000089767 001__ 89767
000089767 005__ 20210902121709.0
000089767 0247_ $$2doi$$a10.1039/d0ra02254c
000089767 0248_ $$2sideral$$a117875
000089767 037__ $$aART-2020-117875
000089767 041__ $$aeng
000089767 100__ $$aCastro-Muñoz, Roberto
000089767 245__ $$aUltrathin permselective membranes: The latent way for efficient gas separation
000089767 260__ $$c2020
000089767 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089767 5203_ $$aMembrane gas separation has attracted the attention of chemical engineers for the selective separation of gases. Among the different types of membranes used, ultrathin membranes are recognized to break the trade-off between selectivity and permeance to provide ultimate separation. Such success has been associated with the ultrathin nature of the selective layer as well as their defect-free structure. These membrane features can be obtained from specific membrane preparation procedures used, in which the intrinsic properties of different nanostructured materials (e.g., polymers, zeolites, covalent-organic frameworks, metal-organic frameworks, and graphene and its derivatives) also play a crucial role. It is likely that such a concept of membranes will be explored in the coming years. Therefore, the goal of this review study is to give the latest insights into the use of ultrathin selective barriers, highlighting and describing the primary membrane preparation protocols applied, such as atomic layer deposition, in situ crystal formation, interfacial polymerization, Langmuir-Blodgett technique, facile filtration process, and gutter layer formation, to mention just a few. For this, the most recent approaches are addressed, with particular emphasis on the most relevant results in separating gas molecules. A brief overview of the fundamentals for the application of the techniques is given. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are also provided.
000089767 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T43-17R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-77290-R
000089767 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089767 590__ $$a3.361$$b2020
000089767 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b81 / 178 = 0.455$$c2020$$dQ2$$eT2
000089767 592__ $$a0.746$$b2020
000089767 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000089767 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000089767 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000089767 700__ $$aAgrawal, Kumar V.
000089767 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000089767 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000089767 773__ $$g10, 21 (2020), 12653-12670$$pRSC ADVANCES$$tRSC Advances$$x2046-2069
000089767 8564_ $$s1293067$$uhttps://zaguan.unizar.es/record/89767/files/texto_completo.pdf$$yVersión publicada
000089767 8564_ $$s59699$$uhttps://zaguan.unizar.es/record/89767/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089767 909CO $$ooai:zaguan.unizar.es:89767$$particulos$$pdriver
000089767 951__ $$a2021-09-02-09:19:11
000089767 980__ $$aARTICLE