000100743 001__ 100743
000100743 005__ 20230519145437.0
000100743 0247_ $$2doi$$a10.1016/j.energy.2021.120306
000100743 0248_ $$2sideral$$a123401
000100743 037__ $$aART-2021-123401
000100743 041__ $$aeng
000100743 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000100743 245__ $$aModelling calcium looping at industrial scale for energy storage in concentrating solar power plants
000100743 260__ $$c2021
000100743 5060_ $$aAccess copy available to the general public$$fUnrestricted
000100743 5203_ $$aCa-Looping represents one of the most promising technologies for thermochemical energy storage. This process based on the carbonation-calcination cycle of CaO offers a high potential to be coupled with solar power plants for its long-term storage capacity and high temperatures. Previous studies analyzed different configurations of CaL integrated into power cycles aiming to improve efficiency. However, most of these assessments based on lumped models did not account for scale effect in the most critical reactor. In this work, a detailed 1D-model of a large-scale carbonator is included in the comprehensive model of the integrated facility. The results obtained served to assess the available heat, the minimum technical part load of this equipment, the required size of the storage tanks and the overall efficiency of the plant. The main issue in the operation of large-size carbonator is the heat removal, thus a multi-tube internally cooled reactor is proposed. The designed carbonator provides 80 MWth at nominal operation and 40 MWth at minimum part load operation. The sizing of storage tanks depends on the operation management, ranging between 5,700-11,400 m3 for 15 hours. Different efficiencies of the system were defined and presented through operating maps, as a function of the reactor loads.
000100743 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T46-17R$$9info:eu-repo/grantAgreement/EC/H2020/727348/EU/SOlar Calcium-looping integRAtion for Thermo-Chemical Energy Storage/SOCRATCES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 727348-SOCRATCES$$9info:eu-repo/grantAgreement/ES/MCIU/FPU17-03902
000100743 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000100743 590__ $$a8.857$$b2021
000100743 592__ $$a2.041$$b2021
000100743 594__ $$a13.4$$b2021
000100743 591__ $$aTHERMODYNAMICS$$b3 / 63 = 0.048$$c2021$$dQ1$$eT1
000100743 591__ $$aENERGY & FUELS$$b24 / 119 = 0.202$$c2021$$dQ1$$eT1
000100743 593__ $$aEnergy (miscellaneous)$$c2021$$dQ1
000100743 593__ $$aEnergy Engineering and Power Technology$$c2021$$dQ1
000100743 593__ $$aBuilding and Construction$$c2021$$dQ1
000100743 593__ $$aCivil and Structural Engineering$$c2021$$dQ1
000100743 593__ $$aRenewable Energy, Sustainability and the Environment$$c2021$$dQ1
000100743 593__ $$aManagement, Monitoring, Policy and Law$$c2021$$dQ1
000100743 593__ $$aMechanical Engineering$$c2021$$dQ1
000100743 593__ $$aModeling and Simulation$$c2021$$dQ1
000100743 593__ $$aFuel Technology$$c2021$$dQ1
000100743 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000100743 700__ $$aPascual, Sara$$uUniversidad de Zaragoza
000100743 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, Pilar$$uUniversidad de Zaragoza
000100743 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis$$uUniversidad de Zaragoza
000100743 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000100743 773__ $$g225, 120306 (2021), [35 pp.]$$pEnergy$$tEnergy$$x0360-5442
000100743 8564_ $$s6397054$$uhttps://zaguan.unizar.es/record/100743/files/texto_completo.pdf$$yPostprint
000100743 8564_ $$s960595$$uhttps://zaguan.unizar.es/record/100743/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000100743 909CO $$ooai:zaguan.unizar.es:100743$$particulos$$pdriver
000100743 951__ $$a2023-05-18-14:24:55
000100743 980__ $$aARTICLE