000094449 001__ 94449
000094449 005__ 20210902121710.0
000094449 0247_ $$2doi$$a10.1029/2019GC008798
000094449 0248_ $$2sideral$$a117330
000094449 037__ $$aART-2020-117330
000094449 041__ $$aeng
000094449 100__ $$aNichols, C.I.O.
000094449 245__ $$aVariations in the Magnetic Properties of Meteoritic Cloudy Zone
000094449 260__ $$c2020
000094449 5060_ $$aAccess copy available to the general public$$fUnrestricted
000094449 5203_ $$aIron and stony-iron meteorites form the Widmanstätten pattern during slow cooling. This pattern is composed of several microstructures whose length-scale, composition and magnetic properties are dependent upon cooling rate. Here we focus on the cloudy zone: a region containing nanoscale tetrataenite islands with exceptional paleomagnetic recording properties. We present a systematic review of how cloudy zone properties vary with cooling rate and proximity to the adjacent tetrataenite rim. X-ray photoemission electron microscopy is used to compare compositional and magnetization maps of the cloudy zone in the mesosiderites (slow cooling rates), the IAB iron meteorites and the pallasites (intermediate cooling rates), and the IVA iron meteorites (fast cooling rates). The proportions of magnetic phases within the cloudy zone are also characterized using Mössbauer spectroscopy. We present the first observations of the magnetic state of the cloudy zone in the mesosiderites, showing that, for such slow cooling rates, tetrataenite islands grow larger than the multidomain threshold, creating large-scale regions of uniform magnetization across the cloudy zone that render it unsuitable for paleomagnetic analysis. For the most rapidly cooled IVA meteorites, the time available for Fe-Ni ordering is insufficient to allow tetrataenite formation, again leading to behavior that is unsuitable for paleomagnetic analysis. The most reliable paleomagnetic remanence is recorded by meteorites with intermediate cooling rates (~ 2–500 °C Myr-1) which produces islands that are “just right” in both size and degree of Fe-Ni order.
000094449 536__ $$9info:eu-repo/grantAgreement/EC/FP7/312284/EU/Coordinated Access to Lightsources to Promote Standards and Optimization/CALIPSO$$9info:eu-repo/grantAgreement/EC/FP7/320750/EU/Nanopaleomagnetism: a multiscale approach to paleomagnetic analysis of geological materials/NanoPaleoMag
000094449 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000094449 590__ $$a3.624$$b2020
000094449 591__ $$aGEOCHEMISTRY & GEOPHYSICS$$b27 / 87 = 0.31$$c2020$$dQ2$$eT1
000094449 592__ $$a1.927$$b2020
000094449 593__ $$aGeophysics$$c2020$$dQ1
000094449 593__ $$aGeochemistry and Petrology$$c2020$$dQ1
000094449 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000094449 700__ $$aBryson, J.F.J.
000094449 700__ $$aBlukis, R.
000094449 700__ $$0(orcid)0000-0002-0901-8341$$aHerrero-Albillos, J.$$uUniversidad de Zaragoza
000094449 700__ $$aKronast, F.
000094449 700__ $$aRüffer, R.
000094449 700__ $$aChumakov, A.I.
000094449 700__ $$aHarrison, R.J.
000094449 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000094449 773__ $$g21, 2 (2020), e2019GC008798  [14 pp.]$$pGeochem. Geophys. Geosyst.$$tGEOCHEMISTRY GEOPHYSICS GEOSYSTEMS$$x1525-2027
000094449 8564_ $$s1114108$$uhttps://zaguan.unizar.es/record/94449/files/texto_completo.pdf$$yVersión publicada
000094449 8564_ $$s67152$$uhttps://zaguan.unizar.es/record/94449/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000094449 909CO $$ooai:zaguan.unizar.es:94449$$particulos$$pdriver
000094449 951__ $$a2021-09-02-09:19:56
000094449 980__ $$aARTICLE