
 

 

 
 
 
 

 
 

 
 

Trabajo Fin de Master 
 
 
 

Síntesis de material funcionalizado para la 
preparación de membranas mixtas para su 

aplicación en la separación de gases  
 
 
 

Autora: 
 

Mª Jesús Nieto Monge 
 
 
 

Directores: 
 

Beatriz Zornoza Encabo 
Joaquín Coronas Ceresuela 

 
 

Escuela de Ingeniería y Arquitectura 
Septiembre 2012 

 
 



 
 

 

 

  



 

 

 
Trabajo Fin de Master 

 
 
 

Síntesis de material funcionalizado para la 
preparación de membranas mixtas para su 

aplicación en la separación de gases  
 
 

Autora: 
 

Mª Jesús Nieto Monge 
 
 

Directores: 
 

Beatriz Zornoza Encabo 
Joaquín Coronas Ceresuela 

 
 

Escuela de Ingeniería y Arquitectura 
Septiembre 2012 

 
                   

 

                                  



 
 

 

 

  



                                                                                                  Agradecimientos 

II 

En la vida hay muchas personas a las que tenemos muchas cosas que agradecer, 

por ayudarnos a que nuestra vida sea más fácil, porque nos animan a que hagamos 

las cosas, porque confían en nosotros,… pero muy pocas son las veces en las que les 

decimos ¡GRACIAS!; Por eso, quiero aprovechar esta nueva oportunidad para 

agradecer a las personas de mi alrededor el estar conmigo. 

 

En primer lugar, al Catedrático Joaquín Coronas por dejarme realizar en su grupo 

este trabajo, por ayudarme a entender las cosas y sobre todo por hacerlo siempre con 

una actitud positiva y de gratitud. Del mismo modo, me gustaría darle las gracias al 

profesor Carlos Téllez, por ayudarme en todo momento en todas las dudas que he 

tenido. Muchas gracias a los dos por darme siempre las gracias cuando salgo de 

vuestros despachos, cuando en realidad vosotros me aportáis la solución. 

 

También a mi directora, la Dr. Beatriz Zornona, que también me dirigió en el 

proyecto de ingeniería química, por ser tan generosa conmigo, por enseñarme, por 

aconsejarme, por su constancia, por su paciencia,…y por hacerme ver lo bonito, 

aunque a veces duro, que es el mundo de la investigación. 

 

A todo mis compañeros de laboratorio: Fernandos, Beba, Nuria, Sara, César, 

Sonia, Marian, Marta, Patricia, Clara, a las proyectantes como yo (Arancha, Marta V., 

Lorena, Adelaida, Olga, Marta,...) y sobre todo a Alejandro por ayudarme 

pacientemente en esta última etapa y a Irene por sus análisis de BET. Nacho,  gracias 

por los ánimos en los ratos del despacho y Carlos, gracias por esas magníficas 

imágenes de SEM. A Bea Murillo, por ser buena compañera, amiga y por todos esos 

buenos raticos que pasamos por el pueblo. 

 

Por otro lado, me gustaría darle las gracias a  Mª Jesús Lázaro por darme la 

oportunidad de hacer realidad mi sueño de desarrollar una tesis doctoral bajo su 

dirección en el Instituto de Carboquímica.  

 

A la Dra. Elena Gálvez, mi otra directora de la tesis, y al Dr. David Sebastián, por 

iniciarme en el mundo del carbón (nanotubos y nanofibras) y su ayuda incondicional, 

facilitándome  dar estos primeros pasos.  Al resto de compañeros que tengo hoy en 

día en el instituto: Saúl (por tu sitio, tu bandeja,…), Sonia y Ana (esos cafecitos), Cintia 

(¡por el mundo del xerogel!), Dani (¡ese origin!) y Sara, que aunque le recuerde a un 

cactus se que en el fondo me tiene cariño (¡jejejeje!). Nieves, ¡ánimo!, Anabel, 



                                                                                                  Agradecimientos 

III 

¡siempre tendremos la biblio! Y a todas esas  personas del instituto que me han 

acogido con cariño. 

 

Tampoco me querría olvidar de la profesora  Lucía García, por darme la primera 

oportunidad de acercarme al mundo de la investigación y sobre todo por hacerlo de la 

mano de Fernando Bimbela, que me entusiasmó y descubrió lo maravilloso que puede 

ser este trabajo. 

 

A todos los profesores que desde niña me han dado clase y me han enseñado para 

poder llegar hasta aquí, a todas las personas que han analizado las muestras (SEM, 

TEM, BET) para que pudiese realizar este trabajo, y a todas las personas que gracias 

a su trabajo, el nuestro es más sencillo ( personal de limpieza, cafetería, secretaría, 

conserjería, etc). 

 

A todos mis compañeros, porque todos ellos han aportado algo a mi vida que me 

han hecho ser como soy, en especial a mis amigas del colegio/ instituto: Carmen, Meli, 

Vane, Mª Carmen, que aunque no nos ponemos de acuerdo para quedar, el wasap 

hace milagros y siempre que estamos juntas parece que no han pasado los años, ¡y 

no sólo porque os conservéis bien! (¡¡jejejeje!!). A Lara, Bea, Roci, Ana, Raulito, M.A., 

aunque nuestras cenas de navidad sean el viernes de dolores, sin vosotras la 

universidad no hubiese sido lo mismo, no hubiese sido tan divertido (¡¡chanchullitos!!), 

ni tan sencillo (bueno, lo facilitabais vosotros), ni tan especial, porque los años pasan, 

hacemos nuestras vidas, pero siempre seguimos en contacto y cuando estamos juntas 

volvemos a ser esas universitarias. Laura y Patri, ¡¡gracias por encontraos en mi 

camino!! y compartir esos raticos buenos por la cafetería, de nervios en los 

exámenes,… María, aunque no hemos estado mucho tiempo juntas hay cosas que no 

se olvidan, gracias por acogerme en tu casa de Estocolmo, ¡¡fuiste nuestra salvación!!. 

Brezo, gracias acoger cuando continué estudiando en el CPS ¡¡y romper el mito del 

técnico y el superior!! ¡¡Eres muy grande!! Mi Verito, ¡¡qué trimestres hemos pasado!!  

Ir a Barcelona con la uni sin dormir, por acabar las prácticas…¡¡no tiene precio!!  ya 

sabes que existe una persona más negativa que tu y que te agradece que hayas sido 

su compañera en esta segunda etapa. Albertito, Carlos, Belén, Carmen, Inma, 

¡Gracias! 

 

Y cómo no, a todos mis amigos de la peña del pueblo: Anas, Monchy, Esther, 

Gema, Bea, Sara, Erika, Vane, Carmen, Sergio, Gonzalo, David, J.Kike, Javi, Joe, 

Chechy,…y sus parejas, por hacerme pasar unos buenos y divertidos ratos. 



                                                                                                  Agradecimientos 

IV 

Mis primos, J.Mari, Pablo, Manolo, Bea,… por aguantar mis dudas sobre que 

estudiar…al final me ayudasteis a decidirme por una carrera apasionante. 

 

A mis primas, Mª Ángeles y Laura (y a Óscar, su novio), porque ayudar a alguien a 

preparar momentos bonitos es muy fácil, lo difícil es acompañarla en los momentos 

más feos de la vida, ¡Muchas gracias por estar siempre ahí! 

 

A todos mis tíos, primos, que se han alegrado con mis alegrías y animado en las 

desdichas. Isabel y Chema, ¡que bonita la casa!, Joaqui y Angelines (¡Con esa Charly 

que bien íbamos a casa!), Quetina y Mª Carmen (¡Qué buena es la compañía!),…a, 

todos, todos… ¡Muchas gracias! 

 

Ana Mari y Paco, mis suegros, Mariló y Quique, mis cuñados, gracias por ayudarme 

cuando lo necesito y por formar parte de mi familia, porque gracias a vosotros, por 

hacer que vuestro hijo/hermano sea así, yo soy muy feliz. Elenita, eres un solete, un 

saco de pitufillos, las risas que nos das son todo un tesoro. 

 

Por desgracia, hay personas que les gustaría ver que he llegado hasta aquí pero no 

están para compartirlo, a mis tíos, con los que he compartido muy buenos momentos 

de mi infancia y con especial cariño a mis abuelos, Emilia y Juan Manuel, que no han 

podido estar conmigo ninguno de mis proyectos, ni en muchos otros momentos que sé 

que hubiesen disfrutado. Abuelito José, este trabajo te lo dedico de forma especial,  

hace poco que te has ido y cuando voy al pueblo aún pienso que te voy a ver. Muchas 

gracias por vivir contigo, muchas gracias por poder cuidarte, muchas gracias por haber 

estado a tu lado en el final porque me ha enseñado a luchar, muchas gracias por 

quererme tanto, por verme siempre guapa, Muchas gracias por tu alegría (tus jotas 

agitanadas, tus cancioncillas: la señora Micaela y la Fracisquilla, tus poesías, las 

caminatas a San Pascual, tus coplillas)…hay muchas cosas más por las que te daría 

las gracias, pero simplemente…¡Muchas, Muchas, Muchas Gracias por ser mi abuelo!. 

 

Abuelita María, eres la única que puedes compartir esto conmigo, aunque casi no 

me conoces, se que sabes cuando estoy contigo; Gracias por continuar a mi lado, por 

poder estar ratitos a tu lado, por enseñarme a querer, por enseñarme a comprender, 

por enseñarme la vida… ¡Muchas Gracias por estar siempre en mi vida! 

 



                                                                                                  Agradecimientos 

V 

Pilita, más que una tía, has sido siempre como una hermana, bueno más bien como 

una madre. Muchas gracias por vivir conmigo, por tus consejos, tú ayuda 

incondicional, y por todo lo que me has aportado en mi vida. 

 

A Jesús y Mª José, ¡Papis! Son tantas las cosas por las que os tengo que dar las 

gracias que harían falta varias bibliotecas (¡jejeje!). En primer lugar, os tengo que 

agradecer todos vuestros esfuerzos para que haya podido llegar hasta aquí, desde  

estar siempre despierta hasta que terminaba de estudiar, prepararme el desayuno 

para que durmiese un poco más a confiar y creer en mi mucho más que yo misma. 

También el darme unos valores, aunque no siempre hago justicia a lo que me habéis 

enseñado. El darme cariño siempre que me ha hecho falta, aguantar mis múltiples 

lloros (porque se acababa el año, porque tenía un año más,..), por enseñarme a 

madurar, por explicarme todo y no esconderme nada, por escucharme y escucharme, 

por dejarme ser tan libre y enseñarme a querer tanto,… en fin, ¡Gracias, gracias, 

gracias,…mil gracias! ¡¡Por darme tanto a cambio de no esperar nada!! 

 

A Mis pegugiguis, mi hermanito Jorge y mi prima, más bien hermana, Mª Luisa. A 

Jorgete porque ser como es, por enseñarme cosas cada día, por tener esa forma de 

pensar tan adulta y lógica que con tan sólo 10 años me da tan buenos consejos, por 

quererme tanto, por querer que esté siempre a tu lado para compartir todo contigo, por 

ser la mejor herencia que me podrían haber dado los papas. A Mª Luisa, por ser con 

10 años una mujercilla en cuerpo de niña que esta siempre pendiente y preocupada 

de mi, por querer hacer los deberes conmigo y ver las revistas de moda, por querer 

estar todo el tiempo a mi lado, por ser una muñeca y animarme y alegrarme tanto. 

Peques, ¡Muchas Gracias! 

 

Por último, a Cesitar, mi marido, porque la familia, los padres y hermanos no se 

pueden elegir, por haber querido pasar tu vida a mi lado. También por “sobrevivir” a 

los tres proyectos, por aguantar en los días que todo va mal, por cambiar tu 

tranquilidad por mi inquietud, por enseñarme que hay luz a final de cada túnel y que 

los pozos no son tan hondos, por apoyarme en todo lo que decido, por confiar en mi a 

ciegas y por todas las cosas buenas que haces para que mi vida sea más sencilla. 

Simplemente por querer estar a mi lado siempre.¡Gracias cariño! 

 

 

 
  



                                                                                                  Agradecimientos 

VI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A mis abuelos, mis padres, 
Pili, Jorge, Mª Luisa y 

César. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 

  



                                                                                                                     Índice 

VII 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

Índice 

 

 Capítulo 1: Introducción y objetivos __________________1 

 Capítulo 2: Método experimental _____________________ 7 

 Capítulo 3: Resultados y discusión ___________________15 

 Capítulo 4: Conclusiones____________________________35 

Capítulo 5: Bibliografía______________________________38 

 

Anexos 

 

 



 
 

 

 

  



                                                                                                                     Índice 

VIII 

ÍNDICE 

Capítulo 1: Introducción y objetivos 1 

1.1. Contexto del proyecto 2 

1.2. Membranas mixtas para separación de gases 3  

1.3. Esferas de sílice mesoporosa 5  

1.4. Estudios previos 6 

1.5. Objetivos 6 

 

 Capítulo 2: Método experimental  7 

2.1. Síntesis de las esferas de sílice  mesoporosas (MSSs)  8  

2.1.1. Método de obtención de esferas de 3 μm 8 

2.1.2. Método de obtención de esferas de 400 μm 8 

2.2. Modificación de las esferas de sílice 9 

2.3. Preparación de membranas mixtas 9 

2.3.1. Método de preparación de las membranas de polisulfona 10 

2.3.1. Método de preparación de las membranas de poliimida 10 

2.4. Caracterización 11 

2.4.1. Microscopia 11 

2.4.1.1. Microscopía óptica 11 

2.4.1.2. Microscopía electrónica de barrido (SEM)  11 

2.4.1.3. Microscopía electrónica de transmisión (TEM)  12 

2.4.2. Cristalografía 12 

2.4.2.1. Difracción de rayos X 12 

2.4.3. Análisis Térmico 12 

2.4.3.1. Análisis termogavimétrico 12 

2.4.3.2. Calorimetría diferencial de barrido (DSC) 12 



                                                                                                                     Índice 

IX 

2.4.4. Propiedades texturales 13 

2.4.4.1. Adsorción de gases 13 

2.4.4.2. Medidas de espesor 13 

2.4.5. Espectroscopia 13 

2.4.5.1. Espectroscopia infrarroja de absorción (FTIR)  13  

2.4.5.2. Espectroscopia de energía dispersiva de rayos X (EDX)  14 

2.4.6. Separación de mezcla de gases 14 

 

 Capítulo 3: Resultados y discusión  15 

3.1. Resultados de los sólidos mesoporosos modificados 16 

3.1.1. Caracterización morfológica y estructural 16 

3.1.2. Análisis térmico 22 

3.1.3. Análisis espectroscópico 23 

3.2. Resultados de las membranas mixtas 25 

3.2.1. Caracterización morfológica y estructural 25 

3.2.2. Análisis termogravimétrico 27 

3.2.3. Análisis de separación de gases 30 

 

 Capítulo 4: Conclusiones 35 

Capítulo 5: Bibliografía 38 

 

 

ANEXOS  

 
  



  Resumen 

X 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Resumen 
 



 
 

 

 

  



  Resumen 

XI 

“Síntesis de material funcionalizado para la 

preparación de membranas mixtas para su aplicación 

en la separación de gases”. 
 

La tecnología de membranas constituye una operación simple que aventaja a los 

procedimientos tradicionales de separación se desarrolla con un bajo coste 

operacional, exigen de necesidades energéticas mínimas y el funcionamiento es 

sencillo. Se trata por tanto de una técnica respetuosa con el medio ambiente.  

 
Los requisitos que debe cumplir una membrana para ser apta en la separación 

de gases son: durabilidad, estabilidad mecánica en las condiciones de funcionamiento, 

y poseer unas excelentes permeabilidad y selectividad. Uno de los procedimientos 

más interesantes consiste en la incorporación de materiales inorgánicos en una matriz 

polimérica, lo denominado como membranas mixtas (MMMs). 

 

En este trabajo se han preparado membranas mixtas formadas por una fase 

orgánica (los polímeros polisulfona UDEL® y la poliimida 6FDA-4MPD:6FDA-DABA) y 

por una fase inorgánica (esferas de sílice mesoporosa ordenada tipo MCM-41, de 

diferentes tamaños y modificadas con grupos amino). 

 

Se han estudiado las propiedades separativas de las diferentes membranas para 

su aplicación en la separación de gases para mezclas gaseosas H2/CH4 y CO2/CH4, 

interesantes para la purificación de hidrógeno y la captura de dióxido de carbono, 

respectivamente. Además de los análisis de permeabilidad y selectividad, también se 

han caracterizado tanto el material inorgánico funcionalizado como las membranas 

mixtas por diferentes técnicas como microscopía electrónica de barrido (SEM), 

microscopía electrónica de transmisión (TEM), análisis termogravimétrico (TGA), 

difracción de rayos-X (XRD), calorimetría diferencial de barrido (DSC), espectroscopia 

infrarroja (FTIR), área específica (BET), y análisis de distribución de tamaños de 

poros.
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1. INTRODUCCIÓN Y OBJETIVOS 

1.1.- Contexto del proyecto  

Este trabajo se ha realizado en el Grupo de Catálisis, Separaciones Moleculares e 

Ingeniería de Reactores (CREG), dentro del Departamento de Ingeniería Química y 

Tecnologías del Medio Ambiente y el Instituto de Nanociencia de Aragón en la 

Universidad de Zaragoza. Concretamente se ubica en la línea de investigación que 

estudia el desarrollo de membranas mixtas aplicadas para procesos de separación de 

gases.  

En la actualidad, la de separación de gases tiene gran importancia industrial puesto 

que se utiliza en procesos tan importantes como la purificación de hidrógeno, la 

recuperación de nitrógeno y de oxígeno del aire, la purificación y enriquecimiento de 

gas natural y la separación de dióxido de carbono (Baker y cols., 2002). Estas 

operaciones se han llevado a cabo habitualmente por destilación criogénica y 

adsorción (Mersmann y cols., 2000; Cheng y cols., 2007). Sin embargo, desde el punto 

de vista comercial, la separación con membranas resulta una técnica alternativa muy 

atractiva puesto que presenta alta eficiencia y bajo coste (Chung y cols., 2007). 

En general, los procesos de separación con membranas se caracterizan porque son 

operaciones simples y de funcionamiento sencillo que pueden desarrollarse a un bajo 

coste operacional, con necesidades energéticas mínimas. Son por tanto procesos 

respetuosos con el medio ambiente. Las membranas utilizadas deben presentar alta 

durabilidad y estabilidad mecánica en las condiciones de funcionamiento, y una 

excelente permeabilidad y selectividad (Koros, 2002; Huang y cols., 2006).  

Las membranas poliméricas presentan la mayoría de estas características, pero 

para que tengan interés comercial deben presentar buenas propiedades de separación 

y selectividad que vienen delimitadas por el llamado límite superior de Robeson 

(Robeson 1991 y 2008). Este “límite de Robeson”, que muestra el compromiso entre el 

factor de separación o selectividad y la permeabilidad, ha sido estudiado para varias 

mezclas de gases de interés industrial y para distintos polímeros convencionales 

fácilmente procesables. La Figura 1 muestra el caso de la mezcla H2/CH4.  
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Figura 1. Valores de permeabilidad (P (H2) Barrer) frente a selectividad (Alpha H2/CH4) 

 de diversos polímeros para una mezcla H2/CH4. 

 

Así pues, se está estudiando el desarrollo de nuevos materiales y procedimientos 

que permitan la mejora en el rendimiento de las membranas. Una de las líneas de 

investigación  más interesantes consiste en la incorporación de materiales inorgánicos 

a la membrana polimérica, es decir, obtener una membrana mixta o híbrida (MMM, de 

“mixed matriz membrana”) que permita aumentar la permeabilidad del gas 

transportado selectivamente, sin disminuir la selectividad, para superar el límite de 

Robeson y alcanzaron así la región de interés industrial.  

 

1.2.- Membranas Mixtas para Separación de Gases  

Una membrana mixta es aquella donde se combinan un polímero y una carga 

generalmente porosa. Este tipo de membranas presenta buenas propiedades de 

procesamiento y bajo coste con un mejor rendimiento permeoselectivo, características 

de las membranas poliméricas e inorgánicas, respectivamente. En ellas, el modelo de 

disolución-difusión, en el que la permeación de las membranas poliméricas está 

controlada por la difusividad (D) y la solubilidad (S), es el que mejor explica la 

separación de una cierta mezcla de gases.  

De este modo, se puede considerar que se tiene una mezcla de gases, compuesta 

por A y B, siendo el gas más permeable (A) el que atraviesa la membrana sin dificultad 

debido a que sus moléculas son menos voluminosas, pero el gas B está formado por 

moléculas de mayor tamaño y es retenido por la membrana realizando un recorrido 

más complicado. (Figura 2). 
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Figura 2. Esquema de una membrana mixta donde el gas permeable A pasa rápido  

               mientras que el gas B ve dificultado su paso debido a su mayor volumen. 

 

Esta diferencia de permeabilidad viene dada por la capacidad de la membrana para 

separar la mezcla gaseosa, midiéndose por la selectividad o factor de separación, es 

decir, el cociente de sus permeabilidades:  

               Eq. (1) 
A: componente que permea de forma preferencial. 

      B: componente retenido por la membrana. 

 

Siendo la permeabilidad (P) proporcional a la cantidad de moléculas de gas que 

atraviesa la membrana, es decir, la medida de la productividad (Ecuación 2).  

              Eq. (2) 

 
D (Difusividad): medida de la movilidad de las moléculas que pasan  

           a través de los huecos vacíos del polímero. 

        S (Solubilidad): relación del número de moléculas disueltas en el polímero. 

 

La permeabilidad de un gas se expresa habitualmente en Barrer, unidad de medida 

que equivale a: 

 Eq. (3) 

 

Por otro lado, durante la elaboración de las membranas en el laboratorio, es difícil 

evitar que se presenten defectos, ya que hay muchos factores, como el mal contacto 

entre las fases orgánica e inorgánica, que inducen a que la permeabilidad y la 

selectividad de las mezclas de gases a analizar se vean modificadas, y así la 

membrana preparada sea inservible para la separación de gases.  
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Uno de los factores más importantes es elegir el disolvente teniendo en cuenta la 

temperatura de ebullición del mismo. Para evitar la aglomeración de la carga en el 

polímero, se realiza una buena dispersión en la disolución de polímero durante la 

preparación de las membranas. Además, controlando la velocidad de la evaporación 

del disolvente de durante el secado inicial de la membrana se puede lograr un material 

más homogéneo. 

También es muy importante evitar la aparición de burbujas en el polímero, debido a 

un tratamiento térmico inadecuado por el que la disolución de polímero empezaría a 

“hervir” (Moore y cols.2005). 

 

1.3.- Esferas de sílice mesoporosa  

En este trabajo se ha utilizado como fase inorgánica o carga de las MMMs, esferas 

sílice mesoporosa ordenada tipo MCM-41 con la que se pretende minimizar la 

aglomeración y mejorar la dispersabilidad y la interacción con el polímero, puesto que 

la forma esférica limita y minimiza el contacto entre las partículas de sílice. Las 

partículas de tamaño micrométrico proporcionan una relación superficie 

externa/volumen inferior, lo que reduciría la aglomeración con respecto al caso de 

polvos nanométricos. Además, se ha demostrado que la utilización de este tipo de 

partículas con estrecha distribución de tamaño de partícula (en el 2-4 μm de diámetro) 

facilita la preparación de MMMs altamente homogéneas (Zornoza y cols., 2009). 

También se han utilizado esferas de menor diámetro para intentar aumentar el área 

superficial y mejorar la separación de gases (Manzano y cols., 2008).  

En el presente trabajo, en todos los casos, el porcentaje de carga inorgánica 

utilizado ha sido del 8% en peso. Estos sólidos se han modificado con 3- 

aminopropiltrietoxilano (APTES). Los grupos amino, básicos, favorecerían permiten la 

adsorción preferencial del dióxido de carbono. La captura de CO2 constituye una de las 

aplicaciones más estudiadas por su importancia medioambiental, atendiendo al efecto 

invernadero y al calentamiento global. Las aminas activarían los espacios de la 

superficie del sólido mesoporoso para que pueda capturar dióxido de carbono a través 

de la formación de carbonatos, asemejándose a los procesos tecnológicos de 

depuración de CO2 en un líquido de alcanolaminas. 

El concepto de adsorción de dióxido de carbono por sílice modificada con aminas 

surgió con los estudios realizados por Leal y cols. (1995). Estos investigadores 

estudiaron la adsorción de dióxido de carbono preparando un  gel de sílice modificado 

con  aminas, aunque los requisitos estuvieron por debajo de los de la aplicación 
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industrial (Zenenak y cols., 2008). En este sentido, recientemente Xu y cols. (2009) 

modificaron MCM-41 con polietilenimina (PEI) ramificada, polímero que contiene 

numerosos grupos amino. Los autores encontraron que la capacidad de absorción de 

CO2 de MCM-41-PEI de la muestra era muy superior a la del MCM- 41 y alrededor de 

dos veces la de la PEI pura. El grupo de Sayari estudió la modificación de MCM-41 

con diaminas y triaminas (Sayari y cols., 2005) demostrando que el aumento de la 

capacidad de adsorción tuvo lugar porque la expansión de la sílice era capaz de dar 

cabida a una mayor cantidad de aminosilanos que permitía una alta la movilidad del 

adsorbato (Sayari y cols., 2007). 

Finalmente, cabe destacar que el uso de adsorbentes con grupos amino. Debido a 

su eficacia se utiliza en la tecnología de naves espaciales, transbordadores espaciales 

o submarinos, donde se utilizan para la eliminación del dióxido de carbono en exceso 

de los ambientes cerrados. 

 

1.4.- Estudios Previos 

Este trabajo es continuación de los estudios realizados en el proyecto fin de 

carrera de la misma autora (Nieto, 2011). En él se optimizó el método de 

modificación de las esferas de MCM-41 de 2-4 μm de diámetro. Del mismo modo se 

estudiaron qué disolventes se debían de utilizar para preparar las membranas 

mixtas con los diferentes polímeros, así como los tratamientos térmicos necesarios 

para obtener los mejores resultados en la separación de gases. 

 

1.5.- Objetivos 

Los principales objetivos de este proyecto son: 

 Funcionalizar las esferas de sílice mesoporosa con estructura tipo MCM-

41 de diferentes tamaños, sobre 3 μm y aproximadamente 400 nm, que 

corresponden con la fase inorgánica de las membranas mixtas, con grupos 

amino. 

 Analizar y caracterizar adecuadamente el material inorgánico modificado.  

 Preparar membranas mixtas con una carga de material 10% en peso de 

material, utilizando como matriz orgánica una polisulfona y una poliimida. 

 Caracterizar las membranas por diversas técnicas y estudiar su 

rendimiento selectivo, prestando especial interés a las mezclas H2/CH4 y 

CO2/CH4.   
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2.- METODO EXPERIMENTAL 

2.1. Síntesis de las esferas de sílice  mesoporosa (MSSs) 

2.1.1. Método de obtención de esferas de 3 μm 

Las esferas de aproximadamente 3 μm, a partir de ahora se van a nombrar en este 

trabajo como MSSs (g), se han preparado siguiendo lo descrito en bibliografía (Schulz-

Ekloff y cols., 1999) y se han incluido variaciones en la composición molar de la 

síntesis (Navascués y cols., 2008).  

En la síntesis de estas esferas se ha utilizado metasilicato de sodio (Na2SIO3, 

Sigma-Aldrich) como fuente de silicio, bromuro de hexadeciltrimetilamonio (C19H42NBr, 

Sigma-Aldrich) como surfactante responsable de la formación de la  estructura 

mesoporosa, y acetato de etilo (CH3COOC2H5, Sigma Aldrich) como iniciador de la 

formación de agregados coloidales. 

Estos reactivos se mezclan con una relación molar 1.5 Na2SiO3: 1 C19H42NBr: 7.4 

CH3COOC2H5: 361 H2O, por lo que para realizar una síntesis se vierten en un 

recipiente de polipropileno 1 g de Na2SiO3, 1,96 g de CTABr y  se disuelven con 

agitación en 35 mL de H2O, obteniéndose una disolución transparente. Una vez se ha 

mezclado se añade 3,5 g de acetato de etilo, se agita durante 30 segundos exactos, 

puesto que estudios previos han demostrado que un periodo mayor de agitación 

podría conducir a la obtención de una mezcla de partículas de diferentes formas y 

tamaños (Rathousky y cols. 1998),  y se dejan reposar durante 5 h a temperatura 

ambiente en el recipiente cerrado.  

Pasado este tiempo, se observa una solución blanquecina que indica que la sílice 

ha condensado. Seguidamente, para que se produzca la síntesis del sólido, se deja 

evaporar en el mismo recipiente abierto, durante 50 h a 90 ºC. Por último, el producto 

obtenido se  filtra tres veces (agua-etanol-agua) y para activar los poros se elimina el 

surfactante por calcinación durante 8 h a 600 ºC, con una rampa de calentamiento de 

0,5 ºC/min. 

 

2.1.2. Método de obtención de esferas de 400 nm 

Estas esferas, de un tamaño próximo a 400 nm, se han preparado empleando una 

modificación del método de Stöber (Liu y cols. 2005). Cada vez que se mencionen en 

este trabajo será como MSSs (p). 
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Para la síntesis se ha utilizado como fuente de silicio tetraetilortosilicato (TEOS, 

Si(OC2H5)4, Sigma-Aldrich) y como surfactante bromuro de hexadeciltrimetilamonio 

(C19H42NBr, Sigma-Aldrich). También se ha empleado agua desionizada, etanol 

(C2H6O, Scharlau) y una disolución de amoniaco al 25% (NH3, Pareac). En este caso 

la relación molar utilizada fue de: 1 TEOS: 0,3 C19H42NBr: 11 NH3: 55 C2H6O:144 H2O. 

En primer lugar, se disuelven 2,6 g de C19H42NBr con 49 mL de agua, 18 g de  

amoniaco y 64 g de etanol y se deja agitando durante 15 minutos. Una vez disuelto el 

C19H42NBr se añaden 5g de TEOS y se deja reaccionar en reflujo durante 2h a 75 ºC. 

Seguidamente se realizan los procesos de centrifugación, en primer lugar para obtener 

el sólido y posteriormente para lavarlo (tres veces con agua destilada y una última con 

etanol). Finalmente, como en el caso anterior, se calcina durante 6h a 550 ºC, con una 

rampa de calentamiento de 0,5 ºC/min. 

 

2.2. Modificación de las esferas de sílice. 

En la funcionalización de esferas de sílice de ambos tamaños con grupos amino se 

ha utilizado 3-aminoproiltrietoxisilano (APTES, Sigma Aldrich) con un porcentaje molar 

del 10 % de aptes/esferas de sílice y siguiendo el método descrito por Oh y cols. 

(2006), que en estudios realizados anteriormente proporcionaba los mejores 

resultados (Nieto, 2011). 

Así pues, se han añadido los grupos amino durante la síntesis de las esferas. En el 

caso de las MSSs (g) se agregan 0,33g de APTES antes de verter el iniciador, etil 

acetato,  y en el caso de las MSSs (p) la adición de 17,3 g de APTES  se realiza al 

añadir el C19H42NBr. Tras seguir el proceso anteriormente descrito para la formación 

de las esferas, se sustituye la etapa de calcinación por una de extracción química 

química a reflujo durante 16 h con una mezcla de 3,3 mL de ácido clorhídrico 

(concentración al 37%, Sigma Aldrich) y 107,5 mL de etanol. 

 

2.3. Preparación de membranas mixtas. 

En la elaboración de membranas mixtas de polímero con esferas de sílice 

modificadas con APTES se han utilizado como fase orgánica continua dos tipos de 

polímeros uno comercial, la polisulfona Udel® P-3500, suministrada por Solvay 

Advanced Polymers, y otro sintetizado en el laboratorio del Instituto de Orgánica y 

Química Macromolecular de la Universidad de Dusseldorf (Alemania), la poliimida 
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6FDA-4MPD/6FDA-DABA (ver Anexo I), y como fase inorgánica dispersa las esferas 

de sílice modificadas como se ha descrito en el apartado anterior.  

Además, en todas ellas se ha utilizado una relación disolvente del 8% en peso 

porque en estudios previos realizados en el grupo de investigación se logró un 

funcionamiento óptimo en la separación de gases con cargas similares (Gorgojo y 

cols., 2008; Zornoza y cols., 2009).  

 

2.3.1. Método de preparación de las membranas de polisulfona 

Para la obtención de membranas mixtas con polisulfona Udel® se ha seguido el 

mismo procedimiento descrito por Zornoza y cols. (2009). En este proceso se mezclan 

la fase orgánica, la inorgánica y el disolvente (cloroformo, Sigma-Aldrich). Para 

obtener una membrana son necesarios 0,4 g de polisulfona, 0,04 g MSSs 

(independientemente del tamaño o modificación) y 4,6 g de cloroformo. Se deja 

agitando la dispersión obtenida durante un día, y posteriormente, para hacer más 

uniforme la mezcla se realizan tres periodos de inmersión de 15 minutos en baño de 

ultrasonidos y 10 minutos de agitación.  

A continuación, a temperatura ambiente, se vierte la mezcla sobre un soporte de 

vidrio que se coloca en una superficie nivelada, para que se extienda de forma 

uniforme por la superficie, y dentro de una campana, puesto que el soporte se deja 

parcialmente abierto para que la evaporación del disolvente sea lenta y  

Por último, para terminar de evaporar el disolvente que ocupa los espacios 

intercristalinos se realiza un tratamiento de activación de la membrana. Este 

tratamiento, que se realiza en una estufa de vacío, consiste en primer lugar en hacer 

una rampa de calentamiento de una hora para alcanzar de forma progresiva la 

temperatura de tratamiento del polímero, 120 ºC, y el vacío. Estas condiciones se 

mantienen durante 24 h y por último se realiza una rampa de enfriamiento de una hora 

para alcanzar la temperatura ambiente. 

 

2.3.2. Método de preparación de las membranas de poliimida 

La preparación de las membranas con la poliimida 6FDA-4MPD/6FDA-DABA en 

proporción 4:1, se ha adaptado al método seguido por Galve y cols. (2011). En este 

método se mezcla en primer lugar 0,6 g de polímero y 7,8 mL de disolvente 

(tetrahidrofurano (THF), Sigma-Aldrich). Esta solución se filtra a través de un filtro de 

jeringa, se añade a la fase inorgánica, 0,024 g de MSSs y la suspensión obtenida se 
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deja agitando durante toda la noche. Del mismo modo que en el caso anterior, para 

obtener una dispersión homogénea de las partículas inorgánicas se realizan tres 

periodos de inmersión de 30 minutos en baño de ultrasonidos y 30 minutos de 

agitación.  

Seguidamente, la mezcla preparada, con la  que se obtienen dos membranas, se 

vierte sobre dos soportes en las mismas condiciones que en el otro método. Cada 

soporte, se cubre con un embudo de plástico taponado con papel para que el 

disolvente se evapore muy lentamente. 

Finalmente, se realiza un procedimiento de activación a 150 ºC de la membrana 

similar al caso anterior. 

 

2.4. Caracterización 

En la caracterización del material inorgánico y de las membranas se han utilizado 

diversas técnicas, que se explican de forma más extensa en el Anexo II. 

  

2.4.1. Microscopía 

   2.4.1.1. Microscopía óptica 

Esta técnica se utiliza para comprobar de una manera rápida el tamaño y la 

esfericidad del material sólido.  

El microscopio utilizado, de marca Leica, se encuentra en el Instituto de 

Nanociencia de Aragón, Edificio I+D+i. Los objetivos utilizados para el estudio oscilan 

entre 50x10 y 100x10 aumentos. 

 

2.4.1.2. Microscopía electrónica de barrido (SEM) 

Esta técnica se ha utilizado para observar la morfología de los materiales 

estudiados y para obtener un análisis elemental de las muestras.  

El  microscopio electrónico de barrido que se ha utilizado para el estudio de estos 

materiales, (modelo JEOL JSM 6400), pertenece al Servicio de Apoyo a la 

Investigación de la Universidad de Zaragoza. 
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2.4.1.3. Microscopía electrónica de transmisión (TEM) 

La microscopía electrónica de transmisión consiste en irradiar una delgada muestra 

con un haz de electrones de corriente uniforme, entre 100 y 200 keV, y sus señales 

emitidas permiten obtener una imagen de la muestra hasta un millón de veces mayor. 

Además, se obtiene información sobre su naturaleza (morfología, composición, 

estructura cristalina, estructura electrónica, etc.). 

El microscopio empleado es el modelo JEOL-2000 FXII, que opera a 200 kV, 

pertenece al Servicio de Microscopía Electrónica de la Universidad de Zaragoza,  

 

2.4.2. Cristalografía. 

2.4.2.1. Difracción de rayos-X de ángulo bajo (LA-XRD). 

El análisis de difracción de rayos-X de ángulo bajo, se realiza para constatar la 

estructura mesoporosa ordenada de MCM-41, y así poder comprobar si se conserva la 

misma después de la funcionalización. Las medidas se han realizado en el equipo 
C.A.I. de Difracción de Rayos X de la Universidad Complutense de Madrid. 

 

2.4.3. Análisis Térmico. 

2.4.3.1. Análisis termogavimétrico (TGA). 

Esta técnica permite el estudio de la pérdida de peso del material con el aumento 

de temperatura. El equipo utilizado es un modelo de Mettler Toledo (TGA/SDTA 851e) 

que se encuentra en el Departamento de Ingeniería Química en el Edificio de institutos 

de la Universidad de Zaragoza. Se ha aplicado un programa de temperaturas desde 

25 a 800 ºC, a 5 ºC/min, con flujo de aire de 30 mL (STP)/min, para el material 

inorgánico en polvo. Para las membranas se utiliza el mismo intervalo de temperatura, 

a 10 ºC/min, con flujo de aire de 50 mL (STP)/min. Ambos experimentos se han 

realizado en crisoles de alúmina. 

 

2.4.3.2. Calorimetría diferencial de barrido (DSC). 

Este determina la temperatura de transición vítrea de las membranas de polisulfona 

Udel®, que se analizaron hasta 300 ºC, y las de poliimida se estudiaron hasta 500 ºC. 

El equipo utilizado es un modelo Mettler Toledo DSC822e que se encuentra en el 
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Departamento de Ingeniería Química en el edificio de Institutos de la Universidad de 

Zaragoza. 

 

2.4.4. Propiedades texturales 

2.4.4.1. Análisis de adsorción de gases. 

La adsorción de gases en sólidos es una técnica que permite estudiar la textura 

porosa de los sólidos, se ha determinado el área superficial de volumen de poro y la 

distribución del tamaño de poro. 

Para determinar la adsorción de nitrógeno y obtener el área BET se ha utilizado el 

equipo  Micrometrics Tristar 3000. Este equipo se encuentra en el Departamento de 

Ingeniería Química de la Universidad de Zaragoza, edificio Torres Quevedo. 

En este tipo de análisis es fundamental someter a las muestras a un pretratamiento 

adecuado, 110 ºC para que no se estropeen las modificaciones realizadas con 

APTES, para eliminar todos los posibles compuestos existentes en los poros y evitar la 

obtención de una medida falseada.  

 

2.4.4.2. Medidas de espesor. 

El espesor de las membranas se obtuvo con el promedio de 10 medidas 

tomadas con el micrómetro digital Quickmike Serie 293-IP-54 (con precisión de 0-30 

mm ± 0,001 mm, Mitutoyo Corp.) en distintas zonas de las membranas.  

 

2.4.5. Espectroscopia 

2.4.5.1. Espectroscopia infrarroja de absorción (FTIR). 

La espectroscopia de absorción (FTIR, Fourier Transform Infrared Spectroscopy), 

se puede utilizar para identificar un compuesto e investigar la composición de una 

muestra permitiendo estudiar las vibraciones fundamentales y la estructura rotacional 

vibracional.  

En el caso de las muestras en polvo de este proyecto, se prepararon pastillas 

traslúcidas (mezcla de la muestra y bromuro potásico) a través de las cuales pasa el 

rayo de luz. El modelo de espectrógrafo utilizado ha sido IRAffinity 1/FTIR-5400s de 

Shimadzu corporation, Kyoto, Japan, ubicado en el Departamento de Ingeniería 

Química de la Universidad de Zaragoza, en el edificio de Institutos.   
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2.4.5.2. Espectroscopia de energía dispersiva de rayos X (EDX) 

La técnica EDX (Energía de Rayos- X dispersados) permite conocer la composición 

química de las muestras mediante un analizador de energía dispersiva acoplado al 

microscopio electrónico de barrido (Servicio de Microscopía Electrónica, Universidad 

de Zaragoza). 

 

2.4.6. Separación de mezclas de gases. 

Para ello se ha medido la separación de mezclas equimolares de las membranas 

sintetizadas en el laboratorio en una planta de separación de gases. 

El proceso se lleva a cabo a una temperatura de 35 ºC y los caudales de los gases 

introducidos fueron de 25 mL (STP)/min para cada uno de los gases a separar. Las 

mezclas equimolares a separar fueron: H2/CH4 y CO2/CH4. La alimentación se 

introduce a una presión de  40-50 psia (2,7-3,5 bar), siendo la presión del lado del 

retenido aproximadamente una atmósfera. Los gases de salida se analizaron en un 

microcromatógrafo (MicroGC Agilent Technology 3000 A). 
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3.- RESULTADOS Y DISCUSIÓN 

En este apartado se van a mostrar los resultados experimentales de las esferas de 

sílice mesoporosa MCM-41 de diferentes tamaños  y de las membranas mixtas de 

dichos materiales inorgánicos contenidos en las matrices poliméricas de diferente 

naturaleza. 

 

3.1.- Resultados de los sólidos mesoporosos  modificados 

3.1.1. -Caracterización morfológica y estructural 

Para la caracterización morfológica y estructural de los sólidos mesoporosos 

modificados, en primer lugar se realiza una inspección con el microscopio óptico para 

comprobar que la síntesis ha sido adecuada y se observan formas esféricas. Las 

esferas de sílice mesoporosa (MSSs) de mayor tamaño sintetizadas por el método 

2.1.1 presentan unos diámetros de 3,2 ±0,5 μm  (medidos con las imágenes de SEM 

para unas 100 partículas).  En la figura 3 se presenta una imagen de SEM de esferas 

individuales de MSS (g) calcinadas y de MSS (g) modificadas, donde se puede 

observar la capa superficial debido a la modificación con APTES. 

Además, la técnica EDX permite analizar la composición química de la muestra, 

presentando la muestra de MSS unos porcentajes atómicos  aproximados del 75% de 

oxígeno y 25% de silicio. Para las muestras modificadas el porcentaje atómico de 

silicio es del 70,3 %, el de oxígeno es del 26,8 y de nitrógeno, que  corresponde al 

proporcionado por la adición de APTES en las esferas mesoporosas, es del 2,8%. Los 

porcentajes del análisis atómico con EDX se han recalculado eliminando el carbono, 

puesto que la muestra se encuentra recubierta del mismo y no se puede determinar 

cuánto pertenece a la muestra y cuánto al recubrimiento. La relación Si/O superior a la 

esperada de sílice (2), se debe a la abundante presencia de grupos silanoles. 
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Figura 3. Imágenes SEM de: a) MSS (g).b) MSS (g) modificadas con APTES. 

 

En cuanto a las esferas de sílice mesoporosa de menor tamaño sintetizadas por el 

método descrito en el apartado 2.1.2., tal y como se observa en la Figura 4 presentan 

un diámetro medio de partícula de 450 ±50 nm (Figura 5, medido con las imágenes de 

SEM para unas 100 partículas). Al reducir el tamaño se encuentran más aglomeradas, 

con formas menos diferenciadas, y en las modificadas se pueden observar 

aglomerados en la superficie (Stöber, 1968). 

 

 
 

Figura 4. Imágenes SEM de: a) MSS (p). b) MSS (p) modificadas con APTES. 
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Figura 5. Distribución de tamaños para MSSs (p) (Galve, 2012). 
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Para las MSSs sin modificar la superficie específica BET es de 1000 m2/g que 

corresponde con los valores reportados en bibliografía para las esferas de sílice 

mesoporosa 1085 m2/g (Sing, 2001; Schultz-Ekloff, 1999) y es semejante a los valores 

correspondientes a MCM-41 altamente ordenada 930 m2/g (Jaroniec y cols., 1999). 

Aunque en las MSSs  modificadas se ha reducido el área, 635 m2/g, se han obtenido 

valores de superiores a los encontrados en bibliografía, 239 m2/g (Zeleňák y cols., 

2008). En cuanto a la MSSs pequeñas, los valores obtenidos experimentalmente son 

de 999 m2/g, valores similares a los de bibliografía de 1027 m2/g (Liu y cols, 2006). 

  En la Figura 6 se muestra la isoterma de adsorción y desorción de N2 de las MSSs 

(g) y de las MSSs (g) modificadas. Igualmente, en la Figura 7 se muestran las mismas 

isotermas para las MSSs (p) y MSSs (p) modificadas. En ambos casos las isotermas 

son de tipo IV características de los materiales mesoporosos (tamaño de poro de 2-50 

nm) según la clasificación de la IUPAC. 
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Figura 6. Isotermas de adsorción (línea discontinua) y desorción (línea continua) de N2 para: 

a) MSSs , b) MSSs modificadas con APTES . 
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Figura 7. Isotermas de adsorción (línea discontinua) y desorción (línea continua) de N2 para: 

a) MSSs pequeñas, b) MSSs pequeñas modificadas con APTES. 
 

Los análisis BJH para las MSSs (g), de ambos tamaños, presentan una estructura 

de poro bimodal con poros de aproximadamente 2,7 y 9 nm atribuidos a las fases 

mesoporosas y no mesoporosas del MCM-41, respectivamente. En la Figura 8, se 

muestra la distribución de poros correspondientes a las isotermas de la Figura 6. Se 

aprecia una distribución de poros bimodal  con poros en 2 y 4 nm, para el caso de las 

esferas modificadas. En la Figura 9 se muestran las MSSs (p) modificadas y sin 

modificar, estas últimas presentan poros de unos 2,5 nm, en concordancia con una 

fase hexagonal del tipo MCM-41. 
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Figura 8. Distribución de tamaños de poro BJH para: a) MSSs, b) MSSs modificadas con APTES. 
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Figura 9. Distribución de tamaños de poro BJH para: a) MSSs pequeñas, b) MSSs pequeñas modificadas con APTES. 

 

La estructura del material con y sin modifición se ha analizado por difracción de 

rayos X de ángulo bajo, donde se puede verificar la ordenación de la estructura porosa 

del material.  

En el difractograma de las MSSs (g) (Figura 10) se puede observar una fuerte 

reflexión a 2,4 º  y otra reflexión más débil a 4,2 º que indican que las MSSs poseen 

una estructura de poro de naturaleza hexagonal atribuida a la sílice tipo MCM-41. La 

posición del primer pico a 2θ =2,4º da una reedición de espaciado mediante la ley de 

Bragg de d1 = 3,65 nm.  

Así pues, en la Figura 9 se puede observar el difractograma tanto de las MSSs (g) 

como de las MSSs (g) modificadas. Al realizar la modificación, la estructura ordenada 

mantiene únicamente un primer pico a 2θ = 2,1º. Estos resultados indican la expansión 

de la celda unitaria de la muestra MSSs(g) modificadas con respecto a la sin modificar, 

que se calcino para su activación. 
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Figura 10. Patrones de difracción de rayos X de ángulo bajo (LA – XRD). 

 a) MSSs (g), b) MSSs (g) modificadas con APTES. 

 

En la Figura 11, en la que se observa el difractograma de las MSSs pequeñas 

modificadas muestran un primer pico acusado a 2θ = 2,4º, por lo que se puede 

observar que el espaciado es semejante al material sin modificar. 
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Figura 11. Patrones de difracción de rayos X de ángulo bajo (LA – XRD). 

a) MSSs (p), b) MSSs (p) modificadas con APTES. 
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3.1.2. - Análisis térmico 

Para la realización del análisis termogravimétrico y la obtención de las curvas 

correspondientes de cada material, los experimentos se han realizado en crisoles de 

alúmina de 70 μL, con atmósfera de aire y rampa de 5 ºC/min hasta 850 ºC. 

En las Figuras 12 y 13 se pueden observar las curvas termogravimétricas de 

MSSs(g) y MSSs(p), respectivamente. En ambas se puede comprobar una primera 

pérdida de peso en torno a los 100 ºC, debida a la humedad presente en la muestra; 

otra entorno a los 200 ºC, correspondiente al APTES retenido. La pérdida de peso es 

más pronunciada en las esferas de menor tamaño, pero en ambos casos está 

alrededor del 15%. 
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Figura 12: Variación de peso frente a la temperatura de las MSSs (g): a) APTES,  b) MSSs (g),  

c) MSSs (g) modificadas con APTES.  
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Figura 13: Variación de peso frente a la temperatura de las MSSs (p): a) APTES, b) MSSs (p),  

c) MSSs (p) modificadas con APTES. 

 

3.1.3. - Análisis espectroscópico 

En el análisis espectroscópico de la Figura 14 se muestran los espectros de 

infrarrojo del APTES, las MSSs (g) y MSSs (g) modificadas, y en la Figura 15 los 

mismos para las esferas de sílice de menor tamaño en el intervalo de números de 

onda de 4000-850 cm-1.  

En el espectro de a las esferas de tamaño superior, en primer lugar, se observa un 

pico ancho entorno a los 3500 cm-1 que corresponde a los enlaces OH-, característicos 

de la humedad de la muestra, mayor en el caso de las MSS (g) modificadas porque la 

muestra es extraída y no calcinada. Conviene puntualizar que si las esferas sin 

funcionalizar se activan por calcinación esto no es así con las funcionarizadas, que al 

calcinarlas perderían cualquier grupo orgánico presente. Además, se observa en torno 

a los 1150 cm-1 el pico correspondiente al estiramiento C-C, y en torno a los 1083 y 

810 cm-1 los picos característicos de la vibración de estiramiento Si-O-Si asimétrico y 

simétrico respectivamente. Por último, la mayor diferencia entre las MSS (g) y las MSS 

(g) modificadas, se contempla alrededor de los 950 cm-1, que corresponde al enlace 

Si-OH, y que es relevante en la muestra de APTES líquido. 
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Figura 14: Espectros FTIR: a) APTES, b) MSSs (g), c) MSSs (g) modificadas con APTES. 

 

Por otro lado, en el espectrómetro de las MSSs (p) se puede observar la 

modificación, además de en el pico a 950 cm-1 como ocurría en las MSSs (g) 

correspondiente con el enlace Si-OH, en los picos entorno a 2882 cm-1, que se 

relacionan con el enlace de C-H alifáticos, y a los picos en torno a1388 cm-1 

pertenecientes a los enlaces C-N-C.  
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Figura 15: Espectros FTIR: a) APTES, b) MSSs (p), c) MSSs (p) modificadas con APTES. 
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3.2.- Resultados de las membranas mixtas 

Las membranas estudiadas en este proyecto se prepararon siguiendo el 

procedimiento explicado en el apartado 2.3. del presente trabajo. Todas ellas 

provienen de dispersiones con un de un 90 % de disolvente y un 10% de material. De 

este 10 %, el 8% en peso corresponde al material inorgánico  y el 92% en peso al 

polímero. (Zornoza y cols., 2009 y Zornoza, 2011a). En la Tabla 1, se muestran las 

membranas preparadas para ser estudiadas en este trabajo. 

 
Tabla 1. Membranas preparadas con polímero Udel® y poliimida 6FDA-4MPD/6FDS-DABA. 

Membrana Polímero   Material inorgánico Espesor (μm) nº réplicas
 Membrana 1 UDEL(R) - 68 (± 3) 2

Membrana 2 UDEL(R) MSS (g) 72 (± 3) 2

 Membrana 3 UDEL(R) MSS (g) modificadas 95 (± 3) 6

 Membrana 4 UDEL(R) MSS (p) 93 (± 4) 4

 Membrana 5 UDEL(R) MSS (p) modificadas 107 (± 1) 6

 Membrana 7 6FDA-4MPD/6FDA-DABA - 6,2 (± 0,7) 2

 Membrana 8 6FDA-4MPD/6FDA-DABA MSS (g) modificadas 8,2 (± 1,1) 2

 Membrana 9 6FDA-4MPD/6FDA-DABA MSS (p) modificadas 8,5 (± 0,9) 2  

 

3.2.1- Caracterización morfológica y estructural 

Las imágenes de SEM de la sección transversal de las membranas permiten el 

análisis de la distribución y la interacción de la fase inorgánica con el polímero, 

polisulfona o poliimida. 

En las membranas con polisulfona (Figura 16), se puede observar que la 

distribución de las partículas es homogénea a su través, siendo adecuada la 

adherencia del material inorgánico con el polímero. Por otro lado, en la Figura 17 se 

muestra una imagen TEM para una esfera de mayor tamaño, dónde se ratifica el buen 

contacto entre la fase orgánica e inorgánica. 
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Figura 16. Distribución de MSSs modificadas con APTES en polímero polisulfona Udel®  

a y b) MSSs (g), c y d) MSSs (p). 

 

 
 

Figura 17. Imagen TEM: a) partícula individual de MSSs (g) modificada con APTES en polisulfona UDEL®   

b) detalle de la imagen a). 

40 μm 2μm 

30 μm 
2 μm 

a) b) 

c) d) 

0.5 μm 200 nm

a) b) 



Capítulo 3  Resultados y discusión 

27 

En cuanto a las membranas con poliimida (Figura 18), estas no son tan 

homogéneas como las anteriores, quedándose las esferas en la parte inferior de la 

sección transversal, aunque bien embebidas en el polímero. 

 

 

 
 

Figura 18. Distribución de MSSs modificadas con APTES en polímero poliimida 6FDA-4MPD/6FDA-DABA  

a y b) MSSs (g), c y d) MSSs (p). 

 

3.2.2. - Análisis Termogravimétrico 

Al analizar las curvas termogravimétricas de las membranas mixtas preparadas con 

la polisulfona UDEL® (Figura 19) se pueden observar tres pérdidas de peso 

significativas similares utilizando los diferentes rellenos inorgánicos. La primera que 

corresponde a un 5-10% en pérdida de peso se presenta entre los 25-200ºC, y se 

debe a la humedad remanente en los poros de las membranas y al disolvente que no 

se ha eliminado en el tratamiento térmico. La siguiente pérdida de peso, alrededor de 

un 55%, se corresponde a los procesos de pirólisis que sufre la muestra. La última, 

30 μm 3 μm 

30 μm 2 μm 

a) b) 

c) d) 
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hasta un 8% aproximadamente, corresponde con la degradación completa del 

polímero, siendo el porcentaje que resta el correspondiente al relleno inorgánico.  
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Figura 19. Variación en peso frente a temperatura para membranas mixtas con polisulfona UDEL®  

a) MSSs (g), b) MSSs (p), ambas modificadas con APTES. 
 

En el caso de las membranas elaboradas con la poliimida 6FDA-4MPD/6FDA-

DABA (Figura 20), también se observa una pequeña pérdida de peso, sobre un 10%, 

debida a la humedad y al disolvente entre 25-400 ºC. El intervalo es mayor o para las 

membranas de poliimida que para las de polisulfona porque se han utilizado diferentes 

disolventes para su elaboración y que por tanto tienen diferente temperatura de 

ebullición. Por último, se observa una gran pérdida de peso entre 600-650 ºC que 

corresponde con la eliminación de la matriz polimérica y el porcentaje de peso 

sobrante con la carga inorgánica, que en este caso es inferior al 8% (Gorgojo, 2010). 

Esto puede deberse a que la dispersión de las esferas en la fase orgánica no ha sido 

homogénea, y se habría seleccionado para el análisis una porción de membrana casi 

carente de carga. 
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Figura 20. Variación en peso frente a temperatura para membranas mixtas con poliimida 6FDA-4MPD/6FDA-DABA y 

esferas de sílice modificadas con APTES a) MSSs (g), b) MSSs (p).  

 

Además, si se analizan las temperaturas de transición vítreas (Tg) de las MMMs y 

de las membranas poliméricas de las respectivas matrices orgánicas (Tabla 2) 

proporcionadas por los estudios de calorimetría diferencial de barrido. Se puede 

observar que al introducir una carga inorgánica del 8% de MSS (g) y MSS (p) son 

prácticamente las mismas, por lo que las características del polímero no se ven 

modificadas. Se puede comprobar que la poliimida utilizada tiene mayor Tg (Wieneke y 

cols., 2010) que la polisulfona (Zornoza y cols., 2009), por lo que las MMMs de este 

polímero termorrigido, 6FDA-4MPD/6FDA-DABA, presentarán mayor restricción de 

movimiento de las cadenas poliméricas y las esferas de sílice mesoporosa formarán 

enlaces de hidrógeno (O-H) entre las fases orgánica e inorgánica (Zornoza, 2011a). 
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Tabla 2. Temperatura de transición vítrea de los polímeros UDEL® y 6FDA-4MPD/6FDA-DABA  y de las membranas 

mixtas con esferas de sílice modificadas con APTES.  

Polímero UDEL® Referencia
Membrana Tg (ºC) Autor (año)
Polímero 190 Kim y cols. (1999)

MSSs 193 Zornoza y cols. (2009)
MSSs (g) modificadas 180 Este trabajo
MSSs (p) modificadas 183 Este trabajo

Polímero  6FDA-4MPD:6FDA-DABA Referencia
Membrana Tg (ºC) Autor (año)

Polímero 416 Wieneke y cols. (2010
MSSs (g) modificadas 404 Este trabajo
MSSs (p) modificadas 413 Este trabajo  

 

3.2.4- Análisis de separación de gases 

3.2.4.1. Separación de H2/CH4 

El estudio de esta mezcla tiene gran importancia puesto que es muy utilizada en la 

purificación de hidrógeno y en su recuperación en procesos de refinado. 

 

3.2.4.1.1. Membranas mixtas de polisulfona 

En primer lugar, como se puede observar en la Tabla 3, se ha estudiado el 

rendimiento de permeabilidad-selectividad para la mezcla H2/CH4 para membranas de 

polisulfona pura UDEL®. Se puede observar que los resultados obtenidos en el 

laboratorio (Zornoza y cols., 2009) son similares a otros obtenidos en bibliografía 

(Mohr y cols., 1991 y McHattie y cols., 1991), por lo que los resultados obtenidos en 

dichas plantas pueden considerarse representativos. 

 
Tabla 3. Valores de selectividad de  H2/CH4 y permeabilidades (Barrer)  para  las membranas puras de  

 polisulfona UDEL®. 

Mezcla Biliografía Permeabilidad (Barrer) Selectividad 
H2/CH4 Autor (año) P (H2) P (CH4) H2/CH4

Polímero UDEL® Zornoza y cols. (2009) 11,8 0,20 58,9
 35 ºC Mohr y cols. (1991) 13,6 0,28 48,6

McHattie y cols. (1991) 14 0,26 53,8
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Si se comparan los resultados del polímero puro con los de las membranas mixtas 

(Tabla 4), se puede observar que la permeabilidad y la selectividad aumentan al 

introducir esferas de sílice en la matriz polimérica, viéndose, con respecto al polímero 

puro, más favorecida la permeabilidad a H2 cuando se han utilizado MSSs (g) 

modificadas y la selectividad H2/CH4 cuando se utilizan MSSs (p) modificadas. Esto 

puede deberse a que el mayor tamaño de las MSSs y su contacto con la matriz 

permiten que el gas fluya mejor, por lo que el hidrógeno permea mejor, pero al utilizar 

MSSs pequeñas los espacios se bloquean con las esferas, por lo que el gas permea 

con más dificultad pero esto permite que aumente la selectividad. De cualquier modo, 

los mejores resultados se corresponden a las membranas de MSS (g) sin modificar, lo 

que de algún modo hace que los postulados iniciales de este trabajo queden en 

entredicho y pendientes de futura verificación, al menos para la mezcla H2/CH4. 

 

Tabla 4. Valores de selectividad de  H2/CH4 y permeabilidades (Barrer) para las membranas mixtas de polisulfona. 

Mezcla Muestra Permeabilidad (Barrer) Selectividad 
H2/CH4 P (H2) P (CH4) H2/CH4

Polímero 11,8 (± 0,2) 0,20 (± 0,01) 58,9 (± 0,1)
Polímero UDEL® MSSs (g) 26,5 (± 0,8) 0,34 (± 0,01) 79,2 (± 1,4)

 35 ºC MSSs (g) modificadas 14,4 (± 0,2) 0,28 (± 0,02) 52,2 (± 0,3)
MSSs (p) 26,9 (± 0,4) 0,59 (± 0,01) 45,2 (± 0,1)

MSSs (p) modificadas 12,6 (± 0,1) 0,21 (± 0,01) 60,2 (± 0,1)  

 

 3.2.4.1.2. Membranas mixtas de poliimida 

En el caso de la poliimida 6FDA-4MPD:6FDA-DABA, al comparar los resultados hay 

que tener en cuenta que cada lote o “batch” de polímero sintetizado presenta las 

mismas características pero no son totalmente homogéneas como ocurre en los 

polímeros comerciales. Aunque en la Tabla 5 se pueden observar que se obtienen 

valores semejantes en lotes realizados por diferentes investigadores de este grupo 

siguiendo el método descrito en el Anexo I. 

 

Tabla 5. Valores de selectividad de  H2/CH4 y permeabilidades (Barrer)  para las membranas puras de poliimida 
 6FDA-4MPD:6FDA-DABA. 

Mezcla Biliografía Permeabilidad (Barrer) Selectividad 
H2/CH4 Autor (año) P (H2) P (CH4) H2/CH4

Polímero 
6FDA-4MPD:6FDA-DABA Zornoza (2010a) 229 10,2 22,5

 35 ºC Galve (2012) 311 16,5 18,9
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Para realizar las membranas mixtas con esta poliimida se ha utilizado el lote 

sintetizado por Galve, 2012. En este caso, tal y como se puede observar en la Tabla 6, 

al introducir esferas de sílice modificadas mejora la selectividad de la mezcla H2/CH4, 

desde 8,9 a 22 con MSSs (g) y a 26,8 con MSSs (p). Al introducir las MSSs 

modificadas disminuye la permeabilidad para ambos gases. Sin embargo, de nuevo la 

modificación con APTES no rinde los resultados esperados. 

 

Tabla 6. Valores de selectividad de  H2/CH4 y permeabilidad de H2 (Barrer)  para las membranas mixtas de poliimida. 

Mezcla Muestra Permeabilidad (Barrer) Selectividad 
H2/CH4 P (H2) P (CH4) H2/CH4

Polímero 311 (± 31) 16,5 (± 1,7) 18,9 (± 0,1)
Polímero MSSs (g) 330 10,7 30,8

6FDA-4MPD:6FDA-DABA MSSs (g) modificadas 310,4 (± 2) 14,1 (± 0,02) 22,0 (± 0,1)
 35 ºC MSSs (p) modificadas 111,8 (± 8) 4,2 (± 0,2) 26,8 (± 0,2)

 

 
 

En la Figura 21 se muestran los gráficos de selectividad H2/CH4 frente a la 

permeabilidad de H2 en las membranas de la polisulfona UDEL®, y se puede observar 

que en todos los casos, al añadir material inorgánico mejora la permeabilidad a 

hidrógeno. En el caso de las MSS (g) la permeoselectividad mejora cuando las esferas 

no tienen modificación, y para las MSS (p) cuando las esferas se han modificado con 

APTES. 
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Figura 21. Gráfico de la selectividad de H2/CH4 frente a la permeabilidad de H2  

para las membranas preparadas con la polisulfona UDEL®  
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3.2.4.2. Separación de CO2/ CH4 

La captura de dióxido de carbono de mezclas gaseosas y la purificación de gas 

natural, son dos actividades de gran interés industrial, por ese motivo se estudia la 

separación con membranas de CO2 de la mezcla de CO2/ CH4. 

En este caso, en primer lugar se han estudiado las permeabilidades de los gases y 

la selectividad para los polímeros puros, la polisulfona comercial UDEL® y la poliimida 

sintetizada a escala laboratorio 6FDA-4MPD:6FDA-DABA. En la Tabla 7, se puede 

observar que la selectividad es mayor para la polisulfona, pero la poliimida presenta 

mejor permeabilidad al CO2, por eso esta mezcla de gases sólo se va a estudiar para 

las membranas mixtas realizadas con este polímero. 

 

Tabla 7. Valores de selectividad de  CO2/CH4 y permeabilidades de los gases  (Barrer)  para  membranas puras de  

 polisulfona UDEL® y poliimida 6FDA-4MPD:6FDA-DABA. 

Mezcla Polímero Permeabilidad (Barrer) Selectividad 
CO2/CH4 P (CO2) P (CH4) CO2/CH4

35 ºC UDEL® 6,2 (± 0,5) 0,27 (±0,01) 22,7 (± 1,2)
 6FDA-4MPD:6FDA-DABA 34,1 (± 0,1) 2,8 (± 0,02) 12,2 (± 0,2)

 

 

3.2.4.2.1. Membranas mixtas de poliimida 

En cambio, en la Tabla 8 se puede observar que al introducir esferas de sílice 

modificadas la selectividad y la permeabilidad a CO2 aumentan muy notablemente en 

detrimento de la permeabilidad del CH4. A diferencia de lo que parecía para la 

separación de la mezcla H2/CH4, ahora la mayor adsorción de CO2 de las MSSs 

modificadas (Nieto, 2011), rinde en la mejora esperada. 

Esto puede deberse a que, además de que este polímero es más permeable que la 

polisulfona, las esferas ayudan a crear más puntos de paso del gas que se desea 

separar, lo que favorece la adsorción CO2. Esta adsorción preferencial hace que los 

poros de la membrana se vean bloqueados por las moléculas de CO2, lo que provoca 

que disminuya la permeabilidad del CH4. 
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Tabla 8. Valores de selectividad de  CO2/CH4 y permeabilidades de los gases  (Barrer)  para las membranas de 

  poliimida 6FDA-4MPD:6FDA-DABA. 

Mezcla Polímero Permeabilidad (Barrer) Selectividad 
CO2/CH4 P (CO2) P (CH4) CO2/CH4

Polímero Polímero 34,1 (± 0,1) 2,8 (± 0,02) 12,2 (± 0,2)
6FDA-4MPD:6FDA-DABA MSSs (g) modificadas 50,1 (± 0,1) 0,89 (± 0,03) 56,4 (± 0,5)

 35 ºC MSSs (p) modificadas 60,6 (± 0,1) 0,82 (± 0,02) 73,9 (± 0,8)
 

 

En este caso, en la Figura 22, se ha representado la selectividad (CO2/CH4) de la 

poliimida 6FDA-4MPD:6FDA-DABA respecto a la permeabilidad de CO2. En ambos 

casos, al añadir el material inorgánico modificado mejora la permeoselectividad 

respecto al polímero, en mayor medida cuando se utilizan las esferas de menor 

tamaño. 
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Figura 22. Gráfico de la selectividad de CO2/CH4 frente a la permeabilidad de CO2 para las membranas  

preparadas con la poliimida  6FDA-4MPD:6FDA-DABA 
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4.- Conclusiones 

A partir de todos los resultados comentados en el apartado anterior se concluye lo 

siguiente: 

- En primer lugar, se puede corroborar que las esferas de sílice se han modificado 

de forma reproducible con grupos amino, APTES (análisis SEM, TGA y FTIR), sin 

perder la identidad propia del material base (análisis XRD) y presentando una 

distribución de poros análoga (análisis BJH). 

- Por otro lado, cabe destacar que las MSSs de 400 nm modificadas presentan 

mejor área BET que las MSSs de 3 μm modificadas de mayor tamaño, lo que se 

puede relacionar con que la modificación obtura los poros de las MSSs. 

- En cuanto a las membranas, se ha comprobado que se pueden producir 

eficientemente MMMs con MSSs modificadas de diferentes tamaños y diferentes 

matrices poliméricas, polisulfona UDEL® (comercial) y poliimida 6FDA-4MPD: DABA 

(4:1) (sintetizada a escala laboratorio). Además, las esferas de sílice modificada se 

distribuyen de forma homogénea en la sección transversal de la membrana. 

- También, se puede observar que las MSSs, grandes o pequeñas, mejoran la 

función separadora de los polímeros, proporcionando selectividades más elevadas 

para ambas mezclas. 

- Se ha verificado que al introducir las esferas de sílice modificadas las 

características de la matriz polimérica no se ven afectadas puesto que no modifican su 

temperatura de transición vítrea (análisis DSC). 

- Asimismo, se evidencia que en la mezcla H2/CH4 al introducir esferas de sílice 

modificadas mejora la selectividad y la permeabilidad de H2 en ambos polímeros, 

viéndose favorecida la selectividad con MSSs pequeñas y la permeabilidad cuando se 

ha utilizado MSSs. En cuanto a la mezcla de CO2/CH4, al introducir las esferas de 

sílice modificadas en ambos polímeros se mejora la permeabilidad a CO2, pero en la 

poliimida se ve muy favorecida la selectividad, pasando de un 12,2 a un 56,4 y un 83,6 

al introducir MSSs y MSSs pequeñas modificadas respectivamente. En este último 

caso, la mejora se observa también con respecto a las MMMs, respecto con MSSs sin 

modificar con APTES. 
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- Finalmente, en estudios futuros sería interesante utilizar otros polímeros, más 

permeables y selectivos inicialmente, y realizar los experimentos de separación de 

gases a diferentes temperaturas y presiones, puesto que se ha estudiado que al 

modificar estas variables se obtienen permeoselectividades próximas a los resultados 

del límite superior de Robeson de 2008 (Zornoza, 2011a). 
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