

Trabajo Fin de Grado

Proyecto de dispositivo experimental para el tratamiento de aguas residuales mediante cavitación hidrodinámica

Anexo l

-Planos-

Autor

Andrés Puerto Madorrán

Directores

Dr. Ing. José Luis Santolaya Sáenz

Dr. Ing. Luis Manuel Cerecedo Figueroa

Escuela de Ingeniería y Arquitectura

Universidad de Zaragoza

2020

Índice

Conjunto experimental	1
Conjunto soporte - componentes	2
Conjunto soporte - disposición	3
Componentes del soporte 1	4
Componentes del soporte 2	5
Instalación hidráulica - componentes	6
Instalación hidráulica - depósito	7
Instalación hidráulica - componentes depósito	8
Dispositivo cavitador - componentes	9
Componentes del dispositivo cavitador 1	10
Componentes del dispositivo cavitador 2	11
Componentes del dispositivo cavitador 3	12

	6 I 5	4	↓ 3		1 2	1		1
D								
	S17 S18 S19 S20							
С	S16	(1) $(S2)$ $(S3)$ $(S4)$						
			Marca		Decian			Matazial
				- piezas	Tornillo hexanonal		40	Marenal
		55	52	2	Tuerca hexagonalA	5 1112 M4 Tipo	<u> </u>	
	(S14)		S3	2	Tornillo hexagonal	AS 1110 M4 x 1	16	
			S4	1	Soporte variado	· 150 x 20 x 2		EN AW-6106
Ч	(S13)		S5	4	Pilar motor 20 x	20 x 2 - 226		
			S6	2	Viga intermedia 20	x 20 x 2 - 40	00	
			S7	2	Tuerca hexagonal A	S 1112 M8 Tip	o 5	
		ST ST	S8	2	Rue	la		Poliamida
			S9	2	Viga inferior 20	x 20 x 2 – 310		
В		(59) (58)	S10	2	Tornillo hexagonal	AS 1111 M8 x 0	65	
			S11	4	Тасо ге	dondo		
	\downarrow \checkmark		S12	4	Tuerca hexagonal	AS 1285 (B1) M	10	
	(S11) (S10)		S13	2	Pilar depositos 20	<u>x 20 x 2 - 22</u>	26	
	\bigcirc \bigcirc		S14	1	Viga depositos 20	<u>x 20 x 2 - 2</u>	0	
			515					
				2				EN AW-0100
			S17 S18	2	Place fr	optal		EN AW-0100
			S10	2	Placa II	official		EN AW = 6106
			<u> </u>	1	Soporte di	spositivo		EN AW-6106
			520	Fecha	Nombre	Firma:		
А			Dibujado	29-12-20) 19 Andrés Puerto Madorrán		Escuel	a de ería y Arquitectura
			Comprobade	08-01-20	20 J. L. Santolaya	154		ersidad Zaragoza
			Escala	Titulo		Grad	do en Ing. Me	cánica
			1:5	Co	njunto soporte – compon	entes 📃		
		1				Plan	no Nº <u>2</u>	

orrán	Firma:	Escuela de Ingeniería y Arquitectura Universidad Zaragoza	4
		Grado en Ing. Mecánica	
spos	ición		
		Plano Nº 3	
		1	

D

С

 \blacksquare

В

Image: http://www.comments/comment	_	6 I 5	<u> </u>	3		2		1
Image: Second	D		H1 H2					
Image: Construction of the second s	_							
A Marca Nº piezas Designación Material H1 7 Maguera hidráulica d1/4." Silicona H2 1 Válvula de retención ref. M66012 H3 2 H3 2 Codo igual ref. 3602 06 00 H4 3 Válvula de crearce ref. 0501 04.13 H5 2 Bomba & DC H6 2 Depósito Metacrilato H7 2 Racor 6 mm H6 1 Válvula selectora 3/2. Maguera hidráulica d1/4." Sizeuta de inspensor y Arquitectura Dibujado 02-01-2020 Andrés Puerto Madorrán Filme: Escuel a de inspensora y Arquitectura 12 Tulu Instalación hidráulica - componentes Cerado on ing. Macánica	C							
B Marca Nº piezas Designación Material H1 7 Manguera hidráulica d1/4" Silicona H2 1 Válvula de retención ref. MG6G1.2 H3 2 Codo igual ref. 3602 06 00 H3 2 Codo igual ref. 3602 06 00 H4 3 Válvula de cierer eref. 0501 04 13 H5 H4 H3 Válvula selectora Jobujado Depósito Metacrilato H7 2 Racor 6 mm Material Material Material Material H8 1 Válvula selectora J/2 Imaterial Material Material Dibujado 02-01-2020 J. L. Santolaya Firmat Material Material Comprobado 08-01-2020 J. L. Santolaya Material Universidad Zaragoza Escela Titulo Instalación hidráulica - componentes Grado en Ing. Mecánica Plano Nº6	Þ							
H1 I Image a nutraulica d1/4 Silicona H2 1 Válvula de retención ref. MG6G1.2 H3 Codo igual ref. 3602 06 00 H3 2 Codo igual ref. 3602 06 00 H4 3 Válvula de cierre ref. 0501 04 13 H5 2 Bomba 6V DC H6 2 Depósito Metacrilato H6 2 Depósito Metacrilato Metacrilato H7 2 Racor 6 mm H8 1 Válvula selectora 3/2 Firma: Firma: Escuela de Ingenieria y Arquitectura Dibujado 02-01-2020 J. L. Santolaya Firma: Escuela de Ingenieria y Arquitectura Comprobado 08-01-2020 J. L. Santolaya Grado en Ing. Medánica Inversidad Zaragoza Escala Titulo Instalación hidráulica - componentes Grado en Ing. Medánica Plano Nº 6	В			Marca	Nº piezas	Design	ación	Material
H5 H4 H3 H5 2 Bomba 6V DC H6 2 Depósito Metacrilato H7 2 Racor 6 mm H8 1 Válvula selectora 3/2 H8 1 Válvula selectora 3/2 Firma:				H1 H2 H3 H4	H 1 2 3	Manguera hidr Válvula de retenc Codo igual ref Válvula de cierre	ión ref. MG6G1.2 . 3602 06 00 ref. 0501 04 13	Silicona
H7 2 Racor 6 mm H8 1 Válvula selectora 3/2 Fecha Nombre Firma: Dibujado 02-01-2020 Andrés Puerto Madorrán Comprobado 08-01-2020 J. L. Santolaya Escala Título 1:2 Instalación hidráulica - componentes		(H5) $(H4)$	(H3)	H5 H6	2 2	Bomba Depó	6V DC sito	Metacrilato
A A A A A A A A A A A A A A A A A A A				H7	2			
A Dibujado 02–01–2020 Andrés Puerto Madorrán Comprobado 08–01–2020 J. L. Santolaya Escala 1:2 Instalación hidráulica – componentes Plano N°6				110	Fecha	Nombre	Firma:	
Comprobado U8-U1-2020 J. L. Santolaya Istal Universidad Zaragoza Escala Titulo Grado en Ing. Mecánica 1:2 Instalación hidráulica - componentes Plano Nº 6	А			Dibujado	02-01-2020 A	ndrés Puerto Madorrán		Escuela de Ingeniería y Arquitectura
Escala Inuio Grado en Ing. Mecanica 1:2 Instalación hidráulica – componentes Plano Nº 6				Comprobado	08-01-2020	J. L. Santolaya	1542	Universidad Zaragoza
Plano Nº 6				Escala 1.2	Instalació	n hidráulica – como	onentes	en ing. mecanica
				1.2			Plano	N°6

		6	5	4	\checkmark	3		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D				D1			
014 01 01 01 013 01 01 01 01 012 01 05 1 010 05 1 05 010 01 01 01 010 01 01 01 010 01 01 01 010 01 01 01 010 01 01 01 010 01 01 01 011 01 01 01 010 01 01 01 011 01 01 01 010 01 01 01 011 01 01 01 011 01 01 01 012 01 01 01 013 01 01 01 014 01 01 01 015 1 05 01 014 01 01 01 015 01 01 01 <		D15			D2			
Image: Distribution of the second s	C				D3			
B D11 D10 D10 D10 D10 D10 D10 D10	\checkmark	D12			D4	Marca Nº D1 D2 D3 D4	? piezas 6 1 1 4	
D10 D11 1 D10 D7 D12 1 D13 1 D14 1 D15 1 D15 1 D15 1 D10 Fecha D10 08	В	D11			D6	D5 D6 D7 D8 D9 D10	1 4 1 1 1 1 1	Junt
A D9 D15 1 D15 1 D15 1 D15 0 D15 1 D15 0 D15 0 D		D10			D7	D11 D12 D13 D14	1 1 1 1	
	А	09			D8	D15 Dibujado Comprobado Escala 1:2	1 Fecha 03-01-20 08-01-20 Titulo Disp	<u>)20</u> A 020 positi

—(D4)	Магса	Nº piezas	Designación	Material	
\bigcirc	D1	6	Tornillo hexagonal DIN 7984 M5 x 25		
	D2	1	Chaveta DIN 6885-1 tipo A 8 x 7 x 18		
\frown	D3	1	Junta ANSI/B93.98M 30x47x7-Tipo 2		
-(D5)	D4	4	Tornillo hexagonal DIN 7984 M5 x 25		
\bigcirc	D5	1	Chaveta DIN 6885-1 tipo A 8 x 7 x 38		
	D6	4	Pared dentada	Nilon	
	D7	1	Junta ISO 3601–1 Axial Presión externa D 2180 G	В	
	D8	1	Estátor	AISI 301	
	D9	1	Rodamiento ISO 355 2BD – 25 x 42 x 12		
	D10	1	Junta ANSI/B93.98M 30x47x7-Tipo 2		
	D11	1	Rotor – carcasa	AISI 301	
				Fibras de	
\frown	D12 1		Rotor – junta	aramida + 🗕	
(70)				NBR	
\bigcirc	D13	1	Rotor – tapa	AISI 301	
	D14	1	Eje	AISI 301	
	D15	1	Тара	Metacrilato	
		Fecha	Nombre Firma:	le	
\frown	Dibujado	03-01-2	020 Andrés Puerto Madorrán	a y Arquitectura A	
(D8)	Comproba	do 08-01-2	020 J. L. Sanfolaya Tista Univers	idad Zaragoza	
\bigcirc	Escala	Titulo	Grado en Ing. Mecá	nica	
	I:Z				
Λ	3		2	1	
Ť	-		•		

D

С

orrán	Firma:	Escuela de Ingeniería y Arquitectura Universidad Zaragoza	Ą
		Grado en Ing. Mecánica	
vo ca	vitador 1		
		Plano Nº 10	
		1	

D

С

 \blacksquare

В

Trabajo Fin de Grado

Proyecto de dispositivo experimental para el tratamiento de aguas residuales mediante cavitación hidrodinámica

Anexo II

-Cálculos mecánicos-

Autor

Andrés Puerto Madorrán

Directores

Dr. Ing. José Luis Santolaya Sáenz

Dr. Ing. Luis Manuel Cerecedo Figueroa

Escuela de Ingeniería y Arquitectura

Universidad de Zaragoza

2020

1. Cálculos mecánicos

En este anexo se estudian la resistencia de las piezas más implicadas en el dispositivo. Se utiliza para ello la herramienta de tensiones del software Inventor y se parte de los resultados obtenidos por Ansys para introducir el valor de las tensiones.

1.1 Pared dentada

La malla se realiza con los siguientes parámetros:

Tamaño medio de elemento	0,01
Tamaño mínimo de elemento	0,02
Factor de modificación	1,5
Ángulo máximo de giro	60°
Elementos de malla curva	Sí

Las condiciones de contorno son las siguientes:

Figura 1: Condiciones de contorno

Como se trata de una pieza diseñada para ser reemplazada varias veces, se elige como material Nylon 618, que permite una fabricación rápida mediante impresión 3D y posee buenas propiedades. Entre ellas, una resistencia a la tracción de 66 MPa. A continuación se muestra un mapa de presiones absolutas del fluido, de las que se extrae el valor en donde se situará la pared dentada, en el momento de máxima tensión.

Figura 2: Contornos de presión

Las anteriores presiones se introducen en Inventor, añadiendo las condiciones de contorno que simulan su posición en el estátor.

Figura 3: Tensión de Von Mises

Como se puede ver, hay un margen bastante amplio entre la tensión máxima calculada por Von Mises, 0.4 MPa, y el valor límite, 66 MPa. A continuación se muestran los desplazamientos producidos, en el que como máximo, solo se desplaza 0.43 µm.

1.2 Eje de dispositivo cavitador

Los parámetros elegidos para crear la malla son los siguientes:

Tamaño medio de elemento	0,01
Tamaño mínimo de elemento	0,2
Factor de modificación	1,5
Ángulo máximo de giro	60°
Elementos de malla curva	Sí

Las condiciones de contorno son:

Figura 5: Condiciones de contorno en el eje

Se parte del par obtenido en los cálculos, es decir, 3.2 Nm, que se aplica en el chavetero que comunica con el motor y se añaden las respectivas condiciones de contorno en el chavetero que da al rotor y al rodamiento.

Figura 6: Tensión de Von Mises

De esta forma se obtienen 32,5 MPa de valor máximo según Von Mises, es decir, un coeficiente mínimo de seguridad de 7.7. Los desplazamientos producidos tampoco son significativos, como se ve a continuación, en la que como máximo se desplaza 5 µm.

Figura 7: Desplazamientos en el eje

Trabajo Fin de Grado

Proyecto de dispositivo experimental para el tratamiento de aguas residuales mediante cavitación hidrodinámica

Anexo III

-Modelado en Ansys-

Autor

Andrés Puerto Madorrán

Directores

Dr. Ing. José Luis Santolaya Sáenz

Dr. Ing. Luis Manuel Cerecedo Figueroa

Escuela de Ingeniería y Arquitectura

Universidad de Zaragoza

2020

ÍNDICE

ÍNDICE	2
1. Especificación del problema	1
2. Mallado	2
3. Set Up	5
3.1 General	5
3.2 Materiales	6
3.3 Modelos	6
3.4 Cell Zone Conditions	8
3.5 Mesh Interfaces	8
3.6 Boundary Conditions (Condiciones de contorno)	9
3.7 Solutions	10
3.8 Controles	11
3.9 Report Definitions	12
3.10 Residual	12
3.11 Initialization	12
3.12 Run Calculation	13

1. Especificación del problema

El problema a resolver consiste en un fluido encerrado entre una superficie estática (estátor) y una rotativa (rotor). En la Figura 1 se muestra el volumen que ocupa el fluido y la posición de cada superficie o pared.

Figura 1: Especificación del problema

Para resolver el problema se recurrió al software Ansys Fluent, que se trabajó con una versión limitada para estudiantes que limita el mallado a 512.000 nodos. Por ello y como se ha explicado en la memoria se realiza un modelo bidimensional, al que además se ha dividido en 8 fracciones. En la Figura 2 se aprecia la geometría trabajada, mostrando una segunda división (circular) entre ambas paredes concéntricas necesaria para que la malla del rotor pueda interactuar con la del estátor. Así, dentro de la porción, se encuentra una celda rotativa y otra estática. Cada celda se malla independientemente.

Figura 2: Geometría usada en Ansys

Aunque la geometría base se diseñó mediante Autodesk Inventor, la división de ambas partes concéntricas se llevó a cabo mediante la herramienta de Ansys: DesignModeler. Se realizó una circunferencia del diámetro requerido para el corte en un boceto (sketch), y se extruyó marcando la opción "Slice Material". Se asignó "Fluid" a ambas partes resultantes.

Figura 3: División de la geometría mediante "DesignModeler"

2. Mallado

Se realizó un primer mallado mediante la opción "Automatic Method" en ambas celdas, seleccionando "Quadrilateral Dominant" en "Method", donde se estableció que todos los elementos sean cuadrados mediante la opción "All Quad".

B Model (A3)				
⊕ v Geometry				
Materials				
E Coordinate S	Systems			
Connections	yacenia			
Connections	61			
H 🖓 Mesh				
Automat	ic Method			
	ic Method 2			
	ing =			
	ing 2			
	2			
	2			
	ng			
	ing 2			
	ing 3			
	ing 4			
Timage of	ing i			
the second second				
Details of "Automatic	Method" - Method			
Scope				
Scoping Method	Geometry Selection			
Geometry	1 Body			
Definition	A La			
Suppressed	No Overdrifteterel Despirement			
Flamont Order	Quadriateral Dominant			
Eren Esco Moch Tuno	All Quad			
riee race mesh type	All Quau			

Figura 4: Características de "Automatic Method"

El tamaño de elemento se delimitó mediante el ajuste "Face sizing" a un tamaño de $6 \cdot 10^{-5}$ m en ambas celdas. Después de experimentalmente haber comprobado que el contorno de velocidades en los resultados no se parecía a como cabía esperar en las zonas cercanas a las paredes sólidas (la velocidad del fluido aumentaba según éste se aproximaba a la pared, y solo a escasas décimas de milímetro caía a valores nulos), se decidió aplicar un modelo de mejorado en el tratamiento de pared (Enhanced Wall Treatment) que se explicará más adelante, e incluir un refinamiento en el mallado de las zonas próximas a las paredes. El refinamiento se llevó a cabo mediante la opción "Inflation", como aparece en la Figura 5.

🕀 🛹 Geometry					
E	S				
Connections					
Mach					
	3.23				
Automatic Meth	hod				
	nod 2				
	_				
	-				
E lindge					
H Inamed Selections	-				
Details of "Inflation" - Inflat	ion 🝷 🖣 🗆 🗙				
Scope					
Scoping Method	Geometry Selection				
Geometry	1 Face				
Definition					
Suppressed	No				
Boundary Scoping Method	Geometry Selection				
Boundary	10 Edges				
Inflation Option	First Layer Thickness				
Maximum Lawors	5,e-006 m				
Growth Rate	12				
Inflation Algorithm	Pre				

Figura 5: Parámetros de "Inflation"

Finalmente se obtuvo una malla de 360.098 elementos. En la Figura 6 se aprecia en detalle el refinamiento de ambas celdas.

Figura 6: Detalle del mallado

Antes de cerrar la herramienta de mallado, se crearon las "Named selections" (se trata de asignar un nombre a cada uno de los contornos de la geometría, para que así más adelante el programa pueda identificarlos y así simplificar trabajo). Por un lado, se asignaron las paredes tanto del rotor (rotor-wall) y del estátor (stator-wall). Por otro, las que servirán como interfaces, es decir, no retendrán al fluido, si no que serán zonas de contacto entre celdas. Éstas son "bc1r", "bc2r", "bc1e", "bc2e", "interface-stator" e "interface-rotor". Más adelante se explicará qué tipo de interfaz corresponde a cada una.

Figura 7: Partes de la geometría (Named selections)

3. Set Up

En este apartado se describe la configuración "Set Up". Es la parte del programa donde se ha introducido la configuración física del fluido y las condiciones de contorno del problema.

Al abrir la herramienta en el menú de Ansys se selecciona la casilla "Double precision", así los resultados obtenidos serán más precisos aunque demandarán mayor tiempo de cálculo.

3.1 General

El siguiente paso es comprobar que el mallado que se ha realizado es correcto. Para ello, dentro de "General" en el desplegable de la izquierda se selecciona "Check mesh". Como no reportó ningún error, la siguiente comprobación se realizó en ese mismo menú, seleccionando "Report Quality", que imprime en pantalla otros datos acerca de la malla como "Maximum Cell Equivolume Skewness". "Skewness" da información acerca de las diferencias de un elemento del mallado, y la de un elemento equilátero de su mismo área. En concreto es un valor de entre 0 y 1, significando 1 una calidad baja de la malla. En el mallado realizado el valor máximo es 7.87887e-01.

Scale	Chec	ck Report Quality
Display	Units	5
lver		
уре		Velocity Formulation
Pressure-Based Density-Based		Absolute Relative
ime		20 Space
 Steady Transient 		Axisymmetric

Figura 8: Menú "General"

Más abajo, se mantuvo la formulación de la velocidad "Absolute", "Pressure-based", espacio 2D "planar", y "transient" en Time. Los efectos de la gravedad no fueron tenidos en cuenta.

3.2 Materiales

Se procedió a cambiar el tipo de materiales con el que se trabaja. Se añadió agua líquida, y vapor de agua (cambiando de éste último la densidad a 0,01927 kg/m³ y la viscosidad a $8,8\cdot10^{-6}$ kg/m/s). Las propiedades del vapor de agua se asumirán constantes durante toda la simulación.

3.3 Modelos

Con los materiales ya asignados, dentro de Multiphase, se selecciona Mixture, con la siguiente configuración:

todel	Number of Eulerian Phases
Off Volume of Fluid Mixture Eulerian Wet Steam	2 \$
dixture Parameters	
Volume Fraction Parameters	Options
Formulation	Interface Modeling
Explicit • Implicit	Type Sharp/Dispersed

Figura 9: Configuración multifase

La desactivación de Slip Velocity se realiza cuando la densidad del segundo fluido, es considerablemente menor que la del primero, además de que la elevada turbulencia del fluido no permitirá el crecimiento de grandes burbujas por lo que no hará falta calcular ese dato.

Después, en el menú "Phases", dentro de "Physics", se añade el vapor de agua como fase secundaria y se fija una interacción entre fases mediante cavitación, como se ve en la figura 10.

Mass		Surface Tension			Interfacial Area		
umber	r of Mass Transfer Me	echanisms	1 \$				
lass Tr	ransfer						
	From Phase		To Phase		Mechanism		
1	phase-1	-	phase-2		cavitation	*	Edit
							-

Figura 10: Interacción entre fases mediante cavitación.

Editando dicha interacción, se selecciona "Schnerr and Sauer Model". Aunque el resultado de escoger "Zwart-Gerber-Belamn" no sería muy diferente ya que ambos trabajan bien bajo condiciones turbulentas.

Cavitation Model			×
Model			
Schnerr-Sauer			
🔘 Zwart-Gerber-Belamri			
Cavitation Properties			Model Constants
Vaporization Pressure: Pv (pascal)			Bubble Number Density
constant		Edit	1e+13
3540			
			Turbulence Factor
			-
ок	Cancel	Help	

Figura 11: Modelo de Schnerr Sauer para cavitación

El siguiente modelo que se introdujo fue dentro de "Viscous Model". La simulación se rige por el modelo de turbulencia "K-Epsilon". Dentro de ese modelo, se dejaron los coeficientes tal y como venían, cambiando a Realizable la opción de "k-epsilon Model", y a Enhanced Wall Treatment la opción "Near Wall Treatment". Esto último se seleccionó por el mismo motivo que se realizó el afinamiento de la malla cerca de las paredes, pudiendo apreciar mejoría en los resultados, y combina los diferentes modelos seguidos en el llamado "flujo bicapa" con una función de "amortiguación" de forma que la transición entre ambas sea más suave.

3.4 Cell Zone Conditions

En esta configuración se establece la velocidad con la que girará cada celda. En la Figura 12 se ve la configuración seguida en la celda del rotor, mientras que la del estátor se dejó como venía por defecto, es decir, sin movimiento. También se verificó que en ambas celdas el fluido fuese "mixture".

				1000				
ne Name				mixture				
tor								
Frame Motion	Laminar Zone	Source Terms						
Mesh Motion		Fixed Values						
Porous Zone						_		
Reference Frame	Mesh Motion	Porous Zone	3D Fan Zone	Embedded L	ES Reaction	Source Terms	Fixed Values	Multiphase
	10.00 m P. 1550m	Internet and a state of the second second			and the additional water			
Relative Specificatio	n UDF							
Relative To Cell Zone	absolute = Zone	Motion Function		-				
Rotation Axis Origin								
W.C. 3								
x (m) 0								
x (m) 0								
x (m) ₀			•					
x (m) 0 Y (m) 0			•	Translati	and Makerine			
Y (m) 0 Rotational Velocity			·	Translati	nal Velocity			
Y (m) 0 Y (m) 0 Rotational Velocity Speed (rpm) -160			•	Translati	nal Velocity			•
X (m) 0 Y (m) 0 Rotational Velocity Speed (rpm) 160			•	Translati	nal Velocity			
X (m) 0 Y (m) 0 Rotational Velocity Speed (rpm) 160 Copy To Frame Moti	on		·	Translati * X (m/s) (Y (m/s) (nal Velocity			•
X (m) 0 Y (m) 0 Rotational Velocity Speed (rpm) -160 Copy To Frame Moti	on)		-	Translati * × (m/s) Y (m/s) 0	nal Velocity			•
X (m) 0 Y (m) 0 Rotational Velocity Speed (rpm) -160 Copy To Frame Moti	on			Translati • × (m/s) Y (m/s) •	nal Velocity			•

Figura 12: Configuración de la celda del rotor

Al introducir la velocidad de rotación, previamente se cambiaron las unidades del sistema de rad/s a rpm.

3.5 Mesh Interfaces

En este apartado se terminan de definir las interfaces que se nombraron durante el mallado. Se distinguen dos tipos, como se ve en la Figura 13.

Las interfaces de tipo "Periodic", unirán bc1e con bc2e, y bc1r con bc2r. De esta forma, la geometría de porción de 45° se repetirá como si se tratase de una circunferencia entera, aunque a efectos de cómputo de potencia solo trabajará con el octavo de revolución.

La interfaz de tipo "Periodic Repeat" hace de nexo entre la celda rotativa y la estática.

Con ancendeco		Interface Zones
oc-e - Periodic oc-r - Periodic nt - Periodic Repeat	E.	[0/6] bcle bclr bc2e bc2r interface-estator interface-rotor
Edit List	Delete Draw	
	Ontions	

Figura 13: Interfaces

3.6 Boundary Conditions (Condiciones de contorno)

Una vez definidas todas las interfaces, queda verificar en las condiciones de contorno que las paredes del rotor y del estátor se mueven de forma solidaria a sus respectivas celdas.

one Name	- II.	-1 (s. 10)			PI	nase				
rotor-wall) (n	nixture				
djacent Cell Zone										
otor					1					
Momentum T	hermal	Radiation	Specie	s DPM	Multiphase	UDS	Wall Film	Potential	Struc	ture
Wall Motion	Motion									
Stationary Wall	Re	elative to Adjacent	Cell Zone	Speed (rpm)					14	+
Moving Wall	() Al	osolute		Rotation-Axis Origin				•		
	Ó T	ranslational		× (m) 0						
	Re	Rotational Components		Y (m) 0				*		
	<u> </u>	amponenta								
Shear Condition										
No Slip										
Specified Shear										
Specularity Coeff	icient									
Marangoni Stress										
Wall Roughness										
Roughness Height (m)	0									
Roughness Constant	0.5					w				

Figura 14: Condiciones de contorno en la pared del rotor

3.7 Solutions

En la Figura 15 se ve la configuración seguida. Se elige First Order Upwind ya que aumenta la precisión en los cálculos.

Solution Methods	(?)
Pressure-Velocity Coupling	
Scheme	
Coupled	*
Coupled with Volume Fractions Solve N-Phase Volume Fraction Equations	
Spatial Discretization	
Gradient	
Least Squares Cell Based	•
Pressure	
PRESTO	
Momentum	
First Order Upwind	*
Volume Fraction	
First Order Upwind	
Turbulent Kinetic Energy	
First Order Upwind	•
Turbulent Dissipation Rate	
Translent Formulation	
First Order Implicit	*
Non-Iterative Time Advancement	
Frozen Flux Formulation	
Warped-Face Gradient Correction	
High Order Term Relaxation Options	
Default	

Figura 15: Configuración seguida en "Solutions"

3.8 Controles

Se establecen los siguientes parámetros:

Solution Con	trols	(?
Flow Courant I	Number	
200		
Explicit Relaxat	tion Factors	
Momentum	0.5	3
Pressure	0.5	
Under-Relaxati	on Factors	
Density		
1		
Body Forces		
1		
Vaporization !	Mass	
1		
Volume Fract	ion	
0.5		
Turbulent Kin	etic Energy	
0.5		
Turbulent Dis	sipation Rate	
0.5		
Turbulent Vis	cosity	
0.1		

Figura 16: Controles

3.9 Report Definitions

Se crea un informe (Report) acerca del momento generado en la pared del rotor (rotor-wall). Dichos datos se imprimieron en pantalla al realizar la simulación, y se extrajeron de un archivo que se creó en la carpeta donde estaba guardada la simulación.

3.10 Residual

Aquí se configura el valor residual en el que la simulación converge y pasa a una nueva iteración. El hecho de haber marcado al inicio la opción "Double precision" implica que los valores residuales pueden decaer hasta 12 veces antes llegar al valor de convergencia (en vez de los seis al usar simple). Dichos valores también son reducidos a 10⁻⁴ cambiando el valor en "absolute criteria".

3.11 Initialization

Se seleccionó "Hybrid Initialization", que se basa en la ecuación de Laplace para determinar parámetros iniciales como la presión y la velocidad.

3.12 Run Calculation

Como se ha explicado en la memoria, se sigue un incremento gradual de la velocidad de rotación (cambiándola en el apartado de Cell Zone Condition). Por cada velocidad se sigue un tiempo entre posiciones de forma que se analicen 10 posiciones por cada vez que un diente del rotor se enfrenta a uno del estátor, calculándose según la siguiente ecuación:

 $t = \frac{0,375}{\Omega}$

Así, las primeras iteraciones, a 160 rpm se obtuvieron como en la Figura 17.

		Preview Mesh Motion	
Time Stepping Method		Time Step Size (s)	
Fixed *		0.00234375	*
Settings		Number of Time Steps	
		20	1
Options			
Extrapolate Variables			
Data Sampling for Tir	me S	tatistics	
Sampling Interval			
1	Sa	mpling Options	
Time Sampled (c)	-		
Calid Time Stan			
Solid Time Step			
User Specified			
(Automatic			
		Reporting Interval	
Max Iterations/Time Step			
Max Iterations/Time Step	\$	1	
Max Iterations/Time Step 20 Profile Update Interval	\$	1	
Max Iterations/Time Step 20 Profile Update Interval 1	0	1	
Max Iterations/Time Step 20 Profile Update Interval 1	0	1	

Figura 17: Incicio de la simulación (Run calculation)

Cambiando los ajustes entre cada aumento de velocidad, y dejando un número suficientemente grande de posiciones estudiadas para una rotación de 1600 rpm, se obtuvo la gráfica usada en la memoria.