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124 E.E. RAMIREZ-TORRESet al.,

In the province of Santiago de Cuba, Cuba, the COVID-19 epidemic has a limited progression that shows an early small-number peak of
infections. Most published mathematical models fit data with high numbers of confirmed cases. In contrast, small numbers of cases make
it difficult to predict the course of the epidemic. We present two known models adapted to capture the noisy dynamics of COVID-19 in
the Santiago de Cuba province. Parameters of both models were estimated using the approximate-Bayesian-computation framework with
dedicated error laws. One parameter of each model was updated on key dates of travel restrictions. Both models approximately predicted the
infection peak and the end of the COVID-19 epidemic in Santiago de Cuba. The first model pré@ictpdrted cases and unreported

cases. Additionally, it estimated six initially exposed persons. The second model foreghstatfirmed cases at the end of the epidemic.

In conclusion, an opportune epidemiological investigation, along with the low number of initially exposed individuals, might partly explain

the favorable evolution of the COVID-19 epidemic in Santiago de Cuba. With the available data, the simplest model predicted the epidemic
evolution with greater precision, and the more complex model helped to explain the epidemic phenomenology.
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1. Introduction This peak is followed by a decreasing trend. These small
and noisy data make difficult the model fitting. A common

The ongoing COVID-19 epidemic represents a global chalstrategy to describe COVID-19 dynamics is to update one or

lenge for health-care systems. The SARS-COV-2 coronmore model parameters based on key days of government ac-

avirus causing the COVID-19 is highly transmissible [1, 2]. tions [7, 10, 12].

Nevertheless, the epidemic propagation in a region/country is Ordinary differential equation (ODE) based models are

influenced by several factors, including governmental mea\%:l

31 The Cub has imol d idely used to capture the kinetic of biological systems and
Sures [. ]. The uban government has implemented sever predict the behaviour of time-dependent variables. The
strategies of social isolation to control this epidemic. As

it I ber of . red in th ) inimization of a cost function (as a strategy for fitting a
resuft, a small number of cases IS reported in the provinceg, o, dynamic model) does not take into account the uncer-

of Santiagq de Cuba. Mathematica_l models are u_seful fo ainty of parameters. Additionally, this approach can lead to
understanding the COVID-19 transmission and the 'nﬂuencﬁnrealistic fittings [27]

of government interventions [4—7]. Curré al. [4] suggest .
that system dynamics (differential-equation-based modeling) Bayesian inference offers a platform that deals naturally

is suitable to model government decisions that cause socidfith both problems, but it requires the calculation of like-
distancing and isolation. lihood functions [13-15, 28]. In many practical problems,

The most common system dynamics in epidemic rnod_Ilkellhood functions become analytically intractable; never-

eling are SIR (susceptible - infectious - removed) and SEIRIheI?S_S' data Ca? bg ﬁimur:ateéj frorr:j a par;\mete(rj vlec_}_c;]r by
(susceptible-exposed-infectious-removed) type. The class@PP ylnlg sohm_e agoEt m E at gpenl S Oo? t € ;no el us,
SIR and SEIR models assume that individuals change classg§vera techniques have been developed to infer parameters

(e.g., from susceptible to infected) at constant rates. This ag\_/lthout using Iikelihood functio_ns. These teghniques are usu-
sumption is not realistic in most situations [8]. Additionally, ally called approximate Bayesian computation (ABC) or free

it does not explain why the effective reproduction number ijikelihood inference [28, 29]j _
COVID-19 changes over time [9]. Some authors introduce ABC can be used to estimate parameters when the avail-

time-dependent parameters to formulate realistic models cible data of an infectious disease is coarse [30]. Besides,
the current pandemic [5, 10-12]. ABC accomplishes parameters estimation for models that in-

A challenge for COVID-19 modelers is to describe the clude dedicated laws to describe the error between total cases

difference between total cases and diagnosed cases. One &hd reported cases.
proach is to exclude this difference and fit the model to re-  The aim of this paper is to adapt two models reported in
ported data [16—18]. Another option is to consider unde+the literature to capture the dynamics of the noisy and small-
tected cases as a compartment of the differential equationsumber data of COVID-19 in Santiago de Cuba. For this,
system [6,7,12,19,20]. Finally, some authors avoid the comwe modify an extended SEIR model [10] by introducing a
plication of adding a new compartment, and they model thelynamic-mode gamma distribution to describe the error be-
error with differentad hocmethods [5, 10, 21, 22]. tween total and reported cases. Additionally, we adapt the
Mathematical models have been used to forecast the dylassic SIR model reported in [31] by introducing Poisson
namics of COVID-19 in delimited geographical areas. Theseoise in the observation of removed cases. For both mod-
models usually fit big-number data after several days of epiels, we update a parameter on critical days of government
demic evolution [7, 10, 23-26]. The official data reportedactions and estimate the parameter values with ABC. We are
from Santiago de Cuba show a maximum value of 36 acnot aware that these modifications have been reported in the
tive cases reached 31 days after the first confirmed casbterature.
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2. Methods to make faster and accurate predictions of the epidemic evo-
lution. For both models, we updated a parameter on key days
2.1. Data of government action. Also, we included error models to ex-

Because no perso_nal data of patients were u_sed, the ethicls)aﬁnn:gﬁ evlilr;ark;nétr)]/ O?Af/rt]r:ﬁ %t:asm‘egl\llgv‘i/iggtzégiitr? lls of the cho
approval and individual consent were not applicable.

We used official data of cumulative, infected, and re-5 4 Models
moved cases of COVID-19 in Santiago de Cuba province.
These data were reported from March™2@ May 4", Lin et al. [10] reported an SEIR model with three additional
2020. Daily data was provided by the Provincial Di- classes: the total population size J,Xhe public perception
rection of Public Health of Santiago de Cuba and vi-of risk (D), and the cumulative cases numbej (&lso, they
sualized in an information board from a web platform modeled the zoonotic transmission during the first month and
(http://www.covid19scu.uo.edu.cu). Forty-nine patients withthen only person-to-person transmission, taking into account
SARS-COV-2 were confirmed using real-time polymerasethe emigration rate inside the country.
chain reaction (PCR) tests. PCR tests were made in the Lab- Unlike [10], we did not consider the zoonotic transmis-
oratory of Molecular Biology, Provincial Center of Hygiene, sion because infection in Cuba was not originated by animals.

Epidemiology and Microbiology of Santiago de Cuba. Also, we neglected the emigration rate for two reasons: first,
the few days elapsed before the transport restriction by air,
2.2. Epidemiological evidence land, and sea; second, the social isolation actions taken, such

] ) ) ~asremote work, stopping school activities, among others. As
The first day of the COVID-19 in Santiago de Cuba province, yegyt of these two assumptions, we obtained the following
counted when the first case was diagnosed (March, 17 model, named model-I:

2020). The first case (day one), the second case (day four),

and the third case (day seven) were contacts of different as —@SI
travelers from various countries with COVID-19 transmis- dt N

sion reported. The number of diagnosed cases increased

from day seven and they were contacts of three first con- dE _ B(t) SI— oE
firmed cases. The epidemiological investigation revealed that dt N

the primary infectious focus was small in Santiago de Cuba

province due to the small number of travelers that arrived in ar _ oE —~I

this province. All confirmed cases with COVID-19 were at- dt

tended and treated in the Dr. &o3oagin Castillo Duany @)
hospital of Santiago de Cuba. The confirmed patients re- dR =~I

mained at least 14 days admitted to the hospital. When two dt

PCR tests were negative, patients were sent home under med-

ical supervision. Additionally, all contacts of these confirmed db =dyI —\D
patients were quickly isolated during 14 days to detect symp- dt

tomatic and non-symptomatic cases. After 14 days of isola- JC

tion, unconfirmed cases of COVID-19 were sent home and i oF,

daily evaluated by physicians. .
The government of Santiago de Cuba took different acyv'th D\ F
tions that restrained COVID-19 transmission, such as the ur- B(t) = Bo(1 — ) (1 - N) , 2
ban and interprovincial travel restrictions; workers were en-

couraged to work from their homes; safe transportation wa¥/hereo—", y~1, d, \=%, B(t), By, @ andk arethe mean la-
provided for essential people in the different prioritized activ-te€nt period, the mean infectious period, the proportion of se-
ities; school activity was temporarily suspended at all educavere cases, the mean duration of public reaction, the dynamic
tional levels; social movement was restrained; and the moditransmission rate, the initial transmission rate, the govern-

fied quarantine was established on the case clusters of impdRental measure strength and the intensity of individual re-

tance for disease transmission. sponse, respectively. The last expression of Eq. (1) follows
from C = I + R. As o was considered a stepwise function
2.3. Methodology in [10], we used two milestone dates: the days when inter-

provincial transport (April 18, 2020) and urban transport
In order to understand and predict COVID-19 in Santiago(April 25", 2020) were restricted.
de Cuba, we have chosen two deterministic models: one To describe the error in reported data, we assumed that
more explanatory and the other more parsimonious. The firdhe differenceCtr — Cr between total cases ' and re-
model allowed to elaborate hypotheses about some possibfmrted cases({r) is a gamma probability distribution. The
causes of the few reported cases. The second model was useskumption of a discrete random variable as a continuous one
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provided some advantages in the assessment of parameter esAppendix B) as a hybrid of rejection sampler (ABC RS)
timation. For instance, it was possible to perform a nonparaand Markov chain Monte Carlo (ABC MCMC) approaches.
metric continuous hypothesis test over residues. The shapdthough we have not demonstrated the ergodicity of the
parameter of the gamma distribution was estimated, and th&BC H algorithm, we empirically ascertained that it found
scale parameter was changed dynamically. This approach a-maximum-a-posteriori (MAP) located within the parame-
lowed us to place the mode closer to zero in the most opter region determined by the ABC SMC algorithm, consum-
timistic scenarios. We used an incremental error in the reing less computational time. Hence, we preferred to use the
ported rate during the early days of the epidemic. A dediMAPs obtained by the ABC H sampler for quick predic-
cated law was formulated for the number of unreported caseson and the ABC SMC process for more in-depth posterior

per each reported oné&(t)), given by Bayesian analysis. Specifically, we used the ABC SMC re-
sults to compute the credible intervals of posterior distribu-
Ut) = {Pt +0, ift <dr (3 tions. Details of the algorithms ABC SMC and ABC H are
pdr + 0, if t > drp, shown in A and B, respectively.

. . . As far as we know, the ABC H sampler is a new idea, and
Whgrep ando are tuning pargmeters ang IS the time fro.m ._its main disadvantage may be the inaccuracy of the sampling
which COVID-19 transm|§s_|on showed higher r_egularlty N from the posterior distribution. This issue was not critical be-
the ;:ase count. We empirically set the valuepir- 0.01 cause we aimed to give a quick prediction based on the MAP.
day’, § = 0.04 anddr = 8 days. We assumed thal(¢) Nevertheless, we hypothesize that for a reasonably high value

increased d“”!"g the .days when almost no NEw cases arpsfSSigned to the fourth sampling choieg;( corresponding to
and after that, it remained roughly constant. This assumptio ..\ entional ABC MCMC), it is possible to obtain poste-

?S consistent with a previou§ study [32] that reported g_rOWﬂ}ior distributions similar to ABC SMC results. Further re-
n undocume_nted cases durmgthe early days of th_e E"p'dem"S‘earch is required to verify this hypothesis. We used the
The expression for the dynamic mode of errf ¢)) is schemew = {0.2,0.2,0.3,0.3} for sampling choice. Other

Cr values used in ABC H sampler welé = 103, h = 800, and
M(t) = m (4) a Gaussian acceptance kernel function

) ) ) Because actual data can be directly compared to simu-
The difference betweefi; and)M () was considered atime- |5teq data for ODE models, it was not necessary to use sum-
dependent approximation of undetected cases. mary statistics as criteria of divergence. We used the sum of
Model-l consisted of a standard SIR model [31], adaptedyyareq errors as the distance criterion, which is closely re-
with the introduction of Poisson noise in the removed casegaye tg the likelihood [33,35,36], and suitable for infectious-
Eor the parameter calibration of m(_)deI-II, reported cumulaisease modeling [30]. We used a methodology for the prior-
tive and removed cases were considered. We descbiod  istrihution choice that consisted of several trials mimicking

in the model-Il as a stepwise function that included changegitterent favorable and unfavorable scenarios, followed by
in key dates. The error was assumed as a standard normalaqpack from epidemiologists.

distribution for model-!l. Values ofd = 0.2 ando = 1/3 day* in model-I were re-

ported in [10]. The remaining parameter values and the initial
conditionsE(0) andD(0) were estimated with ABC starting

Parameter estimation was performed with the ABC approacHom locally uniform prior distributions.

[28,33,34]. We preferred the sequential Monte Carlo (ABC  In our approach, two key dates of travel restrictions di-

SMC) method described in the Algorithm 4.8 of [34] becausevided the evolution of the epidemic into three periods. Three

of its well-documented results. Nevertheless, the ABC SMQgovernmental action strengths were estimated for these pe-

method can perform slowly computing adaptive tolerances. riods: before travel restrictions (¢ after interprovincial
This sampler (Algorithm 1 in Appendix A) outsmarts its travel restriction ), and after the urban public transport

predecessors in automatic computing of tolerances based é@striction in Santiago de Cuba{)» The three values:, 3.,

the effective sample size of the previous population. We useénd 33 were considered in model-Il taking into account the

N = 10% hy = 108, T = 5 and a Gaussian acceptance Same criteria for key dates mentioned above.

kernel functionk;,. We refer readers to [34] for a deeper ~ We calculated the coefficient of determinatid? for

understanding of ABC samplers and their adjustable paranthe regression analysis of MAP fit to assess the quality of

eters. parameter-estimation results for models | and Il. We per-
The reweight step of the chosen ABC SMC sampler ledformed the frequentist and nonparametric Mann-Whitney U

to an optimization problem in the calculation bf,. Thus, test[37,38], taking as null hypothesis that the actual residues

it may introduce delays in the computation process, espesbtained arose from the assumed gamma distribution. Fur-

cially if the posterior distribution is distant from the prior thermore, an approximation of maximum likelihood (ML) ra-

distribution. Therefore, we introduced the hybrid versiontio between models (ML of model-1 to ML of model-1l) was

of ABC techniques, named ABC H algorithm (Algorithm 2 computed with ABC output.

2.5. Parameter estimation

Rev. Mex. 5. 67 (1) 123-136
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TABLE |. Summary table of model-I parameters and results.

Parameter Notation Prior or MAP MAP
fixed value (ABC SMC) (ABC H)
Transmission rate Bo U(0.1,1.5) 0.4811 days® 0.4340 days®
C1(0.3680,0.5468)
a1 0.5245 0.6179
C1(0.3717,0.7534)
Fitting parameter Qe U(0.1,1) 0.2855 0.1801
C1(0.1775,0.3692)
a3 0.9665 0.9417
C1(0.8527,1.0000)
Intensity of responds k U (600, 4000) 3430 3405
C1(3335,3598)
Mean latent period - 3 days - -
Mean infectious period 1 U (1, 40) 21 days 25 days
CI(1,33)
Proportion of d 0.2 - -
severe cases
Mean duration of At U(10, 30) 20 days 50 days
public reaction CI(1,39)
Initial susceptible S(0) 9.41-10° - -
population
Initial exposed E(0) U(1,10) 6 6
population CI(4,7)
Initial infectious 1(0) 1 - -
population
Initial removed R(0) 0 - -
population
Initial risk perception D(0) U(1,10%) 163 148
CI(142,188)
Initial cumulative cases C(0) 1 - -
All simulations were made in a 256-core high-  Figure 2 was obtained using the MAPs of posterior dis-

performance-computing (HPC) processor with 256 GB RAMtributions of model-Il parameters that were computed with
using Python 3.6 [39]. The HPC machine was acquired byABC SMC. These MAPs and other values from model-Il are
the Flemish Development Cooperation through VLIR-UOSsummarized in Table II.

(Flemish Interuniversity Council-University Cooperation for
Development of Belgium) in the context of the Institutional
University Cooperation program with Universidad de Ori-
ente, Santiago de Cuba.

In all trials made, the ABC H sampler consumed less time
and reached similar parameter regions to the ones obtained by
ABC SMC (Figs. 3-6) for the same prior distributions.

Model-I predicted a total 0f3 infected at the end of the
COVID-19 epidemic in Santiago de Cuba, with% of un-
documented cases. The final valueléft) was57, being the
Model-I simulation (Fig. 1) was performed with MAPs calcu- model-1 prediction of confirmed cases. Model-1l forecasted
lated with ABC SMC. All parameters and results of model-1 51 confirmed cases at the end of the epidemic. Addition-
fitting are summarized in Table I. The Mann-Whitney U testally, the ML ratio calculated wa.941; and the values of de-
performed on the residues of model-I fit did not reject the nulltermination coefficients wer&? = 0.9450 for model-I and
hypothesis based on a 5% significance level. R? = 0.9781 for model-I.

3. Results

Rev. Mex. 5. 67 (1) 123-136
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FIGURE 1. Estimated evolution of COVID-19 epidemic in Santi-
ago de Cuba with model-1. The selected parameter values for simFIGURE 2. Estimated evolution of COVID-19 epidemic in Santi-
ulation correspond to the MAP of the approximate posterior distri- 2go de Cuba with model-Il. Predicted infected individuals follow
bution. The model-predicted and reported infected individuals a), the dynamics of the reported ones a). A long-term scenario of both
and the cumulative b), both predicted in simulati@iir(and Cr reported and predicted cumulative cases, and the area limited by
predicted) and observed’') cases are plotted. The shaded area the extremes of the 95% credible intervals of posterior distributions
is limited by the extremes of 95% credible intervals of posterior obtained with the ABC SMC sampler b) are plotted.
distributions obtained with the ABC SMC sampler.
functional ABC algorithm. The scheme = {1,0,0,0} for

) ) sampling choice corresponds to a ABC RS process [33, 40].
4. Discussion The schemew = {0,0,0,1} resembles an ABC MCMC
method [41]. ABC RS and ABC MCMC are algorithms that
sample from adequate posterior distributions but in an ineffi-
cient time, so other intermediate schemes may be evaluated
in further works.

COVID-19 dynamics in Santiago de Cuba is difficult to cap-
ture empirically without the introduction of stepwise func-
tions for parametet in model-1 and parametetin model-II.

Results show that model-1 (Fig. 1) and model-Il (Fig. 2), fit-

ted with ABC algorithms, can predict an early small-number ~ 1"€ computed percentage of undocumented cases is in
peak of infected cases and the approximate ending of thgontrast with the 86% of unreported infected cases estimated

COVID-19 in Santiago de Cuba. The non-rejection of thefor China [43]. This result suggests that the limited progres-

null hypothesis on the residuals allows us to continue consigSion Of the COVID-19 epidemic in Santiago de Cuba may
ering the validity of the error law for model-I. be due to opportune epidemiological investigations, effective

All MAPs calculated with ABC H are within credible Control measures in each source of infection, and a low num-

intervals obtained with ABC SMC, except parameteof ber of initially exposgd individuals ((H)) = 6). Additionally,
model-I. Even for this parameter, the histogram generated bgas.e clusters prevail over transmission clusters for COVID-
ABC H partially overlapped the one generated by ABC sMc. 19 in Santiago de Cuba province. The policymakers used
We deduce that both algorithms find the same parameter rd€S€ estimates to complement an investigation into the ini-
gion for the chosen prior. A visual comparison of Fig. 3 with il infectious load of SARS-COV-2 in Santiago de Cuba.

Fig. 4, and Fig. 5 with Fig. 6, reveals that ABC H does not  The MAPs ofa posterior distributions were estimated at
sample from the same distribution as ABC SMC. Althoughai = 0.5245, o, = 0.2855 anda = 0.9665 (Table I). Value

this does not affect the use of ABC H in this work, a modifi- of o is expected to grow as government measures increase
cation of the ABC H sampler is required to make it a fully but, surprisingly, the value after the closure of transportation

Rev. Mex. 5. 67 (1) 123-136
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TABLE Il. Summary table of model-1l parameters.

Parameter Notation Prior or MAP MAP
fixed value (ABC SMC) (ABC H)
B 0.5674 days® 0.5149 days®
C1I(0.3067,0.7534)
Transmission rate B2 U(0.1,0.9) 0.5855 days' 0.6056 days'
C1(0.4794,0.7088)
Bs 0.3555 dayst 0.3548 dayst
C1(0.2443,0.4525)
Mean infectious period At U(1,10) 2 days 2 days
CI(1,3)
Interval expectation A U(1,20) 18 days 18 days
of removed CI(12,23)
Initial susceptible 5(0) 9.41x10° - -
population
Initial infectious 1(0) 1 - -
population
Initial removed R(0) 0 - -
population

betweerprovinces is lower than beforef < a;). We con-  ports of those recovered. The value of this parameter for
sider two possible explanations for this result: model-Il is plausible because it is the number of days ex-
First, the interpretation ofv as government action is pected for a diagnosed patient to recover, and the diagnosis
somewhat forced. In a previous study [42]was interpreted is usually confirmed several days after the exposition. The
as seasonality of transmission associated with the school cahterval expectation of removedp,;ssorn, = 18 days with
endar for a similar formulation of(¢). Consequently, the C1 [12,23], seems consistent with the patient-discharge pol-
interpretation ofx remains open. icy implemented by the Ministry of Public Health of the Re-
Second, the increase in PCR tests coincides with the pegsublic of Cuba.
O o i oLE M00E! e possile xplanaton for the ML rato s that e cr
of PCR tests. This variability influences the number of de—ror law for model-1 (Eqg.(3)) can only partially describe the

complex variability of the reporting rate. As model-Il is more

tected cases, and therefore the estimation of all transmiSSiOBérsimonious than model-1, we did not perform some further
rate parameters. ’

: . analysis like Akaike’s information criterion (AIC) or Bayes
Thus, in our results, we do not interpretas govern-

t acti W i ltitactorial ; factor, which should favour model-Il over model-l. On the
ment action. e c_on3| er as a mu '?C orial parameter i, hand, the model-I allowed us to estimate the number
that works as a calibrator ¢gf(¢) dynamics. The only dy-

: able th licitly infl in Eq. (2) | of individuals initially exposed, and to compute the percent-
E)anigzgr'?rh? ) f(la explicttly in uence@(tt) 'tﬂ thq. "‘.‘Zj IS age of unreported cases. We argue that simpler models like
[. 42]. IS Influence IS In agreement with tn€ epIGemIo-y, 5401 should be preferred for accurate prediction, whereas
logical and sociological researches carried out in Santiago d

n lanat dels like the model-I are to be used f
Cuba, which confirm the reduction of the transmission rate b ore expianarory mogels ke the model-l are To be tsed for
Do . . ¥)henomenolog|cal analysis.
the high-risk perception of both decision-makers and popula- o _
tion. Nevertheless) depends explicitly od, which in turn The chat on the left in Fig. 2 shows a remarkable tracking
depends or¥; so the variableD is affected by changes in Of the data variation by the fitted curve. A conventional SIR

these state variables; and therefore, they indirectly influencgodel cannot achieve this. Model-1l accomplishes this track-
the dynamics ofj(t). ing by dividing the adjustable parameters of the SIR model

The estimated value = 3430 (k = 1117in[10]) may in-  into three time periods. Furthermore, the cases recovered on
dicate a good response from individuals in Santiago de CubHe day estimated by the SIR model are not subtracted, but on
to COVID-19 epidemic. the day expected by the Poisson error. In other words, model-

The mean infection period for model-I may be explained!! is advantageous over a conventional SIR as it is a piecewise
by the inclusion of unreported cases and the delay in the reSIR with a Poisson noise in the number of removed cases.

Rev. Mex. 5. 67 (1) 123-136
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FIGURE 3. Posterior density estimation of model-I parameters using ABC SMC sampler and COVID-19 data from Santiago de Cuba. The
estimated parameters abg, k, A\, a1, a2, as, v, E(0), and the scale parameter of the gamma distributienas).
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FIGURE 4. Posterior density estimation of model-I parameters using ABC H sampler and COVID-19 data from Santiago de Cuba. The
estimated parameters abg, k, A\, a1, a2, a3, v, E(0), and the scale parameter of the gamma distribution ;.

Rev. Mex. 5. 67 (1) 123-136



132 E.E. RAMIREZ-TORRESet al.,

FIGURE 5. Posterior density estimation of model-Il parameters FIGURE 6. Posterior density estimation of model-1l parameters us-
using ABC SMC sampler and COVID-19 data from Santiago de ing ABC H sampler and COVID-19 data from Santiago de Cuba.
Cuba. The estimated parameters @refs2, s, v, and the interval ~ The estimated parameters &g 32, 53, v, and the interval expec-

expectation of the Poisson distributioke{issor- tation of the Poisson distribution\gissop-

Rev. Mex. 5. 67 (1) 123-136
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We hold that the difference between the predicted andarlon César Texidor Gain, Digna de la Caridad Bandera
reported data in both models is acceptable because of rdiménez, Adriana Rodlguez Valés, Manuel de Jés Sal-
porting delays, which are in agreement with previous studvador Alvarez, Hilda Morandeira Padn, ltciar Arias Por-
ies [10,32,44]. tales and Sergio Miranda Reyes. Additionally, the authors

One advantage of using a Bayesian approach in param#hank Universidad de Oriente, DATYS-Santiago de Cuba, Di-
ter estimation is to use different prior distributions in order toreccibn Provincial de Salud{#®lica, and the provincial gov-
set favourable and unfavourable scenarios for models. Whesrnment officials of Santiago de Cuba.
the data do not show a peak yet, most models become highly
unidentifiable, in such a way that one can find several paramp
eter combinations leading to reasonable fits. Therefore, we
de_:em it essent?al to cor_npler_nent_the_mathgma}tical ana_llysiA_ Algoritm ABC Sequential Monte Carlo Algo-
with an evaluation of epidemiological investigation, looking .

. L rithm
for the most plausible prediction.

The error law for the model-I (Ed. (3)) and the assumption
of the gamma distribution cannot fully capture the variability Algorithm 1 ABC Sequential Monte Carlo Algorithm
of the reporting rate. This approach is a baseline for f'“'turef?equire:

ppendix

improvements.

The influences offy, o, D andk in 5(¢) should not be e A target posterior density(6]y) x p(y|0)=(0) con-
discussed separately. The variabtgs o, D, andk are dy- sisting of a prior distributionr(6) and a procedure for
namically interrelated, taking into account that the society generating data under the mogé|d).

(complex system) is constituted by the interaction and cou-

pling of its elements as a global unit, in agreement with [45].
Further studies will evaluate the influence of other vari- ¢ An initial sampling density;(¢) and sequence of pro-

ables on the favourable evolution of COVID-19 in Santi- posal densities

ago de Cuba: government-induced social isolation, the so- gm(0,0"),m=1,..., M.

cial response of individuals, and the environmental factors

(e.g., temperature and relative humidity). Additionally, future ~ ® Avaluea € [0, 1] to control the effective sample size.

works should study the ABC H performance for intermediate

o Akernel functionkKj, (u), and an integeN > 0.

e A low dimensional vector of summary statisties=

values ofw, looking for an acceptable compromise of effi- S(y)
ciency and accuracy. Another possibility is to study adaptive '
schemes ofv, in order to accept a group of candidates in aEnsure: A set of weighted parameter vectors
short time, and then ensure sampling of the posterior distri(&f),w}}), ceey 93?”, wj(év)) drawn fromm agc (0] Sobs)
bution. o
Initialise:
5. Conclusions Fori=1,...,N Do

(0 e
Our study indicates that modified SIR and SEIR models, * Generat®, 9(¢) from initial distributiong.

combined with ABC for parameter estimation, can follow the 4 Generateyéi) (t) ~ p(yIH(()i)) and compute summary
small-number dynamics of the COVID-19 epidemic. More statistics

precisely, models follow dynamics with no explosions of new 5(()%‘) (t) = S(y((f’)) fort=1,...,T.

cases and with small-number peaks by including some pa- _ _ _

rameters as stepwise functions of critical days. An oppor- e Compute Weightsuff) = w(@éz))/g(eff)), and sein =
tune epidemiological investigation, along with a low num- 1.

ber of initially exposed individuals, may partly explain the

favourable evolution of the COVID-19 epidemic in Santiago End For

de Cuba. Sampling:

1. Reweight: Determing,,, such that
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2. Resample: ifESS(wf,H,...,w,(nAp) < FE then resam-
ple N particles from the empirical distribution function
{09, s51), ..., s(T), Wi} where

(i) _

m = U}%)/ Z;\;l 'U)grj:) and Sem}%) = 1/N
3. Move:
Fori=1,...,N Do
if w,(,? > 0 then
e Generated’ o gm(eﬁ,?,o), y'(t) p(y|97(,?) and
s'(t) = S(y'(t)
fort=1,...,T.
e Acceptd’ with probability
T .
> KI5’ (£)—s0b9) )7 (6")g(6'65)

t=1

min | 1, —
> K (|15 () =s0b9) )7 (65))9(6516")
t=1
endif
end for

B. Algorithm ABC Hybrid Algorithm

Algorithm 2 ABC Hybrid Algorithm

Require:

e A target posterior density(6|y) o« p(y|0)=(6) con-
sisting of a prior distributionr(#) and a procedure for
generating data under the mogéy|6).

e A Kkernel functionk},(u), an integetV. > 0 and a tol-
eranceh.

e Sampling densities,, (0), g.(0) andgrrc(0).
e A normalized vectoiw = {wp, w;,ws,ws} to control
the sampling choice and= 0 to count the accepted

candidates.

e A low dimensional vector of summary statistiss—
S(y).

E.E. RAMIREZ-TORRESet al.,

Ensure A set of parameter vector®), ... (V) drawn
from

7 apc(0]50b9) ox / Kpoaa (15 — sobe) [)p(s10)7(6)ds
Initialise:

e Sample three initial point6,,,0.,0¢c}i—o from
7(0).

. Generate;;{,w,Mc} ~ p(YlO¢m.c,mcy) and compute
summary statisticsy,,, . vrcy = S(Ym,e,mcy)-

Sampling:
while ¢ < N do

1. Choose sampling mode: sampléfrom w according to
weights.

2. Sample candidate:
if w’ = wy then Draw ¢’ from 7 ()
else ifw’ = wy then Propose’ according tay,,, (6]6,,)
else ifw’ = wy then Propose)’ according tay.(6]6.)

else if w' =
grmc(010mc)

w3z then Propose#’ according to

end if
3. Accept or not:
e Generate) x p(y|0') ands’ = S(y').
e Acceptd’ with probability K7, (||s" — sobs)||)
o If 0’ is accepted, d6,;c = 6’ with probability

: < 7(0")grc (Oric|f)
min | 1,
m(Orc)gmc(9'|0mc)
4. Update:

) and increment.

e Do b, = ¢ if Kp(||s' — sobs)||) is the highest com-
puted so far.

e Proposed., according tog.(0]¢’,6.), generatey!, ~
p(y|0.), compute summary statistie§ = S(y.) and
dod. = 0. if Kn(||s. — sops)||) is the highest com-
puted so far.

end while
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