Biogeographic, Atmospheric, and Climatic Factors Influencing Tree Growth in Mediterranean Aleppo Pine Forests
Resumen: There is a lack of knowledge on how tree species respond to climatic constraints like water shortages and related atmospheric patterns across broad spatial and temporal scales. These assessments are needed to project which populations will better tolerate or respond to global warming across the tree species distribution range. Warmer and drier conditions have been forecasted for the Mediterranean Basin, where Aleppo pine (Pinus halepensisMill.) is the most widely distributed conifer in dry sites. This species shows plastic growth responses to climate, being particularly sensitive to drought. We evaluated how 32 Aleppo pine forests responded to climate during the second half of the 20th century by using dendrochronology. Climatic constraints of radial growth were inferred by fitting the Vaganov-Shashkin (VS-Lite) growth model to ring-width data from our Aleppo pine forest network. Our findings reported that Aleppo pine growth decreased and showed the highest common coherence among trees in dry, continental sites located in southeastern and eastern inland Spain and Algeria. In contrast, growth increased in wetter sites located in northeastern Spain. Overall, across the Aleppo pine network tree growth was enhanced by prior wet winters and cool and wet springs, whilst warm summers were associated with less growth. The relationships between site ring-width chronologies were higher in nearby forests. This explains why Aleppo pine growth was distinctly linked to indices of atmospheric circulation patterns depending on the geographical location of the forests. The western forests were more influenced by moisture and temperature conditions driven by the Western Mediterranean Oscillation (WeMO) and the Northern Atlantic Oscillation (NAO), the southern forests by the East Atlantic (EA) and the august NAO, while the Balearic, Tunisian and northeastern sites by the Arctic Oscillation (AO) and the Scandinavian pattern (SCA). The climatic constraints for Aleppo pine tree growth and its biogeographical variability were well captured by the VS-Lite model. The model performed better in dry and continental sites, showing strong growth coherence between trees and climatic limitations of growth. Further research using similar broad-scale approaches to climate-growth relationships in drought-prone regions deserves more attention.
Idioma: Inglés
DOI: 10.3390/f11070736
Año: 2020
Publicado en: FORESTS 11, 7 (2020), 736 [22 pp]
ISSN: 1999-4907

Factor impacto JCR: 2.633 (2020)
Categ. JCR: FORESTRY rank: 13 / 67 = 0.194 (2020) - Q1 - T1
Factor impacto SCIMAGO: 0.676 - Forestry (Q1)

Financiación: info:eu-repo/grantAgreement/ES/FEDER/VULBOS-UPO-1263216
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RTI2018-096884-B-C31
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RTI2018-096884-B-C33
Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2021-09-02-09:35:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-09-30, última modificación el 2021-09-02


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)