Year: 2019/20

30804 - Microbiology

Syllabus Information

Academic Year: 2019/20 Subject: 30804 - Microbiology

Faculty / School: 105 - Facultad de Veterinaria

Degree: 568 - Degree in Food Science and Technology

ECTS: 6.0 Year: 1

Semester: Second semester Subject Type: Basic Education

Module: ---

1.General information

- 1.1.Aims of the course
- 1.2. Context and importance of this course in the degree
- 1.3. Recommendations to take this course

2.Learning goals

- 2.1.Competences
- 2.2.Learning goals
- 2.3. Importance of learning goals
- 3.Assessment (1st and 2nd call)
- 3.1. Assessment tasks (description of tasks, marking system and assessment criteria)

4.Methodology, learning tasks, syllabus and resources

4.1. Methodological overview

The methodology followed in this course is oriented towards the achievement of the learning objectives. A wide range of teaching and learning tasks are implemented, such as lectures, seminars and laboratory sessions.

The course is divided into 30 one-hour participatory lectures, 10 hours of seminars in which students prepare the topic in small groups, orally present and respond to questions, and 20 hours of laboratory sessions.

Materials for each topic are available online in the Moodle platform, under the name of the course. Thus, the student can access to it whenever she / he wants along the academic year. The available material consists of a comprehensive set of PowerPoint notes including all the basic concepts reviewed during the lecture. Student participation will be encouraged during the lecture through problem-based learning activities.

Laboratory sessions will be carried out in two-hour sessions. Supporting laboratory material will be available in Moodle,

In order to maintain permanent contact with students, both the use of electronic mail and personal tutorials are available. In addition, all available supporting material either for individual or group work (seminars) will be provided to the students.

4.2.Learning tasks

This course is organized as follows:

Section 1. General and Special Bacteriology

Descriptors:

 Procariotic and eucariotic organisms. Microscopic examination of bacteria. Chemical bacterial composition. Bacterial physiology. Bacterial nutrition. Bacterial reproduction. Bacterial genetics. Factors produced by bacteria. The control of bacterial populations. Bacterial identification. Bacterial taxonomy. Major bacterial groups of interest in Food Technology and Science.

Competences:

The aim of this first block is to acquaint the student with the general characteristics of bacteria within the
microbial world, their taxonomic status, constitution, observation methods, management, metabolism,
mechanisms for exchanging information and their influence in relation to food and man

Teaching activities:

- 23 one-hour lectures (theoretical content)
- 16 hours of laboratory work (bacterial management and identification)

BLOCK II. GENERAL MICOLOGY

Descriptors: General characteristics of fungi. Methods of study of fungi.

Competences: The aim of this second block is to acquaint the student with the general characteristics of fungi, its constitution, methods of observation, management, metabolism, mechanisms for exchanging information and their role in relation to the food and man

Teaching-learning activities: 1 one-hour lecture (theoretical content) and 2 hours of laboratory work (fungi management and identification)

BLOCK III. GENERAL VIROLOGY

Descriptors: Concept and historical development. Virus nature, structure and composition. Viroids and prions. Plant and animal viruses. Virus genetics. Virus classification. Virus culture. Intracellular viral reproduction. Multiplication of DNA and RNA virus. Methods of study of virus. Virus titration. Inactivation (disinfection). Bacteriophages. Phagetyping. Micophages and Cianophages.

Competences: The aim of this third block is to acquaint the student with the general characteristics of the virus, its constitution, methods of observation, management, replication, mechanisms for exchanging information and their role in relation to the food and man

Teaching-learning activities: 2 one-hour lectures (theoretical content)

BLOCK IV. PARASITOLOGY

Descriptors: Biological relationship of parasitism. Parasites. Spread of parasites. Biological cycles. Parasite/host relationship. Systematics and taxonomy. Parasites classification. Protozoa, helminths and arthropods: general characteristics, classification, study of the most important genera in relation to food and man.

Competences: The aim of this fourth block is to acquaint the student with the general characteristics of the biological relationship of parasitism in the microbial world, morphology and biology of parasites, parasite/host/environment relationships and their role in relation to food and man.

Teaching-learning activities:

4 one-hour lectures (theoretical content)

2 hours of laboratory work (parasite identification)

BLOCK V. APPLIED MICROBIOLOGY

Descriptors: Microorganisms involved in health and food hygiene. Microorganisms of interest in the food industry. Mycelial fungi and yeasts. Major food-related virus. Industrial microbiology. Fundamentals. Industrial uses of bacterial and fungal microorganisms.

Competences: The objective of this fifth block is to acquaint the student with those microorganisms that are related to food and the effects they have on them, either favourable or unfavourable, as well as pathogenic microorganisms conveyed by food that produce disease in man, and mechanisms they develop to act on the food and/or man. In this block it is also considered the taxonomic position of microorganisms and the relationships between them. The importance of microorganisms in different industry fields is also included.

Teaching-learning activities: Seminars: 10 hours devoted to the development of these issues with active student participation. Individual work: 5 hours spent reviewing the different topics in the seminars.

PERSONAL TUTORIALS

A fixed schedule for personal tutorials is not set, however professors will be available to students by appointment and through email.

PRACTICAL PROGRAMME

It has 5 sessions of compulsory student attendance which will last for approximately 4 hours each. The content of the practical sessions is as follows:

- 1. Standards for working at microbiology laboratories. Common material and equipment. Cleaning and maintenance of equipments. Distribution of laboratory areas. Equipment sterilization and preparation of culture media. The handling of the optical microscope. Simple staining.
- 2. Sampling. Culture of aerobic and anaerobic microorganisms on solid medium and broth. Plating techniques. Gram staining. Microscopic observation of bacteria.

- 3. Quantitative study of bacterial populations. Biochemical study of microbial activity for bacterial identification.
- 4. Microorganism identification through immunological reactions. This practice will be taught in English.
- 5. Identification of fungi and yeasts. Parasitology

4.3.Syllabus

The course will address the following topics:

Topic s

Section I. MICROBIOLOGY

- Topic 1. Introduction to Microbiology for CTA.
- Topic 2. Prokaryotic and eukaryotic organisms.
- Topic 3. Constant elements of bacteria.
- Topic 4. Inconstant elements of bacteria.
- Topic 5. Microscopic examination of bacteria.
- Topic 6. Chemical constitution of bacteria.
- Topic 7. Bacterial physiology.
- Topic 8. Bacterial metabolism for synthesis.
- Topic 9. Bacterial nutrition.
- Topic 10. Bacterial reproduction.
- Topic 11. Criteria for classification and identification of bacteria.
- Topic 12. Bacterial genetics.
- Topic 13. The genetic transfer phenomena.
- Topic 14. Bacterial factors.
- Topic 15. Physical and chemical agents that act on the life of microorganisms.
- Topic 16. Bacterial taxonomy.
- Topic 17. Acetobacter and Gluconobacter. Pseudomonas (P. aeruginosa).
- Topic 18. Coliforms.
- Topic 19. Salmonella, Shigella, Yersinia enterocolitica. Plesiomonas (P. shigelloides).
- Topic 20. Campylobacter (C. coli, C. jejuni). Aeromonas (A. hydrophila). Vibrio (V. cholerae, V. parahaemolyticus).
- Topic 21. Carnobacterium, Lactobacillus, Lactococcus and Leuconostoc.
- Topic 22. Bacillus cereus. Clostridium (C. perfringens, C. botulinum). Listeria monocytogenes.
- Topic 23. Staphylococcus aureus (S. coagulase +). Micrococcus. Streptococcus. Enterococcus.

Section II. MYCOLOGY

• Topic 24. Mycology. General characteristics of fungi.

Section III. VIROLOGY

- Topic 25. General virology.
- Topic 26. Bacteriophages.

Section IV PARASITOLOGY

- Topic 27. General considerations on the study of parasites.
- Topic 28. Overview protozoa.
- Topic 29. Overview of helminths.
- Topic 30. Overview of arthropods as contaminants of animal- and vegetable-derived foods.

Practical sessions

- Session 1: The laboratory of microbiology. Culture media. Optical microscopy. Basic stains.
- Session 2: Sampling, plating techniques, interpretation of bacterial growth. Specific stains.
- Session 3: Quantitative study of bacterial populations and identification of bacteria.
- Session 4: Serological diagnostic techniques.
- Session 5: Characterization and identification of fungi and parasites.

4.4. Course planning and calendar

Schedule of lectures, paper presentations and exams

The dates and key milestones of this subject are described in detail, along with the other subjects of the second semester of the first year in the "Programme for the 2nd quarter of the 1st year of CTA" held in the Faculty of Veterinary Medicine website.

Planning MICROBIOLOGÍA subject in ECTS

Credits: 6 ECTS (150 hours of student work)

Students and groups: 60 students, one group of theoretical teaching and 6 of practical teaching.

Experimentality factor: 3

4.5. Bibliography and recommended resources

- Acha, Pedro N. Zoonosis y enfermedades transmisibles comunes al hombre y a los animales. Volumen III,
 Parasitosis / Pedro N. Acha, Boris Szyfres. 3a ed. Washington, D.C.: Organización Panamericana de la Salud,
 2003
- Brock: Biología de los microorganismos / Michael T. Madigan... [et al.]; coordinación Ricardo Guerrero; traducción Coral Barrachina ... [et al.]; revisión técnica, Francisco Ruiz Berraquero. 12ª ed., reimp. Madrid [etc.]: Pearson Education, D. L. 2011
- Euzéby, Jacques. Los parásitos de las carnes: epidemiología, fisiopatología, incidencias zoonósicas / Jacques
 Euzéby; traducido por, Caridad Sánchez Acedo [et al.] . Zaragoza: Acribia, 2001
- Gállego Berenguer, Jaime. Manual de parasitología: morfología y biología de los parásitos de interés sanitario / Jaime Gállego Berenguer. [2a. ed.] Barcelona: Edicions Universitat de Barcelona, D.L. 2003.
- Meaney, Peter. Insect pests of food premises /by Peter Meaney. Caerphilly: National Britannia Ltd., 1998
- Mossel, David Alexander Antonius. Microbiología de los alimentos: Fundamentos ecológicos para garantizar y comprobar la integridad (inocuidad y calidad) microbiológica de los alimentos / D.A.A. Mossel, B. Moreno García y Corry B. Struijk . 2ª ed. Zaragoza: Acribia, 2003
- Parasitism: the diversity and ecology of animal parasites / Albert O. Bush. Cambridge: Cambridge University Press, 2001
- Prescott, Lansing M.. Microbiología / Lansing M. Prescott, John P. Harley, Donald A. Klein; [traducción, Carlos Gamazo de la Rasilla, Iñigo Lasa Uzcudum]. 5a. ed., [traducción de la 5a ed. inglesa] Madrid [etc.]: McGraw-Hill, 2004
- Roberts, Larry S. Gerald D. Schmidt & Larry S. Roberts' foundations of parasitology /Larry S. Roberts, John Janovy.
 9th New York: McGraw Hill, 2012
- Tortora, Gerard J. Introducción a la microbiología / Gerard J. Tortora, Berdell R. Funke, Christine L. Case. 9^a ed. Buenos Aires [etc.]: Editorial Médica Panamericana, cop. 2007
- Willey, Joanne M.. Microbiología / Joanne M. Willey, Linda M. Serwood, Christopher J. Woolverton. 7ª ed. (3ª ed. en español) Madrid [etc.]: McGraw-Hill, cop. 2009