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José Neira Parra Universidad de Zaragoza, Spain

Dissertation Committee

Ana Cristina Murillo Arnal Universidad de Zaragoza, Spain
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Jáimez, por hacerme sentir como uno más de ellos durante mis prácticas.
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SLAM Visual en Escenas Dinámicas

Resumen

El problema de localización y construcción visual simultánea de mapas (visual
SLAM por sus siglas en inglés Simultaneous Localization and Mapping) consiste en
localizar una cámara en un mapa que se construye de manera online. Esta tecnoloǵıa
permite la localización de robots en entornos desconocidos y la creación de un mapa
de la zona con los sensores que lleva incorporados, es decir, sin contar con ninguna
infraestructura externa. A diferencia de los enfoques de odometŕıa en los cuales el
movimiento incremental es integrado en el tiempo, un mapa permite que el sensor se
localice continuamente en el mismo entorno sin acumular deriva.

Asumir que la escena observada es estática es común en los algoritmos de SLAM
visual. Aunque la suposición estática es válida para algunas aplicaciones, limita su
utilidad en escenas concurridas del mundo real para la conducción autónoma, los robots
de servicio o realidad aumentada y virtual entre otros. La detección y el estudio de
objetos dinámicos es un requisito para estimar con precisión la posición del sensor y
construir mapas estables, útiles para aplicaciones robóticas que operan a largo plazo.

Las contribuciones principales de esta tesis son tres:

1. Somos capaces de detectar objetos dinámicos con la ayuda del uso de la seg-
mentación semántica proveniente del aprendizaje profundo y el uso de enfoques
de geometŕıa multivisión. Esto nos permite lograr una precisión en la estimación
de la trayectoria de la cámara en escenas altamente dinámicas comparable a la
que se logra en entornos estáticos, aśı como construir mapas en 3D que contienen
sólo la estructura del entorno estático y estable.

2. Logramos alucinar con imágenes realistas la estructura estática de la escena
detrás de los objetos dinámicos. Esto nos permite ofrecer mapas completos con
una representación plausible de la escena sin discontinuidades o vaćıos ocasiona-
dos por las oclusiones de los objetos dinámicos. El reconocimiento visual de lu-
gares también se ve impulsado por estos avances en el procesamiento de imágenes.

3. Desarrollamos un marco conjunto tanto para resolver el problema de SLAM
como el seguimiento de múltiples objetos con el fin de obtener un mapa espacio-
temporal con información de la trayectoria del sensor y de los alrededores. La
comprensión de los objetos dinámicos circundantes es de crucial importancia
para los nuevos requisitos de las aplicaciones emergentes de realidad aumen-
tada/virtual o de la navegación autónoma.

Estas tres contribuciones hacen avanzar el estado del arte en SLAM visual. Como
un producto secundario de nuestra investigación y para el beneficio de la comunidad
cient́ıfica, hemos liberado el código que implementa las soluciones propuestas.
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Visual SLAM in Dynamic Environments

Abstract

Visual Simultaneous Localization and Mapping (SLAM) is the problem of localizing
a camera in an unknown environment while building an online map. SLAM allows
the localization of robots in unknown scenes by processing their on-board sensors and
therefore not relying on any external infrastructure. Unlike odometry approaches where
incremental motion is integrated over time, a map allows the sensor to be located
continuously in the same environment without accumulating drift.

Assuming that the observed scene is static is common in visual SLAM algorithms.
Although the static assumption holds for some robotic applications, it limits its usabil-
ity in populated real-world scenarios for autonomous driving, service robots or AR/VR.
Detecting and dealing with dynamic objects is a requisite to accurately estimate the
sensor pose and to build stable maps, which are useful for long-term applications.

The overarching contributions of this thesis are threefold:

1. We are able to detect dynamic objects by leveraging the use of semantic seg-
mentation from deep learning and the use of multi-view geometry approaches.
This enables us to achieve an accuracy in the camera pose estimation in highly
dynamic scenes comparable to that achieved in static environments, as well as to
build 3D maps containing only the static and stable environment structure.

2. We succeed in inpainting with plausible imagery the static scene structure behind
dynamic objects. This allows us to deliver complete maps with a plausible repre-
sentation of the scene without discontinuities or gaps occasioned by the occlusions
of the dynamic objects. The task of visual place recognition is also boosted by
these advances in image inpainting.

3. We develop a joint framework for multi-object tracking and SLAM to deliver a
spatial-temporal map with information from self and surroundings. Understand-
ing surrounding dynamic objects is of crucial importance for the frontier require-
ments of emerging applications within AR/VR or autonomous things navigation.

These three contributions advance the state of the art in visual SLAM. As a de
facto side-product of our research and for the benefit of the scientific community, we
have made open-source the implementation of our proposed solutions.
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Chapter 1

Introduction

In the last decade, advancements in the field of mobile robotics have been notably
pronounced. Increasing numbers of tasks that were traditionally performed by humans
can now be accomplished by robots. This is particularly noteworthy in situations
where such tasks are tedious, require a high degree of precision or pose a risk for
human health and life. Robots are also becoming part of our daily routines, with
robotic vacuum cleaners or smart assistants inhabiting our homes. Furthermore, mobile
platforms will soon become ubiquitous in crowded spaces, coping better and better with
dynamic obstacles and unstructured environments. This widespread use of mobile
robotics poses challenges for the algorithms used to guarantee the safety and reliability
of these devices.

There are numerous applications of mobile robotics that have evolved through ad-
vancements in simultaneous localization and mapping (SLAM) technology. Industry
starts to deploy SLAM for indoor logistics, warehouse automation, surveillance, moni-
toring and inspection of various structures. On the other hand, agriculture is one of the
rising markets, where monitoring the crops by MAVs will soon increase the efficiency
and reduce the usage of pesticides and fertilizers. Significant media coverage is devoted
to autonomous driving, where estimating the precise location of a vehicle within anno-
tated maps helps to comply with the traffic regulations and avoid collisions. Finally,
the steadily decreasing cost of the sensing and computation hardware brings SLAM
technology into the households. Some examples may include the entertainment sector,
with various AR and VR applications, but also mobile phone mapping applications,
robotic lawn mowers and vacuum cleaners.

The following sections of this chapter introduce the concepts on which visual SLAM
builds, as well as the most established and the most innovative lines of research on this
subject. Special attention is given to visual SLAM in dynamic environments since the
presence of dynamic elements induces common SLAM pipelines to exhibit large errors
or fail. The main contributions of this thesis addressing the largely open problem of
visual SLAM in highly dynamic environments are summarized in Section 1.3.

1.1 Visual Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) techniques estimate jointly a map
of an unknown environment and the robot pose within such map, only from the data
streams of its on-board sensors. The map allows the robot to continually localize within
the same environment without accumulating drift. This is in contrast to odometry
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approaches that integrate the incremental motion estimated within a local window
and are unable to correct the drift when revisiting places.

Visual SLAM, where the main sensor is a camera, has received a high degree of at-
tention and research efforts over the last years. The minimalistic solution of a monoc-
ular camera has practical advantages with respect to size, power and cost, but also
several challenges such as the unobservability of the scale or state initialization. By
using more complex setups, like stereo or RGB-D cameras, these issues are solved and
the robustness of visual SLAM systems can be greatly improved.

Modern visual SLAM systems usually fall into two main branches, namely the
feature-based and the so called direct methods. Both of them have seen tremendous
improvements on accuracy, robustness and efficiency, and have gained exponential pop-
ularity over recent years. Feature-based methods rely on salient points matching and
can only estimate a sparse reconstruction (Klein & Murray (2007), Mur-Artal & Tardós
(2017)); and direct methods are able to estimate in principle a completely dense recon-
struction by the direct minimization of the photometric error and TV regularization
(Stühmer et al. (2010), Newcombe et al. (2011), Graber et al. (2011)). Some direct
methods focus though on the high-gradient image areas estimating semi-dense maps
(Engel et al. (2014, 2017), Forster et al. (2014)).

1.1.1 Sensors

In this section we describe the most common sensor modalities used in visual SLAM:
monocular, stereo and RGB-D cameras.

Monocular camera

The main parts of a monocular camera are the camera lens and the camera’s image
sensor. A 3D point XC ∈ R3 in the camera coordinate reference system C is projected
into 2D pixel coordinates x with column u and row v with the projection function
πm : R3 → R2 (Eqn. 1.1). π−1

m : R2 × R → R3 is the inverse projection function that
computes the 3D location XC of a 2D point x in the image, given its depth d (Eqn. 1.2).

x = πm(XC) =

[
fx

X
Z

+ cx
fy

Y
Z

+ cy

]
, XC = [X, Y, Z]T , x = [u, v]T (1.1)

XC = π−1
m (x, d) =

du−cxfx

dv−cy
fy

d

 , XC = [X, Y, Z]T , x = [u, v]T (1.2)

The camera intrinsic parameters fx, fy, cx and cy are fixed –to a certain extent– to
a particular camera setup and allow a mapping between camera coordinates and pixel
coordinates in the image frame. f is the camera focal length measured respectively in
horizontal (fx) and vertical (fy) pixels, and cx and cy are the optical center coordinates.
There might be small changes in the intrinsic parameters due to camera movement, as
the camera is not perfectly rigid, or changes in the environments, e.g., temperature,
but these are small enough and are usually ignored in most use cases. The camera
coordinates system C has its origin at the camera optical center. With respect to the
image, the Z axis points towards the observed scene, the X axis is horizontal and points
towards the right, and finally, the Y axis is vertical and points downwards. Monocular
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cameras cannot observe the scale of the world and therefore only up-to-scale maps can
be built with such a setup.

Stereo cameras

Stereo cameras are composed of two rigidly attached cameras. Ideally both cameras are
hardware synchronized so that image capturing is triggered at the same time. Depth
can be estimated from just one stereo frame by finding correspondences between left
and right pixels. To this end, in addition to intrinsic calibration of both cameras, the
rotation and translation between both cameras have to be calibrated. The distance
between both cameras, known as the baseline b, along with focal length and image
resolution will determine the depth range at which depth estimation is accurate. Depth
can be accurately estimated if the parallax angle is at least 1◦, i.e., if the depth is less
than 55 times the stereo baseline (Paz et al. (2008)). In order to facilitate stereo
matching, images are typically rectified, removing distortion and rotating them so that
the epipolar lines are horizontal, i.e., the correspondence of a pixel in the left image
lies on the same row in the right image. This significantly reduces the stereo matching
cost. The projection function for a rectified stereo camera πs : R3 → R3 is defined in
Eqn. 4.2, and its inverse projection is defined in Eqn. 1.4. The coordinates of a pixel
in a stereo camera x need of three parameters: the column and row on the left image
(uL and vL), and of the column on the right image (uR). In contrast to monocular
approaches, the use of stereo cameras allows building scaled maps.

x = πs(XC) =

 fx
X
Z

+ cx
fy

Y
Z

+ cy
fx

X−b
Z

+ cx

 , XC = [X, Y, Z]T , x = [uL, vL, uR]T (1.3)

XC = π−1
s (x) =

 b uL−cx
uL−uR

bfx
fy

vL−cy
uL−uR

bfx
1

uL−uR

 , XC = [X, Y, Z]T , x = [uL, vL, uR]T (1.4)

RGB-D cameras

RGB-D cameras are a combination of a monocular camera and a depth sensor. Depth
sensing cameras store the distance to the points they observe. They can provide a fine-
grained representation of the observed objects, and tend to be precise for close distances
but become inaccurate for mid-long range measurements. These cameras rely on two
different working principles. The time-of-flight (ToF) cameras emit light pulses and
measure the time until they are received back at the sensor. Since they normally emit
and detect infrared light, they are affected by the sun radiation. However, they can
still provide decent measurements in outdoor scenarios if there is no direct sunlight.
Structured light cameras work by projecting a known pattern of light on the scene and
inferring the depth field from the way that pattern deforms. Structured light cameras
typically employ an infrared pattern of light and, hence, become completely blind under
the presence of sunlight.

Knowing the intrinsics of both sensors, as well as the extrinsic parameters between
them, one can obtain an approximate 1:1 correpondence between the RGB image and
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the registered depth. The use of depth sensing cameras allows building scaled maps.
The projection and the inverse projection functions for a RGB-D camera πd : R3 → R3

and π−1
d : R3 → R3 are respectively defined in Eqn. 1.5 and Eqn. 1.6. As for stereo

cameras, a pixel in a RGB-D camera is defined by three parameters: its column u, its
row v and its value in the depth map d.

x = πd(XC) =

fxXZ + cx
fy

Y
Z

+ cy
Z

 , XC = [X, Y, Z]T , x = [u, v, d]T (1.5)

XC = π−1
d (x) =

u−cxfx
d

v−cy
fy
d

d

 , XC = [X, Y, Z]T , x = [u, v, d]T (1.6)

1.1.2 Feature-Based Methods

Feature-based methods extract a sparse set of key points from each image and match
them across multiple frames. Camera poses and map points positions are estimated
by minimizing the reprojection errors between feature pairs. The reprojection error
function can be seen in Eqn. 1.7, where Ri

CW ∈ SO(3) and tiCW ∈ R3 represent the
rotational and translational part respectively of the pose in world coordinates W of the
camera i, and Xj

W ∈ R3 is the 3D position, referred also to the world, of the map point
j, corresponding to the pixel xji in the camera i.

ei,jrepr = xji − πi(Ri
CWX

j
W + tiCW) (1.7)

As modern feature descriptors are invariant to some extent to illumination and
view-point changes, feature-based methods are robust to brightness inconsistencies and
large view-point changes among consecutive frames. However, feature extraction and
matching bring additional computational overhead, which highly limits the number of
features that can be maintained in the system. As a result, the reconstructed 3D maps
are rather sparse with little use for other robotic tasks other than localization.

The main limitation of these approaches is precisely that they can only exploit
visual information where features, typically corners, can be extracted. Lack of texture
or motion blur can make a feature-based method fail or perform very poorly. An
example of a map built with such approaches can be seen in Fig. 1.1a, in contrast to
one built with direct methods (Fig. 1.1b).

Among the most popular feature-based SLAM systems, one can find PTAM by
Klein & Murray (2007), and ORB-SLAM by Mur-Artal et al. (2015). The former, while
limited to small scale operation, provides simple but effective methods for keyframe
selection and feature matching among others. They lack however of loop closing and
adequate handling of occlusions, and the need of human intervention for map bootstrap-
ping severely limits its application. Mur-Artal & Tardós (2017) designed ORB-SLAM
from scratch building on top of the main ideas of PTAM, the place recognition work
of Gálvez-López & Tardos (2012), and the scale-aware loop closing of Strasdat et al.
(2010), achieving unprecedented accuracy and robustness in general scenarios.
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(a) Sparse map built with ORB-SLAM
by Mur-Artal et al. (2015).

(b) Dense map reconstructed with DTAM by Newcombe
et al. (2011).

Figure 1.1: Comparison of a sparse map (a) and a dense map (b). Whereas maintaining
the former map has a low cost and it has enough information for localization purposes,
the latter can be exploited for many other tasks. However, keeping a large-scale dense
map is computationally demanding and prohibitive in real-time applications.

1.1.3 Direct Methods

Direct methods in turn use all image pixels –dense as in Fig. 1.1b– (Newcombe et al.
(2011)), all pixels with sufficiently large intensity gradient –semi-dense– (Engel et al.
(2014)) or sparsely selected pixels –sparse– (Forster et al. (2014), Engel et al. (2017)),
and minimize the photometric error instead of the reprojection error, as feature-based
methods do. The photometric error is obtained by direct image alignment on the
selected pixels, and its equation can be seen in Eqn. 1.8, where I : R2 → R+ is the
function that returns the interpolated pixel intensity on the image for a given pixel
position x.

ephot = Ii+1(xji+1)− Ii(πi(R
i
CWX

j
W + tiCW)) (1.8)

Camera poses and 3D map points positions are estimated by minimizing the pho-
tometric error using non-linear optimization algorithms. Since more image informa-
tion can be used, direct methods are more robust in low-texture scenarios and can
deliver denser 3D reconstructions than the feature-based methods. Correspondingly,
due to the direct image alignment formulation, direct methods are very sensitive to
non-modeled artifacts such as rolling shutter effect, camera auto exposure and gain
control. More crucially, the brightness constancy assumption does not always hold in
practice, which drastically reduces the performance of direct methods in environments
with rapid lighting changes.

1.1.4 Bundle Adjustment

Given a set of images depicting a number of 3D points from different viewpoints,
bundle adjustment can be defined as the problem of simultaneously refining the 3D
coordinates describing the scene geometry, the parameters of the relative motion, and,
optionally, the optical characteristics of the cameras employed to acquire the images,
according to an optimality criterion involving the corresponding image projections of all
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points. Its name refers to the bundles of light rays originating from each 3D feature and
converging on each camera’s optical center, which are adjusted optimally with respect
to both the structure and viewing parameters. Bundle adjustment is by definition
tolerant to missing image projections and minimizes a physically meaningful criterion.
For a long time this approach was considered unaffordable for real time applications
such as visual SLAM. However, nowadays we know that if an initial good estimation
of the frame poses and point locations is provided, and if the optimization complexity
does not grow unboundlessly, it is feasible to use bundle adjustment for visual SLAM.

The main limitation of dense and semi-dense direct approaches is the computa-
tional complexity that forbids to jointly optimize in real-time structure and cameras,
which reduces the achievable accuracy of these methods. In general, sparse direct op-
timizations only work if the initial seed for the optimization is close to the optimal,
due to the nature of the photometric error. The reprojection of a pixel has to be
close to the optimal projection so that the intensity gradients on the image can guide
the optimization to its true location. To mitigate this problem, direct methods use
image pyramids, but still the basin of convergence is narrower than for feature-based
methods. On the other hand, the convergence properties of a geometric error like the
reprojection error make bundle adjustment suitable for its optimization. This is one
of the main advantages of such approaches. The equation for a bundle adjustment
optimization minimizing the reprojection error for m 3D points and n cameras can be
found in Eqn. 1.9, where ρ is a robust cost function, such as the Huber norm, used
to downweight the outliers influence, ‖ · ‖ is the Mahalanobis distance and Σj

i is the
covariance matrix for the location of the keypoint xji on the camera i. R̂i

CW and t̂iCW
stand for the optimized rotational and translational pose respectively of the camera i,
and X̂j

W represents the optimized position of the 3D point j. So that this equation has
a solution, the scale of the map and a camera pose need to be fixed.

(R̂i
CW, t̂

i
CW, X̂

j
W) = arg min

Ri
WC,t

i
WC,X

j
W

n∑
i=1

m∑
j=1

ρ(‖xji − πi(Ri
CWX

j
W + tiCW)‖2

Σj
i

) (1.9)

Bundle adjustment boils down to minimizing the reprojection error between image
locations and predicted image points, which is expressed as the sum of squares of a
large number of nonlinear functions (Triggs et al. (1999)). Thus, the minimization is
achieved using nonlinear least-squares algorithms such as the standard Gauss-Newton
method, and variants like Levenberg-Marquadt. Levenberg-Marquadt has proven to
be one of the most successful ones due to its ease of implementation and its use of
an effective damping strategy that lends it the ability to converge quickly from a wide
range of initial guesses. By iteratively linearizing the function to be minimized in
the neighborhood of the current estimate, the Levenberg-Marquadt algorithm involves
the solution of linear systems (the so called normal equations). When solving the
minimization problems arising in the framework of bundle adjustment, the normal
equations have a sparse block structure owing to the lack of interaction among param-
eters for different 3D points and cameras (Triggs et al. (1999)). This can be exploited
to gain tremendous computational benefits by employing a sparse variant of the Lev-
enberg–Marquardt algorithm which explicitly takes advantage of the normal equations
zeros pattern, avoiding storing and operating on zero-elements. These approaches can
be seamlessly generalized to variables belonging to smooth manifolds (e.g., rotations),
which are of interest in robotics (Forster et al. (2016)).
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1.1.5 Deep Learning Priors

Humans can understand the layout of a scene, estimate depth and detect obstacles
from a single image. Many methods have been proposed in recent years to exploit the
geometry cues and scene assumptions in order to build simplified 3D models. Espe-
cially, with the advent of Convolutional Neural Networks (CNNs) (Krizhevsky et al.
(2012)), performance of visual understanding has been greatly increased.

On top of the two classic revisited methods –feature-based and direct–, one can
find many SLAM systems that include other priors (Concha & Civera (2015), Yang
& Scherer (2019), Hosseinzadeh et al. (2019)). These priors come, especially in the
recent years, from deep learning and CNNs. Conventionally, dense representations of
the environment are known to require a large number of parameters. However, in the
recent years, the computer vision and the robotics communities have seen attempts
to undermine this claim. For example, since the methods mentioned above usually
perform well in environments with rich features but cannot work well in low-texture
scenes as often found in corridors, Yang, Song, Kaess & Scherer (2016) leverage the
Manhattan assumption using some planes in the SLAM optimization to get a better
estimation. They use a CNN to generate plane landmarks in SLAM from only one
image and achieve awesome dense reconstructions in low-texture scenes as the one seen
in Fig. 1.2a. In a different way, Czarnowski et al. (2020) recently published a work
called DeepFactors where learning has been leveraged to inform the factor graph on
priors about the continuity of the world for the map reconstruction. They make use of
a learned compact depth map representation that is further used within the standard
SLAM factor graph, and achieve completely dense representations (Fig. 1.2b).

Apart from planes and depth inference, semantic segmentation also offers a higher
level scene geometric information about objects that can be exploited within visual
SLAM (Bescos et al. (2018), Xu et al. (2019), Hosseinzadeh et al. (2019)). Semantic
information can allow machines to reason categorically, i.e., to build associations across
distinct object instances. Examples of maps with a richer semantics representation can
be seen in Figs. 1.2c and 1.2d. This semantic information can allow to reason about
the dynamics of individual objects rather than separate 3D points landmarks.

1.1.6 Front End and Back End

The architecture of a SLAM system –either feature-based or direct– commonly includes
two main components: the front end and the back end (see Fig. 1.3). The front end
abstracts sensor data into models that are amenable for estimation, while the back end
performs inference on the abstracted data produced by the front end.

In visual SLAM the front end is in charge of extracting pixels information and as-
sociating pixel locations to specific landmarks or 3D points in the environment. This
data association module in the front end includes a short-term data association com-
ponent and a long-term one. Whereas short-term data association is responsible for
associating corresponding features in consecutive camera measurements, the long-term
data association connects new measurements to older landmarks. Finally, the front
end also provides an initial guess for the variables in the non-linear optimization of
the back end. Bundle adjustment occurs in the back end, where the abstracted data
produced in the front end is optimized to obtain the refined camera poses and the
refined map structure. The back end usually feeds back information to the front end
to support loop closure detection and validation.
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(a) Dense map built with the system Pop-Up
SLAM by Yang, Song, Kaess & Scherer (2016).

(b) Dense map reconstructed with DeepFactors by
Czarnowski et al. (2020).

(c) Dense map built with MID-Fusion
by Xu et al. (2019).

(d) Sparse spatial-temporal dynamic map built with our
system DynaSLAM II (Chapter 4).

Figure 1.2: The authors of (a) use a CNN to detect planes that are included in the
SLAM formulation as a prior. The authors of (b) make use of a learned compact depth
map to achieve dense representations from a monocular camera. The use of CNNs allow
to integrate semantics into SLAM and to reason about higher level entities (c), (d).

Front end Back end

Feature extraction

Data association:
- Short term (feature tracking)

- Long term (loop closure)

Map estimation

SLAM estimateSensor data

Figure 1.3: Front end and back end in a SLAM pipeline. The sensor data is associated
in the front end and the back end is in charge of keeping a long-term stable map.

1.2 Visual SLAM in Dynamic Environments

Visual SLAM in dynamic environments is a largely open problem. This section aims to
provide the reader with an understanding of the challenges in front of us in this area.

The research community has addressed SLAM from many different angles. How-
ever, the vast majority of the approaches and datasets assume a static environment.
Although the static assumption holds for some robotic applications, it limits the appli-
cability of visual SLAM in many relevant cases, such as intelligent autonomous systems
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operating in populated real-world environments over long periods of time. None of the
methods mentioned above –both feature-based and direct methods–, considered the
state of the art –ORB-SLAM (Mur-Artal & Tardós (2017)), DSO (Engel et al. (2017))
and SVO (Forster et al. (2014))–, address the very common problem of dynamic objects
in the scene, e.g., people walking, bicycles or cars driving around, etc. They are not
specifically designed to handle dynamics but they can –up to a certain limit– be robust
to them through heuristics by focusing on having a good estimate of the trajectory.
That is, they can only manage small fractions of dynamic content by classifying it as
outlier to the static model. These decisions to handle dynamics can be done either
in the system front end by rejecting outliers within the data association step, or with
robust cost functions in the back end. On the one hand, was the majority of the scene
static, these heuristics would help maintain a good estimate of the camera trajectory.
On the other hand, was an important part of the scene dynamic, these heuristics could
end up rejecting the static scene information and would compute the trajectory of the
observed dynamic objects as the ego motion of the camera.

An example of the previous explained behavior can be seen in the following video
https://youtu.be/VZ67vBkwI3Q. This video shows how the state-of-the-art SLAM
system ORB-SLAM (RGB-D) fails at both tracking and mapping when dynamic ob-
jects become relevant within the observed scene. Since one of the two moving people
within the scene is wearing a high-texture shirt, there is a high density of features
detected on this dynamic object, and therefore the algorithm computes the motion of
such features cluster as the camera ego motion. The map also gets corrupted with
3D points belonging to this moving person. In such scenes, robust cost functions and
heuristics are not enough, and it is of crucial importance to detect which image regions
belong to the static scene and which ones do not. Another failure example of the same
system can be seen in the video https://youtu.be/8uOZ0fZRTx0.

The synergy of tracking, mapping and place recognition is essential for the successful
deployment of visual SLAM (Cadena et al. (2016)). Now, we would like to take a closer
look at those three building blocks to better understand the challenges in front of us.

1.2.1 Camera Tracking

The first building block empowering applications of vision-based mapping and local-
ization is a precise odometry estimation. Certain scenarios require camera tracking
precision in the order of centimeters or millimeters, e.g., when interacting with indus-
trial environments or to guarantee a fully immersive experience to the user in AR/VR.

When dynamic objects become an important part of the scene, visual SLAM sys-
tems that do not specifically address dynamic content tend to compute the dynamic
objects motion as camera ego motion. That is, the static scene becomes the spurious
data of the model used by the SLAM system (Bescos et al. (2018)). Not handling dy-
namics can lead to a poor sensor tracking that might lead to catastrophic consequences:
a bad camera tracking in AR/VR applications often causes feelings of nausea and dis-
orientation in the user, or worse, in autonomous driving, a bad camera tracking can
lead to traffic violations and collisions. An example of this poor tracking behaviour can
be seen in Figs. 1.4a and 1.4b. In both figures, the black dashed line ( ) represents the
ground-truth camera trajectory, and the dotted red line ( ) is the camera trajectory
estimated by ORB-SLAM2 (RGB-D). These examples are the estimated trajectories
for the TUM RGB-D Dataset (Sturm et al. (2012)) sequences fr3/walking static and
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fr3/walking xyz, depicted in the previously mentioned videos.
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(a) Sequence fr3/walking static.
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Figure 1.4: Examples of camera tracking failure in presence of dynamic objects. The
trajectories have been estimated by ORB-SLAM2 (Mur-Artal & Tardós (2017)) in the
TUM RGB-D dataset (Sturm et al. (2012)).

1.2.2 Mapping

The second building block is the mapping capability. A map allows to continually
localize in the same environment without accumulating drift, in contrast to odometry
approaches where incremental motion is integrated over time. The main purpose of a
map for visual SLAM is to localize the camera in it (Cadena et al. (2016)). Therefore
when the robot is traversing an already mapped region, it should not duplicate the
map but localize using the already existing map. Whereas the process of mapping
and localization is reliable in controlled spaces, it still remains an open challenge in
large-scale scenarios that require life-long map maintenance. It is key not to bloat the
size of visual maps unnecessarily, as this could adversely affect the cost and computing
power required.

We want to construct maps that remain compact without redundant elements or
dynamic objects that are not persistent in the environment. A map containing in-
formation about dynamic objects might become useless for future reuse. Only the
information belonging to objects that remain stable in the long term (buildings, side-
walks, etc.) should be included in the visual map. An example of a dense 3D map
which is corrupted by dynamic objects can be found in Fig. 1.5.

1.2.3 Place Recognition

The third building block is the place recognition capability. Recognizing a place and
matching it to the prior map has one fundamental application in visual SLAM: as the
local odometry estimates drift, at some point it does not provide anymore a reliable
information about the agent’s pose in the environment. One way to correct it is to
recognize the place in a prior map or in a map being currently constructed. Recognizing
an already visited place adds additional constraints and thus reduces the error.

Place recognition can suffer from dynamic objects in two different manners. On the
one hand, two images of the same place with a very different setup of dynamic objects
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(a) Sequence sample images depicting dynamic objects.

(b) Dense reconstruction corrupted with dynamic objects.

Figure 1.5: Example of a corrupted map in presence of dynamic objects ( ). This is
the sequence 04 from the KITTI odometry dataset (Geiger et al. (2013)). The map
has been created with the multi-view software colmap (Schönberger, Zheng, Frahm &
Pollefeys (2016)) and the ground-truth camera poses.

could be incorrectly tagged as a different place. On the other hand, two images of
different places with the same dynamic objects setup could be wrongly matched as the
same place. False positive loop closures due to incorrect place recognition can have a
catastrophic effect and constitute an open challenge. The use of robust loop closing
techniques (Sünderhauf & Protzel (2012), Latif et al. (2013), Lajoie et al. (2019), Yang
et al. (2020)) can help to mitigate false loop detections. Consequently, only the features
belonging to elements that remain stable in the long term (buildings, sidewalks, etc.)
would benefit place recognition.

We depict in Fig. 1.6 an example of two different images from the same place with
different viewpoints and weathers, and also with dynamic and structural changes. The
state-of-the-art place recognition algorithms, both the learning-based ones (Arand-
jelović et al. (2016)) and mainly the traditional ones (Gálvez-López & Tardos (2012)),
struggle to work under large amounts of clutter, e.g., people, cars. Even though place
recognition has made great advances in the last few decades, e.g., on the principles
of how animals recognize and remember places, and the relationship between places
from a neuroscience perspective (Lowry et al. (2015)), we are still a long way from a
robust long-term visual place-recognition system that can be applied well to a variety
of scenarios of real-world places.
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(a) (b)

Figure 1.6: (a) and (b) have been taken from a nearby position depicting the same
scene with different view point and weather, and with dynamic and structural changes.
These changes might make place recognition algorithms fail if not specifically handled.

1.2.4 Dynamic Objects

In this subsection we want to highlight that there are two different types of dynamic
objects with respect to their nature and their influence on visual SLAM systems:

1. The former type consists of objects that inherently possess the capability to
move either artificially or naturally. People, animals and means of transport are
within such group. We name these objects a priori dynamic. While the visual
SLAM sensor is observing them, they can either move (e.g., person walking) or
remain static (e.g., person laying down). If such objects are moving they would
certainly damage the camera trajectory estimation. They can be detected with
a multi-view geometry approach. In contrast, if they remain static they would
be helpful for the camera trajectory estimate but would corrupt the map with
long-term spurious information. These can only be detected via learning-based
approaches. For example, the parked cars on Fig. 1.7a would not be detected
if we used an algorithm capable of detecting scene motion. However, it would
be straight forward to detect them if a learning-based algorithm was to be used.
Moreover, the two people on Fig. 1.7b could be detected by using either a multi-
view geometry or a learning-based approach because they are a priori dynamic
and they are in motion.

2. The latter type consists though of objects that are moving while the visual SLAM
sensor is observing them. Their motion can be exploited and detected mainly by
multi-view geometry approaches. Examples of these objects could be a ball being
thrown in the air, driving cars, or furniture being moved by people (Fig. 1.7b).
These objects would corrupt both the camera trajectory and the map estimates,
and cannot be detected on a single frame basis.
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(a) A priori dynamic objects. (b) Moving objects.

Figure 1.7: Whereas geometry-based approaches are used to detect scene movement,
semantic information can be utilized to detect a priori dynamic classes.

1.2.5 Challenges

Overall, the visual mapping and localization technology is getting more and more ma-
ture and becoming widespread in industrial solutions, service robotics and consumer
devices. It is a key to guarantee spatial awareness with a limited cost, weight and
computational power. We want to make it more reliable and robust in real-life envi-
ronments, including crowded indoor and outdoor spaces. That is, we want our algo-
rithms to work everywhere, without limiting them to specifically pre-configured static
environments. Dealing with dynamic objects in visual SLAM reveals several challenges
including: (i) How to detect such dynamic objects in the images to prevent the tracking
algorithm from using matches that belong to moving objects, to prevent the mapping
algorithm from including both a priori dynamic and moving objects as part of the 3D
map, and to let the loop closing algorithm use only the scene information that is static
in the long term. (ii) How to complete the 3D map section that is temporally occluded
by dynamic objects. (iii) How to estimate the trajectory of the dynamic objects within
the scene to help with decision making and scene understanding.

Many applications would greatly benefit from progress along these lines. Among
others, augmented reality, autonomous vehicles, and medical imaging. All of them
could for instance safely reuse maps from previous runs. Detecting and dealing with
dynamic objects is a requisite to estimate stable maps, useful for long-term applications.
If the dynamic content is not detected, it becomes part of the 3D map, complicating its
usability for tracking or relocation purposes. Furthermore, in augmented and virtual
reality applications, dynamic objects need to be explicitly tracked to enable interactions
of virtual objects with moving instances in the real world. In autonomous driving
scenarios, a car should not only localize itself but also reliably sense other moving cars
to act consequently and avoid catastrophic collisions.

1.3 Contributions

The overarching goal of this doctoral thesis is to advance the current state of the art
in visual SLAM with the particular following objectives:

1. Detection: While the current localization and mapping algorithms perform rea-
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sonably well in controlled and static environments, they struggle in the presence
of noise or dynamic objects. The detection of the dynamic objects within the
images is the first step towards a robust SLAM. We aim to detect dynamic and
temporary objects in the environment. We want to construct maps that only
contain persistent elements of the robot’s surroundings, but reject everything
that is not deemed stable. Consequently, we will make the camera tracking and
the place recognition process more robust to spurious and dynamic objects.

2. Inpainting: Detecting dynamic objects within the image streams usually leads
to a robust camera tracking and the creation of stable maps. However, these
maps might present discontinuities and empty gaps due to dynamic objects per-
manently occluding a scene region. Also, pose estimation could be degraded
and drifting could increase if features do not follow a uniform distribution in the
image space. We aim to perform image inpainting of the plausible static scene
behind the dynamic objects. This allows us to deliver complete maps with a
plausible scene representation. Place recognition and camera tracking can also
become more robust with these advances in image inpainting.

3. Multi-Object Tracking: Whereas building stable maps, or having a robust
camera tracking and robust place recognition might be enough for some applica-
tions, others might require information about the poses of other dynamic agents
within the scene. Understanding surrounding dynamic objects is of crucial im-
portance for the frontier requirements of emerging applications within AR/VR
or autonomous things navigation. We aim to deliver a spatio-temporal map with
information from self and surroundings for outdoor and indoor applications.

Next we present this thesis’ contributions leading towards the aforementioned goals.

1.3.1 Detection

The goal of this part of the thesis is to enable the detection of dynamic objects either
as a standalone or within a visual SLAM framework. In the latter case, we aim to
minimize the error of the camera trajectory estimation and reduce the presence of
spurious and non-stable data within the created maps, which is a must for long-term
applications in real-world environments. In the effort to build a versatile framework,
we aim to develop an algorithm capable of detecting dynamic objects that suits the
most common visual sensors: monocular, stereo and RGB-D configurations.

We therefore propose a novel approach that leverages the use of semantic segmen-
tation from deep learning and the use of multi-view geometry methods to detect both a
priori dynamic and moving objects (Bescos et al. (2018)). Our experiments show that
it is possible to achieve a SLAM accuracy in highly dynamic scenes comparable to the
one accomplished in static environments, as well as to build a 3D map containing only
the static and stable environment structure. Even though it is of common practice in
the robotics community to assume that certain semantic classes are by definition dy-
namic, we demonstrate that it is possible to acquire this knowledge in a self-supervised
way (Zhou, Bescos, Dymczyk, Pfeiffer, Neira & Siegwart (2018)). These methods and
their evaluation are presented in detail in Chapter 2.

In the benefit of the robotics and mainly the SLAM community, we have developed
a system, a de facto side-product of the research efforts, that provides the user with
the benefits of a visual SLAM system robust in dynamic environments.
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1.3.2 Inpainting

The second part of the thesis addresses the problem of inpainting with plausible im-
agery the image regions where dynamic objects have been previously detected. The
general objective is to improve vision-based localization and mapping tasks in dynamic
environments, where the presence –or absence– of different dynamic objects in differ-
ent moments makes these tasks less robust. To the best of our knowledge, this is the
first attempt to estimate the static world directly from the sensor data and then feed
this static world to a classic SLAM pipeline. This approach is based on the fact that
the static-world assumption is ideal for most SLAM systems, since it has a minimum
number of outliers for tracking, mapping and place recognition.

We present a data-driven approach to obtain the static image of a scene, eliminating
dynamic objects that might have been present at the time of traversing the scene
with a camera (Bescos et al. (2019)). To meet this goal, we introduce an end-to-
end deep learning framework to turn images of an urban environment that include
dynamic content, such as vehicles or pedestrians, into realistic static frames suitable
for localization and mapping. This is approached with a generative adversarial model
that, taking as input the original dynamic image and its dynamic/static binary mask,
is capable of generating the final static image. This framework makes use of two new
losses, one based on image steganalysis techniques, useful to improve the inpainting
quality, and another one based on ORB features, designed to enhance feature matching
between real and hallucinated image regions. To validate this approach, we perform an
extensive evaluation on different tasks that are affected by dynamic entities, i.e., visual
odometry, place recognition and multi-view stereo, with the hallucinated images. This
method and its evaluation is presented in detail in Chapter 3.

1.3.3 Multi-Object Tracking

The last part of the thesis not only focuses on enabling a robust camera tracking and on
building stable maps, but also focuses on tracking the poses of all dynamic agents that
are present in the scenario. We aim to develop a conjoint framework for both SLAM and
multi-object tracking, by minimizing the error of the camera trajectory estimation and
that of the surrounding agents. This paves the way for manifold applications including
autonomous driving navigation as well as augmented and virtual reality among others.

We therefore present a feature-based SLAM framework for stereo and RGB-D sensor
configurations whose front end and back end are tailored for multi-object tracking.
Given the layer of complexity that object tracking adds to the problem of SLAM, we
address it by paying special attention to the number of parameters involved in order
to maintain a real-time performance. We demonstrate that these two tasks are highly
beneficial to each other, contradicting the usual approaches in the current literature.
To validate this approach, we perform an extensive evaluation on both ego motion and
object tracking in multiple environments –indoors and outdoors–, demonstrating that
it is possible to obtain a state-of-the-art performance without assuming scene priors.
The explanation of this method and its evaluation is presented in Chapter 4 below.
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1.4 Organization of the Document

The following three chapters relate the research conducted in the direction of the
main contributions of this thesis regarding detection of dynamic objects (Chapter 2),
inpainting of the static background occluded by dynamic objects (Chapter 3) and multi-
object tracking (Chapter 4). Each of these chapters intends to be self-explanatory and
contains its specific related work as well as its respective conclusions and discussions.

In Chapter 5 we seek to outline the general conclusions of the thesis, as well as our
vision of its future directions. A summary of the results can be found in Chapter 6.
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Chapter 2

Detection of Dynamic Objects

The vast majority of SLAM approaches and datasets assume a static environment.
They can only manage small fractions of dynamic content by classifying them as out-
liers to such static model. Although the static assumption holds for some robotic
applications, it limits the applicability of visual SLAM in many relevant cases, such as
intelligent autonomous systems operating in populated real-world environments. It is
seldom the case that robots operate in strictly static environments.

Image-based detection of dynamic objects is the first step towards dynamic Visual
SLAM. We hereby propose two different methods to detect the two existing types of
dynamic objects: the former is based on multi-view geometry and is useful to detect
moving objects –see Section 2.2– and the latter is based on deep learning and can detect
a priori dynamic objects –see Section 2.3–. We have integrated these two methods into
the state-of-the-art feature-based SLAM system ORB-SLAM to render it robust against
moving agents in the scene. So, as a by-product of this research we have developed
the system DynaSLAM (Bescos et al. (2018)). It is an open-source project available
at https://github.com/BertaBescos/DynaSLAM/. A study of the related work as
well as the contributions of this thesis regarding the detection of dynamic content are
described in the following sections.

2.1 Related Work

The straightforward approach to dealing with dynamic objects in SLAM systems is to
classify them as spurious data that is neither mapped nor used for camera tracking. The
most typical outlier rejection algorithms are RANSAC, e.g., in ORB-SLAM by Mur-
Artal et al. (2015), and robust cost functions, e.g., in PTAM by Klein & Murray (2007).
These systems reject the dynamic content in an effort to minimize the error of the
camera trajectory estimation. Whereas these methods work in quasi-static scenarios,
they fail when the scene becomes highly dynamic. In such cases, the need arises to
design algorithms specifically aimed at dynamic environments:

• Wangsiripitak & Murray (2009) make use of a 3D object tracker in parallel with
a monocular SLAM implementation. The SLAM process provides the object
tracker with information to register objects to the map’s frame, and the object
tracker allows the marking of features on objects. Similarly, Riazuelo et al. (2017)
deal with human activity by detecting and tracking people.
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• Alcantarilla et al. (2012) detect moving objects by means of a dense scene flow
representation with stereo cameras.

• Tan et al. (2013) detect changes that take place in the scene by projecting the
previous frames key points into the current frame for appearance and structure
validation. If the key points have suffered a significant change, they would be
considered as dynamic.

• Wang & Huang (2014) segment the dynamic objects in the scene using RGB
optical flow. Such segments are further removed from the direct cost function.

• Kim & Kim (2016) propose to obtain the static parts of the scene by computing
the difference between consecutive depth images projected over the same plane.

• Sun et al. (2017) calculate the difference in intensity between consecutive RGB
images. Pixel classification is later done by combining this difference image with
the segmentation of the quantized depth image.

• More recently, the work of Li & Lee (2017) uses depth edges points, which have
an associated weight indicating its probability of belonging to a dynamic object.
These weights are calculated from the euclidean distance between the different
3D edge map projections.

• Scona et al. (2018) propose StaticFusion, where they simultaneously estimate
the camera motion as well as a probabilistic static/dynamic segmentation of the
current RGB-D image pair. This segmentation is then used for weighted dense
RGB-D fusion to estimate a 3D model of only the static parts of the environment.

• Rosinol et al. (2020) proposed this past year to use an IMU to filter out moving
objects within their impressive work 3D Dynamic Scene Graphs.

All previous methods –both feature-based and direct ones– that map the static scene
parts only from the information contained in the sequence (Klein & Murray (2007),
Mur-Artal et al. (2015), Alcantarilla et al. (2012), Tan et al. (2013), Wang & Huang
(2014), Kim & Kim (2016), Sun et al. (2017), Li & Lee (2017), Scona et al. (2018),
Rosinol et al. (2020)), fail to estimate lifelong models when an a priori dynamic object
remains static, e.g., parked cars in outdoors scenes or people sitting in indoors scenarios.
On the other hand, Wangsiripitak & Murray (2009) and Riazuelo et al. (2017) would
detect those a priori dynamic objects, but would fail to detect changes produced by
static objects, e.g., a chair a person is pushing, or a ball that someone has thrown. That
is, the former approach uniquely succeeds in detecting moving objects, and the second
one exclusively succeeds in detecting several movable or a priori dynamic objects.

We hereby propose a SLAM system for monocular, stereo and RGB-D setups that
combines multi-view geometry and deep learning in order to address both previous
situations involving dynamic objects, resulting in a highly robust and accurate system.

2.1.1 Unsupervised Detection

A standard approach to detect the known dynamic content in the scene is the use
of a CNN for pixel-wise semantic segmentation, like Mask R-CNN (He et al. (2017))
or SegNet (Badrinarayanan et al. (2017)). Such systems succeed in detecting objects
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that are known to move, i.e., people, vehicles, etc., but fail to detect new dynamic
classes. By contrast, Guizilini & Ramos (2015) apply a two-level classification mech-
anism (RANSAC, Gaussian Process) to detect and further learn the dynamic regions
in images. Recently, the work of Barnes et al. (2018) has shown how to train a pixel-
level segmentation classifier to identify dynamic and static regions in the images. They
leverage large-scale offline mapping approaches with LiDAR to obtain ephemerality
masks for images. Similarly, Ambrus et al. (2016) make no prior assumptions on what
is dynamic and static. They model the static part of the environment by focusing
on improving the accuracy and quality of the segmented dynamic objects over long
periods of time. They address the issue of adapting the static structure over time and
incorporating new elements, for which they train and use a classifier whose output
gives an indication of the dynamic nature of the segmented elements. Other works
also use machine learning (Hartmann et al. (2014)) and deep learning (Dymczyk et al.
(2016)) to deal with dynamic objects. These approaches are capable of detecting new
dynamic objects, on a single-view basis, yet require a specific and expensive sensor
suite, a significant amount of calculations and multiple mapping sessions.

In contrast to those approaches, we propose a system that relies on single RGB
frames to identify dynamic objects and train a classifier to reject spurious data. Our
model learns to segment dynamic parts of the image in a semi-supervised way, without
being restricted to certain semantic object classes. We hypothesize that our approach
will be able to learn general dynamic objects, even if no specific semantic labels are
present for training.

2.2 Detection of Moving Objects

We propose to detect scene changes with a RGB-D camera by projecting the key points
from previous frames into the current frame for appearance and structure validation.
That is, for each input frame, we select the previous key frames that have the highest
overlap. This is done by taking into account both the distance and the rotation between
the new frame and each of the key frames, similarly to Tan et al. (2013). Assuming that
the poses of the previous key frames and of the current frame are known, one can then
compute the projection of each key point x ∈ R3 of the previous key frames into the
current frame, obtaining the key point x′ ∈ R3. This is done with the projection and
inverse projection functions for a RGB-D camera in Eqns. 1.5 and 1.6. Our movement
detection proposal builds on the following idea: was the observed scene static, x and
x′ would depict the same 3D point X ∈ R3 and would have a similar 2D appearance.
However, if the scene shows dynamic content, x and x′ would represent a different 3D
map point and would also probably look different.

This idea is shown in Fig. 2.1. In this illustration, the magenta triangle represents
the static scene and the blue polygon embodies an object in motion. On the one hand,
in Fig. 2.1a the key points x and x′ have the same appearance (magenta) and the
projected depth zproj ∈ R+ of the 3D point X is similar to the depth measurement
z′ ∈ R+ of the pixel x in the current frame (CF). The new key point x′ represents
therefore the static scene structure. On the other hand, in Fig. 2.1b the key points x
and x′ have a different appearance (magenta and blue) and the projected depth zproj
is not similar to the corresponding depth measurement z′. In this case, the key point
x′ depicts a 3D map point belonging to an object in motion.
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(a) The key point x′ belongs to a static object. (b) The key point x′ belongs to a dynamic object.

Figure 2.1: The key point x from the key frame (KF) is projected into the current
frame (CF) using its depth and camera pose, resulting in the key point x′. The depth
and the appearance of x and x′ can be compared to detect dynamic instances.

Following this approach, we need to decide how to best describe the two points
x and x′ so that dynamic objects are correctly detected. Image descriptors such as
ORB (Rublee et al. (2011)), BRISK (Leutenegger et al. (2011)) and FREAK (Alahi
et al. (2012)) describe an image patch with a binary string, providing a high invariance
to illumination and rotation, as well as a real-time operability. We then compute
the descriptors of the key points x and of their projections on the current frame x′,
B(x) and B(x′). The distance d between such descriptors can be calculated with the
following equation:

d = min
r
H(B(x),B(x′ + r)), (2.1)

where H stands for the Hamming distance and r ∈ R2 is a two-dimensional transla-
tional vector to account for the reprojection error of x′. If this error is below a threshold
τB, the key points x and x′ belong to the same static object. Otherwise, if the error is
above this threshold, either the key point x, x′ or both belong to an object in motion.

Also according to this concept, we have considered to use the depth measurement
as the key point “descriptor”. That is, as a result of the projection of the 3D point X in
the current frame, we know the approximate depth zproj that the point x′ should have
were the scene static. If the current depth measurement z′ = z(x′) moves away from
the depth projection more than a threshold τz, then either one or the two key points
are the representation of a moving object. In this case, Eqn. 2.1 can be rewritten as:

d = min
r

(zproj − z(x′ + r)), (2.2)

In theory, both approaches –the one based on binary descriptors and the one based

20



on depth measurements– could be used jointly because they detect different types of
scene movement. The former detects appearance changes whereas the latter detects
depth changes. For example, on the one hand, if in the illustration of Fig. 2.1 both
the static and dynamic object were magenta, only the depth-based approach would
succeed in detecting the motion of the small object. On the other hand, if an object
moves in a plane parallel to that of the camera, the depth measurements would be
consistently similar, but the appearance may allow to detect this object’s motion.

We have tested the behaviour of all the above-mentioned descriptors to choose the
best performing one. For this evaluation, we have manually labeled the pixel-wise
segmentation of the dynamic instances in twenty images from different sequences from
the TUM RGB-D dataset (Sturm et al. (2012)). An example of the images from this
dataset can be found in Fig. 2.6a. This has allowed us to compute the precision-
recall curves for these twenty images by varying the values of the thresholds τB and
τz respectively. Examples of these curves are depicted in Fig. 2.2. According to these
curves, utilizing the depth of the key points to detect dynamic instances is the most
suitable configuration.
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Figure 2.2: We report the precision recall curves for six images with dynamic content
that have been manually labeled (TUM dataset). The performance of four descriptors
has been analyzed, concluding that the use of depth is the most accurate one.

In order to set the threshold τz, we have also made use of these twenty labeled
images with dynamic objects. The precision-recall curves of the proposed method have
been evaluated for different values of this threshold (Fig. 2.3). In light of these results,
we can conclude that the equality τz = 0.4m is a reasonable choice, providing a good
compromise between precision and recall.

An issue that arises when RGB and depth images are exploited together is that
of registering them properly. Since RGB and depth images are captured by different
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(b) Recall - threshold curves for 20 examples.

Figure 2.3: For the choice of the detection threshold τz, we have manually labeled
all the dynamic instances in twenty images from the TUM dataset and computed the
curves (a) and (b). In the view of these results, τz has been chosen to be 0.4 m.

lenses, there is no direct correspondence between their pixels. Often there will be points
in the scene that are visible from the RGB lens but not from the infrared lens, and vice
versa. In addition, this issue is enhanced if both cameras are not fully synced. The
effect of this desynchronization could be considered as negligible in static scenarios,
but it becomes relevant when dealing with a highly dynamic scene. A pixel in the
RGB image may belong to a dynamic object, and in its corresponding depth image it
may belong to an object in the background of the static scene, or vice versa.

To avoid dynamic misclassifications, key points that lay near depth discontinuities
are discarded. Also, to render this method more robust against occlusions, we have
computed the parallax angle α of the projection of all the key points from the previous
key frames. If this angle is big enough, it becomes hard to tell if its projected depth has
changed because of a dynamic object’s occlusion or because of the point of view scene
occlusion. In such cases, it is safer to estimate such point as static than as dynamic.

The proposed method can render feature-based SLAM systems robust against
highly dynamic scenes at a very low cost. However, dense methods could not ben-
efit from this approach since not all the pixels have a motion classification. Only a
sparse set of pixels are classified as either moving or stationary. To classify all the
pixels belonging to dynamic instances, we propose to grow the region in the depth
image around the classified dynamic pixels (Gerlach et al. (2014)). Even though the
traditional region-growing algorithm is time consuming since it belongs to sequential
process, it can be decomposed for the purpose of utilizing parallel computation (Yau
et al. (2013)), which allows us to quickly segment dynamic instances on a GPU. An
example of a RGB frame and its corresponding dynamic segmentation computed with
this multi-view geometry method can be seen in Fig. 2.4a.

Whereas this method succeeds in detecting motion, it lacks of semantic understand-
ing of the scene. As a result, only objects moving at the time of data collection can be
detected, and dynamic objects which remain temporarily static would not be correctly
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(a) Multi-view geometry. (b) Semantic segmentation. (c) Combination.

Figure 2.4: Detection and segmentation of dynamic objects using multi-view geom-
etry (a), deep learning (b), and a combination of both geometric and learning meth-
ods (c). Notice that in (a) the person behind the desk cannot be detected, in (b) the
book carried by the person and the chair he is sitting on cannot be segmented, and
that finally the combination of the two approaches is the best performing (c).

identified, becoming part of the 3D map, eventually leading to failure in long-term
SLAM scenarios. Also, a drawback of this method and in general of multi-view geom-
etry approaches is that the initialization cannot be done on a single frame basis and it
is not trivial. Even though they can distinguish different motions within the environ-
ment, they can only hypothesize that the motion of majority of the scene belongs to
the camera ego motion and that the other motions belong to dynamic objects.

2.3 Detection of a priori Dynamic Objects

By a priori dynamic objects, we refer to semantic classes that inherently possess the
capability to move either artificially or naturally. People, animals and means of trans-
port are within such group. It is straightforward to detect these objects by the means
of a CNN trained end-to-end in a supervised fashion for the specific task of classifica-
tion. However, while in many applications a pure semantic analysis might be enough
to segment out dynamic objects, a more general approach becomes valuable, especially,
when moving towards unknown environments. This allows to detect general dynamic
objects in a semi-supervised manner even if no prior segmentation classes are provided.

2.3.1 Supervised Detection

To detect a priori dynamic objects we propose to use a CNN trained end to end for
image classification and pixel-wise semantic segmentation. The idea is to segment out
those classes that are potentially dynamic or movable (person, bicycle, cat, dog, etc.).

A variety of recently proposed neural network architectures are tackling the problem
of instance-level object segmentation (He et al. (2017), Pinheiro et al. (2016), Li et al.
(2017)). They outperform traditional methods and are capable of handling a large
set of object classes. Of these methods, Mask R-CNN (He et al. (2017)) is especially
compelling, as it provides superior segmentation quality at a relatively high frame-rate
of 5 Hz. We therefore propose to use Mask R-CNN and its TensorFlow implementation
by Matterport1 for dynamic objects detection. Mask R-CNN has been trained on the

1https://github.com/matterport/Mask RCNN
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MS COCO dataset (Lin et al. (2014)) in a supervised manner and estimates both
pixel-wise semantic segmentation and the instance labels. Mask-RCNN achieves this
by extending the architecture of Faster-RCNN (Ren et al. (2015)). Faster-RCNN is a
two-stage approach that proposes regions of interest first and then predicts an object
class and bounding box per region and in parallel. He et al. (2017) added a third branch
to the second stage, which generates masks independently of class IDs and bounding
boxes. Both stages rely on a feature map, which is extracted by a backbone network
based on ResNet (He et al. (2016)), and apply convolutional layers for inference.

In our case, the pixel-wise semantic segmentation is sufficient to detect dynamic
objects. Instance labels are useful though to track the different moving objects along
time. Our input for Mask R-CNN is the RGB dynamic image. The list of potentially
dynamic objects that Mask R-CNN can detect is the following: person, bicycle, car,
motorcycle, airplane, bus, train, truck, boat, bird, cat, dog, horse, sheep, cow, elephant,
bear, zebra and giraffe. We consider that, for most environments, the dynamic objects
likely to appear are included within this list. If other classes were needed, the network
could be fine-tuned with new training data. The output of the network for a m×n×3
RGB input image is a matrix of size m×n×l, where l is the number of detected objects
in the image. For each output channel i ∈ l a binary semantic segmentation mask is
obtained. The combination of the dynamic instance channels allows us to obtain the
segmentation of all dynamic objects appearing in every image of the scene.

An example of the results of Mask R-CNN in the dynamic sequences from the TUM
dataset (Sturm et al. (2012)) can be seen in Fig. 2.4b. The main limitation of the use
of these methods to deal with dynamic content is that objects that are supposed to
be static can be moved, and they would not be able to identify them. This is what
occurs with the book and the chair of Fig. 2.4b. Also, the contours of its pixel-wise
segmentation is far less accurate than the multi-view one (Fig. 2.4a).

2.3.2 Semi-Supervised Detection

When moving towards unknown environments, a general approach to segment out
dynamic objects becomes especially valuable. Even though the length of the list of
potentially dynamic objects that Mask R-CNN can detect, the real world is composed
of many more objects that move in practice. We propose to use a combination of easily
accessible simulation data and more expensive but specific real-world data to fine-tune
Mask R-CNN so that it generalizes well to unseen environments. In this way, general
dynamic objects can be detected, even if no prior segmentation classes are provided.

We leverage simulation data and offline short real-world video snippets recorded
with a static RGB camera to automatically generate a per-pixel static/dynamic mask
for each input image, which we use to fine-tune Mask R-CNN. Most of the training
samples are sourced from the CARLA driving simulator (Dosovitskiy et al. (2017)).
Then, we augment them with real-world samples that need to be manually collected.
The synthetic data can be easily generated and also annotated using the semantic
segmentation provided by the rendering engine. In order to avoid manual labeling
of the real-world data, we propose an approach to obtain image masks from short
video clips recorded with a static RGB camera, without any human intervention. This
approach consists of three steps:

1. Frame subtraction: Several short video snippets are recorded in dynamic urban
environments using a static camera. Each snippet is taken at another location.
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The training frame set is obtained by sampling 5 images from each video clip.
For each query image in this training set, all images from the snippet (except
the query image) are subtracted from the query image to get absolute difference
frames. Given that the camera is static, pixel differences correspond to changes
in the environment which are caused by moving objects. The absolute difference
frames are then thresholded to obtain binary instances masks.

2. Voting scheme: All binary instances masks for one training frame are summed
up into one single image. Large intensity pixels belong to dynamic regions in
the query frame, as those will differ from all the other images. More specifically,
those pixels whose intensity is above a threshold value are marked as dynamic.

3. Super-pixel segmentation: The result of the previous pixel-wise operations
are sparse and noisy masks. To address this issue, we partition the image into
superpixels (Ren & Malik (2003)). If the percentage of dynamic pixels within a
single super-pixel exceeds 5 %, the entire super-pixel is labeled as dynamic and
holes inside dynamic masks are filled. At this stage, parts of a single dynamic
object can be disjoint. To reduce this effect, we apply morphological operations
to obtain the final segmentation masks.

In order to train the model, RGB images and their corresponding dynamic instance
masks need to be provided. We use a combination of synthetic and real-world data to
train our model. The synthetic data is generated by CARLA (Dosovitskiy et al. (2017)),
which also allows for the extraction of semantic labels and therefore typical dynamic
classes like pedestrians, cars or motorbikes. Only using this synthetic and semantically
classified data would restrict our approach to a pre-defined set of semantic classes.
Therefore, we also recorded our own real-world dataset in Zurich. This also allows to
find general location-specific dynamic objects which might not be part of the synthetic
data, e.g., flags, animals or even water. The dynamic instance masks are extracted
from the real-world data using the previous presented approach. For both datasets, we
covered different weather conditions as well as different times of the day.

During the training procedure we always use a pre-trained version of the backbone
part to avoid learning feature extraction from scratch. The top layers are initialized
randomly due to the change in the output classes. The training phase is divided into
two different stages. During the first training stage, only the model head layers are
trained while the pre-trained backbone layers remain fixed. The training in the first
stage is conducted purely with synthetic data, and is run for 50 epochs. During the
second training stage only real-world data is used (also for 50 epochs). The learning
rates are set as 10−3 and 10−4 in stages one and two, respectively.

Mask R-CNN learns to segment dynamic parts of the image in a semi-supervised
way, without being restricted to certain semantic object classes. We hypothesize that
our approach will be able to learn general dynamic category-agnostic objects, even if no
specific semantic labels are present during the training process. Fig. 2.5 shows various
image frames of the detected dynamic object masks of our presented framework and
their semantic segmentation. The qualitative results demonstrate that the classifier
with real-world data manages to capture the location-specific objects, to the detriment
of the accuracy of the pixel-wise segmentation of the different instances.
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Figure 2.5: Qualitative analysis of the proposed dynamic instance detection compared
to a standard semantic segmentation. Note how our algorithm trained on real-world
data manages to capture the location-specific dynamic objects, such as trees or flags.

2.4 Integration in a SLAM System

At this point, we take the opportunity to introduce our system DynaSLAM (Bescos
et al. (2018)). DynaSLAM is capable of detecting the moving objects either by multi-
view geometry, deep learning or both. This allows us to detect both movement and a
priori dynamic classes. It achieves state-of-the-art tracking accuracy in highly dynamic
scenarios, reaching the baseline performance that usual SLAM systems achieve in static
scenes. DynaSLAM can handle different input sensors such as monocular, stereo and
RGB-D cameras. An example of our results for a RGB-D input sensor can be seen
in Fig. 2.6: the input image stream presents significant dynamic content (Fig. 2.6a)
that is handled with multi-view geometry and deep learning approaches to achieve
an accurate camera trajectory and a map free of dynamic objects (Fig. 2.6b). This
example corresponds to the sequence fr3 walking xyz from the TUM RGB-D dataset.

In this work we propose an on-line algorithm to deal with dynamic objects in
RGB-D, stereo and monocular SLAM. DynaSLAM builds on top of the state-of-the-
art ORB-SLAM2 system by Mur-Artal & Tardós (2017) with the purpose of rendering
its tracking more accurate and building reusable maps of the scene. In the monocular
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(a) Input RGB-D frames with dynamic content.

(b) Point-cloud map built with the poses computed by DynaSLAM and the segmented static frames.

Figure 2.6: Even though the input image sequence (a) contains large dynamic content,
we can still compute an accurate camera tracking and build a 3D map which is stable
in the long term and is which is not corrupted by dynamic objects (b). This 3D map,
which is free of dynamic or spurious objects, can be of utility for future reuse.

and stereo cases our proposal is to use Mask R-CNN to pixel-wise segment the a priori
dynamic objects in the frames, so that the SLAM algorithm does not extract features
on them. In the RGB-D case we propose to combine multi-view geometry models and
deep-learning-based algorithms for detecting dynamic objects.

Fig. 2.7 shows an overview of DynaSLAM. First of all, the RGB image stream
channels pass through Mask R-CNN that estimates the pixel-wise segmentation of the
image a priori dynamic content, e.g., people or vehicles. In the RGB-D case, we use
multi-view geometry to improve the dynamic content segmentation in two ways. First,
we refine the segmentation of the dynamic objects previously detected by Mask R-
CNN. Second, we label as dynamic new moving object instances that are either missed
by the CNN or are not a priori dynamic. These segmented frames are used to estimate
the camera trajectory and the map of the scene. Notice that if the moving objects in
the scene are not within the CNN classes, the multi-view geometry stage would still
detect the dynamic content, but the tracking accuracy might decrease.

2.4.1 Mask R-CNN

The input RGB image stream passes through Mask R-CNN to estimate the pixel-
wise semantic segmentation of the a priori dynamic content, e.g., people, animals or
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Figure 2.7: Block diagram of our pipeline for dynamic objects detection. In the stereo
and monocular pipeline ( ) the images pass through a CNN (Mask R-CNN) for com-
puting the pixel-wise semantic segmentation of the a priori dynamic objects before
being used for the mapping and tracking threads. In the RGB-D case ( ) a second
approach based on multi-view geometry is added for a more accurate motion segmen-
tation, for which we need a low-cost tracking algorithm. The red dotted line ( )
represents the data flow of the stored sparse map and is used for all sensor types.

vehicles. We use for our experiments the Mask R-CNN implementation trained in a
supervised manner on the MS COCO dataset (Lin et al. (2014)). One could also use a
method like the one presented in Subsection 2.3.2 to discover new dynamic classes.

2.4.2 Low-Cost Tracking

After the potentially dynamic content has been segmented, the pose of the camera
is tracked using the static part of the image. Because the segment contours usually
become high-gradient areas, salient point features tend to appear. We do not consider
the features in such contour areas. The tracking implemented at this stage of the
algorithm is a simpler and therefore computationally lighter version of the one in ORB-
SLAM2 (Mur-Artal & Tardós (2017)). It projects the map features in the image frame,
searches for the correspondences in the static areas of the image, and minimizes the
reprojection error to optimize the camera pose.

2.4.3 Multi-View Geometry

By using Mask R-CNN, most of the dynamic objects can be segmented and not used
for tracking and mapping. However, there are objects that cannot be detected by this
approach because they are not a priori dynamic, but movable. Examples of the latest
are a book carried by someone, a chair that someone is moving, or even furniture
changes in long-term mapping. The approach utilized for dealing with these cases has
been previously detailed in Section 2.2.

The results of the CNN (Fig. 2.4b) can be combined with those of the multi-view
geometry method (Fig. 2.4a) for a complete detection of dynamic objects (Fig. 2.4c).
We can find several strengths and limitations in both methods, hence the motivation
for their combined deployment. For the geometric approaches, the main problem is
that initialization is not trivial because of its multi-view nature. Learning methods
and their impressive performance using a single view do not have such initialization
problems. Their main limitation though is that objects that are supposed to be static
can be moved, and the method is not able to identify them. This last case can be
solved though by applying multi-view consistency tests.
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These two ways of facing the moving objects detection problem are illustrated in
Fig. 2.4. In Fig. 2.4a we see that the person in the back, which is potentially a dynamic
object, is not detected. The reasons for this issue are twofold. First, the difficulties that
RGB-D cameras face when measuring the depth of distant objects since their accuracy
typically decreases quadratically with the distance (Khoshelham & Elberink (2012)).
And second, the fact that reliable features lie on defined, and therefore nearby, parts
of the image. Albeit, this person is detected by the deep learning method (Fig. 2.4b).
Apart from this, on one hand we see in the Fig. 2.4a that not only is detected the person
in the front of the image, but also the book he is holding and the chair he is sitting
on. On the other hand, in the Fig. 2.4b the two people are the only objects detected
as dynamic, and also their segmentation is less accurate. If only the deep learning
method is used, a floating book would be left in the images and would incorrectly
become part of the 3D map. Because of the advantages and disadvantages of both
methods, we consider that they are complementary and therefore their combined use
is an effective way of achieving accurate tracking and mapping. In order to achieve
this goal, if an object has been detected with both approaches, the segmentation mask
should be that of the geometrical method. If an object has only been detected by the
learning-based method, the segmentation mask should contain this information too.
The final segmented image of the example in the previous paragraph can be seen in
the Fig. 2.4c. The segmented dynamic parts are removed from the current frame and
therefore from the map.

2.4.4 Tracking and Mapping

The input to this stage of the system contains the RGB and depth images, as well as
their dynamic segmentation mask. We extract ORB features in the segments of the
image which are classified as static. Because the segment contours are high gradient
areas, the key points that fall at this intersection have to be eliminated.

2.5 Experimental Results

We have evaluated our system in the public datasets TUM RGB-D (Sturm et al.
(2012)) and KITTI (Geiger et al. (2013)) and compared to other state-of-the-art SLAM
systems in dynamic environments, using when possible results published in the original
papers. Furthermore we have compared our system against the original ORB-SLAM2
to quantify the improvement of our approach in dynamic scenes. In this case, the
results for some sequences were not published and we have ourselves completed their
evaluation. Mur-Artal et al. (2015) propose to run each sequence five times and show
median results, to account for the non-deterministic system nature. We have run each
sequence ten times as dynamic objects are prone to exalt this non-deterministic effect.

2.5.1 TUM RGB-D Dataset

The TUM RGB-D dataset (Sturm et al. (2012)) is composed of 39 sequences recorded
with a Microsoft Kinect sensor in different indoor scenes at full frame rate (30Hz). Both
the RGB and the depth images are available, together with the ground-truth trajectory,
the latest recorded by a high-accuracy motion capture system. In the sequences named
sitting (s in our tables) there are two people sitting in front of a desk while speaking
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and gesticulating, i.e., there is a low degree of motion. In the sequences named walking
(w), two people walk both in the background and the foreground and sit down in front
of the desk. This dataset is highly dynamic and therefore challenging for standard
SLAM systems. For both types of sequences sitting (s) and walking (w) there are
four types of camera motions: (1) halfsphere (half): the camera moves following the
trajectory of a 1-meter diameter half sphere, (2) xyz: the camera moves along the
x-y-z axes, (3) rpy: the camera rotates over roll, pitch and yaw axes, and (4) static:
the camera is kept static manually. We use the absolute trajectory root mean square
error (RMSE) as the metric for our experiments, as proposed by Sturm et al. (2012).

The results of different variations of our system for six sequences within this dataset
are shown in Table 2.1. Firstly, DynaSLAM (N) is the system in which only Mask
R-CNN segments out the a prior i dynamic objects. Secondly, in DynaSLAM (G)
the dynamic objects have been only detected with the multi-view geometry method
based on depth changes. Thirdly, DynaSLAM (N+G) stands for the system in which
the dynamic objects have been detected by combining both the geometrical and deep
learning approaches. According to this table, the system (N+G) that uses learning
and geometry is the most accurate one in most sequences. The improvement over
(N) comes from the segmentation of movable objects and refinement of the dynamic
segments. The system (G) has higher error because it needs a relatively large object
motion and its segmentation is only accurate after a small delay, during which the
dynamic content introduces some error in the estimation. The DynaSLAM results
shown from now on are from the best variant, that is, (N+G).

Sequence DynaSLAM (N) DynaSLAM (G) DynaSLAM (N+G)

w halfsphere 0.025 0.035 0.025
w xyz 0.015 0.312 0.015
w rpy 0.040 0.251 0.035
w static 0.009 0.009 0.006

s halfsphere 0.017 0.018 0.017
s xyz 0.014 0.009 0.015

Table 2.1: Absolute trajectory RMSE [m] for several variants of DynaSLAM (RGB-D).

Table 2.2 shows our results on the same sequences, compared against RGB-D
ORB-SLAM2. Our method outperforms ORB-SLAM2 in highly dynamic scenarios
(walking), reaching an error similar to that of the original RGB-D ORB-SLAM2 sys-
tem in static scenarios. In the case of low-dynamic scenes (sitting) the tracking results
are slightly worse because the tracked key points find themselves further than those
belonging to dynamic objects. Albeit, DynaSLAM’s map does not contain the dynamic
objects that appear along the sequence. Fig. 2.8 shows an example of the estimated
trajectories of DynaSLAM and ORB-SLAM2, compared to the ground truth.

Table 2.3 shows a comparison between our system and several state-of-the-art
RGB-D SLAM systems designed for dynamic environments. In account for the effec-
tiveness of our and the state-of-the-art approaches for motion detection (independently
of the utilized SLAM system), we also show the respective improvement values against
the original SLAM system used in every case. DynaSLAM significantly outperforms
all of them in all sequences (both high and low dynamic ones). The error is, in general,
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Sequence ORB-SLAM2 (RGB-D) DynaSLAM (N+G) (RGB-D)
Mur-Artal & Tardós (2017)

median median min max

w halfsphere 0.351 0.025 0.024 0.031
w xyz 0.459 0.015 0.014 0.016
w rpy 0.662 0.035 0.032 0.038
w static 0.090 0.006 0.006 0.008

s halfsphere 0.020 0.017 0.016 0.020
s xyz 0.009 0.015 0.013 0.015

Table 2.2: Comparison of the RMSE of ATE [m] of DynaSLAM against ORB-SLAM2
for RGB-D cameras. To account for the non-deterministic nature of the system, we
show the median, minimum and maximum error of ten runs.
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Figure 2.8: Ground truth and trajectories estimated by DynaSLAM and ORB-SLAM2
respectively in the TUM dataset sequence fr3/walking xyz.

around 1-2 cm, similar to that of the state of the art in static scenes. Our motion
detection approach also outperforms the other methods.

ORB-SLAM, the monocular version of ORB-SLAM2, is generally more accurate
than the RGB-D one in dynamic scenes, due to the nature of their initialization al-
gorithms. RGB-D ORB-SLAM2 is initialized and starts the tracking from the very
first frame, and hence dynamic objects can introduce errors. Monocular ORB-SLAM
though delays the initialization until there is parallax and consensus using the static-
ity assumption. Hence, it does not track the camera for the full sequence, sometimes
missing a substantial part of it, or even not initializing.

Table 2.4 shows the tracking results and percentage of the tracked trajectory for
ORB-SLAM and DynaSLAM (monocular) in the TUM dataset. The initialization in
DynaSLAM is always quicker than that of ORB-SLAM. In fact, in highly dynamic se-
quences, ORB-SLAM initialization only occurs when the moving objects disappear –or
almost disappear– from the scene. In conclusion, although the accuracy of DynaSLAM
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Sequence DES MS DSLAM MR DVO-SLAM DynaSLAM
Li & Lee (2017) Wang & Huang (2014) Sun et al. (2017)

w/ w/o w/ ↑ [%] w/o w/ ↑ [%] w/o w/ ↑ [%]

w half 0.049 0.116 0.055 52.59 0.529 0.125 76.32 0.351 0.025 92.88
w xyz 0.060 0.202 0.040 80.20 0.597 0.093 84.38 0.459 0.015 96.73
w rpy 0.179 0.515 0.076 85.24 0.730 0.133 81.75 0.662 0.035 94.71
w stat 0.026 0.470 0.024 94.89 0.212 0.066 69.06 0.090 0.006 93.33

s half 0.043 - - - 0.062 0.047 23.70 0.020 0.017 15.00
s xyz 0.040 - - - 0.051 0.048 4.55 0.009 0.015 X

Table 2.3: Absolute trajectory RMSE [m] of DynaSLAM against state-of-the-art
RGB-D SLAM systems specifically designed to work in dynamic scenes. To evalu-
ate the effectiveness of the specific module addressing dynamic content, we report the
improvement with respect to the original SLAM systems without any motion detection
stage (w/o). Our results are estimated using Mask R-CNN and multi-view geometry.

is slightly lower, it succeeds in bootstrapping the system with dynamic content and
producing a map without such content, to be re-used for long-term applications. The
reason why DynaSLAM is slightly less accurate is that the estimated trajectory is
longer, and there is therefore room for accumulating more tracking errors.

Sequence ORB-SLAM DynaSLAM
Mur-Artal et al. (2015) (Monocular)

ATE [m] % Traj ATE [m] % Traj

fr3/walking halfsphere 0.017 87.16 0.021 97.84
fr3/walking xyz 0.012 57.63 0.014 87.37

fr2/desk with person 0.006 95.30 0.008 97.07
fr3/sitting xyz 0.007 91.44 0.013 100.00

Table 2.4: Absolute trajectory RMSE [m] and percentage of successfully tracked tra-
jectory for both ORB-SLAM and DynaSLAM (monocular).

2.5.2 KITTI Odometry Dataset

The KITTI Dataset (Geiger et al. (2013)) contains stereo sequences recorded from
a car perspective in urban and highway environments. Table 2.5 shows our results
in the eleven training sequences, compared against stereo ORB-SLAM2. We use two
different metrics, the absolute trajectory RMSE proposed by Sturm et al. (2012), and
the average relative translation (RPE) and rotation errors (RRE), proposed by Geiger
et al. (2013). Furthermore, Table 2.6 shows the results in the same sequences for the
monocular variants of ORB-SLAM and DynaSLAM.

Note that the comparison of the results are similar in both the monocular and
stereo cases, but the former is more sensitive to dynamic objects and therefore to the
additions in DynaSLAM. In some sequences the accuracy of the tracking is improved
when not using features belonging to a priori dynamic objects, i.e., cars, bicycles,
etc. An example of this would be the sequences KITTI 01 and KITTI 04, in which
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Sequence ORB-SLAM2 (Stereo) DynaSLAM (Stereo)
Mur-Artal & Tardós (2017)

RPE RRE ATE RPE RRE ATE
[%] [◦/100m] [m] [%] [◦/100m] [m]

KITTI 00 0.70 0.25 1.3 0.74 0.26 1.4
KITTI 01 1.39 0.21 10.4 1.57 0.22 9.4
KITTI 02 0.76 0.23 5.7 0.80 0.24 6.7
KITTI 03 0.71 0.18 0.6 0.69 0.18 0.6
KITTI 04 0.48 0.13 0.2 0.45 0.09 0.2
KITTI 05 0.40 0.16 0.8 0.40 0.16 0.8
KITTI 06 0.51 0.15 0.8 0.50 0.17 0.8
KITTI 07 0.50 0.28 0.5 0.52 0.29 0.5
KITTI 08 1.05 0.32 3.6 1.05 0.32 3.5
KITTI 09 0.87 0.27 3.2 0.93 0.29 1.6
KITTI 10 0.60 0.27 1.0 0.67 0.32 1.2

Table 2.5: Comparison of the RMSE of the ATE [m], the average of the RPE [%] and
the RRE [◦/100m] of DynaSLAM against ORB-SLAM2 system for stereo cameras.

Sequence ORB-SLAM DynaSLAM (Monocular)
Mur-Artal & Tardós (2017)

KITTI 00 5.33 7.55
KITTI 02 21.28 26.29
KITTI 03 1.51 1.81
KITTI 04 1.62 0.97
KITTI 05 4.85 4.60
KITTI 06 12.34 14.74
KITTI 07 2.26 2.36
KITTI 08 46.68 40.28
KITTI 09 6.62 3.32
KITTI 10 8.80 6.78

Table 2.6: Absolute trajectory RMSE [m] for ORB-SLAM and DynaSLAM when
utilizing a monocular sensor.

all vehicles that appear are moving. In the sequences in which most of the recorded
cars and vehicles are parked (hence static), the absolute trajectory RMSE is usually
bigger since the key points used for tracking are more distant and usually belong to
low-texture areas (KITTI 00, KITTI 02, KITTI 06). However, the loop closure and
relocalization algorithms work more robustly since the resulting map only contains
structural objects, i.e., the map can be re-used and work in long-term applications.

2.5.3 Timing Analysis

To complete the evaluation of our proposal, Table 2.7 shows the average computational
time for its different stages. Note that DynaSLAM is not optimized for real-time
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operation. However, its capability for creating life-long reusable maps of the static
scene content are also relevant for running on offline mode.

Sequence Low-Cost Tracking Multi-View Geometry

w halfsphere 1.69 333.68
w rpy 1.59 235.98

Table 2.7: DynaSLAM average computational time [ms].

On the one hand, Mur-Artal et al. (2015) and Mur-Artal & Tardós (2017) show real-
time results for both ORB-SLAM and ORB-SLAM2 respectively. On the other hand,
He et al. (2017) report that Mask R-CNN runs at 195 ms per image on a Nvidia Tesla
M40 GPU. The recent work of YOLACT (Bolya et al. (2019)) achieves an accuracy
similar to that of Mask R-CNN at the incredible speed of 33.5 fps on a single Titan
Xp. These two methods could be easily swapped for a faster performance.

The addition of the multi-view geometry stage is an additional slowdown, due
mainly to the region growth algorithm. This step could also be speeded up by decom-
posing the typical region-growing algorithm utilizing parallel computation (Yau et al.
(2013)), which allows to quickly segment dynamic instances on a GPU. Furthermore,
the region-growing step is only necessary when building a dense map is necessary.

2.6 Failure Modes and Future Work

The contributions that we have presented in this chapter show unprecedented accuracy
and robustness of visual SLAM in highly dynamic scenarios. However, there is still
plenty of room for further improvement. As future work, it would be interesting to
develop a motion detection approach that is based uniquely on RGB information, so
that it could be helpful for monocular setups too. Optimizing DynaSLAM for real-
time performance would also bring great benefits to the robotics community. For
example, implementing the suggestions made in Subsection 2.5.3 would yield great
progress in this direction. Also, future extensions of this work might include explicitly
distinguishing between those a priori dynamic and moving objects. For example, if a
car is detected by Mask R-CNN (a priori dynamic) but is not currently moving, its
corresponding keypoints should be used for the local tracking, but should neither be
included in the map nor used for visual place recognition.

2.7 Discussion

We have presented a visual SLAM system that, building on top of ORB-SLAM2, adds
a motion segmentation approach that renders it robust in dynamic environments for
monocular, stereo and RGB-D cameras. Our system robustly and accurately tracks
the camera and creates a static and therefore reusable map of the scene. We believe
that DynaSLAM represents a significant advance in visual SLAM in highly dynamic
environments and paves the way for future research in the topic. We refer the reader
to a video that shows the potential of DynaSLAM2.

2https://youtu.be/EabI goFmQs
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The comparison against the state of the art shows that DynaSLAM achieves in
most cases the highest accuracy. In the TUM Dynamic Objects dataset, DynaSLAM
is currently the best RGB-D SLAM solution. In the monocular case, our accuracy is
similar to that of ORB-SLAM, obtaining however a static map of the scene with an
earlier initialization. In the KITTI dataset DynaSLAM is slightly less accurate than
monocular and stereo ORB-SLAM, except for those cases in which dynamic objects
represent an important part of the scene. However, our estimated map only contains
structural objects and can therefore be re-used in long-term applications.
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• Berta Bescos, Jose M. Facil, Javier Civera and José Neira. “DynaSLAM: Track-
ing, Mapping and Inpainting in Dynamic Scenes”. IEEE Robotics and Automa-
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gent Robots and Systems, October 2018.

• Guoxiang Zhou, Berta Bescos, Marcin Dymczyk, Mark Pfeiffer, José Neira ,
Roland Siegwart. “Dynamic Objects Segmentation for Visual Localization in
Urban Environments”. Poster Presentation within the Workshop From freezing
to jostling robots: Current challenges and new paradigms for safe robot naviga-
tion in dense crowds at IEEE International Conference on Intelligent Robots and
Systems, October 2018.

• Berta Bescos, Jose M. Facil, Javier Civera and José Neira. “Detecting, Track-
ing and Eliminating Dynamic Objects in 3D Mapping using Deep Learning and
Inpainting”. Oral and Poster Presentation within the Workshop Representing a
Complex World: Perception, Inference, and Learning for Joint Semantic, Geomet-
ric, and Physical Understanding at IEEE International Conference on Robotics
and Automation, May 2018.

• Berta Bescos, Jose M. Facil, Javier Civera and José Neira. “Robust and Accu-
rate 3D Mapping by combining Geometry and Machine Learning to deal with
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and Systems, September 2017.
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Chapter 3

Inpainting of Dynamic Objects

Most vision-based localization systems are conceived to work in static environments
(Mur-Artal & Tardós (2017), Engel et al. (2017), Forster et al. (2014)). They can deal
with small fractions of dynamic content through RANSAC and robust cost functions
mostly, but tend to compute dynamic objects motion as camera ego-motion when these
become relevant within the scene. Thus, their performance is compromised. Building
stable maps is also of key importance for long-term autonomy. Mapping dynamic
objects prevents vision-based robotic systems from recognizing already visited places
and reusing pre-computed maps.

To deal with dynamic objects, some approaches include in their model the behavior
of the observed dynamic content (Lamarca et al. (2019)). Such strategy is needed
when the majority of the observed scene is not rigid. However, when scenes are mainly
rigid, as in Fig. 2.6a, the standard strategy consists of detecting the dynamic objects
within the images and not to use them for localization and mapping, as in the work
presented in the previous chapter (Bescos et al. (2018)) among others (Alcantarilla
et al. (2012), Wang & Huang (2014), Tan et al. (2013)). To address mainly rigid
scenes, we propose in this chapter to instead modify these images so that dynamic
content is deleted and the scene is converted realistically into static. We consider
that the combination of experience and context allows to hallucinate, i.e., inpaint, a
geometrically and semantically consistent appearance of the rigid and static structure
behind dynamic objects. This hallucinated structure can be used by localization and
mapping systems to provide them with robustness against dynamic objects. Turning
images containing dynamic objects into realistic static frames reveals several challenges:

• Detecting such dynamic content in the image. By this, we mean to detect not
only those objects that are known to move such as vehicles, people and animals,
but also the shadows and reflections that they might generate, since they also
change the image appearance. This can be done with any of the approaches
presented in the previous chapter.

• Inpainting the resulting space left by the detected dynamic content with plausible
imagery. The resulting image would succeed in being realistic if the inpainted
areas are both semantically and geometrically consistent with the static content
of the image.

The first challenge can be addressed with geometrical approaches if an image se-
quence is available. This procedure usually consists in studying the optical flow con-
sistency along the images (Wang & Huang (2014), Alcantarilla et al. (2012), Bescos
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et al. (2018)). In the case in which only one frame is available, deep learning is the
approach that excels at this task by the use of CNNs (He et al. (2017), Romera et al.
(2018), Badrinarayanan et al. (2017). These frameworks are trained with the previous
knowledge of what classes are dynamic and which ones are not. More recent works
show that it is possible to acquire this knowledge in a self-supervised way (Barnes
et al. (2018), Zhou, Bescos, Dymczyk, Pfeiffer, Neira & Siegwart (2018)).

Regarding the second challenge, traditional image inpainting approaches use image
statistics of the remaining image to fill in the holes (Telea (2004), Bertalmio et al.
(2001)). The former work estimates the pixel value with the normalized weighted
sum of all the known pixels in the neighbourhood. While this approach generally
produces smooth results, it is limited by the available image statistics and has no
concept of visual semantics. Neural networks learn semantic priors and meaningful
hidden representations in an end-to-end fashion, which have been used for recent image
inpainting efforts (Liu et al. (2018), Yu et al. (2018), Iizuka et al. (2017), Pathak
et al. (2016)). These networks employ convolutional filters on images, replacing the
removed content with inpainted areas that have geometrical and semantic consistency
with the whole image. The recent work of Rosinol et al. (2020) uses a tecnhique called
dynamic masking to map static parts of dynamic scenes. Besides that, regarding video-
based inpainting works, the work by Granados et al. (2012) removes marked dynamic
objects from videos by aligning other candidate frames in which parts of the missing
region are visible, assuming that the scene can be approximated using piecewise planar
geometry. The recent work of Uittenbogaard et al. (2019) utilizes a GAN to learn to
use information from different viewpoints and select imagery information from those
views to generate a plausible inpainting which is similar to the ground-truth static
background.

We address the inpainting of the static background with video-based techniques by
means of multi-view geometry (Section 3.2) and also with deep-learning image-based
inpainting (Section 3.3). To the best of our knowledge, we are the first ones to attempt
to solve visual SLAM in dynamic environments by hallucinating the plausible static
background directly from the sensor data.

3.1 Related Work

Inpainting is the process of reconstructing lost or deteriorated parts of images and
videos. For instance, in the museum world, in the case of a valuable painting, this
task would be carried out by a skilled art conservator or art restorer. In the digital
world, inpainting (also known as image interpolation or video interpolation) refers to
the application of sophisticated algorithms to replace lost or corrupted parts of the
image data. We hereby summarize the different digital inpainting techniques that are
the current state of the art, and highlight how they differ from ours.

3.1.1 Video-Based Inpainting

The work by Granados et al. (2012) removes marked dynamic objects from videos by
aligning other candidate frames in which parts of the missing region are visible, assum-
ing that the scene can be approximated using piecewise planar geometry. The recent
work by Uittenbogaard et al. (2019) utilizes a Generative Adversarial Network (GAN)
to learn to use information from different viewpoints and select imagery information
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from those views to generate a plausible inpainting which is similar to the ground-truth
static background. The former work assumes that there is very little motion between
consecutive frames, and the latter work uses GPS data to help with the inpainting
task. These assumptions make these methods unsuitable for SLAM applications.

Previous works on SLAM in dynamic scenes have attempted to reconstruct the
background occluded by dynamic objects in the images with information from previ-
ous frames (Scona et al. (2018)). In this chapter, more precisely in Section 3.2, we
present one of our contributions to video-based inpainting within a SLAM framework
for RGB-D sensor setups (Bescos et al. (2018)). Such works –both StaticFusion (Scona
et al. (2018)) and ours– need per-pixel depth information and only make use of the
static content of the pre-built map to create the inpainted frames, but do not add any
semantic consistency. Eventually, if only one frame is available, the static occluded
background can only be reconstructed by utilizing image-based inpainting techniques.

3.1.2 Image-Based Inpainting

Among the non-learning approaches to image-based inpainting, propagating appear-
ance information from neighboring pixels to the target region is the usual procedure
(Telea (2004), Bertalmio et al. (2001)). Accordingly, these methods succeed in dealing
with small and narrow holes, as can be seen in Fig. 3.1a, where color and texture vary
smoothly, but fail when handling big holes, resulting in over-smoothing. Differently,
patch-based methods iteratively search for relevant patches from the rest of the image
(Efros & Freeman (2001)). These approaches are computationally expensive and hence
not fast enough for real-time applications. Yet, they do not make semantically aware
patch selections.

(a) The areas of the damaged image can be correctly re-
covered using the statistics of the image itself, as these
are small (Telea (2004)). It is not necessary to have a
semantic understanding of the image to reconstruct it.

(b) This reconstruction can only be done
with deep learning techniques, since the
reconstructed image has semantic as well
as geometric coherence (Liu et al. (2018)).

Figure 3.1: Examples of inpainting methods without (a) and with deep learning (b).
On the one hand, the former approaches can handle small narrow holes, but result in
over-smoothing when dealing with big holes. For example, inpainting the face in (b)
with one of these methods would generate a face without eyes. On the other hand,
the combination of experience and context allows deep-learning works to inpaint a
geometrically and semantically consistent appearance.

Deep learning based inpainting methods usually initialize the image holes with a
constant value, and further pass it through a CNN. Context Encoders (Pathak et al.
(2016)) were among the first ones to successfully use a standard pixel-wise reconstruc-
tion loss, as well as an adversarial loss for image inpainting tasks. Due to the resulting
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artifacts, Yang et al. (2017) take the results from Context Encoders as input and then
propagate the texture information from non-hole regions to fill the hole regions as
post-processing. Song et al. (2017) use a refinement network in which a blurry ini-
tial hole-filling result is used as the input, then iteratively replaced with patches from
the closest non-hole regions in the feature space. Iizuka et al. (2017) extend Content
Encoders by defining global and local discriminators, then apply a post-processing.
Following this work, Yu et al. (2018) replaced the post-processing with a refinement
network powered by the contextual attention layers. The recent work of Liu et al.
(2018) obtains excellent results by using partial convolutions, as can be seen with the
example of Fig. 3.1b. The combination of experience and context allows these works
to hallucinate, i.e., inpaint, a geometrically and semantically consistent appearance of
the reconstructed scene.

In contrast, the work by Ulyanov et al. (2018) proves that there is no need for
external dataset training. The generative network itself can rely on its structure to
capture a great deal of low-level image statistics and complete the corrupted image.
However, this approach usually applies many iterations to get good and detailed results.

One of our works, which will be presented in Section 3.3, bins the image sequences
and treats the frames independently. Therefore, it makes use of image-based “inpaint-
ing”. We first use deep learning to segment out the a priori moving objects –vehicles,
animals and pedestrians–, and the binary dynamic mask is fed to the inpainting pro-
cess. Since partial or missing segmentation can happen frequently for any semantic
segmentation network when being used in practice, it is of high importance to use a
framework robust to such inaccuracies. We therefore aim to use an image-to-image
translation framework rather than a pure inpainting one. Image-to-image translation
is the task of taking images from one domain and transforming them so they have the
style or characteristics of images from another domain. The adoption of an image-to-
image translation framework allows us to slightly modify the image non-hole regions for
better accommodation of the reconstructed areas. Differently to inpainting methods,
the “holes” cannot be initialized with any placeholder values because we do not want
the framework to only modify those values and hence, our image-to-image translation
network input consists of the dynamic original image with the mask concatenated.

3.2 Geometric Inpainting

In this section we build on top of the contributions presented in Chapter 2 and go one
step further by inpainting the background behind dynamic objects with the static 3D
map information. For every removed dynamic object, we aim at inpainting the occluded
background with static information from previous views, so that we can synthesize a
realistic image without moving content. We believe that such synthesized frames,
containing the static structure of the environment, are useful for applications such as
virtual and augmented reality, and for relocation and camera tracking after the map is
created.

Once we know the position of the previous and current frames, we project into the
dynamic segments of the current frame the RGB and depth channels from a set of all
the previous key frames (the last 20 in our experiments). Some gaps have no correspon-
dences and are left blank: some areas cannot be inpainted because their correspondent
part of the scene has not appeared so far in the key frames, or, if it has appeared, it
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has no valid depth information. These gaps cannot be reconstructed with geometri-
cal methods and would need a more elaborate inpainting technique. Fig. 3.2 shows
the resulting synthesized images for three input frames from different sequences of the
TUM benchmark. Notice how the dynamic content has been successfully segmented
and removed. Also, most of the segmented parts have been properly inpainted with
information from the static background. We can see though a small color difference
between the real and the reconstructed parts due to illumination changes.

(a) RGB images. (b) Depth map.

(c) Inpainted RGB images. (d) Inpainted depth map.

Figure 3.2: Qualitative results of our inpainting approach. In (a) we show three RGB
input frames, and in (c) we show the output of our system, in which all dynamic
objects have been detected and the background has been reconstructed. (b) and (d)
show respectively the depth input and output maps, which have also been processed.

Another application of these synthesized frames would be the following: if the
frames dynamic areas are inpainted with the static content, the system can work as a
SLAM system under the staticity assumption using the inpainted images. The pipeline
of a such a system can be seen in Fig. 3.3. Opposed to the previously introduced
pipeline (Fig. 2.7), this system introduces the background inpainting stage right before
the localization of the camera. The resulting camera ATE can be consulted in Table 3.1
in comparison with the SLAM results with dynamic objects detection. Adding the
background inpainting stage (BI) before the localization of the camera usually leads
to less accuracy in the tracking. The reason is that the background reconstruction is
strongly correlated with the camera poses. Hence, for sequences with purely rotational
motion (rpy, halfsphere), the estimated camera poses have a greater error and lead to a
non-accurate background reconstruction. The main accomplishment of the background
reconstruction is seen in the synthesis of the static images (Fig. 3.2) for applications
such as virtual reality or cinematography. These frames could also be of particular
value for the task of visual place recognition.

Geometry and video-based inpainting methods as this one allow to reconstruct im-
ages that can be semantically and geometrically coherent. However, either an accurate
camera frame pose is needed or assumptions that limit its applicability are made about
the camera movement. The nature of this solution limits its applicability for visual
odometry problems, however, it can provide a great benefit for place recognition prob-
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Figure 3.3: Block diagram of our pipeline for dynamic objects detection and inpainting.
In the case in which a RGB-D camera is used ( ), we inpaint the background occluded
by dynamic objects once they are detected. These synthesized frames are directly used
for both camera tracking and mapping.

Sequence DynaSLAM
(N)

DynaSLAM
(G)

DynaSLAM
(N+G)

DynaSLAM
(N+G+BI)

w halfsphere 0.025 0.035 0.025 0.029
w xyz 0.015 0.312 0.015 0.015
w rpy 0.040 0.251 0.035 0.136
w static 0.009 0.009 0.006 0.007

s halfsphere 0.017 0.018 0.017 0.025
s xyz 0.014 0.009 0.015 0.013

Table 3.1: Absolute trajectory RMSE [m] for several variants of DynaSLAM (RGB-D).

lems. Image-based inpainting methods can though create realistic images uniquely
based on the image statistics, regardless of the camera trajectory within the scene
structure. Among image-based inpainting methods, the ones that make use of deep
learning excel at reconstructing the static scene when semantic information –on top of
geometric– is required. The nature of this solution allows to translate dynamic images
into static as a pre-processing stage of any visual odometry or SLAM framework. This
is what the following sections in this chapter are about.

3.3 Inpainting with Deep Learning

In this section we aim at utilizing more elaborate inpainting techniques based on deep
learning. This allows us to perform inpainting on images uniquely with RGB informa-
tion –opposed to with RGB-D data as in the previous section–. Also, deep learning
leverages experience and the image context to inpaint the static background with plau-
sible imagery with no explicit knowledge of the camera pose.

3.3.1 Image-to-Image Translation

Our work makes use of the successful image-to-image translation framework by Isola
et al. (2017). For the sake of completeness, we summarize the basis of their approach.

A GAN is a generative model that learns a mapping from a random noise vector z
to an output image y, G: z → y (Goodfellow et al. (2014)). In contrast, a conditional
GAN (cGAN) learns a mapping from observed image x and optional random noise
vector z, to y, G : {x, z} → y (Gauthier (2014)), or G : x→ y (Isola et al. (2017)).

42



The generator G is trained to produce outputs indistinguishable from the “real” images
by an adversarially trained discriminator, D, which is trained to do as well as possible
at detecting the generator’s “fakes”. The objective of a cGAN can be expressed as

LcGAN(G,D) = Ex,y[logD(x, y)] + Ex[log (1−D(x,G(x)))], (3.1)

where G tries to minimize this objective against an adversarial D that tries to maximize
it. Previous approaches have found it beneficial to mix the GAN’s objective with a
more traditional appearance loss, such as the L1 or L2 distance (Pathak et al. (2016)).
The discriminator’s job remains unchanged, but the generator is tasked not only with
fooling the discriminator, but also with being near the ground-truth in a L1 sense, as
expressed in

G∗ = arg min
G

max
D

LcGAN(G,D) + λ1 · LL1(G), (3.2)

where LL1(G) = Ex,y[||y − G(x)||1]. The recent work of Isola et al. (2017) shows
that cGANs are suitable for image-to-image translation tasks, where the output image
is conditioned on its corresponding input image, i.e., it translates an image from one
space into another (semantic labels to RGB appearance, RGB appearance to drawings,
day to night, etc.). The realism of their results is also enhanced by their generator
architecture. They employ a U-Net (Ronneberger et al. (2015)), which allows low-level
information to shortcut across the network. We have employed such architecture in
our work and obtained fair results for 256 × 256 resolution images. However, visual
localization systems see their accuracy degraded when working with such low-resolution
images. For this objective, we therefore decide to employ, as the architecture of our
generator G, a UResNet (Guerrero et al. (2018)), see Fig. 3.4. This architecture uses
residual blocks (Hinton & Salakhutdinov (2006)) and has shown impressive results for
super-resolution images (Kingma & Welling (2013)).
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Figure 3.4: Our generator G adopts a UResNet-like architecture. It employs 3 down-
convolutional layers with a stride of 2, 6 ResNet blocks and 3 up-convolutional layers
with a fractional stride of 1/2, with skip connections between corresponding down- and
up-convolutional layers. Only 2 ResNet blocks are shown for simplicity.

It is well known that L2 and L1 losses produce blurry results on image genera-
tion problems, i.e., they can capture the low frequencies but fail to encourage high
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frequency crispness. This motivates restricting the GAN discriminator to only model
high frequency structures. Following this idea, Isola et al. (2017) adopt a discriminator
architecture that classifies each N ×N patch in an image –rather than classifying the
image as a whole– as real or fake. Due to their excellent results, we adopt this same
architecture for our discriminator.

3.3.2 Empty Cities

We name our proposed system Empty Cities. Empty Cities turns images of an urban
environment that show dynamic content, such as vehicles or pedestrians, into realistic
static frames which are suitable for localization and mapping. We first obtain the pixel-
wise semantic segmentation of the RGB dynamic image (SS) –see Fig. 3.5–. Then, the
segmentation of only the dynamic objects is obtained with the convolutional network
DynSS. Once we have this mask, we convert the RGB dynamic image to gray scale
and we compute the static image, also in gray scale, with the use of the generator
G, which has been trained in an adversarial way –for simplicity, the discriminator is
not shown in this diagram–. To fully exploit the capabilities of this framework for
localization and mapping, inpainting is enriched with a loss based on ORB features
detection, orientation and descriptors between the ground-truth and computed static
images. Another feature of our framework for localization and mapping is the fact that
we perform the inpainting in gray-scale rather than in RGB. The motivation for this is
that many visual localization applications only need the images grayscale information.
The different stages are described in the following blocks.

Figure 3.5: Block diagram of our proposal. We first compute the segmentation of
the RGB dynamic image, as well as its loss against its ground truth. Both the dy-
namic/static binary mask and dynamic image are used to obtain the static image. A
loss based on ORB features together with an appearance and an adversarial loss are
obtained and back-propagated until the RGB dynamic image. The striped blocks are
differentiable layers that are fixed and hence not modified during training time. The
adversarial discriminator is not shown here for simplicity.
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From Image-to-Image Translation to Inpainting

For our objective, dynamic objects masks are specially considered to re-formulate the
training objectives of the general purpose image-to-image translation work by Isola
et al. (2017). We adopt a variant of the cGAN that learns a mapping from observed
image x and dynamic/static binary mask m, to y, G : {x,m} → y. Also, the discrim-
inator D learns to classify ŷ = G(x,m) patches as “fake” from ŷ, m and x, and the
patches of y as “real” from y, m and x, D : {x, y/ŷ,m} → real/fake.

In most of the training dataset images, the relationship between the static and
dynamic regions sizes is unbalanced, i.e., static regions occupy usually a much bigger
area. This leads us to believe that the influence of dynamic regions on the final loss
is significantly reduced. As a solution to this problem, we propose to re-formulate
the cGAN and L1 losses so that there is more emphasis on the main areas that have
to be inpainted, according to Eqns. 3.3 and 3.4. The weights w are computed as
w = N

Ndyn
if m = 1 (dynamic object), and as w = N

N−Ndyn
if m = 0 (background). N

stands for the number of elements in the binary mask m, and Ndyn means the number
of pixels where m = 1.

LL1(G) = Ex,y[w · ‖y −G(x,m)‖1], (3.3)

LcGAN(G,D) = Ex,y[w · logD(x, y,m)] + Ex[w · log (1−D(x,G(x,m),m))], (3.4)

An important feature that we have also incorporated to the framework is the com-
putation of our output and target images “noise”. This is motivated by the use of the
noise domain for steganalysis to detect if an image has been tampered or not. Fig. 3.6
shows an example of why working in the noise domain is helpful for detecting “fake”
images. While the static generated image (Fig. 3.6b) looks visually similar to its target
image (Fig. 3.6d), their computed noises (Figs. 3.6c and 3.6e) are very different. It
would be very easy for us, humans, to tell what parts of the original image (Fig. 3.6a)
have been changed by analyzing their noise mapping. In the same way, the discrim-
inator could more easily learn to distinguish “real” from “fake” images if it can take
as input their noise. This idea is explained more in depth in the following block, and
the whole training procedure is diagrammed in Fig. 3.7. To the best of our knowledge,
steganalysis noise features have not been used before in the context of GANs.

(a) (b) (c) (d) (e)

Figure 3.6: (b) shows the image generated by our framework when taking (a) as input.
(d) is the static objective image. (b) and (d) are visually similar, but their computed
noise ((c) and (e) respectively) clearly show what image and what parts of it have been
modified the most. The noise magnitude has been amplified (× 10) for visualization.
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Figure 3.7: The discriminator D has to learn to differ between the real images y and
the images generated by the generator G(x,m). D makes a better decision (real / fake)
by seeing the inputs of the generator x and m, and by seeing the SRM noise features
of G(x,m) and y. The striped blocks are convolutional layers whose weights do not
require upgrading during training time.

This GAN training setup leads to having good inpainting results. However, despite
the efforts of the discriminator to catch the high frequency of the “real” images, the
outputs of our framework are still slightly blurry. One of the objectives of this work is
to use our images for localization tasks, therefore, if the inpainted regions are somewhat
blurry, features would not be extracted in these areas. Image features are important for
localization since many visual SLAM systems rely on them as their core –ORB-SLAM
(Mur-Artal et al. (2015))–. Having blurriness in inpainted areas could be seen as a good
feature of our framework for navigation because it would allow feature-based localiza-
tion systems to work with our images without any modification in their architecture,
and “fake” features would not be introduced. This would be equivalent to modifying
the utilized localization system to work with the raw images and the dynamic/static
binary masks. We have proved with our localization experiments (Subsection 3.5.1)
that not utilizing dynamic objects’ features leads to worse tracking results than work-
ing with fully static images. For that reason, we want to exploit our framework for
obtaining both high-quality inpainting results, and to succeeding in generating reliable
features for visual localization tasks. Fortunately, these two assignments are highly
related. Solving one of them leads to having the other one tackled. Therefore, we have
implemented a new loss based on ORB features (Rublee et al. (2011)). That is, we
want the output of our generator G to have the same ORB features than its target
image, while keeping it realistic and close to its target in a L1 sense. By the same
ORB features we mean the same detected keypoints with their same orientation and
descriptors, following ORB’s implementation to the extent possible. This procedure is
further described in Subsection 3.3.2.

Steganalysis-Based Loss

With the advances of image editing techniques, tampered or manipulated image gen-
eration processes have become widely available. As a result, distinguishing authentic
images from tampered images has become increasingly challenging.

What our framework is actually trying to achieve is to eliminate certain regions
from an authentic image followed by inpainting, i.e., removal, one of the most common
image manipulation techniques. It is the discriminator’s job to classify the generated
image patches as tampered –fake– or real.

Images have a low-frequency component dependent on their content, and a high-
frequency component dependent on their source. These high-frequency components are
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known as noise features or noise residuals, and can be extracted using linear and non-
linear high-pass filters. Recent works on image forensics utilize noise features as clues
to classify a specific patch or pixel in an image as tampered or not, and localize the
tampered regions (Fridrich & Kodovsky (2012), Zhou, Han, Morariu & Davis (2018)).
The intuition behind this idea is that when an object is removed from one image
(source) and the gap is inpainted (target), the noise features between the source and
target are unlikely to match.

To provide the discriminator with better clues to distinguish real from fake inputs,
we first extract the noise features from our images and concatenate them to the gray-
scale images, as depicted in Fig. 3.7. The cGAN’s objective is re-formulated as

LcGAN(G,D) = Ex,y[w · logD(x, y,m, n)] + Ex[w · log (1−D(x, ŷ,m, n̂))], (3.5)

where n = SRM(y) and n̂ = SRM(ŷ). There are many ways to produce noise features
from an image. Inspired by recent progress on Steganalysis Rich Models (SRM) for im-
age manipulation detection (Fridrich & Kodovsky (2012)), we use SRM filter kernels to
extract the local noise features from the static images as the input to our discriminator.
The SRM use statistics of neighboring noise residual samples as features to capture the
dependency changes caused by embedding. Zhou, Han, Morariu & Davis (2018) use
SRM residuals, together with the RGB image to detect and localize corrupted regions
in images. They only use three SRM kernels, instead of thirty –as in the original work
of Fridrich & Kodovsky (2012)–, and claim that they achieve comparable performance.
Similarly, we use these same three filters (Fig. 3.8), setting the kernel size of the SRM
filter layer to be 5× 5× 3.

Figure 3.8: The three utilized SRM kernels to extract noise features. The left kernel is
useful in regions with a strong gradient. The middle and the rightmost kernels provide
the layer with a high shift-invariance.

ORB-Features-Based Loss

ORB features allow real-time detection and description, and provide good invariance
to changes in viewpoint and illumination. Furthermore, they are useful for visual
SLAM and place recognition, as demonstrated in the popular ORB-SLAM (Mur-Artal
et al. (2015)) and its binary bag of visual words (Gálvez-López & Tardos (2012)).
The following paragraphs summarize how the ORB features detector, descriptors and
orientation are computed, and how we have adapted them into a new loss.

Detector: The ORB Detector is based on the FAST algorithm (Rosten & Drum-
mond (2006)). It takes one parameter, the intensity threshold t between the center
pixel p, Ip, and those in a circular ring around the center. If there exists a set of
contiguous pixels in the circle which are all brighter than Ip + t, or all darker than
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Ip − t, the pixel p would be a key point candidate. Then the Harris corner measure
is computed for each of these candidates, and the target N key points with the high-
est Harris measure are finally selected. FAST does not produce multi-scale features,
therefore, ORB uses a scale pyramid of the image and extracts FAST features at each
level in the pyramid.

To bring this to a differentiable solution, we have defined a convolution capable of
detecting corners in an image in the same way that FAST does it. We have approxi-
mated the FAST corner detection and have used instead a convolution with the kernels
shown in Fig. 3.9. These images show some of the kernels used for corners detection
for a circular ring of 3 pixels around the center. By convolving the image with these
kernels for different kernel sizes, we obtain its corner response for the different image
pyramid levels. We keep the maximum score per pixel and per level, and we then raise
each element to its 2nd power –to equally leverage positive and negative responses–
and subtract a value, equivalent to the FAST threshold t. This is followed by a sigmoid
operation. Its output is the probability of a pixel of being a FAST feature, and could
also be seen as the Harris corner measure. The features for the output and target
images are computed following this procedure. We define this network as det, and the
corresponding loss Ldet(G) can be expressed as

Ldet(G) = −Ex,y[wdet · (det(y) · log(det(ŷ)) + (1 − det(y)) · log(1 − det(ŷ)))], (3.6)

where ŷ = G(x,m) and wdet is calculated following Eqn. 3.7. This weights definition
allows us to leverage the uneven distribution of non-features and features pixels, and
to affect only those image regions with a wrong feature response. N stands for the
number of pixels in the features map, and Nf represents the number of pixels in the
response map det(y) where det(y) > 0.5, i.e., the number of FAST features in the
current objective frame.

wdet =


N
Nf
, det(y) > 0.5 and det(ŷ) ≤ 0.5
N

N−Nf
, det(y) ≤ 0.5 and det(ŷ) > 0.5

0, otherwise

(3.7)

Figure 3.9: A subset of the 16 kernels used to obtain corner responses in the images.
The 12 black pixels have a value of −1/12, the gray pixels are set to 0, and the white
pixel is set to 1. A very positive or a very negative response will be obtained when
convolving these kernels with a corner area in an image.

According to our results, the optimum number of image pyramid levels for this
objective is 1. More levels lead to a greater training time and the results are barely
influenced. This is coherent with the idea that we want to maximize the sharpness of
small features rather that of the big corners. These convolutions have been applied
with a stride of 5, offering a good trade-off between computational training time and
good-quality results.

48



Other approaches have tried before to include a similar loss inside a CycleGAN
framework: the work by Porav et al. (2018) uses the SURF detector (Bay et al. (2008)),
which is already differentiable, but does not compute a binary loss. They compute a
more traditional L1 loss between the blob responses of both output and ground-truth
images. Computing a binary loss as in Eqn. 3.7 allows us to have more emphasis on
the high-gradient areas.

Orientation: Once FAST features have been detected, the original ORB work ex-
tracts their orientation to provide them with rotation invariance. This is done by com-
puting its orientation θ = atan2(m01,m10) and its intensity centroid C = (m10

m00
, m01

m00
),

where mpq =
∑

x,y x
pyqI(x, y) are the moments of an image patch. More precisely,

the three utilized patch moments are m10 =
∑

x,y x · I(x, y), m01 =
∑

x,y y · I(x, y) and
m00 =

∑
x,y I(x, y). We have created three 14-pixel-radius circular kernels with the

values x, y and 1 respectively for m10, m01 and m00 (centered in 0), so that when
convolving the image with them, we obtain their respective patch moments m01, m10

and m00. We define this network as ori, and the objective of its corresponding loss is
that the “fake” static image detected features, det(G(x,m)), have the same orientation
parameters m01, m10 and m00 than the ground-truth static image detected features,
det(y). This loss can be expressed as

Lori(G) = −Ex,y[wori · ‖ori(y)− ori(ŷ)‖1]. (3.8)

Even though these convolutions are applied to the whole image with a stride of 5
–as in the detection loss–, the weighting term wori in Eqn. 3.8 has a value of 1 if a
FAST feature has been detected in either the ground-truth static image or the output
image, i.e., if det(y) > 0.5 or det(ŷ) > 0.5. Otherwise, the weighting term wori is 0.

Descriptor: The ORB descriptor is a bit string description of an image patch
constructed from a set of binary intensity tests. Consider a smoothed image patch, p,
a binary test τ is defined by

τ(p;x, y) =

{
1, p(x) < p(y)
0, p(x) ≥ p(y)

(3.9)

where p(x) is the intensity of p at a point x. The feature is defined as a vector of n
binary tests

fn(p) =
∑

1≤i≤n

2i−1τ(p;xi, yi) (3.10)

As in the work of Rublee et al. (2011), we use a Gaussian distribution around the
center of the patch and a vector length n = 256. This can be achieved in a differentiable
and convolutional manner by creating n kernels with all values set to 0 except for those
in the positions x and y:

k(z) =


1, z = x
−1, z = y
0, otherwise

(3.11)

where k(z) is the value of the kernel k at a point z. Convolving an image with these
n kernels yields each pixel’s ORB descriptor –a negative output corresponds to the bit
value 0 and a positive one to 1–. This convolution is followed by a sigmoid activation
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function. We define this network as desc, and the corresponding loss Ldesc(G) can be
expressed as

Ldesc(G) = −Ex,y[wdesc ·(desc(y)·log(desc(ŷ))+(1−desc(y))·log(1−desc(ŷ)))], (3.12)

where the weights wdesc are defined in Eqn. 3.13. This descriptors loss is back-propagated
to the whole image, whether a feature has been detected or not, as it helps keeping the
image statistics.

wdesc =


1, desc(y) > 0.5 & desc(ŷ) ≤ 0.5
1, desc(y) ≤ 0.5 & desc(ŷ) > 0.5
0, otherwise

(3.13)

All these losses are combined into one loss LORB(G), that is computed as in
Eqn. 3.14. The values for the weights of the different losses λdet, λori and λdesc have
been chosen empirically, and they are set to 10, 0.1 and 1 respectively.

LORB(G) = λdetLdet(G) + λoriLori(G) + λdescLdesc(G) (3.14)

The features detection, orientation and descriptor maps can be computed in a
parallel way to decrease the training time, since their computation is not necessarily
sequential. Finally, the generator’s job can be expressed as in Eqn. 3.15.

G∗ = arg min
G

max
D

LcGAN(G,D) + λ1 · LL1(G) + LORB(G) (3.15)

As an implementation detail, we have first trained the whole system without the
ORB loss for 125 epochs, and then have fine-tuned including it for another 25 epochs.

Semantic Segmentation

Semantic segmentation is a challenging task that addresses most of the perception
needs of intelligent vehicles in a unified way. Deep neural networks excel at this task,
as they can be trained end-to-end to accurately classify multiple object categories in
an image at pixel level. However, very few architectures have a good trade-off between
high quality and computational resources. The recent work of Romera et al. (2018)
runs in real time while providing accurate semantic segmentation. The core of their
architecture (ERFNet) uses residual connections and factorized convolutions to remain
efficient while retaining remarkable accuracy.

Romera et al. (2018) have made public some of their trained models. We use for our
approach the ERFNet model with encoder and decoder both trained from scratch on
Cityscapes train set (Cordts et al. (2016)). We have fine tuned their model to adjust
it to our inpainting approach by back-propagating the loss of the semantic segmenta-
tion LCE(SS), calculated with the cross entropy criterion using the class weights they
suggest, wSS, and the adversarial loss of our final inpainting model LcGAN(G,D). The
semantic segmentation network’s job (SS) can be hence expressed as:

SS∗ = arg min
SS

max
D

LcGAN(G,D) + λ2 · LCE(SS), (3.16)

where LCE(SS) = wSS[class] · (log
∑

j exp(ySS[j]) − ySS[class]). Its objective is to
produce an accurate semantic segmentation ySS, but also to fool the discriminator D.
The latter objective might occasionally lead the network to not only recognize dynamic
objects but also their shadows.
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Dynamic Object Semantic Segmentation

Once the semantic segmentation of the RGB image is done, we can select those classes
known to be dynamic (vehicles and pedestrians). This has been done by applying a
SoftMax layer, followed by a convolutional layer with a kernel of n × 1 × 1, where n
is the number of classes, and with the weights of those dynamic and static channels
set to wdyn and wstat respectively. With wdyn =

n−ndyn

n
and wstat = −ndyn

n
, where ndyn

stands for the number of dynamic existing classes. A positive output corresponds to a
dynamic object, whereas a negative one corresponds to a static one.

The consequent output passes through a Tanh layer to obtain the wanted dy-
namic/static mask. Note that the defined weights wdyn and wstat are not changed
during training time.

3.4 Image-Based Experiments

3.4.1 Data Generation

We have analyzed the performance of our method using CARLA (Dosovitskiy et al.
(2017)). CARLA is an open-source simulator for autonomous driving research, that
provides open digital assets (urban layouts, buildings, vehicles, pedestrians, etc.). The
simulation platform supports flexible specification of sensor suites and environmental
conditions. We have generated over 12000 image pairs consisting of a target image
captured with neither vehicles nor pedestrians, and a corresponding input image cap-
tured at the same pose with the same illumination conditions, but with cars, tracks and
people moving around. These images have been recorded using a front and a rear RGB
camera mounted on a car. Their ground-truth semantic segmentation has also been
captured. CARLA offers two different towns that we have used for training and test-
ing, respectively. Our dataset, together with more information about our framework,
is available on https://bertabescos.github.io/EmptyCities SLAM/.

At present, we are limited to training this framework on synthetic datasets since,
to our knowledge, no real-world dataset exists that provides RGB images captured
under same illumination conditions at identical poses, with and without dynamic ob-
jects. In order to render our framework –trained on synthetic data– transferable to
real-world data, we have fine-tuned our models with data from the Cityscapes and
KITTI semantic segmentation training datasets (Cordts et al. (2016), Geiger et al.
(2013)). These datasets are semantically similar to the ones synthesized with CARLA.
Nonetheless, their image statistics are different. We further explain this fine-tuning
process in subsection 3.4.3.

3.4.2 Inpainting

In this subsection we report the improvements achieved by our framework for inpaint-
ing. Table 3.2 shows the ablation study of our work for the different reported inputs
and losses. The existence of many possible solutions renders difficult to define a met-
ric to evaluate image inpainting (Yu et al. (2018)). Nevertheless, we follow previous
works and report the L1, PSNR and SSIM errors (Wang et al. (2004)), as well as a
feature-based metric Feat. This last metric computes the FAST features detection as
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explained in Subsection 3.3.2 for the output and ground-truth images, and compares
them, similarly to Eqn. 3.6.

Experiment G(x) G(x,m) G(x,m) G(x,m)|w G(x,m)|w G(x,m)|wORB
D(x, y) D(x, y) D(x, y,m) D(x, y,m)|w D(x, y,m, n)|w D(x, y,m, n)|w

L1(%) Full image 1.98 2.13 3.03 2.00 0.96 1.46
In 10.04 7.70 7.37 5.73 4.99 5.16
Out 1.70 1.95 2.92 1.88 0.80 1.32

Feat Full image 1.29 1.95 1.44 1.45 0.80 0.70
In 8.75 7.48 7.92 5.75 5.84 5.14
Out 1.04 1.77 1.26 1.33 0.62 0.53

PSNR Full image 29.89 29.85 28.31 30.46 34.03 33.03
In 17.39 20.30 20.58 22.56 23.25 23.29
Out 32.77 31.23 29.05 31.35 36.47 34.74

SSIM Full image 0.985 0.985 0.981 0.987 0.995 0.993
In 0.151 0.333 0.488 0.613 0.646 0.655
Out 0.993 0.989 0.985 0.990 0.997 0.995

Table 3.2: Quantitative evaluations of our contributions in the inpainting task on
the test synthetic images. The best results for almost all the inpainting metrics (L1,
PSNR and SSIM) are obtained with the generator G(x,m)|w and the discriminator
D(x, y,m, n)|w. More correct features (Feat metric) are detected though when adding
the features based loss G(x,m)|wORB. Full image designates the per-pixel error con-
sidering the whole image. For In and Out we refer respectively to the error per pixel
considering the masked and unmasked pixels.

Adding the dynamic/static mask as input for both the generator and discriminator
helps obtaining better inpainting results within the images hole regions –In–, at the
expense of having worse quality results in the non-hole regions –Out–. Leveraging the
unbalanced quantity of static and dynamic data within the dataset with w (Eqns. 3.3
and 3.4) helps obtaining better results too. Providing the GAN’s discriminator with
the images noise makes it learn better to distinguish between real and fake images,
and therefore the generator learns to produce more realistic images. One could say
that the SRM filters in Fig. 3.8 might already be learnt implicitly by the discriminator.
With this loss we are helping the discriminator so that it requires less training data
or less iterations. The ORB-based loss leads to slightly worse inpainting results –
according to L1, PSNR and SSIM metrics–, but renders this approach more useful for
both localization and mapping tasks since more correct features are created.

Baselines for Inpainting

We compare qualitatively and quantitatively our image-based “inpainting” method
with four other state-of-the-art approaches: two traditional non-learning approaches:
Bertalmio et al. (2001) and Telea (2004), and two deep learning based methods: Iizuka
et al. (2017) and Yu et al. (2018).

For a fair comparison, we have trained the approach by Yu et al. (2018) with our
same training data. Iizuka et al. (2017) do not have their training code available and
we have directly used their release model trained on the Places2 dataset (Zhou et al.
(2017)). This dataset contains images of urban streets from a car perspective similar to
ours. A more direct comparison is not possible. We provide them with the same mask
than to our method to generate the holes in the images. We evaluate qualitatively on
the 3000 images from our synthetic test dataset, on the 500 validation images from the
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Cityscapes dataset (Cordts et al. (2016)) and on the images from the Oxford Robotcar
dataset (Maddern et al. (2017)). We can see in Figs. 3.10, 3.11 and 3.12 the qualitative
comparisons on these three datasets. Note that results generated with the two learning
methods –Iizuka et al. (2017) and Yu et al. (2018)– have been generated with the color
images and then converted to gray scale for visual comparison. Visually, we see that
our method obtains a more realistic output –these results are computed without the
ORB loss for an inpainting oriented comparison–. Also, it is the only one capable
of removing the shadows generated by the dynamic objects even though they are not
included in the dynamic/static mask (Fig. 3.10 row 2 and Fig. 3.12 row 1). The utilized
masks are included in the images in Figs. 3.10a and 3.12a respectively.

(a) Input. (b) Telea
(2004).

(c) Yu et al.
(2018).

(d) Iizuka et al.
(2017).

(e) Ours. (f) Target.

Figure 3.10: Qualitative comparison of our method (e) against other inpainting tech-
niques (b), (c), (d) on our synthetic dataset. Our results are semantically and geomet-
rically coherent, and do not show the dynamic objects’ shadows, even if they are not
included in the input mask.

Table 3.3 shows the quantitative comparison of our method against the four pre-
sented state-of-the-art inpainting approaches on our CARLA dataset. It is not possible
to quantitatively measure the performance of the different methods on the Cityscapes
and Oxford Robotcar datasets, since ground-truth does not exist. By following these
results, we can claim that our method outperforms both qualitatively and quantita-
tively the other approaches.

As seen in Fig. 3.12 row 1, the fact that our method does not perform pure inpaint-
ing but image-to-image translation with the help of a dynamic/static mask allows us
to modify not only the dynamic objects themselves, but also their shadows or reflec-
tions. We want to highlight the importance of the inpainting robustness to inaccurate
segmentation masks since, in practice, partial or missing segmentation happens fre-
quently. Empty Cities cannot handle missing detections but can cope with partial
segmentations covering at least the 85 % of the object image. We hereby report some
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(a) Input. (b) Telea (2004). (c) Yu et al. (2018). (d) Ours.

Figure 3.11: Comparison of our method (d) against other image inpainting approaches
(b), (c) on the Cityscapes validation dataset (Cordts et al. (2016)). (c) and (d) show
the results when real images have been incorporated into our training set together with
the synthetic images with a ratio of 1/10.

Telea (2004) Bertalmio
et al. (2001)

Yu et al.
(2018)

Iizuka et al.
(2017)

Ours

L1(%) 6.55 6.69 8.91 9.50 4.99
Feat 6.24 6.33 10.03 10.63 5.84
PSNR 21.03 20.90 18.16 18.23 23.25
SSIM 0.479 0.467 0.309 0.316 0.646

Table 3.3: Quantitative results of our method against other inpainting approaches in
our CARLA dataset. For a fair comparison, we only report the different errors within
the images’ hole regions since the other methods are conceived to only significantly
modify such parts.

metrics evaluating how our framework behaves with the dynamic objects’ shadows.

Thresholding the difference between the dynamic and static image, and subtract-
ing the dynamic-objects mask yields its dynamic objects shadows and reflections mask.
We have first generated the shadows ground truth of our CARLA dataset, and then
computed the shadows masks for our inpainted images in the same way. The in-
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(a) Input. (b) Telea (2004). (c) Yu et al. (2018). (d) Ours.

Figure 3.12: Comparison of our method (d) against other image inpainting approaches
(b), (c) on the Oxford Robotcar dataset (Maddern et al. (2017)). (c) and (d) show the
results when Cityscapes images have been incorporated into our training set together
with the synthetic images with a 1/10 ratio. The binary dynamic/static mask computed
for every input image has been added on the top left corner of every raw.

tersection over union of the estimated shadows against the ground truth is 42.8 %.
Following recent works in shadow detection (Hosseinzadeh et al. (2018)), we also re-
port our method’s shadow, non-shadow and total accuracy –59.7 %, 99.8 % and 99.5 %
respectively–. With this framework, we can remove almost 50 % of the shadows of the
dynamic objects of our CARLA test dataset. Admitting this could be improved, our
method’s non-shadow accuracy is almost 100 %, which means that it does not modify
other objects’ shadows.

3.4.3 Transfer to Real Data

Models trained on synthetic data can be useful for real world vision tasks (Gaidon et al.
(2016), Peris et al. (2012), Skinner et al. (2016), Tobin et al. (2017)). Accordingly, we
provide a study of synthetic-to-real transfer learning using data from the Cityscapes
dataset (Cordts et al. (2016)), which offers a variety of urban real-world environments
similar to the synthetic ones.

When testing our method on real data, we see qualitatively that the synthesized
images show some artifacts. This happens because such data has different statistics
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than the real one, and therefore cannot be easily used. The combination of real and
synthetic data is possible during training despite the lack of ground-truth static real
images. In the case of the real images, the network only learns the texture and the
style of the static real world by encoding its information and decoding back the original
image non-hole regions. The synthetic data is substantially more plentiful and has
information about the inpainting process. The rendering, however, is far from realistic.
Thus, the chosen representation attempts to bridge the reality gap encountered when
using simulated data, and to remove the need for domain adaptation.

We provide implementation details: we have finetuned our model with real data for
25 epochs with a real/synthetic images ratio of 1/10. On the one hand, for every ten
images there are nine synthetic images that provide our model with information about
the inpainting task. On the other hand, one image out of those ten is a real image from
the Cityscapes train dataset. There is groundtruth of its semantic information but there
is no groundtruth of its static representation. In such cases we do backpropagation of
the loss derivative only on those image areas that we consider as static. This way, the
model can learn both the inpainting task –from the synthetic images–, and the static
real-world texture.

Dynamic to Static Image Translation via CycleGANs

We have also explored the task of translating dynamic images into static by means of
CycleGANs (Zhu et al. (2017)). A CycleGAN uses cycle-consistent adversarial neural
networks and is specifically designed to work with unpaired image datasets. This allows
us to work with real-world images instead of synthetic ones, removing the need for
synthetic-to-real domain adaptation. In pursuit of learning a mapping from dynamic
to static images, this framework also learns an inverse mapping, that is, a mapping
from static to dynamic images. The better one of the two mappings works, the better
the other one does. For more information about the functionality of this framework,
we refer the reader to the work by Zhu et al. (2017).

To create a suitable dataset for our specific task, we have made use of the Cityscapes
dataset (Cordts et al. (2016)) and have chosen the images with the highest and the
lowest dynamic content. This has been made thanks to the ground-truth semantic
segmentation that the dataset authors provide. We have then created a dataset with a
training set of 1185 dynamic images and 1049 static images, and a test set of 199 and
148 dynamic and static images respectively.

Dynamic object masks and the ORB-feature-based loss have been specially consid-
ered to turn the base CycleGAN framework from a general image-to-image translation
framework into a dynamic-to-static one. This is done by closely following the ap-
proaches in Subsection 3.3.2. One can see in Fig. 3.13 the qualitative results obtained
by the CycleGAN framework with the different incremental improvements for both
learnt mappings: dynamic to static and static to dynamic. The addition of the dy-
namic/static masks during both training and testing brings remarkable improvements
for the two mappings. The gains that the ORB-based loss brings are more subtle
though but render the output image more realistic.

CycleGANs are known to be masters of steganography (Chu et al. (2017)) since
they learn to hide information about the source image into the generated image in a
nearly imperceptible, high-frequency signal. This trick ensures that the generator can
recover the original sample and thus satisfy the cyclic consistency requirement, while
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(a) Dynamic input. (b) Output. (c) Output w/ mask. (d) Output w/ ORB.

(e) Static input. (f) Output. (g) Output w/ mask. (h) Output w/ ORB.

Figure 3.13: Qualitative results of the modified CycleGAN framework trained with
our dynamic/static dataset. One can see the results of the dynamic-to-static and the
static-to-dynamic image translation in the first and second three rows respectively.
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the generated image remains realistic. This can be also appreciated in our resulting
images, for example, in the first and second rows of Fig. 3.13d the rear lights of the
white van and the black car respectively are blended with the static background. Also,
the windows of the building in the last raw become the car windows. Our conclusion
is that even though the static generated images are highly realistic, the CycleGAN
framework does not perform inpainting in the sense of propagating the static structure
into the dynamic region, but keeps the dynamic structure and renders the background
with the texture of the static image areas.

As a quantitative measure of the quality of these generated images we have used
the semantic segmentation network ERFNet (Romera et al. (2017)) to classify each
pixel in the generated image. We want to analyze if the new dynamic and static areas
in the images are identified as such. The percentage of dynamic pixels of the resulting
images of the dynamic-to-static image translation can be seen in Fig. 3.14a, whereas
the dynamic pixel percentage of the images coming from the static-to-dynamic image
translation are seen in Fig. 3.14b. With our incremental improvements on top of the
CycleGAN framework the number of dynamic pixels tends to zero in the dynamic
to static mapping, and gets higher in the static to dynamic mapping. We can then
conclude that both our CycleGAN model and the semantic network implicitly learn
very similar hidden features.

0 5 10 15 20 25 30

w/ ORB

w/ mask

baseline

dynamic pixel percentage

(a) Dynamic-to-static image translation.

0 10 20 30 40 50 60

w/ ORB

w/ mask

baseline

dynamic pixel percentage

(b) Static-to-dynamic image translation.

Figure 3.14: Quantitative results of our modified CycleGAN framework trained with
our dynamic / static dataset. (a) shows the dynamic pixel percentage obtained by the
different frameworks in our dynamic-to-static test dataset (the lower the better). On
the other hand, (b) shows the dynamic pixel percentage in our static-to-dyanamic test
dataset (the higher the better).

The static generated images with this framework turn out to be highly realistic.
However, the results differ from the idea of inpainting, i.e., the static image structure is
not propagated into the image dynamic region. Also, our experiments are preliminary
since they are performed with 128 × 128 resolution images. Visual odometry, place
recognition and mapping applications usually require images with a higher resolution
as input. The achieved results have potential but for the rest of the chapter we report
the experiments for the Empty Cities framework with domain adaptation as explained
at the beginning of this subsection.
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3.5 Experiments

3.5.1 Visual Odometry

We have evaluated Empty Cities on 20 CARLA synthetic sequences and on 9 sequences
from real world new environments. For these visual odometry experiments we have
chosen the state-of-the-art feature-based system ORB-SLAM by Mur-Artal & Tardós
(2017)1 and the direct method DSO by Engel et al. (2017). The former system is ideal
to test the influence of our ORB features loss, and the latter is useful to prove that
other –very different– systems can also benefit from this approach.

Baselines for VO in our Synthetic Dataset

Fig. 3.15 displays the ORB-SLAM absolute trajectory RMSE [m] computed for 20
CARLA sequences of approximately 100 m long without loop closures. Fig. 3.15a
shows the results when many vehicles and pedestrians are moving independently –more
precisely, the number of vehicles and pedestrians have been set to the maximum allowed
by CARLA–, and Fig. 3.15f shows the same odometry results for the ground-truth static
sequences. We can see that dynamic objects have in many sequences a big influence on
ORB-SLAM’s performance –sequences 02, 07, 08, etc.–. Fig. 3.15b shows the trajectory
error obtained with our previous system DynaSLAM (Bescos et al. (2018)). This system
is based on ORB-SLAM and uses the semantic segmentation network Mask R-CNN
(He et al. (2017)) to detect the moving objects and not extract ORB features within
them. Even though better odometry results are obtained –compared against using the
raw dynamic images–, this experiment shows that using static images leads to a more
accurate camera tracking. One reason for this is that dynamic objects might occlude
the nearby regions in the scene, which are the most reliable for camera pose estimation.
Another reason might be that using dynamic objects masks does not yield anymore a
homogeneous features distribution within the image. ORB-SLAM looks for a uniform
distribution of image features. Pose optimization could be degraded and drifting could
increase if the features do not follow such distribution. Finally, Fig. 3.15c shows the
ORB-SLAM error when using our inpainted images. Our odometry results show that
better results are usually obtained when using our inpainted images. The inpainting
is realistic enough to provide the visual odometry system with consistent features that
are useful for localization.

We want to highlight the importance of the influence of using the ORB loss during
training (Fig. 3.16). Figs. 3.16a and 3.16b present the ATE obtained by ORB-SLAM
with our inpainted images without and with the ORB loss respectively. The estimated
errors are smaller and more constant when using this loss. This performance gain can
be due to features in the regions that originally contained dynamic objects, and to
more stable features in the static-content regions. Fig. 3.16c presents the DynaSLAM
ATE with the inpainted images generated with our model trained with this loss term.
We expect these errors to be very similar to those shown in Fig. 3.15b, and slightly
bigger than those in Fig. 3.16b. This experiment shows that our model barely damages
the static content of the scene, keeping the static features as they used to be. It also
demonstrates that the hallucinated features are useful to estimate the camera SE3 pose.
To support this claim, on the right-most side of Fig. 3.16 one can find the percentage

1ORB-SLAM acts as visual odometry in trajectories without loop closures.
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(d) Images of Telea (2004).
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(e) Images of Yu et al. (2018).
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(f) Static images.

Figure 3.15: The vertical axis shows the different sequences from our CARLA dataset
in which we have tested our model, and the horizontal axes show the ATE [m] ob-
tained by ORB-SLAM and DynaSLAM. We have computed the boxplots’ minimum,
maximum and quartiles with the results from 10 repetitions of every test.

of key points extracted in the inpainted areas w.r.t. to the ground-truth key points.
We show in Fig. 3.17 two examples of the visual influence of such loss on enhancing
high frequencies inpainted areas.

Fig. 3.18 shows the DSO error for the same 20 CARLA sequences for the different in-
put images –with dynamic content (Fig. 3.18a), without dynamic content (Fig. 3.18d),
and the images obtained by our framework without and with the ORB-based loss
(Figs. 3.18c and 3.18c)–. Even though direct systems are more robust to dynamic
objects, utilizing our approach also yields a higher tracking accuracy. Despite the fact
that our feature-based loss follows the ORB implementation, better results are also
obtained with other visual odometry system that do not rely on ORB features.

Baselines for Inpainting

We have compared in Section 3.4 the quality of our results with respect to the inpainting
metrics against four other methods. We want to compare now how our approach
compares to them w.r.t. visual odometry metrics. Among these four other methods
we have chosen two of them for this evaluation: that of Telea (2004), and that of Yu
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(a) Our images w/o ORB.
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(b) Our images w/ ORB.
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(c) Our images w/ ORB w/ mask.

Figure 3.16: The vertical axis shows the different sequences from our CARLA dataset,
and the horizontal axes show the ORB-SLAM ATE [m]. (a) and (b) show the ORB-
SLAM absolute trajectory RMSE [m] for our images obtained with the model trained
without and with the ORB loss term respectively. (c) shows the ATE computed by
DynaSLAM for our images obtained with the model trained with the ORB loss term.
On the right-most side of the figure one can find the percentage of key points extracted
in the inpainted areas, w.r.t. to the ground-truth key points.

(a) Input. (b) Output w/o ORB. (c) Output w/ ORB.

Figure 3.17: Visual comparison of the improvements achieved by utilizing the ORB-
based loss (c) againt not using it (b). One can see that the reconstructed curbs in (c)
are sharper and more straight than those in (b)

et al. (2018). The first choice is motivated by its performance on our inpainting test
dataset: this method performs the best among the two non-learning based approaches.
The second choice is however motivated by the fact that we have not been able to train
the model by Iizuka et al. (2017) with our training data for a direct comparison. The
evaluation and different results can be seen in Fig. 3.15.

The images inpainted by the method of Telea (2004) are usually very smooth and
no features are extracted within the inpainted areas. The behaviour of ORB-SLAM
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Figure 3.18: The vertical axis shows the different sequences from our CARLA dataset,
and the horizontal axes show the DSO ATE [m]. We have computed the boxplots’
minimum, maximum and quartiles with the results from 10 repetitions of every test.

when using such sequences (Fig. 3.15d) is very similar to using DynaSLAM. However,
the learning-based method byYu et al. (2018) tends to inpaint the images with low fre-
quency patterns found in the image static content, generating many crispy artifacts (see
examples in Fig. 3.12). A higher ATE is observed when using such images (Fig. 3.15e).
Our method seems to be more suitable for the VO task: the inpainting is neither too
smooth nor generates crispy artifacts.

Baselines for VO in Real World New Scenarios

For the evaluation of Empty Cities on real world environments w.r.t. visual odometry
we have chosen the KITTI and the Oxford Robotcar datasets (Geiger et al. (2013),
Maddern et al. (2017)). Dynamic objects in the KITTI odometry dataset do not
represent a big inconvenience for camera pose estimation, as was shown in the previous
chapter. Most of the vehicles that appear are not moving and lay in nearby scene
areas, thus their features happen to be helpful to compute the sensor odometry. Also,
the few moving pedestrians and cars along the sequences do not represent a big region
within the images. The Oxford Robotcar dataset has though many sequences with
representative moving objects (driving cars), having also sequences with only stationary
objects (parked cars). Note that, the reported results are not for the whole sequence
since the authors provide their VO solution as ground-truth, stating that it is accurate
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over hundreds of metres. Hence, the sequences we use are between 100 and 300 m long.
To perform the KITTI experiment (Fig. 3.19) we have re-trained our network with

256 × 768 resolution images for a better adaptation. The CARLA camera intrinsics
have also been modified to match the ones used in KITTI. In this case, we have shifted
the previously used semantic segmentation model trained only on Cityscapes for the
ERFNet model with encoder trained on ImageNet and decoder trained on Cityscapes
train set, and have finetuned it with the KITTI semantic segmentation training dataset.
The generator and discriminator have also been finetuned with such data as explained
in Subsection 3.4.3.

0 2 4 6 8 10 12
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06-24-15-03-07

05-19-13-05-38

05-06-13-17-51

* 05-06-12-54-54

* 05-06-13-09-52

* KITTI 03

KITTI 04

* KITTI 07

(a) ORB-SLAM.

0 2 4 6 8 10 12

(b) DynaSLAM.

0 2 4 6 8 10 12

(c) Ours.

Figure 3.19: The vertical axis show the KITTI and Oxford Robotcar datasets sequences
in which we have tested our model, and the horizontal axes show the boxplots of the
absolute trajectory RMSE [m] with the results from 10 repetitions of every test. The
asterisk in some sequence names means that most of the observed vehicles are parked.

Fig. 3.19 shows the evaluation of our method performance with the sequences from
the Oxford Robotcar and the KITTI datasets. The asterisk at the beginning of some
sequences names means that most of the observed vehicles are either not moving or
parked. The other sequences though present many moving vehicles. In the former
type of sequences (*) the highest accuracy should be observed in the case in which
the raw images are used (Fig. 3.19a). Removing the features from such vehicles as in
Fig. 3.19b leads to a lower accuracy since the most nearby features are no longer used.
Inpainting the static scene behind these vehicles (Fig. 3.19c) would still remove nearby
features but would create new static features a little bit further. That is, the visual
odometry accuracy should be lower than in Fig. 3.19a but a little bit higher or similar to
Fig. 3.19b. This is the case of our performance on the Oxford Robotcar sequences and
the KITTI sequence 03. However, DynaSLAM achieves a result in the KITTI sequence
07 better the proposed Empty Cities. After the first half of the sequence, there are a
few consecutive frames in which a truck covers almost 75 % of the image. The task of
inpainting becomes especially difficult, thus worsening the estimation of the camera’s
trajectory. Regarding the performance of the second type of sequences, removing the
features from moving vehicles and pedestrians should lead to a lower ATE (Fig. 3.19b
compared to Fig. 3.19a). Empty Cities adds in these sequences an important number of
features for pose estimation that usually leads to a slightly better trajectory estimation
(Fig. 3.19c). Note that the results given in here for the KITTI sequences might not
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match the ones reported by ORB-SLAM and DynaSLAM respectively because of the
utilized images resolution (256× 768).

3.5.2 Visual Place Recognition

Visual place recognition (VPR) is an important task for visual SLAM. Such algorithms
are useful when revisiting places to perform loop closure and correct the accumulated
drift along long trajectories. Bags of visual words (BoW) is the approach that is widely
used to perform such task, as can be seen in ORB-SLAM (Mur-Artal & Tardós (2017))
and LDSO (Gao et al. (2018)). Lately, thanks to the boost of deep learning, learnt
global image descriptors are also commonly used for VPR (Arandjelović et al. (2016)).

Baselines for Visual Place Recognition in our Synthetic Dataset

In this subsection we show a VPR experiment performed with the bag of words work
by Mur-Artal & Tardós (2014) and Gálvez-López & Tardos (2012). It is ideal to
test our model since is based on ORB features. We also show an experiment with
one of the strongest learning-based baselines: NetVLAD (Arandjelović et al. (2016)),
which is trained for the specific task of VPR. This comparison can provide a broader
understanding of how and when end-to-end task-specific learning becomes more or less
suitable than an explicit use of semantics-based visual description, which forms the
primary pitch of this paper.

For this experiment we have generated two CARLA sequences with loop closures
with and without dynamic objects. Two images are defined as the same place if they
are less than 10 meters apart.

The precision-recall curves for the BoW experiments are depicted in Fig. 3.20a. We
have extracted the visual words of every frame along the trajectories and have tried
to match every two images as a function of the number of common visual words. For
both trajectories the results obtained with the dynamic images with and without masks
are similar. This is congruent with the idea that the database of visual words mostly
contains static and long-term stable words. The first trajectory is a good example
of how the VPR recall drops fast in presence of dynamic objects: a place is better
represented with words from the whole static image. It leads to less false positives and
less false negatives mostly. Even though our method slightly brings closer in the bag-
of-words space images from the same place with different dynamic objects, we would
have expected our results to be closer to those of the ground-truth static images. Our
intuition behind these results is that the synthetic features, despite being useful for
feature matching, do not fully fall on any visual words in the BoW space.

The precision-recall curves for the NetVLAD experiments are shown in Fig. 3.20b.
We have extracted the learnt descriptors of every frame along the trajectories and
tried to match every two images as a function of their descriptors’ euclidean distance2.
Despite NetVLAD’s incredible performance on VPR face to illumination, view point
and clutter changes, we show that their execution is seen slightly degraded by dynamic
objects. Empty Cities brings closer together the descriptors of the same place, and
pulls apart the descriptors of different places with the same dynamic objects, leading
to higher precision and recall. That is, the hidden semantic representations of our
model match the ones learnt by NetVLAD. We can conclude that our method brings

2with the Python-Tensorflow implementation by Cieslewski et al. (2018)
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(a) Place recognition results for the BoW work by Mur-Artal & Tardós (2014)
and Gálvez-López & Tardos (2012).
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(b) Place recognition results for the learning-based method NetVLAD by Arand-
jelović et al. (2016).

Figure 3.20: (a) and (b) show the precision and recall curves for the VPR results with
BoW and NetVLAD respectively. We report the results for the dynamic, the inpainted
and ground-truth static sequences, as well as the results obtained when masking out
the dynamic objects as in DynaSLAM (only in (a)). The precision and recall curves
for the inpainting methods of Telea (2004) and of Yu et al. (2018) are also presented.

more relevant improvements in VPR if it is used in conjunction with a learning-based
method. Finally, Fig. 3.21 shows a case in which NetVLAD fails at matching two
dynamic frames of the same place, but manages to match them when dynamic objects
are inpainted with our framework.

(a) Reference. (b) Query. (c) Empty Reference. (d) Empty Query.

Figure 3.21: (a) and (b) show the same location with different viewpoints and objects
setups. NetVLAD (Arandjelović et al. (2016)) fails to match them, but it succeeds
when our framework is previously employed –(c) and (d)–.
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Baseline for Inpainting

We compare our approach to the inpainting methods by Telea (2004) and Yu et al.
(2018)) w.r.t. the VPR metrics in Fig. 3.20. For the BoW curves the conclusion
is similar to what we have seen in the previous experiment. Even if the extracted
synthetic features were useful for matching, they seem to be of less help for place
recognition with BoW. Few synthetic ORB features match any existing visual word
in the BoW space. Our method though creates more useful visual words. As for
the results with NetVLAD, the use of the geometric method by Telea (2004) brings
little improvement. However, the learning-based method by Yu et al. (2018) decreases
NetVLAD’s performance on the second trajectory. NetVLAD can –up to some extent–
ignore the dynamic classes clues, but cannot ignore the transformed regions. That is,
the hidden semantic representations of these inpainted regions do not always match
the static scene representation learnt by NetVLAD.

3.5.3 Mapping

Another important application of our framework is the creation of high-detail road
maps. Our inpainting framework allows us to create long-term and reusable maps that
do not either show dynamic objects or the empty spaces left by their occlusions. To
this end we use COLMAP by Schönberger & Frahm (2016) and Schönberger, Zheng,
Pollefeys & Frahm (2016), which is a general-purpose Structure-from-Motion (SfM)
and Multi-View Stereo (MVS) software.

Baseline for Mapping in our Synthetic Dataset

Fig. 3.22 shows the dense map of a simulated city environment (CARLA) with the
original dynamic sequence, with the images processed by our framework and with the
ground-truth static images. The map seen in Fig. 3.22a might not be useful for future
use since it shows dynamic objects that might not be there any more. Fig. 3.22e
shows the map built with the ground-truth static images, and Fig. 3.22b shows the
map computed with our generated images. The areas which have been consistently
inpainted along the frames are mapped, even if they have never been seen. When
inpainting fails or is not consistent along the sequence, the mapping photometric and
geometric epipolar constraints are not met and such areas cannot be reconstructed.
This idea makes our framework suitable to build stable maps.

To give a quantitative experiment on the validity of our maps, we choose the stan-
dard Iterative Closest Point (ICP) algorithm (Besl & McKay (1992)) based on the
Euclidean fitness score. That is, having the point cloud built with the ground-truth
static images as a fix reference, for each of its points the algorithm searches for the
closest point in the target point cloud and calculates the distance based on the result
of the algorithm search. To have a baseline for our experiment, we compute the point
cloud with the dynamic images and with the CARLA segmentation. That is, the pixels
belonging to the dynamic objects have not been used in the multi-view-stereo pipeline.
The results can be seen in Table 3.4. Since the map has no scale, the ICP Euclidean
fitness score is also up-to-scale. Even though the similarity score is improved when
masking out dynamic objects, the map built with our images has triangulated more
3D points from the inpainted regions, and such points have a low error.
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(a) Dynamic map. (b) Our map.

(c) Map of Yu et al. (2018). (d) Map of Telea (2004).

(e) Ground-truth static map.

Figure 3.22: Dense maps of a CARLA city environment built with the COLMAP
Multi-View-Stereo software (Schönberger, Zheng, Pollefeys & Frahm (2016)). The
upper row shows some of the sequence images used to build such maps. (a) shows the
case in which the original dynamic images have been used. (b) shows the resulting map
with the images previously processed by our framework, and (e) uses the ground-truth
static images to create the resulting map. (c) and (d) show the resulting maps with
the images previously processed by the frameworks from Yu et al. (2018) and Telea
(2004) respectively. All maps are computed with the ground-truth camera poses.
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Dynamic Dynamic w/
masks

Ours Telea (2004) Yu et al.
(2018)

ICP score 63.21 49.02 33.34 82.23 70.89

Table 3.4: Quantitative mapping results for Fig. 3.22. We report the Euclidean fitness
score given by the ICP algorithm. This score has been computed between the different
point clouds w.r.t. the point cloud built with the ground-truth static images. Note
that, since the maps do not have scale, the reported scores are up-to-scale.

Baseline for Inpainting

We also compare our approach with the two other state-of-the-art inpainting methods
–Telea (2004) and Yu et al. (2018)– w.r.t. the map quality. The qualitative results
are depicted in Fig. 3.22, and the ICP scores are shown in Table 3.4. It can be
seen that with both other inpainting methods the shadows of the dynamic objects
are reconstructed, as well as their prolongation into the inpainted image regions. This
leads to an ICP score that is higher than that of the map built with dynamic objects.

Baseline for Mapping in Real World Environments

Fig. 3.23 shows an example of the computed dense maps for both types of inputs
with the sequence 04 from the KITTI dataset. These maps have been computed with
the camera poses given by ORB-SLAM using respectively the dynamic and inpainted
images. Our framework, when being able to inpaint a coherent context along the se-
quence, allows us to densely reconstruct unseen areas. When the inpainting task is not
coherent along the sequence, the epipolar constraints are not met and therefore such
areas cannot be reconstructed. Note that this map is shown in RGB only for visualiza-
tion purposes3. We do recommend to use the gray-scale images for both localization
and mapping purposes since a lower reconstruction error is usually achieved.

3.5.4 Timing Analysis

Reporting our framework efficiency is crucial to judge its suitability for autonomous
driving and robotic tasks in general. The end-to-end pipeline runs at 100 fps on a
nVidia Titan Xp 12GB with images of a 512 × 512 resolution. Out of the 10 ms it
takes to process one frame, 8 ms are invested into obtaining its semantic segmentation,
and 2 ms are used for the inpainting task. Other than to deal with dynamic objects, the
semantic segmentation may be needed for many other tasks involved in autonomous
navigation. In such cases, our framework would only add 2 extra ms per frame. Based
on our analysis, we consider that the inpainting task is not at all a bottleneck.

3.6 Failure Modes and Future Work

The aim of this section is to provide the reader with an understanding of the benefits
and limitations of our proposal, and how to integrate it into a SLAM or MVS pipeline.

3Since our framework offers enough flexibility, we have re-trained our model with RGB images just
as explained in Section 3.3. The only difference is that since the features have to be extracted in
gray-scale images, we add a fixed convolutional layer to convert the RGB output images to gray scale.
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(a) Input of our system: urban images with dynamic content.

(b) Output of our system: dynamic objects have been removed.

(c) Static map built with the images pre-processed by our framework.

Figure 3.23: The dynamic images are firstly converted one by one into static with an
end-to-end deep learning model. Such images allow us to compute an accurate camera
trajectory estimation that is not damaged by the dynamic objects’ motion, as well as
to build dense static maps that are useful for long-term applications.

Having a scene static representation leads to better visual odometry results than
just excluding the features belonging to moving objects. The presented inpainting
approach has though some weaknesses: the bigger the image dynamic region is, the
lower inpainting quality the resulting image has. Empty Cities would be suitable in
setups in which approximately less than 15 % of the camera field of view is covered by
dynamic objects. In such setups, the reconstructed L1 error is acceptable and usually
lies between 1 and 10 %. The L1 error goes above 10 % when more than 15 % of
the image pixels are covered4. Work remains to be done to tackle extreme situations:
developing a system that processes the sequence as a whole, rather than binning it into
independent frames, would result in a more consistent image inpainting along time.

4As a practical example, the Oxford Robotcar sequence 2014-05-06-12-54-54 has 56 % of images
with less than 5 % of covered pixels, 30 % with a percentage of dynamic pixels between 5 and 10 %,
12 % between 10 and 15 % and 2 % between 15 and 20 %. This sequence is not Manhattan at 11 am,
but shows cars parked at both sides of the road and cars driving nearby.
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Our system processes the image streams outside of the application pipeline and
hence can be used naturally as a front end to many existing systems. We hereby want
to discuss other application-dependent possibilities to boost its performance.

Visual Odometry: Removing the features that belong to static cars certainly
damages VO. However, a car can from one frame to another change from static to
dynamic. Had we a movement detector, we would use the features belonging to static
cars and the inpainted ones behind the moving cars.

Place Recognition: Using the features belonging to parked cars damages the
performance of place recognition algorithms. Two frames of the same place with a
different setup of parked cars can be incorrectly tagged as a different place. Also, two
frames of different places with the same parked cars setup can be wrongly matched as
the same place. Only the features belonging to objects that remain stable in the long
term (buildings, sidewalks, etc.) would benefit PR.

Mapping: A map containing information about parked cars would be useless for
future reuse. Only the information belonging to objects that remain stable in the long
term, as well as the most likely static representation of the static scene behind dynamic
objects should be included in the map.

Ideally, one would use a movement detector to identify the status of the different
observed instances. The features belonging to static instances would be used for visual
odometry, and the corresponding inpainted features would be used for place recognition
and mapping. This approach would bring the highest accuracy results but would entail
a series of modifications to the existing pipeline. Our method would currently pose
problems in the case in which one wanted to inpaint the static scene behind a car that
is currently moving, and this static scene contained parked cars. Our model would
fail in reconstructing the unseen parts of the parked cars. It would be interesting for
future work to include such scenarios in our training data. Our suggestion is, for now,
inpainting all instances, regardless of their current dynamic status.

3.7 Discussion

We have presented an end-to-end deep learning framework that translates images that
contain dynamic objects within a city environment, such as vehicles or pedestrians, into
a realistic image with only static content. These images are suitable for visual odom-
etry, place recognition and mapping tasks thanks to a new loss based on steganalysis
techniques and ORB features maps, descriptors and orientation. We motivate this
extra complexity by showing quantitatively that the systems ORB-SLAM and DSO
obtain a higher accuracy when utilizing the images synthesized with this loss. Also,
mapping systems can benefit from this approach since not only they would not map
dynamic objects but also would they map the plausible static scene behind them. Fi-
nally, an architectural nicety is that our system processes the image streams outside of
the localization pipeline, either offline or online, and hence can be used naturally as a
front end to many existing systems.

3.8 Related Publications

• Berta Bescos, Cesar Cadena and José Neira. “Empty Cities: a Dynamic-Object-
Invariant Space for Visual SLAM”. This work is currently conditionally accepted
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for publication at IEEE Transactions on Robotics.

• Berta Bescos, Cesar Cadena and José Neira. “Dynamic-to-Static Image Transla-
tion for Visual SLAM”. Oral and Poster Presentation within the Workshop Scene
and Situation Understanding for Autonomous Driving at IEEE Robotics Science
and Systems, June 2019. Winner Toyota Research Institute (TRI) Best
Contribution Award.

• Berta Bescos, José Neira, Roland Siegwart , Cesar Cadena. “Empty Cities: Image
Inpainting for a Dynamic-Object-Invariant Space”. Oral presentation at IEEE
International Conference on Robotics and Automation, May 2019.

• Berta Bescos, Jose M. Facil, Javier Civera and José Neira. “DynaSLAM: Track-
ing, Mapping and Inpainting in Dynamic Scenes”. IEEE Robotics and Automa-
tion Letters and oral presentation at IEEE International Conference on Intelli-
gent Robots and Systems, October 2018.

• Berta Bescos, Jose M. Facil, Javier Civera and José Neira. “Detecting, Track-
ing and Eliminating Dynamic Objects in 3D Mapping using Deep Learning and
Inpainting”. Oral and Poster Presentation within the Workshop Representing a
Complex World: Perception, Inference, and Learning for Joint Semantic, Geomet-
ric, and Physical Understanding at IEEE International Conference on Robotics
and Automation, May 2018.

• Berta Bescos, Jose M. Facil , Javier Civera , José Neira. “Robust and Accu-
rate 3D Mapping by combining Geometry and Machine Learning to deal with
Dynamic Objects”. Poster Presentation within the Workshop Learning for Lo-
calization and Mapping at IEEE International Conference on Intelligent Robots
and Systems, September 2017.
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Chapter 4

Multi-Object Tracking

In recent years, a growing part of the robotics community has addressed the issue
of visual SLAM in dynamic environments by incorporating the dynamics of moving
objects into the problem: Li et al. (2018), Henein et al. (2018), Yang & Scherer (2019),
Huang et al. (2019, 2020). The objective of this group is twofold: they not only focus
on achieving an accurate ego-motion estimation but also provide information about the
poses of other dynamic agents within the scene. Understanding surrounding dynamic
objects is of crucial importance for the frontier requirements of emerging applications
within AR/VR or autonomous systems navigation.

Although it is tolerable to discard minor movements in an almost static environ-
ment, most scenarios including autonomous driving, multi-robot collaboration and aug-
mented/virtual reality require explicit motion information of the surroundings to help
with decision making and scene understanding. In virtual reality, dynamic objects need
to be explicitly tracked to enable interactions of virtual objects with moving instances
in the real world. In autonomous driving scenarios, a car should not only localize itself
but also reliably sense other moving cars and passersby to avoid collisions.

The vast majority of the literature that specifically addresses this issue do so by de-
tecting moving objects and tracking them separately from the SLAM formulation using
traditional multi-target tracking approaches (Wang et al. (2003), Miller & Campbell
(2007), Rogers et al. (2010), Kundu et al. (2011), Bârsan et al. (2018), Rosinol et al.
(2020)). Their accuracy is highly dependent on the camera pose estimation, which is
more susceptible to failure in complex dynamic environments where the presence of
reliable static structure can be limited. In the latest years, the robotics community
has made its first steps towards addressing dynamic objects tracking jointly with vi-
sual SLAM, adding an extra layer of complexity to the problem (Henein et al. (2018),
Huang et al. (2019, 2020), Zhang et al. (2020). These systems are often tailored for
special use cases and multiple priors are exploited to constraint the solution spaces:
road planar structure and planar object movement in autonomous driving scenarios
(Li et al. (2018), Yang & Scherer (2019)), or even the use of known object models
(Hosseinzadeh et al. (2019)).

In this chapter we introduce DynaSLAM II, an open-source stereo/RGB-D SLAM
system for dynamic environments, which simultaneously estimates the poses of the
camera, the map and the trajectories of the moving objects in the scene. We propose a
bundle adjustment solution that tightly optimizes the scene structure, the camera poses
and the objects trajectories in a local-temporal window. The objects’ bounding boxes
are also optimized in a decoupled formulation that allows to estimate the dimensions
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and the 6 DoF poses of the objects without being geared to any particular use case.
Examples of our output can be seen in Fig. 4.1.

(a)

(b)

(c)

(d)

(e)

Figure 4.1: Qualitative results with the KITTI tracking dataset. One can see in the
left images the current frame with the tracked objects highlighted with colors. The 2D
projections of the different 3D bounding boxes are drawn in the frames together with
the objects’ track ids and their current velocity (better seen in digital format). In the
right images one can see the 3D scene estimation with the ego-car representation in
light green. The other dynamic objects are represented with their current pose, their
trajectory and their current velocity vector. The black points depict the static scene.
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4.1 Related Work

The traditional manner of addressing 3D multi-object tracking implies to detect the
moving objects and track them separately from the SLAM formulation. Examples of
these works in the bibliography are the following: Wang et al. (2003), Miller & Camp-
bell (2007), Wangsiripitak & Murray (2009), Rogers et al. (2010), Kundu et al. (2011),
Bârsan et al. (2018), Rosinol et al. (2020). The main drawback of these approaches
is that their accuracy is highly correlated with the estimation of the camera position.
Therefore, if the estimation of the camera pose fails, which is quite likely in complex
dynamic environments where the presence of a reliable static structure is questionable,
multi-object tracking also fails directly. Among them, Wang et al. (2003) derive the
Bayesian formula of the SLAM with DATMO (Detection And Tracking of Moving Ob-
jects) problem, and provide a solid basis for understanding and solving this problem.
Wangsiripitak & Murray (2009) more recently proposed the parallel implementation of
SLAM with a 3D object tracker: the SLAM solution provides the object tracker with
information to register objects to the map, and the object tracker allows the marking
of features on objects. Rogers et al. (2010) apply an Expectation Maximization tech-
nique to a graph based SLAM approach and allow the landmarks points to be dynamic.
In the work of Kundu et al. (2011) various modules of feature tracking, motion seg-
mentation, visual SLAM and moving-object tracking are continuously interleaved and
run online. More recently, Bârsan et al. (2018) present a stereo-based dense mapping
algorithm for dynamic urban environments that simultaneously reconstructs the static
background and the moving objects. There is a new work by Rosinol et al. (2020) that
reconciles visual-inertial SLAM and dense mesh tracking, focusing mostly on humans.
They show impressive object tracking results but uniquely with simulation data.

The idea of simultaneously estimating camera ego motion and multiple moving rigid
objects motion originated from the SLAMMOT work (Wang et al. (2007)). They es-
tablished a mathematical framework to integrate a filtering-based SLAM and moving
object tracking and demonstrated that it satisfied both navigation and safety require-
ments in autonomous driving. Later on, works that use a RGB-D camera followed up
this idea to densely reconstruct the static indoors scenes along with the moving objects
utilizing pixel-wise instance segmentation, showing impressive results (Rünz & Agapito
(2017), Runz et al. (2018), Xu et al. (2019)). Since it is of crucial importance for dense
approaches to obtain a highly accurate segmentation mask, the works Mask-Fusion
and MID-Fusion, by Runz et al. (2018) and Xu et al. (2019) respectively, refine it by
making the assumption that –human-made– objects are largely convex.

Among the feature-based approaches, as ours, few aim to utilize information from
static and dynamic objects into a single framework to improve the accuracy of the
estimation. Henein et al. (2018) were among the first ones to combine the two problems
of tracking dynamic objects and the camera ego motion. However, they only reported
experiments on synthetic data showing limited real dataset results. Li et al. (2018)
use a CNN trained in an end-to-end manner to estimate the 3D pose and dimensions
of cars, which is further refined together with the camera poses. The use of data-
driven approaches often provides excellent accuracy in 6 DoF object pose estimation,
but also a loss of generality. Therefore, they can only track cars. Huge amounts of
data would be required to track generic objects with their approach. The authors of
CubeSLAM (Yang & Scherer (2019)) showed impressive results with only a monocular
camera and new measurements to integrate multi-object tracking within the SLAM
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formulation. They make use of KLT to track the dynamic features among frames, of
a 3D bounding box proposal generation based on 2D bounding boxes and vanishing
points. They assume that objects have a constant velocity motion within a hard-coded
duration time interval and exploit object priors like car sizes, road planar structure
and object planar non-holonomic wheel movement model. Furthermore, they only
track objects whose 3D bounding box is observable, i.e., only once two or more faces
of the cuboid-shape object are seen. ClusterSLAM (Huang et al. (2019)) proposes a
stereo SLAM back end with no scene prior to discover individual rigid bodies and
compute their motions in dynamic environments. Since it acts as a back end instead of
a full system, its performance relies heavily on the landmark tracking and association
quality. The same authors recently developed the full system ClusterVO (Huang et al.
(2020)), which models the object points with a probability of object belonging to deal
with segmentation inaccuracies. Given that they assume no priors, they obtain good
ego motion results in both indoor and outdoor scenarios, but the 3D bounding boxes
they estimate are not completely accurate. There is a recent work called VDO-SLAM
utilizing dense optical flow estimation to maximise the number of tracked points on
moving objects (Zhang et al. (2020)). They implement –similarly to their previous
work (Henein et al. (2020))– a bundle adjustment with cameras, objects and object
points that gives good results but that is computationally complex to run in real time.

In light of these advances, it is apparent that the feature-based SLAM commu-
nity is searching for the best optimization formulation to combine cameras, objects
and structure points. In our proposal, we use a tightly-coupled bundle adjustment
formulation with new measurements between cameras, objects and points giving spe-
cial attention to its computationally complexity and number of parameters involved
without introducing hard-coded priors. For this, we integrate instance semantic priors
together with sparse image features. This formulation allows the estimation of both
the camera, the map structure and the dynamic objects to be mutually beneficial at a
low computational cost. On the other hand, part of the current literature focuses on
the estimation of the point cloud structure of dynamic objects and of the trajectory of
a random object reference (Huang et al. (2019), Zhang et al. (2020)), whereas another
part of the literature seeks to find a common reference for objects of the same class as
well as a more informative occupancy volume (Li et al. (2018), Yang & Scherer (2019),
Huang et al. (2020)). We intend to carry out these two tasks independently in order
to leverage on the benefits of both without their disadvantages.

4.2 DynaSLAM II

DynaSLAM II builds on top of the popular ORB-SLAM2 (Mur-Artal & Tardós (2017))
and takes synchronized and calibrated stereo / RGB-D images as input, and outputs the
camera and the dynamic objects poses for each frame, as well as a spatial / temporal
map containing the dynamic objects. For each incoming frame, pixel-wise semantic
segmentation is computed and ORB features (Rublee et al. (2011)) are extracted and
matched across stereo image pairs. We first associate the static and dynamic features
with the ones from the previous frame and the map assuming a constant velocity motion
for both the camera and the observed objects. Object instances are then matched based
on the dynamic feature correspondences. The static matches are used to estimate the
initial camera pose, and the dynamic ones yield the object’s SE(3) transform. Finally,
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the camera and objects trajectories, as well as the objects bounding boxes and 3D
points are optimized over a sliding window with marginalization and a soft smooth
motion prior. The different contributions and building blocks of DynaSLAM II, as well
as the used notation, are explained and discussed in detail in the following subsections.

4.2.1 Notation

In this chapter, we will use the following notation: a stereo/RGB-D camera at time
i, Ci , has a pose Ti

CW ∈ SE(3) in the world coordinates W (see Fig. 4.2). The camera
observes static map points Xl

W ∈ R3 | ∀l ∈ MP and dynamic objects points Xj,k
O ∈

R3 | ∀j ∈ OP,∀k ∈ O. The set of object points OP belonging to the same instance let
us define the dynamic object k, Oki , which has a linear and angular velocity in object
coordinates vki ,w

k
i ∈ R3 respectively, and a world coordinates pose Tk,i

OW ∈ SE(3).
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Figure 4.2: Depiction of the used notation to model dynamic objects and their points.
The dotted line ( ) depicts that the camera Ci is observing the object Oki , and the dashed
line ( ) shows that the two object instances Oki and Oki+1 are the same moving body
at different times. The dash-dotted line ( ) are static point observations.

4.2.2 Object Data Association

For each incoming frame, pixel-wise semantic segmentation is extracted and ORB fea-
tures (Rublee et al. (2011)) are extracted and matched across stereo image pairs. If an
instance belongs to a dynamic class –vehicles, pedestrians and animals– and contains
a high number of new nearby key points, an object is created. The key points are
then assigned to the instance and the corresponding object. We first associate the
static features with the ones from the previous frame and the map to initially esti-
mate the camera pose. Next, dynamic features are associated with the dynamic object
points from the local map in two different ways: (a) if the velocity of the map objects
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is known, the matches are searched by reprojection assuming a inter-frame constant
velocity motion, (b) if the objects’ velocity is not initialized or not enough matches
are found following (a), we constraint the brute force matching to those features that
belong to the most overlapping instance within consecutive frames. A higher level
association between instances and objects is also required. If the majority of the key
points assigned to a new object are matched with points belonging to one map object,
the two objects are attributed the same track id. Also, to render this high level associ-
ation more robust, a parallel instance-to-instance matching is performed based on the
intersection over union (IoU) of the instances 2D bounding boxes.

The SE(3) pose of the first object of a track is initialized with the center of mass
of the 3D points and with the identity rotation. To predict the poses of further ob-
jects from a track, we use a constant velocity motion model –null velocity if it is not
initialized– and refine the object pose estimate by minimizing the reprojection error.

The common formulation of the reprojection error seen in multi-view geometry for
a camera i with pose Ti

CW ∈ SE(3) and a point l with homogeneous position Xl
W ∈ R4

in the world reference W with a stereo key point correspondence xli ∈ R3 is

ei,lrepr = xli − πs(Ti
CWX

l
W), (4.1)

where πs is the reprojection function for a rectified stereo camera with focal length
(fx, fy), optical center (cx, cy) and horizontal baseline b (Eqn. 4.2). Given these cam-
era intrinsics, πs projects a 3D homogeneous point in the camera coordinates XC =
[X, Y, Z, 1]T into the camera frame pixel x = [uL, vL, uR]T . uL and vL are respectively
the pixel column and row on the left image, and uR is the pixel column on the right im-
age. Note that, even though these equations have been already presented in Chapter 1
we hereby rewrite them for homogeneous coordinates points.

x = πs(XC) =

 fx
X
Z

+ cx
fy

Y
Z

+ cy
fx

X−b
Z

+ cx

 (4.2)

Unlike this formulation, which is valid for static representations, we propose to
restate the reprojection error as

ei,j,krepr = xji − πs(Ti
CWT

k,i
WOXj,k

O ), (4.3)

where Tk,i
WO ∈ SE(3) is the inverse pose of the object k in the world coordinates when

the camera i is observing it, and Xj,k
O ∈ R4 represents the 3D homogeneous coordinates

of the point j in its object reference k with observation in the camera i xji ∈ R3. This
formulation enables us to optimize either jointly or separately the poses of the cameras
and of the different moving objects, as well as the positions of their 3D points.

4.2.3 Object-Centric Representation

Given the extra complexity and mainly the extra number of parameters that the task
of tracking moving objects implies on top of the usual SLAM ones, it is of high impor-
tance to keep this number as reduced as possible to maintain real-time performance.
Modeling dynamic points as repeated 3D points by forming independent point clouds
as in usual dynamic SLAM implementations results in a prohibitive amount of param-
eters. Given a set of Nc cameras, No dynamic objects with Np 3D points each observed
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in all cameras, the number of parameters needed to track dynamic objects turns to be
N = 6Nc +Nc×No× 3Np as opposed to N = 6Nc + 3Np in conventional static SLAM
representations. This number of parameters becomes prohibitive for long –and not so
long– operations and deployment. If the concept of objects is introduced, 3D object
points become unique and can be referred to their associated dynamic object. There-
fore it is the pose of the object that is modelled along time and the number of required
parameters shifts to N ′ = 6Nc + Nc × 6No + No × 3Np. It can be seen in Fig. 4.3 the
parameters compression ratio defined as N ′

N
for a fixed number of cameras in Fig. 4.3a

and for a fixed number of objects in Fig. 4.3b. If the number of observations and the
number of dynamic points per object are sufficiently large, this modelling of dynamic
objects and points brings a great saving in the number of parameters required.
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(a) The number of cameras Nc is fixed to 10.
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(b) The number of objects No is fixed to 10.

Figure 4.3: Motivation to delete the association between the 3D points that belong to
dynamic objects and their observing key frame. Instead, objects are associated to their
observing cameras and dynamic points are associated only to their object. For rigid
objects, this last transformation remains fixed. These graphs show the relationship
between the number of parameters that is needed when objects are used and when
points belonging to objects are tracked independently (No objects). If the number of
observations (Nc) and the number of points per object are sufficiently large, there is a
great saving in the number of parameters that is required.

4.2.4 Bundle Adjustment with Objects

Bundle Adjustment (BA) is known to provide accurate estimates of camera poses and
sparse geometrical reconstruction, given a strong network of matches and good initial
guesses. We hypothesize that BA might bring similar benefits if object poses are also
jointly optimized. The static map point 3D locations Xl

W and camera poses in the world
reference Ti

CW are optimized by minimizing the reprojection error with respect to the
matched key points xli (Eqn. 4.1). In a similar way, for dynamic representations, the
3D object points Xj,k

O , the camera poses Ti
CW and the object poses Tk,i

WO can be refined
by minimizing the reprojection error formulation presented in Eqn. 4.3.

In our implementation, a key frame can be inserted in the map for two different
reasons: (a) if the camera tracking is weak, (b) if the tracking of any scene object is
weak. The reasons for the former are the same ones than in ORB-SLAM2. The latter
though happens if an object with a relatively large amount of features has few points
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tracked in the current frame. In this case, a key frame is inserted and creates a new
object and new object points. If the camera tracking is not weak, this key frame would
not introduce new static map points, and if the rest of dynamic objects have a stable
tracking, new objects for these tracks would not be created. As for the optimization, if
a key frame is inserted only because the camera tracking is bad, the local BA optimizes
the currently processed key frame, all the key frames connected to it in the covisibility
graph, and all the map points seen by those key frames, following the implementation
of ORB-SLAM2. Regarding dynamic data, if a key frame is inserted only because the
tracking of an object is weak, the local BA optimizes the pose and velocity of this
object along a temporal tail of 2 seconds together with its object points. Finally, if a
key frame is inserted because the tracking of both the camera and objects are weak,
camera poses, map structure, object poses, velocities and points are jointly optimized.

In order to force a smooth object trajectory estimation, we assume that an object
has a constant velocity in consecutive observations. Denoted the linear and angular
velocity of an object k at observation i as vki ∈ R3 and wk

i ∈ R3 respectively, we then
define the following error term:

ei,kvcte =

[
vki+1 − vki
wk
i+1 −wk

i

]
(4.4)

An additional error term is needed to couple the objects velocities with the objects
poses and their belonging 3D points. This error term can be seen in Eqn. 4.5, where
∆Ti,i+1

Ok
is the pose transformation that the object k suffers in the time interval ∆ti,i+1

between consecutive observations i and i+ 1.

ei,j,kvcte,XYZ = (Tk,i+1
WO −Tk,i

WO ∆Ti,i+1
Ok

)Xj,k
O (4.5)

The term ∆Ti,i+1
Ok

is defined from the linear and angular velocity of the object k in
the instant i (vki and wk

i ) as in Eqn. 4.6, where Exp : R3 → SO(3) is the exponential
map for SO(3).

∆Ti,i+1
Ok

=

(
Exp(wk

i ∆ti,i+1) vki ∆ti,i+1)
01×3 1

)
(4.6)

The derivative of the term ∆Ti,i+1
Ok

(wk
i ,v

k
i ) with respect to the angular velocity is

approximated as follows. Let us apply an additive perturbation δwk
i to the object an-

gular velocity (Eqn. 4.7). We write only the rotational part of the pose transformation
for simplicity.

∆Ri,i+1
Ok

(wk
i + δwk

i ) = Exp((wk
i + δwk

i )∆t) (4.7)

We use the first order approximation (Eqn. 4.8), where the term Jr is the right
Jacobian of SO(3) (Forster et al. (2016)) and relates additive increments in the tangent
space to multiplicative increments applied on the right-hand side

∆Ri,i+1
Ok

(wk
i + δwk

i ) ≈ Exp(wk
i ∆t)Exp(Jr(w

k
i ∆t)δw

k
i ∆t) (4.8)

Assuming that the term Jr(w
k
i ∆t)δw

k
i ∆t is small, we can rewrite the equation as:

∆Ri,i+1
Ok

(wk
i + δwk

i ) ≈ Exp(wk
i ∆t)(I + [Jr(w

k
i ∆t)δw

k
i ∆t]×), (4.9)
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where [·]× is the skew operator that transforms a vector in R3 into a skew symmetric
matrix. Therefore, the partial derivative of ∆Ri,i+1

Ok
with respect to the angular velocity

can be written as follows:

∂∆Ri,i+1
Ok

∂δwk
i

= Exp(wk
i ∆t)[Jr(w

k
i ∆t)∆t]× (4.10)

Finally, our local BA optimization for n cameras, m dynamic points, p objects and
q map points is the following:

θ̂ = arg min
θ

n∑
i=1

(
m∑
j=1

p∑
k=1

ei,j,kdyn +

q∑
l=1

ρ(‖ei,lrepr‖2
Σl

i
)), (4.11)

where both error terms optimize the camera pose and, more specifically, the term
ei,lrepr is in charge of optimizing the static structure and the term ei,j,kdyn (Eqn. 4.12)
optimizes the dynamic agents’ structure and trajectory.

ei,j,kdyn = ρ(‖ei,j,krepr‖2
Σj

i

) + ρ(‖ei,j,kvcte,XYZ‖
2
Σ∆t

) + ρ(‖ei,kvcte‖2
Σ∆t

) (4.12)

ρ is the robust Huber cost function to downweight outlier correspondences and Σ is
the covariance matrix. In the case of the reprojection error Σ is associated to the scale of
the key point in the camera i observing the points l and j respectively. For the two other
error terms Σ is associated to the time interval between two consecutive observations of
an object, i.e., the longer time the more uncertainty there is about the constant velocity
assumption. θ = {Ti

CW,T
k,i
WO ,X

l
W,X

j,k
O ,vki ,w

k
i } are the parameters to be optimized per

iteration, and their optimized representation is θ̂ = {T̂i
CW, T̂

k,i
WO , X̂

l
W, X̂

j,k
O , v̂ki , ŵ

k
i }.

On the one hand, the factor graph representation for this bundle adjustment prob-
lem with dynamic objects can be seen in Fig. 4.4. On the other hand, Fig. 4.5 shows
the boolean Hessian matrix (H) of the described problem. The Hessian can be built
from the Jacobian matrices associated to each edge in the graph. In order to have a
non-zero (i, j) block matrix, there must be an edge between i and j node in the factor
graph. For this example we have defined a set of 5 key frames (KFs), 1 moving object
(Objects) that has 10 3D points (OPs) visible in all 5 key frames, and 10 static map
points (MPs) also visible in all the key frames. Notice the difference in the sparsity
patterns of the static map points and the dynamic object points. The size of the ma-
trix H is dominated by the number of map points and object points, which in typical
problems is several orders of magnitude larger than the number of cameras and objects.

4.2.5 Bounding Boxes

Some approaches in the current literature would consider the tracking of dynamic
objects to be complete with the contributions so far. That is, for every dynamic object
in the scene we have an estimation of the trajectory of the centroid of its map points
when it was first observed, as well as a point cloud representation. Examples of these
works are ClusterSLAM (Huang et al. (2019)) and VDO-SLAM (Zhang et al. (2020)).
However, we believe that it is also of key importance to find a common spatial reference
for objects of the same semantic class, as well as an estimate of their dimensions and
most important their space occupancy.

Alternatively, the basis of the system CubeSLAM by Yang & Scherer (2019) and
of the work by Li et al. (2018) is the discovery of object bounding boxes. Only once
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Figure 4.4: BA factor graph representation with dynamic objects.

bounding boxes are discovered, objects are tracked along frames. That is, if the camera
viewing angle does not allow to estimate an object’s bounding box (back view or partial
view), the tracking of the object does not take place. Whereas this is not a problem
for Li et al. (2018) because CNNs are by nature robust to partial views of objects,
CubeSLAM struggles to initialize bounding boxes from views of occluded objects.

We propose to decouple the estimation of the trajectories and the bounding boxes
of the observed dynamic objects. The former provides the system tracking with rich
clues for ego-motion estimation, and the conjunction of both are useful to understand
the dynamics of the surroundings. The output of the data association and the bundle
adjustment stages contains the camera poses, the structure of the static scene and the
dynamic objects, and the 6 DoF trajectory of one point for each object. This one
point is the center of mass of the object’s 3D points when it is first observed. Even
though the center of mass changes along time with new object point’s observations,
the object pose that is tracked and optimized is referred to this first center of mass.
To have a full understanding of the moving surroundings, it is of high importance to
know the object’s dimensions and more important their space occupancy. Tackling the
two problems independently allows us to track dynamic objects from the first frame in
which they appear independently of the camera-object view point.

We initialize an object bounding box by searching two perpendicular planes that
fit roughly the majority of the object points. We hypothesize that even though objects
are not always perfect cuboids, many can approximately fit a 3D bounding box. In
the case in which only one plane is found, we add a prior on the rough dimensions
of the non-observable direction that is related to the object class. This procedure is
done within a RANSAC scheme: we choose the computed 3D bounding box that has
the largest intersection over union (IoU) of its image projection with the CNN 2D
bounding box. This bounding box is computed once for every different object track.
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Figure 4.5: Hessian matrix for 5 key frames (KFs), 1 dynamic object (Objects) with
10 object points (OPs) visible in all 5 key frames, and 10 static map points (MPs).
Key frames and points have 6 and 3 variables respectively representing their pose, and
each object has 12 variables that represent its 6 DoF pose and 6 DoF velocity.

To refine this bounding box estimation –both the dimensions and the 6 DoF pose
relative to the object tracking reference–, an image-based optimization is performed
within a temporal window. This optimization seeks to minimize the distance between
the image projection of the 3D bounding box and the CNN 2D bounding box prediction.
Given that this problem is not observable for less than three views of an object, this
is only performed once an object has at least three observing key frames. Also, to
constraint the solution space in case the view of an object makes this problem non-
observable (e.g., a car observed from the back or from one lateral), a soft prior about
the object dimensions is included. Finally, the initial bounding box 6 DoF pose is set
as a prior so that the optimization solution remains close. Since this prior is tightly
related to the object class coming from the CNN, we believe that adding this soft prior
does not mean a loss of generality.

One can see in Fig. 4.6 the effect of the different errors and priors we make use of in
our optimization. First, all three objects (Figs. 4.6a, 4.6b and 4.6c) yield the same 2D
image projection so, unless an object is observed in at least three frames at different
view points, more constraints are required to render the problem observable. Second,
forcing the object points to be near the planes found within the point clouds constraints
most cases. Third, a prior about the object’s dimensions is needed, otherwise, cases
such as the ones in Figs. 4.6b and 4.6c are not fully constrained.
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(a) (b) (c)

Figure 4.6: Examples of camera and bounding box configurations.

4.3 Experiments

In this section we detail the experiments that we have conducted to prove the validity of
DynaSLAM II. We divide this section in two main building blocks: one that evaluates
the advantages and influence of tracking dynamic objects in the camera ego-motion
estimation (Subsection 4.3.1), and one that analyzes and discusses the performance of
the multi-object tracking (Subsection 4.3.2).

4.3.1 Visual Odometry

For the visual odometry experiments we have chosen the KITTI raw (Table 4.1), track-
ing (Table 4.2) and odometry (Table 4.3) datasets by Geiger et al. (2013). These three
datasets contain sequences of urban and road scenes recorded from a car perspective
with multiple vehicles and pedestrians in circulation. The camera ego-motion trajec-
tory is provided through a GPS tracker. The KITTI sequences of the raw and odometry
datasets have been recorded with a stereo gray-scale camera, as opposed to the ones
in the tracking dataset, which have also been recorded with a stereo RGB camera.

seq ORB-SLAM2 DynaSLAM ClusterSLAM ClusterVO Ours
AT RPt RPR AT RPt RPR AT RPt RPR AT RPt RPR AT RPt RPR

0926-0009 0.83 1.85 0.01 0.81 1.80 0.01 0.92 2.34 0.03 0.79 2.98 0.03 0.78 2.11 0.01
0926-0013 0.32 1.04 0.01 0.30 0.99 0.01 2.12 5.50 0.07 0.26 1.16 0.01 0.28 0.98 0.00
0926-0014 0.50 1.22 0.01 0.60 1.62 0.01 0.81 2.24 0.03 0.48 1.04 0.01 0.55 1.51 0.01
0926-0051 0.38 1.16 0.00 0.46 1.17 0.00 1.19 1.44 0.03 0.81 2.74 0.02 0.45 1.21 0.00
0926-0101 2.97 13.63 0.03 3.52 15.14 0.03 4.02 12.43 0.02 3.18 12.78 0.02 4.72 18.82 0.04
0929-0004 0.62 1.38 0.01 0.56 1.36 0.01 1.12 2.78 0.02 0.40 1.77 0.02 0.62 1.40 0.01
1003-0047 20.49 32.59 0.08 2.87 5.95 0.02 10.21 8.94 0.06 4.79 6.54 0.05 3.37 9.17 0.03

Table 4.1: Egomotion comparison on the KITTI raw dataset. The absolute trajectory
error (AT) is given in m, the translation relative pose error (RPt) in m too and the
rotational relative pose error (RPR) is given in radians.

One can find in all three tables a comparison of our system’s performance against
ORB-SLAM2 and DynaSLAM. ORB-SLAM2 is the base SLAM system on which we
build DynaSLAM II, and does not specifically address dynamic objects. DynaSLAM
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seq ORB-SLAM DynaSLAM VDO-SLAM Ours
ATE RPEt RPER ATE RPEt RPER ATE RPEt RPER ATE RPEt RPER

0000 1.32 0.04 0.06 1.35 0.04 0.06 - 0.05 0.05 1.35 0.04 0.06
0001 1.95 0.05 0.04 2.42 0.05 0.04 - 0.12 0.04 2.14 0.05 0.04
0002 0.95 0.04 0.03 1.04 0.04 0.03 - 0.04 0.02 0.85 0.04 0.02
0003 0.74 0.07 0.04 0.78 0.07 0.04 - 0.09 0.04 0.63 0.06 0.04
0004 1.44 0.07 0.06 1.52 0.07 0.06 - 0.11 0.05 1.45 0.07 0.06
0005 1.23 0.06 0.03 1.22 0.06 0.03 - 0.10 0.02 1.30 0.06 0.03
0006 0.19 0.02 0.04 0.19 0.02 0.04 - 0.02 0.05 0.17 0.02 0.04
0007 2.47 0.05 0.07 2.69 0.05 0.07 - - - 3.53 0.05 0.07
0008 1.40 0.08 0.04 1.29 0.08 0.04 - - - 1.55 0.07 0.04
0009 4.00 0.06 0.05 3.55 0.06 0.05 - - - 4.52 0.06 0.05
0010 1.68 0.07 0.04 1.84 0.07 0.04 - - - 1.30 0.07 0.04
0011 0.97 0.04 0.03 1.05 0.04 0.03 - - - 0.97 0.04 0.03
0012 0.01 0.00 0.01 0.01 0.00 0.01 - - - 0.01 0.00 0.01
0013 1.18 0.04 0.05 1.18 0.04 0.05 - - - 1.02 0.04 0.05
0014 0.13 0.03 0.08 0.13 0.03 0.08 - - - 0.11 0.03 0.08
0015 0.23 0.02 0.02 0.22 0.02 0.02 - - - 0.21 0.03 0.03
0016 0.02 0.00 0.01 0.02 0.00 0.01 - - - 0.02 0.01 0.02
0017 0.04 0.00 0.01 0.04 0.00 0.01 - - - 0.04 0.00 0.02
0018 0.89 0.05 0.03 1.00 0.05 0.03 - 0.07 0.02 1.09 0.05 0.03
0019 2.31 0.05 0.03 2.35 0.05 0.03 - - - 2.23 0.05 0.03
0020 16.80 0.11 0.07 1.10 0.05 0.04 - 0.16 0.03 2.15 0.05 0.04

Table 4.2: Egomotion comparison on the KITTI tracking dataset. The absolute
trajectory error (ATE) is given in m, and the relative pose error for translation (RPEt)
and rotation (RPER) are given respectively in m/frame and ◦/frame.

provides ORB-SLAM2 with the capability to detect dynamic objects also with Mask R-
CNN but uniquely ignores the features belonging to dynamic classes and does not track
them. The difference in the results of ORB-SLAM2 and DynaSLAM gives an idea of
how dynamic each sequence is. Theoretically, if dynamic objects are representative in
the scene and they are in circulation, DynaSLAM’s performance is better, as can be seen
in the sequence 1003-0047 in Table 4.1, 0020 in Table 4.2 and 04 in Table 4.3. However,
if dynamic objects are representative in the scene but they are not in motion, e.g.,
parked vehicles, DynaSLAM shows a higher trajectory error. This happens because
the tracking thread does not make use of the features belonging to the static vehicles,
which are useful for pose estimation and usually lay in nearby scene regions. This can be
seen for example in the sequence 0001 in Table 4.2 and in most sequences in Table 4.3.
Besides that, DynaSLAM II achieves a performance better than both ORB-SLAM and
DynaSLAM in these two types of scenarios in many of the evaluated sequences. On the
one hand, when dynamic instances are moving, DynaSLAM II successfully estimates
the velocity of the corresponding objects and provide the bundle adjustment with rich
clues for camera pose estimation when the static representation is not sufficient. This
often occurs when dynamic objects occlude nearby regions of the scene and therefore
static features can only provide valuable hints for accurately estimating the camera
rotation. On the other hand, when instances belonging to dynamic classes are static,
e.g., parked vehicles, DynaSLAM II tracks their features estimating that their velocity
is approximately close to zero. Consequently, these object points act much like 3D
static map points.

Tables 4.1 and 4.2 present our ego motion results compared to those of state-
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seq ORB-SLAM DynaSLAM Ours
Mur-Artal et al. (2015) Bescos et al. (2018)

ATE RPEt RPER ATE RPEt RPER ATE RPEt RPER

00 1.38 1.30 0.90 1.43 1.32 0.92 1.38 1.42 1.02
01 10.79 1.89 0.40 9.74 1.87 0.40 10.05 1.88 0.48
02 5.59 1.15 0.51 6.75 1.28 0.74 7.85 1.36 0.91
03 0.64 0.77 0.38 0.65 0.78 0.36 0.92 1.02 0.47
04 0.85 1.22 0.60 0.78 1.10 0.52 0.18 0.65 0.23
05 0.72 0.74 0.42 0.71 0.75 0.43 0.89 0.80 0.46
06 0.57 0.73 0.37 0.56 0.69 0.41 0.72 0.63 0.65
07 0.56 0.76 0.60 0.56 0.77 0.58 0.47 0.93 0.76
08 3.58 1.79 0.69 4.21 1.80 0.71 3.58 1.87 0.71
09 2.90 1.01 0.41 3.33 1.02 0.50 2.12 1.12 0.64
10 1.27 0.99 0.58 1.27 0.97 0.58 1.58 0.99 0.60

Table 4.3: Egomotion comparison on the KITTI odometry dataset. The absolute
trajectory error (ATE) is given in m, and the relative pose error for translation (RPEt)
and rotation (RPER) are given respectively in m/100m and ◦/100m.

of-the-art systems that also track dynamic objects within a joint SLAM framework.
ClusterSLAM (Huang et al. (2019)) acts as a SLAM back end rather than a whole
SLAM system and is therefore highly dependent on the camera poses initial estimates.
ClusterVO (Huang et al. (2020)) and VDO-SLAM (Zhang et al. (2020)) are SLAM
systems as ours with the multi-object tracking capability. The former can handle stereo
and RGB-D data, whereas the former only handles RGB-D data. The reported errors
are given with different metrics so that we can directly use the values that the authors
provide in their papers. DynaSLAM II achieves in all sequences a translational relative
error (RPEt) which is lower than that of VDO-SLAM. However, VDO-SLAM usually
achieves a lower rotational pose error. Since far map points are the ones that provide
the richest clues for rotation estimation, we believe that this difference in accuracy does
not depend on the object tracking performance and is therefore due to the underlying
camera pose estimation algorithm and the sensor suite. Regarding the performance of
ClusterVO, it achieves an accuracy which is in most sequences quite similar to ours.

4.3.2 Multi-Object Tracking

Once demonstrated the utility and the value of tracking dynamic objects for ego motion
estimation, we have chosen once again the KITTI tracking dataset (Geiger et al. (2013))
to validate our multi-object tracking results . This dataset has 21 sequences of urban
and road scenes recorded from a car perspective with multiple vehicles and pedestrians
in circulation. The ego car is equipped with a LIDAR sensor, a GPS tracker and a
stereo RGB camera. The trajectory of the ego car is provided through the GPS data,
and the trajectories and the 3D bounding boxes of the dynamic objects are provided
thanks to expensive manual annotations on the LIDAR 3D point clouds.

First of all, we want to refer the reader to Fig. 4.1 to have a look at some of our
multi-object tracking qualitative results in this dataset. For example, in Fig. 4.1c the
two tracked cars show perfectly parallel trajectories (lines in the map view) and a good
estimate of the occupied space. Furthermore their absolute velocities (written in the
frame view) are similar and are coherent with the driving context. Also, we would like
to draw the reader’s attention to Fig. 4.1d, where the 3D bounding box of the car on
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the left is well estimated despite its partial view. This scene is also challenging because
the front car is far from the camera and it is though correctly tracked.

In the last decade Bernardin & Stiefelhagen (2008) introduced the CLEAR MOT
metrics, two intuitive and general metrics (MOTP and MOTA) to allow for objective
comparison of tracker characteristics, focusing on their precision in estimating object
locations, their accuracy in recognizing object configurations and their ability to con-
sistently label objects over time. Whereas these metrics are well established in the
computer vision and robotics communities and provide valuable insights about the
per-frame performance of trackers, they do not take into account the quality of the
tracked objects trajectories (see Fig. 4.7)). Therefore, we suggest that to correctly
evaluate multi-object tracking within a SLAM framework, one needs to report the
CLEAR MOT metric MOTP 1 as well as the common trajectory error metrics. Most
related works on SLAM and multi-object tracking only report the CLEAR MOT met-
ric MOTP (Yang & Scherer (2019), Huang et al. (2020), Li et al. (2018)). Besides that,
the authors of VDO-SLAM (Zhang et al. (2020)) uniquely report the relative pose error
of all the objects trajectories of one sequence as a single ensemble. We believe that
this metric should be instead reported for individual trajectories to provide a clearer
understanding and an easier comparison.

t t+1 t+2 t+3
(a)

t t+1 t+2 t+3
(b)

Figure 4.7: Required metrics for multi-object tracking. These two images represent the
ground-truth pose of an object along time (magenta) and the estimation of a random
tracker of this object’s pose (blue). Both setups of estimation and ground truth deliver
the same CLEAR MOT metrics, however, the trajectory estimated in (a) is of a worse
quality than the estimated in (b). In a nutshell, these metrics have to be accompanied
with the relative objects trajectories evaluation to provide comprehensive results.

One can find in Table 4.4 the evaluation of our results for the multi-object tracking
task in the KITTI tracking dataset. For some of the sequences in this dataset we
have chosen the objects that we considered to be the most suitable for a trajectory
evaluation. These chosen objects are labeled with their ground-truth object id. For
each of these ground truth trajectories we look for the most overlapping bounding boxes
in our estimations. In the case of the trajectory metrics (ATE and RPE) and the 2D
MOTP, this overlapping has to be of at least 25 % to count as a true positive, and we
compute it as the intersection over union (IoU) of the 3D bounding boxes projected
over the current frame. For the other two evaluations (BV and 3D), the overlapping
has to be also of at least 25 % to count as a true positive, and is computed as the IoU
of the bounding boxes in bird view and in 3D respectively.

This evaluation gives an idea of the tracking performance of our framework and of
the quality of our bounding boxes. Regarding the percentage of true positives (TP), we
can see that objects are tracked for the majority of their trajectory. Missing detections
usually occur because the objects lay far from the camera and the stereo matching

1MOTP stands for multiple object tracking precision. It is defined as the total precision of the
predictions –computed with any given cost function– over the number of true positives.
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sequence 0003 0006 0010 0017 0018 0020
object id 0 1 4 0 6 1 2 3 0 2 3 9

class car car car car person car car car car car car car

ATE [m] 0.22 0.31 0.40 0.86 0.96 0.84 0.67 0.26 0.30 0.39 0.18 0.77
RPEt [m/m] 0.13 0.23 0.26 0.26 1.12 0.25 0.30 0.27 0.31 0.49 0.15 0.19
RPER [◦/m] 1.47 11.24 2.21 15.29 9.13 12.12 14.30 25.88 1.30 10.18 1.22 0.96

2D
# TP 48 50 25 163 65 100 189 160 122 36 61 88

TP (%) 63 41 53 55 45 53 72 56 61 65 86 94
MOTP [%] 80 79 83 73 63 59 86 66 63 63 75 79

BV
# TP 48 48 25 135 24 75 150 92 120 36 67 88

TP (%) 63 39 53 46 17 39 57 32 60 65 94 94
MOTP [%] 69 59 63 52 32 54 47 45 46 53 66 47

3D
# TP 48 48 25 124 0 57 125 63 110 30 67 83

TP (%) 63 39 53 42 0 30 47 22 55 55 94 88
MOTP [%] 56 47 49 45 0 54 41 38 35 33 50 35

Table 4.4: Objects motion comparison on the KITTI tracking dataset

does not provide accurate enough features for a rich tracking. It is important to notice
that the accuracy of the passersby tracking is much lower than that of the cars due
to their non-rigid shape –see the column for sequence 0017–. The trajectory errors of
the cars are acceptable, however, these results are far from the ego-motion estimation
performance. Our intuition is that the own feature-based nature of our algorithm limits
its tracking accuracy. A larger amount of 3D points per object would always provide
richer clues for object tracking.

So that we can provide an evaluation about all object detections and not only of
those with long trajectories –for example, also the evaluation of the bounding box
estimation of parked cars–, we also compute the MOTP of the whole KITTI tracking
dataset with the KITTI 3D object detection benchmark. This allows us to directly
compare our multi-object tracking results to those of other state-of-the-art similar
systems (Table 4.5). The CNNs of Chen et al. (2017) and specially of Li et al. (2018)
achieves amazing results thanks to the single-view network accuracy itself and the
multi-view refinement approach of the latter one, to the detriment of a loss of generality.
On the other hand, the accuracy of Bârsan et al. (2018) and Huang et al. (2020) in
detecting bounding boxes is remarkable, but it is very sensitive to object truncation
and occlusion. Our results show that we can handle objects truncation and occlusion
with a minor loss in precision. However, less bounding boxes are usually discovered
than with the other methods. Our intuition is that the feature-based nature of our
system renders this step specially challenging, opposite to that of the work by Bârsan
et al. (2018), which computes dense stereo matching to discover bounding boxes.

4.3.3 Timing Analysis

To complete the evaluation of our proposal, Table 4.6 shows the average computational
time for its different building blocks. The timing of DynaSLAM II is obviously highly
dependent on the number of objects to be followed. In sequences like the KITTI track-
ing 0003 there are only two objects at a time as maximum and it can therefore run at
12 fps. However, the sequence 0020 can have up to 20 objects at a time and its per-
formance is seen slightly compromised, but it still achieves a real time performance at
approximately 10 fps. The local mapping thread also runs with a real-time performance
in most cases bringing important improvements to the trajectories estimation.

88



MOTPBV MOTP3D

Easy Moderate Hard Easy Moderate Hard

Chen et al. (2017) 81.34 % 70.70 % 66.32 % 80.62 % 70.01 % 65.76 %
Li et al. (2018) 88.07 % 77.83 % 72.73 % 86.57 % 74.13 % 68.96 %

Bârsan et al. (2018) 71.83 % 47.16 % 40.30 % 64.51 % 43.70 % 37.66 %
Huang et al. (2020) 74.65 % 49.65 % 45.62 % 55.85 % 38.93 % 33.55 %

Ours 64.69 % 58.75 % 58.36 % 53.14 % 48.66 % 48.57 %

Table 4.5: MOTP evaluation on the KITTI tracking dataset. All ground-truth 3D
detections are divided into three categories: Easy, Moderate and Hard, based on the
height of 2D reprojected bounding box and the occlusion and truncation level.

Sequence Building block Time [ms]

KITTI tracking 0003
Tracking thread 80.10 ±0.78

Local BA 61.37 ±6.70
Bounding Boxes BA 0.07 ±0.01

KITTI tracking 0005
Tracking thread 86.46 ±0.82

Local BA 69.90 ±16.87
Bounding Boxes BA 0.17 ±0.02

KITTI tracking 0020
Tracking thread 94.56 ±1.27

Local BA 65.03 ±17.72
Bounding Boxes BA 0.60 ±0.05

Table 4.6: DynaSLAM II average computational time.

We do not include within these numbers the computational time of the semantic
segmentation building block since the 2D object detection time depends on the GPU
power and CNN model complexity. Many algorithms such as YOLACT by Bolya et al.
(2019) can run in real time and provide high-quality instance masks.

Finally, Table 4.7 collects the average timing results for the systems that jointly
perform SLAM and multi-object tracking in the KITTI dataset. DynaSLAM II is the
only system that can provide at present a real-time solution.

Li et al. (2018) Zhang et al. (2020) Huang et al. (2019) Huang et al. (2020) Ours

fps 5.8 5 - 8 7 8 10 - 12

Table 4.7: DynaSLAM II frames per second compared against the state of the art.

4.4 Failure Modes and Future Work

The feature-based core of our system limits its applicability for 3D object tracking
when objects do not have a high texture or when they lay far from the camera. We
would therefore like to improve the object temporal correlation by fully exploiting the
dense visual information. We would also like to explore the –even more– challenging
task of multi-object tracking and SLAM with only a monocular camera. This is an
interesting direction since dynamic object tracking can provide rich clues about the
scale of the map and correct the usual scale drift that occurs in monocular systems.
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4.5 Discussion

In this chapter we have proposed a 3D objects and ego-motion tracking system for stereo
and RGB-D cameras. We integrate instances semantic priors with sparse feature mea-
surements into a tightly-coupled optimization framework. This allows the estimation
of both the camera and the dynamic objects to be mutually beneficial. We propose
an object level SLAM with novel measurement functions between cameras, objects,
3D points. We decouple the problem of object tracking from that of bounding boxes
estimation and, differently from other works, we do not make any assumptions about
the objects motion, pose or model. This renders our framework suitable for a large
number of applications. We demonstrate with our experiments that DynaSLAM II
achieves a state-of-the-art accuracy at near real time performance.

4.6 Related Publications

1. Berta Bescos, Carlos Campos, Juan Tardós , José Neira. “DynaSLAM II: Tightly-
Coupled Multi-Object Tracking and Visual SLAM”. This work is in preparation
and will be submitted in October 2020 for publication at IEEE Robotics and
Automation Letters and presentation at IEEE International Conference on In-
telligent Robots and Systems.
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Chapter 5

Conclusions and Future Prospects

In this thesis we have addressed the problem of visual Simultaneous Localization and
Mapping in real-world environments populated with dynamic objects. We would like to
provide a brief summary of the major findings of this research and also draft our views
on future developments. We believe that important research directions and applications
are emerging right now in topics tightly related to our work.

5.1 Detection of Dynamic Objects

In this part of the thesis, we have addressed the core problem of detecting dynamic
objects in localization and mapping frameworks. Our contributions enhance the per-
formance of VO and SLAM systems in challenging real-world populated environments
and enable robots to localize reliably in long-term applications thanks to the creation
of long-term stable and reusable 3D maps. The proposed methods make it possible to
localize robots in highly dynamic environments with a state-of-the-art accuracy that
is similar to that usually achieved when the scene is completely static. To this end, we
have leveraged semantic segmentation from deep learning to detect a priori dynamic
classes, together with multi-view geometry algorithms that detect scene motion. We
perceive the following directions as the possible next developments in the field.

• Semantic Understanding: Intuitively, when memorizing a place, humans do not
pay attention to the specific cars or passersby but only pay attention to the
stable and representative scene landmarks such as buildings. As we have demon-
strated with our research, understanding the semantic information of the scene
allows to ignore the dynamic objects from the scene that will most likely not
reappear again. Whereas the current state-of-the-art solutions to visual SLAM
in dynamic environments as ours explicitly blend hand-crafted features with se-
mantic segmentation, we believe that these hand-crafted features and algorithms
we use nowadays will shift over time towards semantically labeled primitives and
objects, since they are more reliable to detect and less vulnerable to changes
in viewpoint and illumination. That is, a good feature-detector aimed at visual
odometry and place recognition should not extract information from the dynamic
objects in the scene, and should therefore only contain clues about the static scene
representation, which is exactly what humans do when memorizing a place.

• End-to-End Localization: In the recent years, due to the rapid development of
deep learning and the outstanding contributions of CNNs in the field of image
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classification (Krizhevsky et al. (2012)) and segmentation (Badrinarayanan et al.
(2017)), data driven approaches for end-to-end visual odometry have begun to
be explored. These learning-based methods do not require expensive feature ex-
traction and matching or complex geometric operations. The recent publications
on this topic of Wang et al. (2017) and Jiao et al. (2019) among others demon-
strate initial promising results. Intuitively, these methods would learn to ignore
clues coming from dynamic classes or instances even without an explicit use of
a semantic visual description or an optical flow representation. However, even
the end-to-end state-of-the-art methods still struggle to generalize well to various
environments and deliver an acceptable accuracy. Moreover, to obtain these far
from satisfactory results, enormous amounts of training data are required. While
it is not clear whether data-driven approaches will eventually surpass traditional
methods, it is certain that blended learning and geometry systems are increas-
ingly representing the state of the art in visual SLAM in dynamic environments.

5.2 Static Background Inpainting

In this second part of the thesis, we have presented approaches that address the chal-
lenge of realistically inpainting in images the plausible static background occluded by
dynamic objects. To the best of our knowledge, we are the first ones to use this ap-
proach in the context of visual localization and mapping. The proposed method is
novel in a robotics context and brings improvements and ease of use mainly in visual
place recognition and mapping, and also –although less notorious– in visual odometry
in presence of dynamic objects. With this contribution we have paved the way to re-
search localization in dynamic environments following this new direction. It is clear,
particularly in view of recent progress in deep learning, that image and video-based
inpainting will continue to evolve and improve, providing new and better tools for in-
painting in robotics. As following lines of research on this topic, we would like to extend
our solutions to also include inpainting in depth maps rather then only in color images.
This would enhance the quality of our results, mainly in indoor scenes where depth
information is more easily accessible, and would create new research opportunities.

From a broader perspective, we envision that place recognition and mapping solu-
tions dealing with dynamic and spurious data would follow these directions.

• End-to-End Place Recognition: Whereas deep-learning-based visual odometry
approaches struggle to achieve an accuracy comparable to that of conventional
methods, deep-learning-based visual place recognition significantly outperforms
non-learnt image representations. Despite the success of methods trained end-to-
end for the place recognition task in scenes with large amount of clutter like the
one by Arandjelović et al. (2016), we have demonstrated with our place recogni-
tion experiments in Subsection 3.5.2 that they see their performance significantly
boosted with explicit static scene representations. We can then foresee that the
key to achieving state-of-the-art performance in visual place recognition in dy-
namic environments is the use of end-to-end trained methods through an explicit
use of the static scene semantic description.

• Dense Deep Mapping: Conventionally, dense representations of the environment
are known to require a large number of parameters. However, in the recent years,
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the computer vision and robotics communities have seen attempts to undermine
this claim as in the works by Bloesch et al. (2018) and Czarnowski et al. (2020).
The geometry of natural scenes is not a random collection of occupied and unoc-
cupied space but exhibits a high degree of order. In a depth map, the values of
neighbouring pixels are highly correlated and can often be accurately represented
by well known geometric smoothness primitives. But more strongly, if a higher
level of understanding is available, a scene could be decomposed into a set of
semantic objects together with some internal parameters and a pose, as in the
work by Salas-Moreno et al. (2013). Regarding dynamic environments, explicitly
modifying these high level space representations not to contain either dynamic
or non-stable objects is a much more simple assignment, and we believe that it
might allow to infer static and complete dense 3D environment representations.

5.3 Multi-Object Tracking

In this third and final part of the thesis, we have undertaken the challenging task of
conjointly solving visual SLAM and multi-object tracking. Our contributions further
advance the state of the art of the –not so explored– task of simultaneous localiza-
tion, mapping and multi-object tracking, and establish some of the foundations of this
approach. We propose a bundle adjustment solution that tightly optimizes the scene
structure, the camera poses and the objects trajectories. The objects’ bounding boxes
are also optimized in a decoupled formulation that allows to estimate the 6 DoF pose
of the objects without being tailored for special use cases.

We believe that our research and development efforts demonstrate the value of
simultaneous localization, mapping and multi-object tracking technology in robotics.
The tasks of estimating the trajectory of the ego camera and the trajectory of the scene
dynamic agents complement each other and renders the technology more versatile.
We consider that in the years to come this approach will gain popularity due to the
importance of understanding surrounding dynamic objects for frontier requirements of
emerging applications within AR/VR or autonomous systems navigation.

Traditionally, the problem of 6 DoF object pose estimation is tackled by matching
feature points between 3D models and images (Lowe (1999), Rothganger et al. (2006),
Collet et al. (2011)). However, these methods require that there are rich textures on
the objects in order to detect feature points for matching. As a result, they are unable
to handle texture-less objects. On the other hand, in the latest years, deep learning has
shown to be effective for robust and real-time monocular pose estimation (Xiang et al.
(2017), Peng et al. (2019), Zakharov et al. (2019)). Whereas these methods outperform
traditional hand-crafted image representations regardless of the objects texture and
with a great robustness to occlusions and partial views, they need to be trained for
specific object classes with the consequent loss of generality. We believe that achieving
successful results for a joint estimation of camera and objects pose with end-to-end
approaches is far from being the case today. The two independent problems have to be
first solved without a generality loss. However, blended learning and geometry systems
already represent the state of the art for specific use cases. We envision that the next
steps in this direction of research will bring increasing performance and decreasing loss
of generality by balancing the advantages and disadvantages of learning and geometry.
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Chapter 6

Summary of Results

6.1 Research Stays

During the years of the thesis I have made the following research stays abroad:

• I was at the Autonomous Systems Laboratory of ETH Zürich (Switzerland) from
February 1, 2018 to June 30, 2018. I had the opportunity to meet and work
together with Dr. Cesar Cadena and Prof. Dr. Roland Siegwart, as well as to
share the laboratory and the working hours with their wonderful students.

• During the summer of 2019 I did an internship at the Facebook Reality Labs also
in Zürich, Switzerland (June 24, 2019 - September 13, 2019). My direct supervisor
during this stay was Dr. Mariano Jaimez. I also enjoyed the supervision of SLAM
experts such as Dr. Christian Forster, among others.

6.2 Supervision of Students

Aside from research, I have also participated in teaching, imparting the “Computer
Vision” and “Machine Learning” courses together with my supervisor Prof. José Neira
at the University of Zaragoza. Also, during the doctoral studies a significant effort was
spent on supervising student projects. Below, all supervised students and projects are
listed. For projects that resulted in a publication a citation is provided.

• Guoxiang Zhou (Semester Project in ETH Zurich – Spring 2018): “Dynamic
Objects Segmentation for Visual Localization in Urban environments” (Zhou,
Bescos, Dymczyk, Pfeiffer, Neira & Siegwart (2018)).

• Laura Delfau Luesma (Bachelor Thesis at University of Zaragoza – 2019): “A
Dynamic-Object-Invariant Space via CycleGANs”.

• Daniel Cay (Bachelor Thesis at University of Zaragoza – Spring 2020): “Multi-
Object Tracking and Segmentation with Learnt Descriptors”.

• Victor Sisqués (Bachelor Thesis at University of Zaragoza – Spring 2020): “Monoc-
ular Camera Pose Estimation Robust to Dynamic Objects”.
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6.3 Dissemination

6.3.1 Peer-Reviewed Publications

The research developed in this thesis has resulted in the following peer-reviewed pub-
lications in journals, conferences and workshops.

In preparation

• Berta Bescos, Carlos Campos, Juan Tardós , José Neira. “DynaSLAM II: Tightly-
Coupled Multi-Object Tracking and Visual SLAM”. This work is in preparation
and will be submitted in October 2020 for publication at IEEE Robotics and Au-
tomation Letters and presentation at IEEE International Conference on Robotics
and Automation.

Journals

• Berta Bescos, Cesar Cadena , José Neira. “Empty Cities: A Dynamic-Object-
Invariant Space for Visual SLAM”. IEEE Transactions on Robotics, accepted in
September 2020.

• Berta Bescos, Jose M. Facil, Javier Civera and José Neira. “DynaSLAM: Track-
ing, Mapping and Inpainting in Dynamic Scenes”. IEEE Robotics and Automa-
tion Letters and oral presentation at IEEE International Conference on Intelli-
gent Robots and Systems, October 2018.

Conferences

• Berta Bescos, José Neira, Roland Siegwart , Cesar Cadena. “Empty Cities:
Image Inpainting for a Dynamic-Object-Invariant Space”. IEEE International
Conference on Robotics and Automation, May 2019.

Workshops

• Berta Bescos, Cesar Cadena , José Neira. “Dynamic-to-Static Image Translation
for Visual SLAM”. Oral and Poster Presentation within the Workshop Scene
and Situation Understanding for Autonomous Driving at IEEE International
Conference on Robotics, Science and Systems, June 2019. (Winner Toyota
Research Institute (TRI) Best Contribution Award).

• Guoxiang Zhou, Berta Bescos, Marcin Dymczyk, Mark Pfeiffer, José Neira ,
Roland Siegwart. “Dynamic Objects Segmentation for Visual Localization in
Urban Environments”. Poster Presentation within the Workshop From freezing
to jostling robots: Current challenges and new paradigms for safe robot naviga-
tion in dense crowds at IEEE International Conference on Intelligent Robots and
Systems, October 2018.

• Berta Bescos, Jose M. Facil, Javier Civera and José Neira. “Detecting, Track-
ing and Eliminating Dynamic Objects in 3D Mapping using Deep Learning and
Inpainting”. Oral and Poster Presentation within the Workshop Representing a
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Complex World: Perception, Inference, and Learning for Joint Semantic, Geomet-
ric, and Physical Understanding at IEEE International Conference on Robotics
and Automation, May 2018.

• Berta Bescos, Jose M. Facil , Javier Civera , José Neira. “Robust and Accu-
rate 3D Mapping by combining Geometry and Machine Learning to deal with
Dynamic Objects”. Poster Presentation within the Workshop Learning for Lo-
calization and Mapping at IEEE International Conference on Intelligent Robots
and Systems, September 2017.

6.3.2 Open-Source Software

We have released the following open-source software:

• DynaSLAM (https://github.com/BertaBescos/DynaSLAM)

• Empty Cities (https://github.com/BertaBescos/EmptyCities SLAM)

• We plan to release the code for DynaSLAM II when we will submit this work
for RA-L and ICRA (October 2020).

6.3.3 Videos

Demonstrating videos of DynaSLAM:

• https://youtu.be/EabI goFmQs

Demonstrating videos of Empty Cities:

• https://youtu.be/douCaMUVPxY

Demonstrating videos of DynaSLAM II will also be available soon.

6.3.4 Conference and Research Seminar Attendance

I participated in the following courses or seminars offered outside the PhD program:

• I participated in the Robotic Vision Summer School (RVSS), organized by the
Australian Center for Robotic Vision, during March 2017 in Kioloa, Australia.

• Poster presentation within the workshop at the IEEE conference Intelligent Robots
and Operative Systems (IROS) 2017: Learning for Localization and Mapping.

• Oral and poster presentation within the workshop at the IEEE International
Conference on Robotics and Automation (ICRA) 2018: Representing a Complex
World: Perception, Inference, and Learning for Joint Semantic, Geometric, and
Physical Understanding.

• Oral and poster presentation within the conference IEEE conference Intelligent
Robots and Operative Systems (IROS) 2018.
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• Poster presentation within the workshop at the IEEE conference Intelligent Robots
and Operative Systems (IROS) 2018: From freezing to jostling robots: Current
challenges and new paradigms for safe robot navigation in dense crowds.

• I attended the IEEE Conference on Robot Learning (CoRL) 2018.

• Poster presentation within the IEEE International Conference on Robotics and
Automation (ICRA) 2019.

• Oral and poster presentation within the workshop at IEEE conference on Robotics,
Science and Systems (RSS) 2019: Scene and Situation Understanding for Au-
tonomous Driving.

6.4 Peer Reviews

In addition, during the doctoral studies a significant effort was devoted to the review
of journals and conference papers.

• Reviewer of 19 submissions to IEEE RA-L.

• Reviewer of 9 submissions to IEEE ICRA.

• Reviewer of 8 submissions to IEEE IROS.

• Reviewer of 2 submissions to IEEE RSS.

• Reviewer of 2 submissions to IEEE T-RO.

• Reviewer of 1 submission to IEEE CVPR.

• Reviewer of 1 submission to IEEE WACV.
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Bescos, B., Fácil, J. M., Civera, J. & Neira, J. (2018), ‘DynaSLAM: Tracking, map-
ping, and inpainting in dynamic scenes’, IEEE Robotics and Automation Letters
3(4), 4076–4083.

Bescos, B., Neira, J., Siegwart, R. & Cadena, C. (2019), Empty Cities: Image In-
painting for a Dynamic-Object-Invariant Space, in ‘2019 International Conference
on Robotics and Automation (ICRA)’, IEEE, pp. 5460–5466.

Besl, P. J. & McKay, N. D. (1992), Method for registration of 3-d shapes, in ‘Sensor
fusion IV: control paradigms and data structures’, Vol. 1611, International Society
for Optics and Photonics, pp. 586–606.

Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S. & Davison, A. J. (2018),
Codeslam—learning a compact, optimisable representation for dense visual slam, in
‘Proceedings of the IEEE conference on computer vision and pattern recognition’,
pp. 2560–2568.

Bolya, D., Zhou, C., Xiao, F. & Lee, Y. J. (2019), Yolact: Real-time instance segmen-
tation, in ‘Proceedings of the IEEE international conference on computer vision’,
pp. 9157–9166.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.
& Leonard, J. J. (2016), ‘Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age’, IEEE Transactions on robotics
32(6), 1309–1332.

Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S. & Urtasun, R. (2017), ‘3d object
proposals using stereo imagery for accurate object class detection’, IEEE transactions
on pattern analysis and machine intelligence 40(5), 1259–1272.

Chu, C., Zhmoginov, A. & Sandler, M. (2017), ‘CycleGAN, a master of steganography’,
arXiv preprint arXiv:1712.02950 .

Cieslewski, T., Choudhary, S. & Scaramuzza, D. (2018), Data-efficient decentralized
visual slam, in ‘2018 IEEE International Conference on Robotics and Automation
(ICRA)’, IEEE, pp. 2466–2473.

Collet, A., Martinez, M. & Srinivasa, S. S. (2011), ‘The moped framework: Ob-
ject recognition and pose estimation for manipulation’, The international journal
of robotics research 30(10), 1284–1306.

Concha, A. & Civera, J. (2015), DPPTAM: Dense piecewise planar tracking and map-
ping from a monocular sequence, in ‘IEEE/RSJ IROS’.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke,
U., Roth, S. & Schiele, B. (2016), The cityscapes dataset for semantic urban scene
understanding, in ‘Proceedings of the IEEE conference on computer vision and pat-
tern recognition’, pp. 3213–3223.

Czarnowski, J., Laidlow, T., Clark, R. & Davison, A. J. (2020), ‘Deepfactors: Real-
time probabilistic dense monocular SLAM’, IEEE Robotics and Automation Letters
5(2), 721–728.

100



Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E. & Darrell, T.
(2014), Decaf: A deep convolutional activation feature for generic visual recognition,
in ‘International conference on machine learning’, pp. 647–655.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A. & Koltun, V. (2017), CARLA: An
open urban driving simulator, in ‘Proceedings of the 1st Annual Conference on Robot
Learning’, pp. 1–16.

Durrant-Whyte, H. & Bailey, T. (2006), ‘Simultaneous localization and mapping: part
i’, IEEE robotics & automation magazine 13(2), 99–110.

Dymczyk, M., Stumm, E., Nieto, J., Siegwart, R. & Gilitschenski, I. (2016), Will
it last? learning stable features for long-term visual localization, in ‘2016 Fourth
International Conference on 3D Vision (3DV)’, IEEE, pp. 572–581.

Efros, A. A. & Freeman, W. T. (2001), Image quilting for texture synthesis and transfer,
in ‘Proceedings of the 28th annual conference on Computer graphics and interactive
techniques’, ACM, pp. 341–346.

Engel, J., Koltun, V. & Cremers, D. (2017), ‘Direct sparse odometry’, IEEE
Transactions on Pattern Analysis and Machine Intelligence .
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