000089963 001__ 89963
000089963 005__ 20230622083309.0
000089963 0247_ $$2doi$$a10.1016/j.apm.2020.02.020
000089963 0248_ $$2sideral$$a117148
000089963 037__ $$aART-2020-117148
000089963 041__ $$aeng
000089963 100__ $$0(orcid)0000-0002-5996-0474$$aPlumed, Emilio$$uUniversidad de Zaragoza
000089963 245__ $$aA recursive methodology for modelling multi-stranded wires with multilevel helix structure
000089963 260__ $$c2020
000089963 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089963 5203_ $$aMulti-stranded litz wires are commonly used in magnetic devices for power electronics applications at medium-high frequency range, from several kHz up to hundreds of kHz. For these applications, litz-wire structure favours the uniformity of driven current in the cross-sectional area of conductors, alleviating ac losses (skin and proximity effects) and improving the global efficiency of the application. These features are achieved by means of a special cable arrangement consisting of many isolated fine copper strands twisted together according to the manufacturing process. Often, the manufacturing process involves several twisting steps where bundles of moderate number of strands are successively twisted resulting in intricate cable structures. We present a mathematical description of the trajectories of copper strands with the purpose of obtaining the cable losses by means of Finite Element Analysis (FEA) simulation tools. Moreover, a nomenclature for this multilevel structures is also proposed. Parameters as the number of twisting steps, number of strands, strand diameter or pitch length, are included in this representation, allowing to compare the performance of different manufacturing solutions.
000089963 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/TEC2016-78358-R$$9info:eu-repo/grantAgreement/ES/MINECO/RTC-2017-5965-6
000089963 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000089963 590__ $$a5.129$$b2020
000089963 591__ $$aMECHANICS$$b14 / 135 = 0.104$$c2020$$dQ1$$eT1
000089963 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b8 / 108 = 0.074$$c2020$$dQ1$$eT1
000089963 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b12 / 91 = 0.132$$c2020$$dQ1$$eT1
000089963 592__ $$a1.01$$b2020
000089963 593__ $$aModeling and Simulation$$c2020$$dQ1
000089963 593__ $$aApplied Mathematics$$c2020$$dQ1
000089963 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000089963 700__ $$0(orcid)0000-0003-4858-9734$$aLope, Ignacio$$uUniversidad de Zaragoza
000089963 700__ $$0(orcid)0000-0001-7901-9174$$aCarretero, Claudio$$uUniversidad de Zaragoza
000089963 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, Jesús$$uUniversidad de Zaragoza
000089963 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000089963 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000089963 7102_ $$12002$$2247$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Electromagnetismo
000089963 773__ $$g83 (2020), 76-89$$pAppl. math. model.$$tAPPLIED MATHEMATICAL MODELLING$$x0307-904X
000089963 8564_ $$s10223775$$uhttps://zaguan.unizar.es/record/89963/files/texto_completo.pdf$$yPostprint
000089963 8564_ $$s206383$$uhttps://zaguan.unizar.es/record/89963/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000089963 909CO $$ooai:zaguan.unizar.es:89963$$particulos$$pdriver
000089963 951__ $$a2023-06-21-14:59:19
000089963 980__ $$aARTICLE