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Abstract

The recent advances in non-line-of-sight imaging have made it possible to reconstruct scenes
hidden around a corner, with potential applications in e.g. autonomous driving or medical
imaging. By operating at frame rates comparable to the speed of light, recent virtual-wave
propagation methods leverage the temporal footprint of indirect light transport at a visible
auxiliary surface to take virtual photos of objects hidden from the observer. Despite these
advances, these methods have a critical computational bottleneck: The reconstruction qual-
ity and the computational performance are highly dependent on the resolution of the capture
grid, which is typically discretized in space and time, leading to high processing and memory
constraints.

Inspired by recent machine learning techniques, in this work we propose a new compu-
tational imaging method to address these limitations. For this purpose we propose to learn
implicit representations of the captured data using neural networks, allowing us to convert the
discrete space of the captured data into a continuous one. However, working directly with the
captured data is a complex task due to its huge size and its high dynamic range values. In
order to avoid these problems, we leverage recent wave-based phasor-field imaging methods
to transform the time-resolved captured data into sets of 2D complex-valued fields (i.e. phasor
fields) at different frequencies, which provides a more favorable representation for machine
learning methods.

Under our implicit representation formulation, we analyze the performance of different neu-
ral network models to represent the complex structure of phasor fields, starting from simpler
representations, and iteratively providing more powerful models to add support for the com-
plexity of the data. We demonstrate how recent machine learning techniques based on multi-
layer perceptrons with sine activation functions are capable of representing phasor fields ana-
lytically in both spatial and temporal frequency domains, and integrate them into the phasor-
field framework to reconstruct hidden geometry. We finally test this neural model in different
scenes, and measure its performance at higher resolutions not seen by the captured data. We
show how the model is able to analytically upsample all dimensions, and demonstrate how our
implicit representation additionally works as a denoiser of the source discretized phasor field.
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Resumen

Los recientes avances en imagen non-line-of-sight han hecho posible la reconstrucción de es-
cenas ocultas a través de una esquina, con la potencial aplicación en conducción autónoma o
imagen medica. Al operar con fotogramas por segundo cercanos a la velocidad de la luz, re-
cientes métodos de propagación virtual de ondas aprovechan la huella temporal del transporte
de luz en una superficie auxiliar para tomar fotones virtuales de objetos ocultos al observador.
A pesar de estos avances, estos métodos tienen un cuello de botella critico: La calidad recon-
strucción y el coste de computo son altamente dependientes de la resolución de la malla de
captura, la cual suele esta discretizada en espacio y tiempo, lo que conlleva grandes limita-
ciones de procesamiento y memoria.

Inspirados en las recientes técnicas de aprendizaje automático, en este trabajo proponemos
un nuevo método de imagen computacional para hacer frente a estas limitaciones. Para este
propósito proponemos aprender representaciones implícitas de los datos capturados usando
redes neuronales, permitiéndonos convertir el espacio discreto de los datos capturados en un
espacio continuo. Sin embargo, trabajar directamente con los datos capturados es una tarea
compleja debido a su gran tamaño y al alto rango dinámico de sus valores. Para evitar estos
problemas aprovechamos el reciente método de imagen de los campos de fasores basados en
ondas para transformar los datos capturados resueltos en tiempo en un conjunto de campos 2D
de valores complejos (como son los campos de fasores) a diferentes frecuencias, lo cual provee
una representación más favorable para los métodos de aprendizaje automático.

Siguiendo nuestra formulación de representación implícita, hemos analizado el rendimiento
de diferentes modelos de redes neuronales para representar la compleja estructura de los cam-
pos de fasores, empezando por representaciones simples, y proporcionando de forma iterativa
modelos más potentes para añadir soporte para la complejidad de los datos. Demostramos
como las técnicas recientes de aprendizaje automático basadas en preceptrones multicapa con
funciones de activación sinusoidales son capaces de representar un campo de fasores analítica-
mente en los dominios espaciales y temporales, e integrarlas dentro del marco de los campos de
fasores para reconstruir geometría oculta. Finalmente probamos este modelo de red neuronal
con diferentes escenas y medimos su desempeño con mayores resoluciones que no han sido
usadas en el entrenamiento. Mostramos como el modelo es capaz de generar más muestras en
todas las dimensiones y demostramos como nuestra representación implícita además funciona
como un método para eliminar ruido del campo de fasores discretizado.
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Chapter 1

Introduction

Transient imaging methods [1] are focused on analyzing and capturing time resolved profiles
of the propagation of ultrashort light pulses emitted by ultra-fast lasers at temporal resolutions
close to the speed of light. These profiles consist in impulse response functions of a scene
in time. The information that can be obtained from them has several applications such as
depth estimation, vision through turbid media or reconstruction of hidden objects. Concretely,
non-line-of-sight (NLOS) reconstruction methods capture the impulse response function of a
hidden scene from a visible diffuse wall (known as relay wall, in the figure 1.1 it can be seen an
example of the capture setup for a hidden scene) and, by analyzing it, they are able to recover
information of the hidden scene such as the position, the geometry or the material properties.
NLOS methods have multiple potential applications such as lunar cave exploration, rescue
operations in disaster situations or autonomous driving.

NLOS SPAD-laser capture setup

SPAD

laser

Figure 1.1: Sample setup for capturing a NLOS scene. An ultrashort light pulse is emitted to a
relay wall (square with dots) and the sensor captures the light resolved in time reflected by the
scene to the relay wall. Image adapted from Liu et al.[2].

NLOS methods analyze the light paths from the relay wall that come from a hidden scene
to estimate the position of geometry or other properties of the hidden scene such as the type
of material. The recent work of phasor field by Liu et al. [2] presented a wave-based frame-
work that overcome all previous methods and is successfully able to work with complex scenes
where multiple inter-reflections occur. The framework transforms the temporal domain of the
impulse response function into a wave-optics domain converting a NLOS scene into a classi-
cal line-of-sight (LOS) scene as if it was observed from the relay wall perspective, enable the
use of well-established LOS optics methods. Furthermore, the framework allows virtualizing
different light models that are virtually propagated to the scene and, through virtual cameras
and lens models, is able to focus and reconstruct the hidden scene. Despite these advances, the
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2 Chapter 1. Introduction

NLOS field still has some problems as the limitation of the capture resolution which is, nowa-
days, one of the biggest bottlenecks to increase the quality and details in the reconstructions.

The capture process of the impulse response function in NLOS scenes is done by scanning
a relay wall sequentially with a laser and a sensor, moving them independently point by point.
The sequential process is a bottleneck because it is necessary to move the sensor and calibrate
it with the laser for each of the points. This makes the capture process slow and unpractical
for capturing high density impulse response function. This limitation of the spatial resolu-
tion of the impulse response function also affects to the quality of the reconstructions of the
NLOS methods because the capture resolution limits the maximum achievable resolution in
the reconstruction.

Alleviating the bottleneck in the capture process would allow the NLOS field to be used
with even more complex and detailed scenes which previously could not be reconstructed
due to the low capture resolution, allowing to improve the quality of NLOS reconstructions.
This problem can be addressed from two sides, modifying the current capture hardware or by
developing novel computational imaging methods. In the first option, in order to modify or
create new hardware it is required to build prototypes and design prototypes that are often too
expensive or impractical to manufacture. Moreover, the new hardware will must be extensively
tested capturing real data what limits its development to the places with capture hardware. The
second option is based on designing new computational methods that operate under the existing
hardware constraints, to take advantage of the characteristics of light transport information in
order to improve performance in the imaging process.

Recovering a high dense signal or function from its low sample version is a known problem
in multiple fields where the original function is measured with different methods which are not
able to sample enough points to recover the original shape of the function. A recent example
of this problem is the reconstruction of the black hole image [3] obtained from a highly sparse
amount of points captured from radio-telescopes across the entire world. The recovering pro-
cess is commonly done with machine learning methods due to the complexity of the functions
to recover and the flexibility to adapt and learn the peculiarities of the original data.

Learning methods have shown along the years its potential in fields like computer vision,
graphics or imaging, being able to solve problems such as superresolution [4], image segmen-
tation [5], denoising [6] or depth estimation [7] with high frequency details like borders in
images or geometry or strong illumination changes in scenes. One of the techniques that are
able to learn this type of non-linearities are the neural networks. They have demonstrated their
ability of filling gaps between samples. This is a good option for our problem where we want
to increase the samples of a discrete phasor field obtaining a more density version. An example
is that, in the case of superresolution, a neural network increases the resolution of an image
hallucinating new pixels [8]. Other option for increasing the resolution is the idea of being
able, through a neural network, to sample new points from the original learned data. This has
been tested in different domains such as textures sampling [9], 3D volumetric spaces sampling
[10, 11] or implicit models learning of different types of data as images, signals or 3D volumes
[12]. However, all these methods are designed for other problems, working in real domain or
with standard images, making that none of them can be directly used in our case. However, in
this work we will follow these ideas and formulate this problem as a transformation of a dis-
crete impulse response function into a continuous function learning an implicit representation.
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However, applying this directly to the impulse response function is a difficult problem. The
response function has the disadvantage of its size and its high dynamic range united to the fact
that it is not necessary to sample the temporal dimension to higher resolutions (see section 4.2
for further details). To avoid this problem we take advantage of the first phase of the phasor
field framework that transforms the impulse response function by integrating it with a virtual
light profile into a phasor field for a concrete frequency in the relay wall. With this change we
alleviate the previous problems working with low range values in complex space and without
a long dimension like the temporal one. With this transformation we can now learn an implicit
representation for the spatial and frequency domain allowing us to upsample the phasor field
in all this dimensions.

To summarize, in this work we present a method to solve a current problem in the NLOS
field: the limitation of capturing high density impulse response function in the spatial domain.
For this work we choose to work with synthetic data instead of real one due to the control
and possibilities that simulation gives us. To do the simulation we use a public transient ren-
derer [13] that virtualizes an NLOS capture system. Once the data is simulated, we begin
transforming the impulse response function through the phasor field framework into a phasor
with discrete resolution. To address the chosen problem, we propose to represent discrete pha-
sor fields using implicit representations through neural network models. This representation
encodes the whole phasor field in a continuous space of spatial locations and temporal frequen-
cies, allowing us to evaluate unknown points on the phasor field that are hallucinated by our
neural model. Concretely in this work we present the following contributions:

• We introduce a formulation for implicit representations of complex-valued phasor fields
for NLOS reconstruction methods.

• We study different neural models behavior in representing phasor fields within this for-
mulation, and their suitability to recover the underlying structure of light transport across
both spatial and temporal frequency domains.

• We showcase the performance of neural networks with sinusoidal activations in suc-
cessfully representing phasor fields in a wide variety of NLOS scenarios, and integrate
our model within the phasor-field reconstruction pipeline to provide reconstructions of
hidden geometry.

1.1 Thesis Background
This thesis has been done inside the research group Graphics and Imaging Lab within Depar-
tamento de Informática e Ingeniería de Sistemas (DIIS) at Escuela de Ingenería y Arquitectura
de la Universidad de Zaragoza (EINA). The project has been supervised by Dr. Julio Marco
and Prof. Dr. Diego Gutierrez.
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Chapter 2

Related Work

2.1 Non-line-of-sight (NLOS) transient imaging

Non-line-of-sight (NLOS) imaging methods aim to recover properties of a scene occluded
from the sensor. Different ways to recover information exist and, in this work, we will focus
in transient imaging methods. A transient profile is the impulse response function of a scene
resulting from illuminating the scene with an ultrashort light pulse captured by a high speed
sensor. The use of transient imaging for NLOS was proposed by Kirmani et al. [14] and
empirically demonstrated by Velten et al. [15] who built a whole system to capture the impulse
response function and reconstruct the occluded scene with computational methods.

From this work, the field has evolved optimizing reconstruction methods such us backpro-
jection [16] or implementing new algorithms [17, 18]. However, the types of scenes that can be
reconstructed by these methods are limited, the surfaces are mostly plane and isolated to avoid
problems such us interreflections between objects or walls. The work of Xin et al. [19] pre-
sented a new method that can reconstruct more complex scenes with multiple curves material,
removing part of the previous problems. Other example is the work of Tsai et al. [20] where,
through optimization, a triangle mesh can be transformed into an approximation of the hidden
geometry without any shape restriction. Finally, the works by Liu et al. [21] and Lindell et
al. [22] presented new wave-based methods which alleviate the restrictions in shape geometry,
number of objects and types of material providing methods that can work with more complex.
Specifically, the work by Liu et al. [21] presents a new method that allows to virtualize differ-
ent types of lights and cameras by transforming the NLOS scene into a line-of-sight scene as
if it was observed from the relay wall perspective. This change of paradigm allows the authors
to use the vast knowledge of line-of-sight imaging, wave-optics and traditional photography in
NLOS scenes.

Despite all these advances, the quality of the reconstructions is still restricted by spatial
resolution of the captures. To increase the capture resolution a recent work by Renna et al.
[23] presented a new 1D array sensor and a 2D array version is now in development. In this
work we presented a method to improve the quality of the reconstructions without the need of
capturing big impulse response function matrix saving capture time.
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6 Chapter 2. Related Work

2.2 Transient rendering
In NLOS one of the most valuable tools that help to test and develop new methods is the sim-
ulation of the capture system and NLOS scenes and, in our case, the possibility to generate
data for machine learning algorithms. The simulation is done with a rendering process. Con-
cretely, the rendering process simulates the light and its interactions with the matter in a virtual
scene and capture the light with virtual sensors. The standard rendering process used in most
of the applications such as cinema or video games generates images in 2D with the light in
the scene integrated. This type of render is known as steady-state rendering. Other type is
the transient rendering methods which allow simulating how the light moves through a scene,
rendering videos at frame rates comparable to the speed of light. However, adding the temporal
dimension in transient rendering is not always possible. This is because some applications and
methods developed for steady-state rendering cannot be applied easily or, in some cases, at
all. To implement a transient renderer some works presented new time-resolved light transport
equations [24, 25]. Other works generalize Monte-Carlo methods for steady-state rendering
as path tracing to a time-resolved version [26, 13]. Other algorithms as photon mapping were
also generalized to time-resolved versions [27].

The use and research in transient rendering have grown with the development of NLOS tran-
sient imaging field. Its use is extremely useful in the NLOS field due to it helps to develop and
test NLOS methods. This is due to the possibility of generating transient profile in controlled
conditions without the restrictions of real capture hardware and use them as reference data.
Following this last idea it is possible to generate datasets and ground truth for deep learning
methods. For example the work by Marco et al. [28] uses a transient renderer to generate a
time-of-flight (TOF) dataset and train a deep learning model to reduce the error in TOF cam-
eras. Other interesting work by Liang et al. [29] presented a compression method of transient
profiles with a deep learning model trained with synthetic transient data. Also, the work by
Galindo et al. [30] presented a public dataset with NLOS scenes. In contrast, some NLOS
methods do not use the complete light paths but only the first bounce [31, 32, 33]. This type of
rendering is faster and the work by Chopite et al. [34] uses this type of rendering to generate a
bigger dataset and train a deep learning model to reconstruct NLOS scenes from their transient
profiles.

2.3 Upsampling methods
A capture process by definition cannot obtain the real shape of the space but only get a certain
number of samples (which is known as the resolution). Having a higher resolution gives more
accuracy of the measured space. However, the resolution is typically limited by the capture
hardware or physical restrictions in the capture process. When the resolution is large enough,
the original shape can be obtained with a simple linear interpolation because the changes be-
tween samples practically follow a straight line. But in most cases the resolution is too low
and obtaining the original shape is a hard problem. With the evolution of neural networks sev-
eral works have demonstrated their capabilities of understanding the structure of the data and
being able to upsample them. For this propose, there are two main approximations. The first
approach consists in upsampling to a higher resolution for a fixed size or scale rate (e.g. dupli-
cating resolution). The second one uses the neural network to, for a concrete input like spatial
coordinates, time or frequency, get the value of the original data or, if the input is previously
unknown, hallucinate new samples.
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The first approach is commonly used in image super-resolution. With the idea of upsampling
for fixed sizes, several neural networks models have been developed from models which only
need one low resolution image as an input [8] to models which leverage the information from
multiple images such as video frames [35]. If the upsampling is done over the temporal domain
instead of the spatial one the effect is super-slow motion videos [36].

The second approach is more flexible than the first one because it is possible to sample in
concrete zones or at any desired resolution. However, they have the cons that their models are
not general and, for each scene, a new training is required. Training and sampling a model
have two main ways to be implemented. In the first way the model has as an input the scene
or data (or a transformation of them) and the coordinates to be sampled. This case have been
tested for compression models of textures images, obtaining a latent space of them. Then the
authors can decompress the latent space by sampling with neural networks [37, 9] for coordi-
nates in the original textures or for new ones. The other way fits the scene directly in the neural
network. This is known as implicit representation and has the advantage that, once the neural
network is trained, the training data is no more used. This type of networks has as an input
the different types of coordinates (spatial, temporal, angular, etc.) and, as the output, the cor-
responding values for that coordinates. Like the previous methods, this type of models can be
used to generate samples in previous unknown positions. A useful case is learning 3D scenes
[38] which, in render applications, avoids the requirement of rendering new views. Closer to
our approach there are recent similar works which simplify the training process and improve
the results [10, 11] presenting a new method to transform the coordinates and improving sig-
nificantly the results. Furthermore, the work of Sitzmann et al. [12] shows the possibilities of
using periodical functions instead of the classical activation one for learning high frequency
details in several implicit representation problems such as image or video representation.
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Chapter 3

Background

This chapter describes the main mathematical, physical, and computational aspects that this
work builds upon. Firstly we introduce a basic knowledge on neural network explaining them
and the model used in this work with the most common optimization method used with neural
networks. Secondly we introduce the non-line-of-sight problem and explain the theory of
phasor fields, a state-of-the-art method for non-line-of-sight reconstruction.

3.1 Neural network optimization
Neural networks are learning systems inspired in human neurons and their interconnections.
They are able to learn a transformation and understand the relationship between the input and
output data used in the training process. The capacity of learning the transformation lies on
the non-linearities (small changes in the input lead to big changes in the output) that networks
are able to find and learn from a dataset. One of the main capabilities of the neural networks is
the generalization, since once they are trained they can be used with new unknown data with a
really low computational cost. An example of this are the classification networks that can be
used even in low powerful smartphones with their camera. However, this powerful method has
a strong requirement for the majority of applications as neural networks require datasets with
hundreds of thousands of examples.

A neural network is formed by a set of functions called neurons which are interconnected
with each other. Each neuron has multiple inputs with which operates, propagating the result to
the next neurons. This process is repeated from the first neurons that compute the input to the
last ones which generate the output. This sequential execution allows ordering the neurons in
layers. There are basically three types of layers: the input layer, the output layer and the hidden
ones which are all the layers in between the input and the output. The number of these hidden
layers is variable and can be finetuned depending on the problem which the neural network is
trying to solve. The same strategy can be followed regarding the number of neurons. Both are
hyper-parameters that need to be obtained experimentally.

In the last years, the development of neural networks has derived in a specialization of ar-
chitectures and different types of networks have shown better achievements for certain types
of data or problems. For example, some architectures have shown high capacity generating
a compressed version of the input and also decompressing it to the original size [29]. Some
works have tested this capability, adding the possibility to obtain values of the original data

9



10 Chapter 3. Background

for certain coordinates [9]. Other architectures have shown their capability learning implicit
representations of a desired scene or geometry and being able, once trained, to recover the full
original data by evaluating the neural network in the points of the original data [10]. Moreover,
in these examples, the neural networks have shown the ability to hallucinate new unknown
points, recovering more resolution than the original. In this work both examples can be un-
derstood as a solution to our problem but we will focus on the second approach and learn an
implicit representation of the data using a multilayer perceptron architecture.

3.1.1 Multilayer perceptron

A perceptron [39] is a unique neuron defined as:

y = f

(
n

∑
i=1

xiwi +b

)
, (3.1)

where f is a non-linear activation function, like sigmoid or a hyperbolic tangent function,
w are the weights of the perceptron, x are the inputs and b is the bias. This equation can be
expressed in a matricial form:

y = f
(
xwT +b

)
. (3.2)

Neurons can be organized forming layers. The number of neurons in each layer is decided
depending on the number of the outputs of the layer since each neuron has only one output
value. If multiple layers are connected like in the figure 3.1, the architecture is called multi-
layer perceptron. The number of layers and the number of neurons in each one are obtained
experimentally as hyper-parameters except for the last layer, whose number of neurons is equal
to the number of outputs values.

Figure 3.1: Multilayer perceptron scheme. Image from [40].
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3.1.2 Activation functions
The capacity of the neural networks to solve difficult problems lies on the non-linearites that
they are able to learn. They can learn them due to the non-linearites of its activation functions.
The activation function basically transform the output of the neuron depending on certain con-
ditions, which can change the whole distribution of the intermediate data. There are multiple
activation functions such as hyperbolic tangent (equation 3.3), rectified linear unit (ReLU) [41]
(equation 3.4), sigmoid (equation 3.5).

tanh(x) =
ex− e−x

ex + e−x (3.3)

ReLU(x) =
{

0 if x≤ 0
x if x > 0 (3.4)

sigmoid(x) =
1

1+ e−x (3.5)

The type of function to use depends on the problem and the characteristics of the problem to
solve. The selection of the activation function could be understood as an hyper-parameterization..
Despite the necessity of testing different activation functions, the number of candidates can be
reduced based on the type of function that has been used for similar problems in previous
works. For example, one of the most used activation functions to work with images is the
ReLU function since it only propagates positives values. This is specially interestring when
the output is an image because the standard range to work with them is in [0,1]. The character-
istics of the activation functions help the networks to focus on the resolution of the problem.
In contrast, selecting a bad activation function can diminish and hinder the convergence of the
training process.

3.1.3 Gradient descent optimization
The optimization process is done through the minimization of a function. In deep learning the
function to minimize is called the loss function and measures the performance of the network
over a task. The perfect solution would be to find the global minimum of the loss. However,
that could be impossible due to the complexity of the parameter space. On the other hand,
finding a local minimum is an easier task that can be done with gradient descent optimization
methods.

As a simplification, we can denote the loss function as y = f (x) which derivative is f ′(x) =
dy/dx. It is known that the derivative gives the slope of f at the point x. With the direction of
the slope we know in which direction the function will be minimized and if the derivative is
equal to 0 then the function is in a minimum. f can be defined with several parameters in the
form of x= {x1,x2, ...,xn}. The derivative of f must be done with partial derivatives ∂ f (x)/∂xi.
The gradient of f denoted as ∇ f (x) will be the vector with all the partial derivatives. Like the
gradient gives the slope of every parameter we can update them in the negative direction of the
slope and descending iteratively in the gradient. The updating function can be denoted as:

xt+1 = xt− ε∇ f (xt), (3.6)

where xt is x values in the actual iteration and ε is a small value called learning rate that
controls the speed of the descent. The learning rate can not be too high because when the
function is near to the minimum a huge learn rate could prevent the function to find the local
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minimum. On the other hand if the learning rate is too small the needed steps for getting the
minimum point will be so high that the learning process would take too much time.

3.1.4 Stochastic gradient descent
The previous definition hold for a loss with a single training data. However, in machine learning
is typical to have a hundred of thousands of training data. In that case, the loss function can be
understood as a sum over the loss of all training data. Considering the parameters of the model
as θ and any loss functions for a single data as L we can denote the loss L for all the example
as

L(θ) = E[L(x,y,θ)] =
∑

n
i=1 L

(
x(i),y(i),θ

)
n

. (3.7)

Then, to apply the gradient descent method is needed to calculate the gradient with respect
to the parameters of the model θ as

∇θL(θ) =
∑

n
i=1 ∇θ L

(
x(i),y(i),θ

)
n

. (3.8)

Computing the gradient descent with this calculation is one of the most successful options.
However, as we commented above, the size of the dataset is huge and makes difficult training
with the whole data due to memory space restrictions. The solution for that is training using a
subset of data which is called batch size, and can be defined with any desired size. For the cases
of really small batches they are called minibatches and for some fields they shown better results
that bigger batches. Denoting the loss for these batches as L′ and the number of elements in
the batch as n′ the gradient could be defined as be

∇θL′(θ) =
∑

n′
i=1 ∇θ L

(
x(i),y(i),θ

)
n′

. (3.9)

Finally, the gradient descent for the parameters using batches is

θt = θt−1− ε∇θL′ (θt−1) . (3.10)

This variation of the gradient descent is called stochastic gradient descent and is one of the
most used methods in the training of neural networks. As the original method, this one can not
converge to the global minimum but, it will end in the nearest local minimum.

3.2 Non-line-of-sight (NLOS) transient imaging
Transient imaging methods leverage the information encoded in the temporal domain of a time-
resolved light capture. One of the areas that can be addressed in this field is the non-line-of-
sight (NLOS) reconstruction. The imaging methods developed in this area aim to reconstruct
scenarios that are hidden around a corner, by analyzing their indirect illumination on a surface
visible to the camera. A typical NLOS scene can be seen in figure 3.2 where an ultra-short
laser pulse is emitted to a wall (also called relay wall), the light propagates from the hidden
scene, being reflected by the objects, and part of it goes to the relay wall and is recorded by an
ultra-high speed camera called single-photon avalanche diode (SPAD) generating a transient
profile H called impulse response function. These profiles have the information of the hidden
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scene encoded inside them. Thus, H is calculated for different points of the relay wall for the
laser and the SPAD parameters are H(xl,xs, t) where xl is the laser position, xs is the sensor
position and t a specific temporal instant.

NLOS SPAD-laser capture setup

SPAD

laser

Figure 3.2: Sample setup for capturing a NLOS scene. An ultrashort light pulse is emitted to a
relay wall and the sensor captures the light resolved in time reflected by the scene to the relay
wall. Image adapted from Liu et al.[2].

The impulse response function H is used in several methods for reconstructing the hidden
scene as we commented in section 2.1. In this work we focus in the phasor field framework
[2] which is one of the best performing methods in NLOS imaging. This work gives us the
possibility to transform the H function into a phasor field which transforms the temporal reso-
lution into a complex magnitude at the relay wall with amplitude and phase dimensions for a
concrete frequency.

3.2.1 Phasor fields

The work of Liu et al. [2] presents a new method for transient imaging which transforms
the NLOS problem into a virtual line-of-sight (LOS) problem. This transformation allows the
authors to use classical optic methods in the NLOS domain.

Virtual illumination Virtual aperture Virtual sensor

Virtual lens

(a) (b) (c)

Figure 3.3: Phasor field steps. (a) Virtual illumination is propagated through the scene. (b) A
virtual aperture capture the response of the scene to the virtual light. (c) A virtual lens focus
the captured illumination of the virtual aperture and imaging. Image adapted from [2].
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The linearity of H(xl,xs, t) is used by phasor fields to compute the response of the hidden
scene (Fig. 3.3b) for any virtual complex-valued emission profile P (xl, t) (Fig. 3.3a) at points
xl in a virtual sensor as

P (xs, t) =
∫

L
[P (xl, t)∗H(xl,xs, t)]dxl. (3.11)

Through the propagation of the field P (xs, t) with an imaging operator I(·) for any point
xv in the hidden scene as

I(xv) = Φ(P (xs, t)) . (3.12)

This operator models a virtual lens and sensor system (Fig. 3.3c) and it can be formulated
in terms of a Rayleigh-Sommerfeld diffraction propagator [2]. In the case of propagating
monochromatic signals of a single frequency ω this image formation operator Φ(Pω (xs, t)) is
denoted as

Φ(Pω (xs, t)) =
∣∣∣∣∫S
Pω (xs, t)

Lω (xs,xv)

|xv−xs|
dxs

∣∣∣∣2 , (3.13)

where L is a complex operator that changes the phase of P at frequency ω . For the Φ operator
we implement it as a thin lens model that focuses into a virtual image plane at a hidden location
xv, having

Lω (xs,xv) = e−ik|xv−xs|, (3.14)

where k = ω/c is the wavenumber, with c the speed of light.

A position xv can be imaging by combining the focused emission profile (Eq. 3.11) and the
imaging operator (Eq. 3.13) as

I (xv) =

∣∣∣∣∫S

∫
L
[Pω (xl, t)∗H(xl,xs, t)]

Lω (xs,xv)

|xv−xs|
dxl dxs

∣∣∣∣2 . (3.15)

This method is fully computational since the unique external data that it need is the H
function. Furthermore, the image formation model is virtual and can be formulated in other
forms. The same idea holds for the emission profile and for this work we will define it as a
constant-emission light source as

Pω (xl, t) = eiωt . (3.16)



Chapter 4

Implicit representation of phasor fields

In the last decade, the field of non-line-of-sight (NLOS) has evolved improving the quality of
the reconstructions of hidden scenes. However, the capture method has barely changed. NLOS
methods use a captured impulse response function of a hidden scene. To obtain this function
a light is emitted, by an ultra-short laser, to a diffuse wall (relay wall). Then it travels across
the hidden scene and goes back to the relay wall where it is finally captured by a sensor. The
capture process needs to be done sequentially for each point in the relay wall, resulting in a
slow process with a bottleneck that forces to have impulses response functions with low spatial
resolution.

Despite the problem with the spatial resolution, works as Liu et al. [2] successfully recon-
struct high complexity hidden scenes. However, to obtain more detailed reconstructions, it is
mandatory to generate more spatially dense impulse response functions. To obtain them there
are two options: creating new hardware to increase the spatial resolution or using computa-
tional methods to generate new points from the captured ones.

On the one hand creating hardware to increase the spatial resolution of the sensor is not
a trivial work. The actual sensors are single-photon avalanche diode (SPAD). They have a
resolution of 1x1 pixel and there are some versions with a line of SPADs obtaining a row of
captures. Despite these advances, the next generations of 2D SPADs will have a low resolution
near 16x16 pixels which is insufficient to solve the problem. On the other hand, using fully
computational methods can work with the actual capture systems. We can test and implement
multiple algorithms or versions of them in a relatively short space of time. In spite of the
advantages that computational methods can give us, the main limitation for us to design and
create new capture hardware is the necessity of testing it with real capture systems which only
a few laboratories in the world have. In contrast to test computational methods we can use
both real and simulated data, and therefore, validate the method by using them. For that reason
we have decided to implement a computational method and generate, through simulation, our
capture data.

The problem that we want to alleviate is the low density of values in the spatial domain of the
impulse response function to improve the quality of the reconstructions. We can say that this
problem can be understood as an upsampling or superresolution problem where the number of
samples of a function is increased by an algorithm. This problem is typical in images where
the low resolution image is transformed into a high resolution one. The type of methods that
gives better results in this domain are the machine learning based ones. However, to work with
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this type of methods we have to take into account the characteristics of the data and its possible
transformations.

The impulse response function contains the amount of photons (light) that the sensor receives
in a time interval (in the order of nanoseconds). Light decays quadratically with distance
causing the quantity of light captured by the sensor to decay rapidly with each bounce in the
hidden scene resulting in a high dynamic range and strong changes of values with zeros in most
of the space. Designing or using a machine learning method to deal with these characteristics
will be complex. Furthermore, the temporal dimension is several orders of magnitude larger
than the spatial one. Such unbalance could lead to the machine learning method focus more
into time than space, achieving unsuccessful results. For those reasons, in this work we have
decided to use the work by Liu et al. [2] to transform the impulse response function into a
phasor field with multiple frequencies, resulting in two spatial dimensions and one frequency
dimension (for more details about the characteristics of the impulse response function and its
transformation see the section 4.2).

Once we have decided what type of data we will work with, we can look for machine learning
methods to alleviate our problem. As we commented before, increasing the resolution or the
number of samples in a function is a known problem. Some of the most successful methods to
do this are the neural networks based ones due to their ability to hallucinate new samples. We
can differentiate two types of methods. The first one uses a network to increase the resolution
into a fixed size [8]. This method is general and mainly used with images because, once it
is trained, it can be used with any type of image. The second one uses a network to learn
the value of the samples of the function in their positions [10, 11, 12]. This is called implicit
representation and it is a specific solution for a single function. Despite the necessity of training
a network for each function, this approach has the advantage that the implicit representation can
be sampled in a continuous space. In other words, an implicit representation is a transformation
of a discrete domain (the training samples) into a continuous one. This means that we can
obtain any desired resolution from it, in contrast with the general methods that only upsample
to a fixed resolution. Other important difference between the two methods is that the first
one requires a dataset with a size of hundreds of thousands, but the second one only uses the
samples of the function that is learning. Since the amount of data is an important restriction in
NLOS (generating thousands of captures is unpractical) and the second approach gives us the
possibility to upsample in a continuous space, we have decided to follow this type of approach.

Specifically, in this work we will follow the ideas of the works of Mildenhall et al. [10]
and Sitzmann et al. [12]. They use a neural network model called multilayer perceptron
(MLP) to learn an implicit representation as we want. Despite the fact that they apply this
model to different domains and for different purposes, we can get ideas and parts of them to
solve the problems that we have found during this work. In our case, instead of working with
standard images, we have a phasor field formed by complex values and our goal is to increase
its resolution. This could be similar to the work by Mildenhall et al. [10] where the authors
learn from a set of images to generate new points of view, hallucinating the unknown points.
We aim, instead of generating points in a 3D spatial domain, to generate points in spatial and
frequency domain. Since the type of problem is different, the final solution of Mildenhall et
al. [10] can not be applied to our problem. In the work by Sitzmann et al. [12], the authors
present a new type of activation function for learning implicit representations. The authors
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test this function with images and video but they do not try to generate new samples. Besides
that, their work is an excellent example of the capability of implicit representations and can
give us methods to improve our results. In the following section we explain the experiments
done in this work formulating the problem in a mathematical form and how we use the ideas
in previous works to improve our results.

4.1 Neural implicit representation of phasor fields
In this work we look for a neural network model to learn an implicit representation of a discrete
phasor field. Once we have selected the type of function that we want to fit (a phasor field)
and the type of application (one model per function), we can now describe a pipeline for our
work (Figure 4.1), which describes all the stages involved, from capturing the discrete function
H, transforming it into a discrete phasor field, and the conversion of them by fitting a neural
network into a continuous phasor field that can be reconstructed with more resolution than the
original.

Data generation
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Figure 4.1: Pipeline used in this work. From left to right. Diagram of the capture setup. The
discrete capture response impulse function H is convolved with different monochromatic waves
with frequencies ωi. k discrete phasor fields are obtained from the previous step giving a dataset
with size [U ·V ·K ·T ] and input parameters

(
xU

s ,x
V
s ,ωk, t

)
. For the training process we evaluate

the dataset for t = 0. The model F is trained using as input the coordinates and frequency, and
the loss is calculated with the original discrete function P obtaining a continuous version of
the discrete P . Once the model is trained, we can reconstruct at higher resolution or for new
frequencies. Some parts of the figure are from Liu et al. [2]

After we defining the workflow, we can start to denote formally the problem. The discrete
function can be denoted as

Pω (xs) = Fω,D : (x)→ (p), (4.1)

where D marks that the function is discrete, x is a vector with x,y discrete coordinates, p is a
vector with two real values that correspond with the real and imaginary part of the phasor P
for the position x. And our implicit representation can be denoted as

Pω (xs)≈ Fω,M : (x)→ (p), (4.2)

where x is now in a continuous space. Our first approach is to use a multilayer perceptron
(MLP) with hyperbolic tangent activations functions as our Fω,M, the M subindex denote that
the function is an MLP model. For training this model and evaluating its performance as
implicit representation we decided to train it with a phasor with resolution 32x32 and generate
with it a phasor with an upsampled resolution of 64x64, in other words, the model is generating



18 Chapter 4. Implicit representation of phasor fields

a 75% of new points. The result for this case can be seen in figure 4.2. The MLP model learns
the global structure but does not learn high frequency details.
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Figure 4.2: Results of an implicit representation model for the spatial dimensions from 32x32
to 64x64 resolution with a fixed frequency. Middle row: result of generating new points with
an MLP model (Fω,M). Bottom row: result of generating new points with an MLP model
transforming the input with positional encoding (Fω,P).

To solve this problem we have followed the work of Mildenhall et al. [10]. In this work, the
authors presented a new method that allow a neural network to learn high frequency details by
transforming the input values in a set of frequencies as

γ(x) =
(
sin
(
20

πx
)
,cos

(
20

πx
)
, · · · ,sin

(
2L−1

πx
)
,cos

(
2L−1

πx
))

. (4.3)

This γ(x) function is called by the authors as positional encoding and expands each input
coordinate in a total of 2L frequencies. We can add this transformation to our formulation as

Pω (xs)≈ Fω,P : (γ(x))→ (p), (4.4)

where the subindex P denote the function with position encoding. In this work we set L
considering 2L to be as close as possible to the original resolution, in the case of a resolution
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of 32 we have an L = 5. With this new approach we obtained the results that can be seen in
figure 4.2. The MLP trained with this positional encoding gives more accuracy when learning
the high frequency details than the first model, which learns a smooth version of the data.

The above results show how this method can be used to generate a continuous space of the
input. Since the monochromatic phasor is defined for a concrete frequency, having an implicit
representation that can generate the phasor for a continuous frequency space will increase the
value of this method dramatically. Due to the implicit representation will learn the whole pos-
sible frequencies and automatically compute them without the necessity of doing convolutions
for new frequencies (eq. 3.11) or saving the high dimensionality function H. This new model
can be denoted as

P (xs)≈ FP : (γ(x),ω)→ (p), (4.5)

where P is now a phasor for all possible frequencies and ω is now a parameter of the im-
plicit representation. Hence now, we have a new dimension which make harder the challenge
we are solving. Due to that, we decided to firstly limit it to only generate the implicit repre-
sentation in the frequency domain. For that, we fix the resolution of the phasor to 64x64 and
generate 151 frequencies and fit with 135 from the total. The results of this model can be seen
in figure 4.3. Some frequencies are learned well, but for higher frequencies the results lose
quality.

Figure 4.3: Results of two phasors with non-trained frequencies with fixed spatial resolution.
Middle row: Phasors generated with a multilayer perceptron with positional encoding (FP).
Bottom row: Phasors generated with a multilayer perceptron with sin activations (FS).

To solve this problem we follow the work of Sitzmann et al. [12]. The authors presented a
new model for implicit representation that is able to learn high frequencies through changing
the typical ReLU or Tanh activation functions with sine functions. This change allows the
model to learn high frequency details without the necessity of a positional encoding. Using
this new model and applying it to our problem we can denote it as

P (xs,ω)≈ FS : (x,ω)→ (p), (4.6)

where the subindex S denotes the use of sine activation function in the model. With this new
approach we obtained better results as can be seen in the bottom row of the figure 4.3. This
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new model learns high frequency details and generate new middle frequencies correctly. Also,
as the initial multilayer perceptron example (figure 4.2) this model removes the noise from the
original data and has a few artifacts with form of wave in the middle-bottom part of the second
phasor.

Once we have a model that can learn and generate phasors for new frequencies, we can
use this model and try to generate a continuous space in all the dimensions by training it like
in the previous case (fig. 4.2) with a spatial resolution of 32x32 and generating a space of
64x64. The results for this model can be seen in figure 4.4. This model shows a similar level
of achievement than the previous one (figure 4.3) and has similar artifacts.

Figure 4.4: Results of two phasors with non-trained frequencies and with a spatial resolution
of 32x32 increased by the multilayer perceptron with sine activations functions models (FS) to
64x64.

Compression. A side effect of fitting a discrete function in a neural network is the capacity
of learn, in fewer number of parameters, the whole amount of data of the discrete function
at the same time that it generates a continuous input space. In the table 4.1 it can be seen
how the different models learn the distribution of the discrete function in a fraction of its
parameters. This case is specially strong for the multi-frequency models, where the percentage
of parameters needed for fitting the original function is less than 1.5% of the total amount of
the training values. We believe that the multi-frequency models are able to learn the phasor
dataset with only four times more parameters, in contrast with the x135 values that conform
the dataset with multi-frequency, because the model learn the internal structure of the phasor
and how it changes with the different frequencies.

Experiment Parameters Data size Parameters/Data (%)
Mono frequency + upsampling (MLP) 942 2048 31.57
Mono frequency + upsampling (MLP + PE) 914 2048 45.63
Multi frequency (MLP + PE) 3938 1105920 0.36
Multi frequency (MLP + Sin) 3362 1105920 0.31
Multi frequency + upsamppling (MLP + Sin) 3362 276480 1.22

Table 4.1: Compression rates of the different models tested. The compression column show
what percentage of the training values are needed to represent them respect to the total amount
of values of the dataset.
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4.2 Data transformation

In machine learning, an important step is the study of the data and possible transformations on
it. The main reason for analyzing it is to provide a more simple or processed data to the models
and improve the convergence of them. Through the study of the data is possible to understand
characteristics of it like how it is distributed, possible correlations, etc. This allows to select
the better transformation and in some cases it makes possible to reduce the dimensionality of
the data.

In our case, the data that we have is a captured response impulse function H(xl,xs, t). In the
general case this function has two spatial and one temporal dimensions. The spatial dimensions
xl and xs correspond to the coordinates of the laser and the SPAD sensor in the relay wall.
Also, these spatial coordinates are in a 3D space but since the wall is in a parallel position with
respect to the hidden scene the third dimension will remain the same and can be ignored. In
total the H function has five dimensions.

As we commented previously chapter 1, our goal is to generate an implicit representation
through neural networks. This implicit representation has as input the coordinates for the point
that we want to sample, the same number of input dimensions as the original discrete function
H. This implies that the input of the model will be the five values of the coordinates and the
output the value in that spatial and temporal point. To train a model with this we will need five
times the total number of H’s values only for the input of the model. In the table 4.2 can be
seen how the size of the input change for a fixed standard temporal resolution. The sizes that
the input reaches is too high even for lower resolutions. To solve this problem, we choose to
work with a version of the H function that only captures a single point of camera in the center.
By fixing this point H is now a 3D matrix and the input of the model have a workable size.

Attending to the values of the H function. In the figure 4.5 can be seen an example of the
temporal profile for a single pair of laser-sensor. These profiles have a high dynamic range and
the changes on its values are very abrupt. Due to these characteristics, the learning process is
more difficult and models have low convergences.

Spatial Resolution Size in GB
16 2
32 32
64 512

128 8192

Table 4.2: Size in memory of the input for training a five dimensional neural network model.
The temporal dimension is fixed to a resolution of 4096.
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Figure 4.5: Example of H function for a concrete pair laser-sensor. The top image is the
transient profile in its original scale. The bottom image is the transient profile in logarithmic
scale.

To solve the problem with the high dynamic range of the H function, we propose to use the
phasor fields framework (section 3.2.1) for NLOS reconstruction. In the first step of this frame-
work the H function is convolved (eq. 3.11) with a virtual illumination phasor for a concrete
frequency ω (eq. 3.16). This phasor P (xs, t) is a 3D complex matrix, two spatial dimensions
and one temporal, but as the virtual light used in the convolution is constant along the time and
the camera model is a conventional camera, P (xs, t) can be evaluated in P (xs, t = 0) obtain-
ing a 2D complex matrix and solving the problem with the high dynamic range. However, the
frequency that modules the virtual illumination affects to the reconstruction quality as can be
seen in figure 4.6. Furthermore, the correct frequency for each H function is not the same and
needs to be obtained experimentally.

FrequencyHidden scene + _

Figure 4.6: Example of different reconstructions with different frequencies.

Data normalization. In this work we have two types of data: the input parameters of the
model (coordinates and in some models the frequency) and the values of the phasor which the
model will learn. For both options we tested the [0,1] and [−1,1] normalization but the models
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did not fit correctly in the borders of the matrix. Since the problem was in the boundaries we
consider that the problem was with the normalization values in the limits of the range and with
a normalization in (−1,1) this problem was palliated.

Data generation. The capture of the H functions can be done from two different sources,
real capture systems or through simulation. The first one can not be done in the laboratory
at this university due to we do not have the hardware. However, using real captured data
have some disadvantages. The captures have noise and their conditions can not be controlled
completely. On the other hand, simulating avoids this problems due to the environment can
be controlled (e.g., avoid external light contamination) and can be generated with less noise.
Also, simulating allow to create idyllic conditions e.g., perfect lambertian surfaces for the relay
wall. For that reason in this work we simulate all the captures using the public transient render
by Jarabo et al. [13].

Generic model vs specific models. Neural networks are usually applied for generic appli-
cations that can be used once is trained with different data, for example in superresolution
models, classification or some compression works. However, this models need to be trained
with enormous datasets, in some cases millions of samples. In the context of this work this
is not an option due to the amount of time that is needed to generate a dataset of the size that
general models need. For that reason in this work we choose to use one model per function (or
scene) that we want to fit.

Since we are fitting a single function in the neural model, and we want to infer new values,
we need to avoid overfitting in the model. In other cases, if we wanted to completely compress
a function and only evaluate at the original points, overfitting would be justified. Other aspect
that is involved in the overfitting and in the capacity of the neural models to be able to fit the
discrete function is the number of model parameters. The correct number of them needs to
be obtained experimentally. Moreover, it can depend on the type of function that the model is
fitting, complex functions can require more parameters than the simplest ones and if the number
of parameters is too big, the model will be lazy and will overfit easily. In the context of this
problem, we can consider an upper bound for the number of parameters, the total amount of
values in the discrete function because it is the number of values needed to represent the same
information. In our experiments we tested with different number of parameters and figured out
that with more than half the total number of parameters of the original function, the models
tend to overfit and can not generate well new points. On the other hand, with less than the half
the models learn the discrete function and are able to generate new points smoothly. However,
if the parameters are too low, the models can not converge at all.



24 Chapter 4. Implicit representation of phasor fields



Chapter 5

Results

In the section 4.1 we have tested different neural networks models to learn an implicit rep-
resentation of a phasor field. Specifically, the neural network model obtained can learn an
implicit representation of a multi-frequency phasor field. One of the advantages of learning a
multi-frequency phasor field is the elimination of the necessity of calculating separate implicit
representations for each frequency. This means that it gives the ability to compute any desired
frequency that it is not in the sampled space. This is especially interesting due to the frequency
is directly dependent of the quality of the reconstructions. Computing novel phasor fields with
higher frequencies and higher grid densities can provide sharper results of the reconstructed
geometry. As such, the ability of our implicit representation to compute novel temporal fre-
quencies and spatial locations in the relay wall that were not provided by the sampled captured
data is useful to provide better reconstructions. Another application of this multi-frequency
model is the possibility to use it with more complex lights and cameras in the phasor field
framework. To use them it will be required (theoretically) the use of infinite frequencies. With
an implicit representation, this problem can be more treatable because the representation avoids
the necessity to do any convolution for each frequency.

During the analysis of the different neural models (Section 4) we have tested them with
only one scene for simplicity. After demonstrating that the MLP with sine activation functions
model provides the best behavior in representing multi-frequency phasor fields, here we pro-
vide a deeper analysis of its performance in scenes of different complexity. However, before
showing the different results, is important to understand the limitations of the virtual camera
and the virtual light used in the phasor field framework. The virtual camera has an aperture size
that corresponds to the size of the sampled grid on the relay wall. After using this aperture to
simulate a virtual camera focused at certain depth in the hidden scene, all geometry behind or
ahead of the focused plane is out of focus, introducing several artifacts in the image. Addition-
ally, due to capture limitations, the virtual illumination is attenuated radially from the center
of the relay wall, which results in attenuated reconstructions of the geometry further from the
center of the resulting images. This effect is clearly visible in all the previous results in the sec-
tion 4.1. To analyze how the implicit representations can approximate the discrete phasor field
we will compare the intensity, the phase and the reconstruction of both phasor fields, discrete
(ground truth) and the one predicted by the implicit representation. We have selected sim-
ple scenes to have low out-of-focus geometry to avoid out-of-focus artifacts. Reconstructing
the in-focus geometry in more complex scenarios would require estimating a large amount of
different phasor fields for each voxel of the reconstructed scene, while simple scenes provide
good results with a single multi-frequency phasor field. We regard as future work to provide
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more complex implicit representations for phasor fields in cluttered scenes.

As in the last model of the section 4.1, we will test the capacity of the model to generate
new samples in the spatial and frequency domain. To train and test the model we have decided
to remove 75% of the samples from a phasor field with a spatial resolution of 64x64, therefore
getting only 32x32 sampled points in the relay wall. For the frequency, we have computed 151
different frequencies and trained with the 90% of them, reserving the last 10% for testing. Once
the model is trained with the low resolution phasor field, we recover the original resolution at
specific frequencies and spatial locations in the relay wall that the model has not been trained
with.

For testing the model, a multilayer perceptron with sine activation functions, we have used
four different scenes (figures 5.1-5.4). We start by a planar but detailed scene (figure 5.1). This
scene allows us to analyze the performance under different geometric resolutions allowing see-
ing the level of details that the method is able to recover. Concretely, the results obtained for
this scene show the capability of the model to learn more complex phasor fields and upsample
them correctly.The general structure is maintained and an important denoised effect is appre-
ciable. The reconstructions are qualitatively similar. They lose a bit of detail but, bearing in
mind that the model is trained with the 25% of the original points, it is a good reconstruction.
As comparison, in the figure 5.2 can be seen how is a reconstruction of a phasor field with a
resolution of 32x32 and a reconstruction with a resolution of 64x64. In the error map it can
be seen two things: the error derived from the noise not learned by the model and how the
network fails more in the low values.

Figure 5.1: Results of recovering a scene with multiple planes with different sizes. The results
show that the implicit representation learn correctly the shape of the phasor fields and remove
the noise of them. The reconstructions are qualitatively similar. Left phasor field has a fre-
quency of 11.422 and the rigth one has a frequency of 15,238.

The second scene is formed by a plane with several concavities and irregularities (figure
5.3). Note how the resulting amplitude and phase of the phasor field change due to the struc-
tural differences of the hidden geometry. Nevertheless, our implicit representation is able to
estimate the phasor field structure at higher resolutions, very close to the ground truth while
also removing noise, and provides a similar reconstruction result. Our implicit representation
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Figure 5.2: Comparison of the reconstruction of the same scene with different resolution,
32x32 and 64x64 for the same frequency (15.238).

is capable of learning the general structure, while simultaneously removing the noise in the am-
plitude and phase images. The error maps show, as in the previous example, that the model has
more error in the low value points and also the general noise error. The reconstructions are very
similar. Despite that the RMSE in the first reconstruction is higher, the result is qualitatively
more similar than in the second reconstruction.

Figure 5.3: Results for a scene with multiple concavities and pikes. The reconstructions do
not show the shape correctly due to the out-of-focus geometry. The neural model learns and
recover the shape of the phasor field removing the noise from it.

Finally, we have two similar scenes (figures 5.4 and 5.5). Both are formed by two rectangular
planes at two different depths but in each scene the distance between them is different. The
goal of these two scenes is to test the performance of our algorithm under the presence of
objects that may occlude themselves from the perspective of the virtual camera. For these two
cases our implicit neural model learns the structure of the phasor fields as well.

Comments and discussions. Our neural representation of phasor fields has shown a high
capacity to learn the general structure of the phasor field, being able to generate higher reso-
lutions (recovering a 75% of the points in these tests) and new frequencies with similar results
to the ground truth. The RSME is similar in all of them but is bigger in the phasor field with
higher frequency. This could be caused by the increase of details that appear when the tem-
poral modulation frequency is increased. This increase in the temporal frequency results in
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Figure 5.4: Results of a scene with two planes at different depth. This scene allows us to test
if the phasor field with multiple objects and depths can be learned by the neural model. The
model learns correctly despite the changes in the shape.

Figure 5.5: Results of a scene with two planes at different depth. In this case the plane in the
back is semioccluded by the plane in the front. The neural model learns correctly the shape
and even the strong change of values.

an increment of the spatial frequency in the phasor field, as the results show. Focusing on
the reconstructions, the predicted and the ground truth are also very similar and can recover
even the artifacts produced by diffraction effects. Note that this is a problem inherent in the
phasor fields method [2], and not a result of our neural model. The biggest qualitative differ-
ences between predicted and ground truth appear in the reconstructions done with the phasor
fields with higher frequencies, losing more details than with the low frequency phasor fields.
Note that our quantitative comparisons are done with respect to the ground truth solution with
equivalent sampling density and temporal frequency. While our model yields a larger RMSE
when increasing modulation frequency, increasing sampling density and modulation frequency
in phasor fields provides better reconstructions of the hidden scene, as our qualitative results
show. The differences in RMSE of our model with respect to lower frequencies arise from the
ability of our model to analytically represent higher frequencies, and not from the ability of the
data to properly reconstruct the scene.
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Hidden scene Loss (L2) Training time (s)
Figure 5.1 0.009883426 677.92
Figure 5.3 0.011194097 670.95
Figure 5.5 0.0029691448 673.33
Figure 5.4 0.0032978356 673.98

Table 5.1: Losses and training times for each scene. The training process have been done with
a learning rate of 0.001 and a total of 100000 epochs.

The model in all our tests has shown a denoising ability. This effect is produced by the
capability of neural networks to focus on predictable aspects of the data. Concretely, as the
noise is something more random than the structure of the data, the neural networks obtain bet-
ter results learning the structure and characteristics of the data. However, this effect is only
observed when the parameters of the networks are not too high because, in that case, the neural
network overfits the data and cannot upsample. Regarding the possible effect of the noise in
the error maps, we thought that it is possible that the noise could mask the correct level of
achievement of this method. However, to test it, it would be necessary to use other metrics that
take more into account the structure of the nearby pixels as the structural similarity index mea-
sure (SSIM). We will leave the test of this hypothesis for a future work. In the reconstructions,
the effect of the existence of noise in the phasor field does not appear to be determinant or at
least the effect is too low to be seen. In their error maps, the first difference regarding the error
maps of the phasor field is the lack of noise. The error maps of the reconstructions are more
smoothly than the error maps of the phasor fields. We thought that the reconstruction process
is resistant to this level of noise. With this idea, a future work that could be done is an analysis
of the tolerance of the reconstruction method at different levels of noise and how this method
can be used for denoising it. This is an interesting aspect because the real captures have noise
that usually needs to be added to the synthetic data to compare both. Furthermore, knowing
that, it could help to know the level of noise that this method can handle and use it to generate
synthetic data faster.

The training process of these scenes is fast (see table 5.1 for exact training times). In around
eleven minutes each scene can be learned. The evaluation process for each frequency is practi-
cally instant, less than one second, giving a huge potential to use it for more applications such
as using more complex cameras that could require computing thousands of different frequen-
cies. Moreover, the model can be evaluated with multiple frequencies at the same time without
a perceptible increase of time.
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Chapter 6

Conclusions and future work

In this work we have introduced a new method to represent phasor fields in an implicit form
by using neural models to increment the efficiency and the quality of the results of reconstruc-
tions of hidden scenes. Phasor fields are a recent work that allows to take virtual photographs
of a hidden scene as it was seen from a relay wall. However, this method is limited by in its
resolution caused by the capture process. Since each spatial point has to be sequentially cap-
tured, it becomes unpractical and complex to capture high resolution information. Although
this problem could be alleviated with the development of new hardware, this approach would
require the use of expensive hardware configurations.

Inspired by other works on implicit representations that prove their ability to create a contin-
uous space from discrete number of samples. We have formulated a phasor field using implicit
representation which allows us to learn a discrete phasor field and sample it in a continuous
space. This transformation removes any resolution limitation. In other words, we could obtain
infinite samples from it. Following recent studies and works, we have tested different models
for different tasks. Starting by the most simple (learning an implicit representation for a single-
frequency phasor field without changing the resolution), up to the most complex (that learns an
implicit representation of a multi-frequency phasor field). This last model is a multilayer per-
ceptron with sine activation functions that can upsample the data in the spatial and frequency
domains.

To verify if the final model can generalize to different scenes we have tested it with four
scenes. The model correctly upsample the data for all the scenes giving a similar error in all of
them. Other aspect observed is the denoising effect, since the model recovers smooth phasor
fields with the correct structure. This can be qualitatively demonstrated, as the reconstructed
scenes are almost identical to the ground-truth ones.

This work left some interesting research as future avenues. Our current method could be
extended to support more cluttered scenes with more complex imaging functions, where each
location of the scene would require a different illumination and lens function, leading to the
estimation of higher number of phasor fields per scene. An aspect that can be tested is whether
the noise in the captures is related with the differences in the reconstructions. Related to the
noise, it could be interesting to analyze how the noise affects to the reconstructions and if this
model or other types of network can denoise the phasor field and with which level of noise
are they effective. Moreover, this work could be expanded to the study of the whole four
dimensions involved in phasor fields, in contrast to the two explored in this work. Another
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idea that can be useful in the future work is training the model end-to-end. This would require
developing a differentiable implementation of the phasor field framework. By training the
model directly over the reconstruction, instead of directly over the phasor field, better results
could be obtained, allowing the model to learn better the spatial relationships of the samples.
Finally, this work is the first to our knowledge, to leverage machine learning techniques under
the phasor fields framework. A further development of this idea could lead to methods that
could help the field of NLOS to obtain better results.
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