and write it once. This solutions has been taken because

3.4. MATRIX ASSEMBLY. 33

reading memory is much faster than writing.

for idx← 0 to Number of Elements do
Matrix is copied row by row for p← 0 to p− order do

for i← 0 to Boxes Behind the diagonal do
for j ← 0 to p− order do

CRS[cont]← A[(idx− (i+ 1)) ∗ p− order2 ∗ 4) + (i ∗
p− order2) + (p ∗ p− order) + j;
cont+ +;

end

end

for j ← 0 to p− order do
CRS[cont]← A[idx ∗ p− order2 ∗ 4) + (p ∗ p− order) + j;
cont+ +;

end

for li← 1 to Boxes after the diagonal do
for j ← 0 to p− order do

CRS[cont]←
A[idx∗p−order2∗4)+(i∗p−order2)+(p∗p−order)+j;
cont+ +;

end

end

end

end
Algorithm 6: A matrix assembly into Compressed Row Storage format.

34 CHAPTER 3. CODE IMPLEMENTATION.

Chapter 4

Results.

Before expose and discuss obtained results is important to describe the hard-
ware equipment that is going to be used. The program will run in a home
computer with a CPU AMD Phenom(tm) II X6 1090T Processor which has
a top frequency of 3.3Mhz. Mother board has 8GB as RAM memory. And
�nally the GPU which is an GeForce GTX 550 Ti Nvidia graphics card,
all of this running under Linux Ubuntu 12.04. This equipment presents two
direct problem, given the fact that CPU is much better than GPU. And the
fact that this GPU can only operate in �oat which is single precision with
no have value in engineering world. Anyway this work is about compare the
rate between CPU and GPU executions.

Previous chapters have widely talked about GPU its structure and its
programming model. So the results are presented directly. Figure 4 repre-
sents the time required to execute integration process. Figure 4 represents
the time taken to transform A from boxess to CRS format. Lastly Figure
4 represents the ration between the executions time. Every execution has
been made with h = 5 and it is the number of elements and the shape func-
tion polynomial approximation the variables that are handled. This may not
appear a good solution, but after many executions parameter h was almost
irrelevant when measuring time execution.

Polynomial order approximation has chosen to be 3 and 6. Higher poly-
nomials order make the program to fully occupy device and cause problems
to the OS graphics environment which is running inside the same GPU so
no data could be acquired to higher polynomial approximation order in this
precise equipment.

35

36 CHAPTER 4. RESULTS.

Figure 4.1: This chart represents executions times to di�erent grid sizes. As
we can see the GPU implementation it is not as god as it should. And it
runs much slower that parallel CPU.

Figure 4.2: Once more CPU parallel performance outcomes when task in-
volves reading and writing. In this particular case the incredible di�culty of
making A vectors coalesced severely penalizes the GPU.

Figure 4.3: This particular chart express the time ratios between the di�erent
executions that have been made.

Chapter 5

Conclusions And Future Work.

This work represents �rst step towards the implementation of a fully opera-
tional hp-FEM solver. It is true that in this work results does not support
the idea of a functional hp-FEM solver but despite the poor results exist are
a number of factors that worth to analyse. CUDA is a new programming
language and a new programming structure this translates into a huge lack
of support. There are few specialized books and even few of those books are
oriented to high performance computation. Most of those CUDA specialized
books address issues related to graphic user interface and image process-
ing improvement not engineering problems. In conjunction with this �rst
problem author's CUDA inexperience surely has derived into a poorly op-
timised implementation. As it is easy to see in �gure 4 vectors are clearly
not coalescence which is explained in section 1.2.2. When it is referenced to
integration problem it is Amhdal's law who has tricked the results. Imple-
mented algorithm is good enough to have parallelism in 6 cores as CPU has.
Problem appear when the number of cores grown but the velocity of them-
selves descends. And with that number of cores a completely new algorithm
is needed.

The �nal conclusion about CUDA is the long road of development that
still has this new programming language and the bright future is GPU com-
puting. Although in this particular job performance was not achieved ex-
pected there countless studies have shown that the feasibility of code im-
plentación graphics cards in order to make high performance computing.

37

38 CHAPTER 5. CONCLUSIONS AND FUTURE WORK.

Acknowledgment.

I want to thank and dedicate this work to all the people who have been
close to me during the making of it. To my parents, to Rocio, Raúl and
Javi. BIFI's people specially sysadmins that gave full support and access to
their computers. I'm specially grateful to Asier Lacasta without your help
it would have been impossible to do this job. Finally I want to thank David
Pardo and Ricardo Celorrio by guide me with this di�cult work.

39

40 CHAPTER 5. CONCLUSIONS AND FUTURE WORK.

Bibliography

[1] Jens Krüger and Rüdiger Westermann, Linear Algebra Operators for

GPU Implementation of Numerical Algorithms.

Computer Graphics and Visualization Group, Technical University Mu-
nich, 10.1.1.1.3310.

[2] K. Fatahalian, J. Sugerman, and P. Hanrahan,
Understanding the E�ciency of GPU Algorithms for Matrix-Matrix Mul-

tiplication.

Graphics Hardware (2004), Stanford University
10.1.1.1.6823.

[3] Stephanie Winner *, Mike Kelley *** , Brent Pease **, Bill Rivard*, and
Alex Yen ***
Hardware Accelerated Rendering Of Antialiasing Using A Modi�ed A-

bu�er Algorithm.

* 3Dfx Interactive, San Jose, CA USA,
** Bungie West, San Jose, CA USA,
*** Silicon Graphics Computer Systems, Mountain View, CA USA
10.1.1.46.6965

[4] Andreas Schilling,
A New Simple and E�cient Antialiasing with Subpixel Masks.

Computer Graphics, vol. 25, no. 4, July 1991 (SIGGRAPH '91 Proceed-
ings), pp. 133�141
10.1.1.59.3971

[5] Je� Bolz, Ian Farmer, Eitan Grinspun, Peter Schröder
Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid.

Caltech
10.1.1.112.5723

[6] Tor Dokken Trond, R. Hagen Jon, M. Hjelmervik
The GPU as a high performance computational resource.

SINTEF ICT, Applied Mathematics P.O. Box 124 Blindern 0314 Oslo,
Norway
10.1.1.133.5648

41

42 BIBLIOGRAPHY

[7] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fata-
halian, Pat Hanrahan
Brook for GPUs: Stream Computing on Graphics Hardware.

Graphics Hardware, Stanford University
10.1.1.135.5772

[8] Eun-Jin Im *, Katherine Yelick **, Richard Vuduc **
SPARSITY: Optimization Framework for Sparse Matrix Kernels.

* School of Computer Science, Kookmin University, Seoul, Korea
** Computer Science Division, University of California, Berkeley
10.1.1.137.5844

[9] CRAIG C. DOUGLAS * AND HYOSEOP LEE **
AN ALGEBRAIC MULTIGRID BASED PRECONDITIONER FOR

THE LAPLACE TRANSFORMATION METHOD.

* School of Energy Resources and Mathematics Department, University
of Wyoming, Laramie, Wyoming
** Mathematics Department, University of Wyoming, Laramie, Wyoming
10.1.1.185.724

[10] Tomá² Oberhuber 2, Atsushi Suzuki 4 , Jan Vacata 2
New Row-grouped CSR format for storing sparse matrices on GPU with

implementation in CUDA.

2 Department of mathematics, Faculty of Nuclear Sciences and Physical
Engineering, Czech Technical University in Prague, Trojanova 13, 120
00 Praha 2, Czech Republic
4 Laboratoire Jacques-Louis Lions, Universite Pierre et Marie Curie,
Boîte courrier 187, 75252 Paris Cedex 05, France

[11] John D. Owens 1 , David Luebke 2 , Naga Govindaraju 3 , Mark Harris
2 , Jens Krüger 4 , Aaron E. Lefohn5 and Timothy J. Purcell 2
A Survey of General-Purpose Computation on Graphics Hardware.

COMPUTER GRAPHICS forum. Volume 26 (2007), number 1 pp.
80�113
1 University of California, Davis, USA
2 NVIDIA
3 Many-core Technology Incubation Group, Microsoft Corporation
4 Technische Universität München
5 Neoptica

[12] David Tarditi, Sidd Puri, Jose Oglesby
Accelerator: Using Data Parallelism to Program GPUs for General-

Purpose Uses

COMPUTER GRAPHICS forum. Volume 26 (2007), number 1 pp.
80�113

BIBLIOGRAPHY 43

Microsoft Research

[13] Erich Elsen, Vijay Pande, V. Vishal, Mike Houston, Pat Hanrahan, Eric
Darve
N-Body Simulations on GPUs.

Stanford University
arXiv:0706.3060v1

[14] Anthony Danalis 1 2, Gabriel Marin 1, Collin McCurdy 1, Jeremy S.
Meredith 1, Philip C. Roth 1, Kyle Spa�ord 1, Vinod Tipparaju 1, Jef-
frey S. Vetter 1
The Scalable Heterogeneous Computing (SHOC) benchmark suite.

1 Computer Science & Mathematics Division Oak Ridge National Labo-
ratory, Oak Ridge.
2 Department of Computer Science University of Tennessee Knoxville.
ISBN: 978-1-60558-935-0 doi>10.1145/1735688.1735702

[15] Gundolf Haase 1 , Manfred Liebmann 1 2 , Craig C. Douglas 2 , and
Gernot Plank 3
A Parallel Algebraic Multigrid Solver on Graphics Processing Units.

1 Institute for Mathematics and Scienti�c Computing, University of
Graz
2 Department of Mathematics, University of Wyoming
3 Computing Laboratory, Oxford University

[16] Zbigniew Koza 1, Maciej Matyka 1, Sebastian Szkoda 1, Lukasz
Miroslaw 2 3
Compressed Multiple-Row Storage Format.

1 Faculty of Physics and Astronomy, University of Wroclaw, pl. M. Borna
9, 50-205 Wroclaw, Poland
2 Vratis Ltd., Wroclaw, Muchoborska 18, Poland
3 nstitute of Informatics, Wroclaw University of Technology, Poland

[17] Craig Couglas & David Roylance
Reactive Systems - Finite Element Analysis.

Department of Materials Science and Engineering, Massachusetts Insti-
tute of Technology, Cambridge, MA 02139

[18] Lesa Aylward, Craig Couglas and David Roylance
A transiest �nite element model for pultrusion processing.

Department of Materials Science and Engineering, Massachusetts Insti-
tute of Technology, Cambridge, MA 02139

[19] William B. Langdon
Debugging CUDA.

44 BIBLIOGRAPHY

Dept. of Computer Science, University College London Gower Street,
WC1E 6BT, UK
GECCO Companion, CIGPU 2011 workshop, Simon Harding et al. Eds.,
p415�422.

[20] Jonathan M. Cohen *, M. Jeroen Molemaker**
A Fast Double Precision CFD Code using CUDA.

*NVIDIA Corporation, Santa Clara, CA 95050, USA
**IGPP UCLA, Los Angeles, CA 90095, USA

[21] Wilson W. L. Fung, Ivan Sham, George Yuan, Tor M. Aamodt
Dynamic Warp Formation and Scheduling for E�cient GPU Control

Flow.

Department of Electrical and Computer Engineering University of British
Columbia, Vancouver, BC, CANADA

[22] Graham M ARKALL
Accelerating Unstructured Mesh Computational Fluid Dynamics on the

NVidia Tesla GPU Architecture .

I MPERIAL C OLLEGE L ONDON MS C . A DVANCED C OMPUT-
ING ISO 1

[23] Ahmed Al Maashri, Guangyu Sun, Xiangyu Dong, Vijay Narayanan
and Yuan Xie
3D GPU Architecture using Cache Stacking: Performance, Cost, Power

and Thermal analysis.

Department of Computer Science and Engineering, Penn State University

[24] By John D. Owens, Mike Houston, David Luebke, Simon Green, John
E. Stone, and James C. Phillips
GPU Computing.

Vol. 96, No. 5, May 2008 p(879-899) | Proceedings of the IEEE

[25] David Luebke 1, Greg Humphreys 2
How GPUs Work.

1 NVIDIA Research
2 University of Virginia

[26] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong and
Tor M. Aamodt
Analyzing CUDA Workloads Using a Detailed GPU Simulator.

University of British Columbia, Vancouver, BC, Canada.

[27] Nathan Bell, Michael Garland
Implementing Sparse Matrix-Vector Multiplication on Throughput-

BIBLIOGRAPHY 45

Oriented Processors.

NVIDIA Research.

[28] Nathan Whitehead, Alex Fit-Florea
Precision & Performance: Floating Point and IEEE 754 Compliance for

NVIDIA GPUs.

NVIDIA Research. 2011

[29] Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym
NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING AR-

CHITECTURE.

NVIDIA Research.0272-1732/08/ 2008 IEEE

[30] Shane Ryoo† 1, Sam S. Stone 1, Christopher I. Rodrigues 1, Sara S.
Baghsorkhi 1, David B. Kirk 2, Wen-mei W. Hwu 1
Optimization Principles and Application Performance Evaluation of a

Multithreaded GPU Using CUDA.

1 Center for Reliable and High-Performance Computing, University of
Illinois at Urbana-Champaign
2 NVIDIA Corporation

[31] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Bagh-
sorkhi, Sain-Zee Ueng, John A. Stratton, and Wen-mei W. Hwu
Program Optimization Space Pruning for a Multithreaded GPU.

Center for Reliable and High-Performance Computing University of Illi-
nois at Urbana-Champaign
2008 ACM 978-1-59593-978-4/08/04

[32] John Nickolls 1, Ian Buck 1, Michael Garland 1 and Kevin Skadron 2
Scalable Parallel PROGRAMMING.

1 NVIDIA
2 Universito of Virginia

[33] R.L. Taylor 1 and J.Z. Zhu 2
The Finite Element Method: Its Basis and Fundamentals.

1 Professor in the Graduate School Department of Civil and Environmen-
tal Engineering University of California at Berkeley Berkeley, California
2 Senior Scientist ESI US R & D Inc. 5850 Waterloo Road, Suite 140
Columbia, Maryland

[34] Nathan Bell and Jared Hoberock
Thrust: A Productivity-Oriented Library for CUDA.

HWU 2011 360 Ch26 2011

[35] NVIDIA
The CUDA Compiler Driver NVCC.

46 BIBLIOGRAPHY

[36] Nathan Bell and Michael Garland
E�cient Sparse Matrix-Vector Multiplication on CUDA.

NVIDIA Technical Report NVR-2008-004, Dec. 2008.

[37] Jonathan Richard Shewchuk
An Introduction to the Conjugate Gradient Method Without the Agoniz-

ing Pain.

(1994) School of Computer Science Carnegie Mellon University Pitts-
burgh,

[38] Jens Breitbart
CuPP � A framework for easy CUDA integration.

Research Group Programming Languages / Methodologies Universität
Kassel a Kassel, Germany
978-1-4244-3750-4/09 (2009)

[39] Verschoor, M. and Jalba, A.C.
Elastically Deformable Models based on the Finite Element Method Ac-

celerated on Graphics Hardware using CUDA.

2012

[40] Kandasamy, Vishnukanthan
Parallel FEM Simulation Using GPUs.

2011

[41] Wozniak, M. and Olas, T. and Wyrzykowski, R.
Parallel implementation of conjugate gradient method on graphics

processors.

Parallel Processing and Applied Mathematics, pages 125�135, year 2010,

[42] C.K.Filelis-PapadopoulosandG.A.GravvanisandP.I.MatskanidisandK.M.Giannoutakis
"OntheGPGPUparallelizationissueso�niteelementapproximateinversepreconditioning",
JournalofComputationalandAppliedMathematics (2011)
DOI:10.1016/j.cam.2011.07.016
http://sciencedirect.dogsoso.com/science/article/pii/S0377042711004110

[43] Plaszewski, Przemyslaw and Banas, Krzysztof and Maciol, Pawel
Higher order FEM numerical integration on GPUs with OpenCL.

Proceedings of the 2010 International Multiconference on Computer Sci-
ence and Information Technology (IMCSIT), (2010)

[44] Oberhuber T., Suzuki A., Vacata J.
New Row-grouped CSR format for storing the sparse matrices on GPU

with implementation in CUDA.

Acta Technica 56: 447-466, 2011

BIBLIOGRAPHY 47

[45] Dziekonski, A. and Sypek, P. and Lamecki, A. and Mrozowski, M.
Finite Element Matrix Generation on a GPU.

(2012)

[46] Markus Geveler and Dirk Ribbrock and Dominik G"oddeke and Peter
Zajac and Stefan Turek
Towards a complete FEM-based simulation toolkit on GPUs: Geometric

Multigrid solvers.

23rd International Conference on Parallel Computational Fluid Dynam-
ics (2011)

[47] Dziekonski, A. and Lamecki, A. and Mrozowski, M.
A Memory E�cient and Fast Sparse Matrix Vector Product on a Gpu.

Progress In Electromagnetics Research vol(116), pag(49�63) 2011

[48] Liu, K. and Wang, X. and Zhang, Y. and Liao, C.
Acceleration of time-domain �nite element method (TD-FEM) using

Graphics Processor Units (GPU).

, Antennas, Propagation & EM Theory, 2006. ISAPE'06. 7th Interna-
tional Symposium on pages(1�4) IEEE 2006

[49] Cecka, C. and Lew, A. and Darve, E.
Application of Assembly of Finite Element Methods on Graphics Proces-

sors for Real-Time Elastodynamics.

, year 2010

[50] Dominik G�oddeke and Robert Strzodka and Stefan Turek
Accelerating Double Precision FEM Simulations with GPUs.

18th Symposium Simulationstechnique (ASIM'05) (2005) pages(139-144)

	Introduction.
	High Performance Computing. And Parallelization.
	Amhdal's law.
	Parallel computing.

	Why CUDA.
	GPU Efficiency.
	Architecture & Programming Model.

	Finite Element Problem.
	Poisson's Equation Variational Formulation.
	hp-FEM.

	Problem and Proposed Solutions.
	Transformed Space.
	Shape Functions, Lagrange's Polynomials.
	Gaussian Quadrature, integration method.

	Code Implementation.
	Lagrange's polynomials.
	Integration.
	b Integration.
	A Integration.

	System integration.
	Matrix Assembly.

	Results.
	Conclusions And Future Work.

