
Proyecto Final de Carrera

Ingenieŕıa en Informática

Multi-view image rendering for
holographic stereogram printing

David Ángel Valle Badenas

Enero 2013

Departamento de Informática e Ingenieŕıa de Sistemas
Escuela de Ingenieŕıa y Arquitectura

Universidad de Zaragoza

Director: Atanas Gotchev Ponente: Francisco José Serón

ii

RESUMEN

Desde que el ser humano ha sido capaz de reproducir objetos del mundo real en ma-
terial sintético, el objetivo ha estado determinado por concebir sistemas de experiencias
virtuales más precisos, desde las primeras fotograf́ıas estereográficas hasta las contem-
poráneas producciones cinematográficas en 3D. Los productos actualmente disponibles
en el mercado son consecuencia de investigaciones iniciadas décadas atrás. Sin embargo,
nuevas exploraciones en tecnoloǵıas más complejas han dado lugar a nuevas inmersiones
de realidad virtual. Los estereogramas holográficos, los cuales proveen una perspectiva
más amplia y una mayor cantidad de puntos de vista, se suponen ser el siguiente paso
en la evolución de los sistemas visuales 3D. Esta tecnoloǵıa no ha sido introducida en
el mercado todav́ıa, sin embargo, el progreso realizado en el campo del hardware que
permite una mayor cantidad de almacenamiento y proceso de datos y, mejores diseños y
algoritmos de software que consiguen resultados de forma más eficiente, harán posible la
disponibilidad de pantallas holográficas al consumidor en un futuro cercano.

Actualmente, los objetos 3D pueden ser manipulados fácilmente y la posibilidad de
obtener su información digital lleva al desarrollo de hologramas generados por ordenador
basados en sistemas multi-vista. La captura y post-procesado de las vistas necesarias
para crear un holograma generado por ordenador conlleva un coste de almacenamiento y
computación alto. Esta tesis afronta el problema de optimización del número de vistas
o cámaras requeridas para reconstruir una escena compuesta por un número de vistas
totalmente densa. El método desarrollado parte de una escena 3D y un set completo de
vistas. Solo algunas de esas vistas son utilizadas para reproducir la escena completa. A
través del análisis de las imágenes en el dominio espacial y de frecuencia de Fourier, se
han utilizado técnicas de procesado de señal para interpolar y regenerar la escena original.
Se han considerado un número diferente de vistas disponibles inicialmente, las cuales son
procesadas para reconstruir la escena a posteriori, de manera que se pueda establecer un
ratio entre el número mı́nimo de cámaras necesarias y el número total de cámaras que
la escena contiene. Los resultados de este estudio sugieren, comparando la semejanza
entre las escenas originales y sus versiones optimizadas, que la reconstrucción de todas las
vistas puede ser obtenida a partir de muchas menos cámaras y sin una pérdida de calidad
considerable. El siguiente texto muestra el análisis del problema y las técnicas utilizadas
para resolverlo. La memoria concluye con una valoración de las técnicas y herramientas
desarrolladas, aśı como de los resultados obtenidos.

iii

iv

AGRADECIMIENTOS

Este proyecto ha sido realizado en la Tampereen Teknillinen Yliopisto (Tampere Uni-
versity of Technology) en el departamento de Signal Processing. El proyecto supone un
Proyecto Final de Carrera por la Universidad de Zaragoza, dentro del programa Erasmus.

Quiero dar las gracias a mi supervisor de proyecto Dr. Atanas Gotchev por toda su
dedicación y paciencia, especialmente en aquellos momentos en los que mis conocimientos
previos no eran suficientes para entender algunos temas. También quiero agradecer al
profesor Dr. Robert Bregovic por su tiempo dedicado a resolver mis dudas.

Quiero agradecer a mi supervisor en España, Dr. Francisco J. Serón, por su apoyo y
tiempo, especialmente cuando sólo me era posible estar en España por un tiempo limitado.

Finalmente, quiero dar las gracias a mi familia, amigos y personas especiales que me
han apoyado a lo largo de todo el proyecto.

v

vi

The scientist is not a person who gives
the right answers,
he is one who asks the right questions.

Claude Lévi-Strauss

vii

viii

Tabla de contenidos

1 Introducción 1

1.1 Contexto y motivación . 1

1.2 Alcance y objetivo del proyecto . 6

1.3 Estructura . 6

2 Conceptos teóricos 7

2.1 Método de holograma generado por ordenador 7

2.2 Representación de EPI . 8

2.3 Requisitos de la propuesta . 10

3 Análisis 13

3.1 Relaciones entre las caracteŕısticas de la escena y la representación en el
dominio de Fourier . 13

3.2 Análisis de la transformación de dominio de las imágenes EPI 14

3.3 Filtrado de EPI y optimización del número de vistas 17

4 Diseño del sistema multi-vista 20

4.1 Construyendo el sistema multi-vista para escenas 3D 21

4.2 Creación y pre-filtrado de EPIs . 23

4.3 Optimización del número de vistas . 25

5 Resultados 29

5.1 Algoritmo Fast DCT . 29

ix

5.2 Resultados experimentales . 30

6 Conclusiones 34

6.1 Conclusiones sobre los resultados . 34

6.2 Trabajo futuro . 36

6.3 Valoración personal . 36

7 Apéndices 41

7.1 Original MSc Thesis at Tampere University of Technology 41

7.2 Metodoloǵıa de trabajo . 85

7.3 Diagrama de Gantt . 85

7.4 Herramientas utilizadas . 85

7.5 Código - Sistema de rendering multi-vista 86

7.6 Código - Recortado de renders . 92

7.7 Código - Creación de EPIs con densidad completa 93

7.8 Código - Pre-filtrado de EPIs . 94

7.9 Código - Interpolación de EPIs . 96

7.10 Código - Reconstrucción de vistas . 99

7.11 Código - Algoritmos Fast DCT . 100

7.12 Código - Tests Fast DCT . 104

7.13 Código - Tests . 108

7.14 Gráficas de los tests . 114

x

Índice de figuras

1.1 Holograma en Star Wars . 2

1.2 Horizontal Parallax Only vs. Full-parallax stereograms 3

1.3 Sección cruzada de una cámara con el plano de proyección 3

1.4 Disposición de la mesa holográfica. 4

1.5 Lentes de colimación . 4

1.6 Esquema de grabación holográfica t́ıpica 5

1.7 Ejemplo de reconstrucción holográfica . 5

2.1 Representación del hogel (hologram element) 8

2.2 Disposición de cámaras para full o horizontal parallax-only 9

2.3 Proceso de construcción de la EPI . 10

2.4 Ejemplo de oclusión en la EPI . 10

2.5 Cuatro posibles configuraciones de disposición de cámaras. 11

2.6 EPIs obtenidas con diferentes configuraciones de cámaras 12

3.1 Función de profundidad representada en el dominio espacial y epipolar . . 14

3.2 Soporte espectral del campo de luz limitado en el dominio de frecuencia. . 14

3.3 Representación de EPI y la transformada de Fourier en 2D. 15

3.4 Pasos del anti-aliasing para una señal unidimensional. 16

3.5 Comparación entre EPIs filtradas con anti-aliasing y no filtradas. 17

4.1 Esquema del proceso de desarrollo . 20

xi

4.2 Interfaces en Blender para los scripts paralelo y convergente 21

4.3 Ejemplo 3D de cámaras paralelas y convergentes en Blender. 21

4.4 Problema de recortado de vistas con cámaras paralelas 22

4.5 Solución para el recortado de renders. 23

4.6 Muestras de vistas. 23

4.7 Muestras de EPIs. 24

4.8 Muestras de EPIs filtradas con anti-aliasing. 25

4.9 Población de matrices con kron, repmat y ones. 27

4.10 Perspectiva gráfica del proceso completo. 28

5.1 Muestra de señales escaladas con el algoritmo Fast DCT. 30

5.2 Comparación de escalado iterativo entre los métodos bilinear, bicubic y
Fast DCT. 30

5.3 Efectos en los bordes en el método DCT 31

5.4 Comparación de tiempos entre Fast DCT y el resto de kernels de interpo-
lación. 31

5.5 PSNR de las vistas reconstruidas para cada método de interpolación. . . . 32

5.6 PSNR promedio para cada factor en comparación con vistas basadas en
aliased EPIs. 33

6.1 Promedio de PSNR para cada factor y rango de valores PSNR aceptables. 35

7.1 Diagrama de Gantt . 85

7.2 PSNR de vistas reconstruidas con cada método de interpolación, factor 2 . 114

7.3 PSNR de vistas reconstruidas con cada método de interpolación, factor 4 . 114

7.4 PSNR de vistas reconstruidas con cada método de interpolación, factor 8 . 115

7.5 PSNR de vistas reconstruidas con cada método de interpolación, factor 16 115

7.6 PSNR de vistas reconstruidas con cada método de interpolación, factor 32 116

1

1. Introducción

En este trabajo revisamos el método de impresión de estereogramas holográficos estudiado,
y su implementación a través de un sistema de rendering multi-vista. En este caṕıtulo se
presentan los conceptos fundamentales de impresión holográfica, aśı como la motivación
encontrada para explorar este tema, y la estructura del resto del documento.

1.1 Contexto y motivación

Desde las primeras pantallas estereoscópicas, los investigadores han intentado mejorar la
experiencia de realidad virtual llevando a los consumidores entornos 3D más reaĺısticos
e inmersivos. El reto se halla en capturar la escena desde el mundo real y mostrar la
información capturada en un material sintético. Algunas veces, precisamente el caso
trabajado en este estudio, el material usado como fuente no pertenece al mundo real; es
generado por ordenador, y por lo tanto, más fácil de manipular.

Las primeras pantallas holográficas, desarrolladas en 194 por Leith [1], estaban ilu-
minadas por láser. Desde entonces, la prensa y producciones cinematográficas mostraron
hologramas como una manera futuŕıstica de grabar y mostrar el mundo en tiempo real.
El mejor ejemplo de todo, el primer largometraje de Star Wars en 1977 (un año más tarde
del desarrollo de Leith) ya introdujo holocámaras y holoproyectores como muestra la Fig.
1.1.

Un holograma contiene el patrón de interferencia producido por las longitud de onda
de referencia y del objeto, que poseen diferente fase. A diferencia de las t́ıpicas fotograf́ıas
estereoscópicas, un holograma es el medio de grabación y la pantalla al mismo tiempo.
Los hologramas tuvieron la desventaja de algunos requisitos como por ejemplo, el tener
que ser capturados utilizando una luz monocromática y coherente. Además, los objetos
capturados teńıan que permanecer estables dentro de una fracción de longitud de onda
de la luz [2].

A diferencia de como las recientes pantallas sintéticas muestran hologramas [9], los
hologramas tradicionales requeŕıan de un almacenamiento masivo de información, ha-
ciendo la computación un proceso pesado. Las estereograf́ıas holográficas suponen que
sólo un número limitado de puntos de vista son grabados, según la percepción humana

1

Figura 1.1: Fotograma de Star Wards donde un holograma es proyectado desde abajo en
una mesa.

deseada más que la capacidad de almacenamiento del holograma. Esto supone una difer-
encia notable respecto el primer holograma. Otra gran diferencia establece un proceso de
captura por separado. Como cualquier estereograma tradicional, las imágenes pueden ser
capturadas con una cámara fotográfica ordinaria o a través de técnicas gráficas por orde-
nador más adelante. Además, se puede sustituir el objeto real por un modelo generado
por ordenador, que puede ser configurado virtualmente sin coste alguno.

La grabación de un estereograma es dada en tres fases [2]:

1. Captura fotográfica, bien con objetos reales o modelos sintéticos en 3D.

2. Grabación holográfica.

3. Vista final.

Antes de avanzar más en profundidad en el proceso holográfico de grabación, algunos
términos tienen que ser explicados para entender los distintos métodos, en referencia a la
adquisición de vistas de un objeto como son los estereogramas Full-parallax y Horizontal
Parallax Only (HPO). Mientras el primero intenta simular el mundo real, el segundo ofrece
una visión 3D decente con muchas menos cámaras. Fig. 1.2 ilustra esta diferencia.

Todas las cámaras apuntan hacia delante, y sus ejes son paralelos al plano de holograma
y la pista de cámaras. Las proyecciones de las cámaras, con forma de pirámide, representan
sus campos de visión. Dichas pirámides son intersectadas por el plano de holograma,
resultando en un plano de proyección para cada cámara. Una vista más detallada de la
sección resultado de la pirámide es mostrada en la Fig. 1.3. Se usa una configuración de
cámaras paralelas para explicar cómo un sistema multi-vista funciona, sin embargo, esta
configuración será discutida más tarde en siguientes caṕıtulos.

Una placa holográfica está compuesta por hendiduras verticales a lo largo de ella. Cada
hendidura está expuesta a una imagen proyectada en una pantalla trasera, representando

2

(a) (b)

Figura 1.2: a) Esquema de un estereograma of. Las cámaras son colocadas a lo largo de la
pista, paralela al plano de holograma. b) Esquema de un estereograma full-parallax. Las
cámaras son colocadas a lo largo de un plano paralelo al plano de holograma.

Figura 1.3: En esta configuración, las cámaras siempre apuntan hacia delante. Se puede
observar que la sección cruzada entre la pirámide y el plano de producción se mueve acorde
con la pista del estereograma.

diferentes puntos de vista. Una vez el holograma es grabado, cada punto de vista puede
ser visto a través de cada hendidura. Un vidente mirando al estereograma verá dos
aperturas, una para cada ojo. El cerebro interpreta las diferencias entre las dos vistas
como información tridimensional. La apariencia de una escena 3D funciona de acuerdo
a un indicativo de profundidad binocular. Los ojos del vidente siguen dos diferentes
hendiduras en el holograma. Las imágenes que aparecen en esas hendiduras coinciden
directamente enfrente de los ojos, produciendo un efecto estereoscópico de estar en el
infinito. Sin embargo, el observador enfoca su vista en el plano de proyecto, situando ah́ı
la imagen. Si el vidente se mueve lateralmente, un nuevo par de imágenes son vistas,

3

simulando la escena 3D. Como las hendiduras son grabadas horizontalmente, siguiendo el
esquema HPO, el vidente ve siempre la misma perspectiva vertical independientemente
de la posición vertical desde donde se observe. De hecho, la imagen se moverá como si
estuviera en el plano de proyección vertical.

De acuerdo a la grabación holográfica presentada en [2], se utilizan dos haces de luz
coherente. El haz de láser es dividido en dos, originando un haz de referencia y uno del
objeto. Este haz del objeto es ampliado cuando pasa a través de la cámara y las lentes de
proyección. Ilumina el holograma proyectando en la pantalla de proyección una imagen
grabada en film de cine en la cámara. Los fotogramas de proyección representan un objeto
2D localizado en un plano de proyección sin ĺımites, y al mismo tiempo la placa con el
mecanismo de hendiduras están encarados uno al otro, como se puede ver en la Fig. 1.4
con más precisión. La placa holográfica esta expuesta a la imagen proyectada y el haz de
referencia. Sin embargo, sólo una hendidura del holograma está expuesta, con un pieza
opaca perforada con agujeros cubriendo la placa del holograma.

Figura 1.4: Disposibión de la mesa holográfica vista desde arriba (Fuente [2]).

Cada hendidura tiene que ser iluminada con el haz de referencia en la misma dirección,
independientemente de la posición lateral de la hendidura. Esto se consigue juntando el
haz con una lente de colimación o Fresnel, el mismo principio usado en los faros. Fig. 1.5
da una idea más detallada de cómo un colimador funciona.

(a) (b) (c)

Figura 1.5: a) Lente Fresnel usada en faros. b) Lente plano-convexa equivalente. c) Esquema
de un colimador que alinea los haces produciendo una salida paralela.

Otra configuración t́ıpica usada en grabación holográfica consiste en lanzar dos haces

4

de láser a un objeto f́ısico y grabar la interferencias de longitud de onda que el objeto
desprende junto con el haz de referencia. En la Fig. 1.6 se detalla el esquema. En
vez de lentes de colimación, se usan lentes y espejos para redirigir los haces hacia la
placa holográfica. La grabación es realizada en la oscuridad para evitar cualquier tipo de
interferencia con la luz natural.

(a) (b)

Figura 1.6: a) Esquema de grabación holográfico con un objeto expuesto a un haz de láseres.
Bob Mellish. b) Fotograf́ıa del mismo escenario en un laboratorio. College of Optics &
Photonics, University of Central Florida.

Cuando una placa holográfica es iluminada por un haz de referencia equivalente, se
puede ver una reconstrucción del objeto. Si la posición de la placa o el observador cambia,
la apariencia del objeto cambia también como si fuera un objeto real. Un ejemplo de
reconstrucción holográfica se muestra en la Fig. 1.7.

Figura 1.7: El perro es reconstrúıdo aplicando un haz láser de referencia al holograma.
Holograma presentado por el Dr.Kenji Yamamoto en la 3D Media Training School, Tampere,
2012.

5

1.2 Alcance y objetivo del proyecto

El objetivo de este proyecto es entender el proceso de creación de hologramas para desar-
rollar nuevas técnicas. Se desarolla el software necesario con el propósito de proveer la
información necesaria para los siguientes etapas del proceso.

Los hitos a alcanzar en este proyecto incluyen:

• Diseño y desarrollo de un script que provee un set de imágenes renderizadas corre-
spondientes a un sistema horizontal-parallax only desde una escena 3D.

• Creación de imágenes epipolares (EPI) a partir de las imágenes renderizadas, per-
mitiendo representar todas las vistas en una imagen.

• Análisis de las imágenes EPI en el dominio de la frecuencia. Relación entre carac-
teŕısticas de la escena y su representación en el dominio de Fourier.

• Diseño y desarrollo de un filtro para procesas las imágenes EPI, optimizando el
número mı́nimo de cámaras.

1.3 Estructura

Este documento está organizado con la siguiente estructura:

El caṕıtulo 2 describe el estado del arte relacionado con el tema.

El caṕıtulo 3 presenta el análisis teórico que es combinado con los experimentos.

El caṕıtulo 4 explica todas las herramientas desarrolladas para llevar a cabo los ex-
perimentos y justificar su propósito.

El caṕıtulo 5 muestra los resultados obtenidos y su representación gráfica.

El caṕıtulo 6 completa la investigación proveyendo las conclusiones y el trabajo futuro
que puede proseguir el presente estudio.

El caṕıtulo 7 contiene las referencias bibliográficas usadas para el desarrollo de este
estudio.

Los caṕıtulos siguientes contienen los apéndices incluyendo el resto del desarrollo com-
pletado durante este trabajo. La tesis desarrollada originalmente en inglés conformará el
primer anexo.

6

2. Conceptos teóricos

Este caṕıtulo revisa el estado del arte de trabajos anteriores aśı como todo el conocimiento
necesario para entender la investigación realizada. También revisa la propuesta de im-
presión de estereogramas holográficos.

2.1 Método de holograma generado por ordenador

Como se ha explicado en el caṕıtulo anterior, un holograma contiene información del
campo de luz. Un holograma estereográfico es una versión discretizada compuesta de
varios elementos de holograma llamados hogel (hologram element). Cada hogel contiene
información 3D desde varias perspectivas, la cual ha sido previamente grabada dependi-
endo del ángulo de refracción (i.e: el punto de vista del observador).

Un holograma completamente computado ofrece un infinito número de perspectivas.
Por otro lado, un estereograma holográfico ofrece sólo un número finito de perspectivas,
usando una reconstrucción por longitud de onda. Los estereogramas holográficos forman
una aproximación de la longitud de onda decrementando el tiempo de computación. Esta
aproximación es hecha con un número discreto de perspectivas. La propuesta desarrollada
en este estudio persigue la optimización del número de vistas necesarias [6], obteniendo
una percepción holográfica similar.

Un método de codificación relacionado con la difracción [8] hace referencia al estere-
ograma holográfico como la suma de las amplitudes moduladas de la señal chirp. Una
señal chirp incrementa su frecuencia con el tiempo. Su amplitud modulada en el plano
del holograma produce un set de emisores direccionales en el plano emisor. Cada chirp
enfoca la luz para crear un punto emisor, mientras la luz de las vistas dependiente del
ángulo es codificada en su modulación de amplitud.

De acuerdo a Quinn [8], la computación paralela vectorial de un holograma está divi-
dida en tres pasos:

1. Pre-computación de los vectores chirp en texturas chirp.

2. Rendering multi-vista de la escena directamente en los vectores de modulación alma-

7

cenados en la textura de modulación usando una cámara de doble cono (capturando
vista delantera y trasera).

3. Montaje del holograma juntando los vectores de modulación y chirp mediante la
obtención de la textura y ejecutando un producto escalar.

Este trabajo se enfocará en una porción que es desarrollada durante el segundo paso,
con algunas variaciones, e.g: horizontal parallax-only en vez de usar cámaras con doble
captura. Las diferencias exactas se discutirán en Sección 2.3 al final de este caṕıtulo,
donde se presentan los requisitos del método desarrollado.

Figura 2.1: A la izquierda, el holograma y una imagen aumentada de un hogel. A la derecha,
un ṕıxel almacenado en el sensor de la cámara, representando el mismo ṕıxel de la escena,
es grabado en el hogel. Los sensores de la cámara (en color rojo) están situados en realidad
en la cámara.

Un método más general de entender cómo un sistema de rendering multi-vista funciona
esta basado en los hogels introducidos previamente. Fig. 2.1 mostrará inteligiblemente la
siguiente explicación. Cada hogel contiene la onda de luz correspondiente a un ṕıxel en
la escena, desde cada punto de vista. Esta información puede ser reconstrúıda aplicando
la luz apropiada al hogel, que emitirá la información grabada dependiendo del punto de
vista. Varias cámaras graban desde diferentes posiciones a lo de la pista de cámaras.
Cada sensor está compuesto por muchos ṕıxeles. Un solo hogel contiene la información
asociada al mismo ṕıxel en cada vista. Esto significa que contiene información de tantas
direcciones diferentes como número de vistas usadas en la escena.

2.2 Representación de EPI

La correlación entre imágenes desde diferentes posiciones en la misma escena estática
connota la coherencia de perspectiva. La principal distinción entre la coherencia de per-
spectiva y coherencia temporal es que esta última es que la primera es más restrictiva

8

que la segunda, en relación a los cambios en la imagen a lo largo del tiempo. Las carac-
teŕısticas de la escena, i.e: cambios en el sombreado y geometŕıa, pueden ser analizados
en el dominio epipolar.

Una Epipolar Plane Image (EPI) es una representación 2D del campo de luz. Consti-
tuye la transformación de un set de imágenes multi-vista en un corte multi-perspectiva
del campo de luz. Para obtener esta representación, primero las cámaras tienen que ser
dispuestas como se muestra en Fig. 2.2. Halle [5] describe estas dos diferentes disposi-
ciones como cámaras regular shearing (RS): planar regular shearing (PSR) y linear regular
shearing (LSR).

Figura 2.2: A la izquierda, la disposición LSR provee horizontal parallax-only mientras que
a la derecha, PSR, captura información horizontal y vertical.

La disposición LSR, la cual consiste de un array de cámaras representa una configu-
ración HPO, proveyendo toda la información necesaria con una sola fila de cámaras, pero
removiendo el parallax vertical. El vidente recibirá la misma imagen independientemente
de posición vertical que tome. Por otra parte, la disposición PSR provee full parallax,
pero requiere muchas más cámaras.

Comprender cómo se forman las EPIs ayuda a entender el sistema de impresión
holográfico, dado que las EPIs conforman un elemento esencial en el proceso. Imag-
ina que todas las imágenes renderizadas del sistema multi-vista son apiladas como una
baraja de cartas. La imagen correspondiente a la vista más a la derecha se coloca al frente,
y la más situada a la izquierda, atrás. A A continuación, el volumen espacio-perspectiva
creado se filetea horizontalmente. El corte multi-perspectiva obtenido, i.e: la EPI, con-
tiene la misma fila equivalente de cada vista y está tumbada, mirando hacia arriba. En
otras palabras, la última fila de la EPI pertenece a la vista más a la derecha y la primera
fila pertenece a la de más a la izquierda. Fig. 2.3 muestra gráficamente la técnica usada
para obtener la EPI.

Aunque Fig. 2.3 muestra una sola EPI, todas ellas debeŕıan ser calculadas para con-
struir el volumen espacio-perspectiva completo. Existen tantas EPIs como la resolución
vertical de las vistas.

La conveniencia de usar EPIs es fuertemente notable en relación con las posibilidades
de usar algunas caracteŕısticas en futuros desarrollos. Por ejemplo, su estructura linear

9

Figura 2.3: A la izquierda, 5 vistas. En el medio, ambas perspectivas 3D muestran cómo
las vistas son apiladas. El marco rojo designa la fila elegida para esta EPI, que reposa
horizontalmente. A la derecha, la EPI resultante contiene la vista más a la izquierda arriba,
y la vista más a la derecha abajo. Nótese cómo el ojo derecho del camaleón desaparece de
la EPI según la cámara se mueve a la derecha.

permite aplicar efectivamente algoritmos de interpolación. Esto es totalmente importante
porque uno de los objetivos de este proyecto (explicado en más detalle en el caṕıtulo
siguiente) responde a la optimización del número de vistas. Adicionalmente, las EPIs
reúnen caracteŕısticas extra, como detección de caras, sombreado y oclusión de objetos.
Este último puede ser observado en Fig. 2.4 donde se ha seleccionado una fila diferente.

Figura 2.4: A la izquierda, el camaleón 3D y la fila elegida marcada en rojo. A la derecha,
la EPI resultante donde las oclusiones producidas por ambas piernas están encerradas en un
ćırculo rojo.

2.3 Requisitos de la propuesta

Después de presentar los conceptos teóricos necesarios, este caṕıtulo describirá los requi-
sitos adoptados por la propuesta realizada y las razones de por qué ciertos parámetros
son elegidos y por qué otros son descartados.

Antes de todo, como el sistema de impresión holográfico está basado en imágenes
multi-vista, se tiene que elegir una configuración determinada con referencia a las cámaras:

10

especifica su posición y rotación con relación a la escena. Hay disponibles cuatro config-
uraciones: cámaras apuntando al frente paralelamente al plano de proyección y tres tipos
de cámaras recentradas; dos de ellas están automáticamente descartadas por las distor-
siones que introducen. Fig. 2.5 muestra de una manera más inteligible la disposición de
las cámaras en estas cuatro configuraciones. El tamaño del plano de proyección y su dis-
tancia a la linea de cámaras determinará el ángulo de visión y distancia focal especificada
en la lente de la cámara. Además, el plano de proyección conforma la sección cruzada
con la pirámide proyectada desde la cámara, haciendo capaz a la cámara de capturar
apropiadamente el área correspondiente.

Figura 2.5: A la izquierda, cámaras paralelas. En el medio, cámaras convergentes enfocan al
centro de la escena a lo largo de la pista y giran alrededor del centro de la escena. Estas dos
configuraciones conllevan a distorsiones. A la derecha, cámaras recentradas con los sensores
desplazados lateralmente de acuerdo con la lente para mantener la imagen centrada.

Por lo tanto, la segunda y la tercera configuración deben ser descartadas. Violan las
correspondencias en términos de geometŕıa entre la posición de las cámaras y la posición
del observador. El lugar en el área donde las imágenes son tomadas debe correspon-
der con el punto de vista del estereograma. La pista a lo largo de la cual se mueven
las cámaras, debe ser recta, manteniendo la misma geometŕıa que la placa holográfica
plana. La cámara toma una vista desde cada posición correspondiente a la posición de las
hendiduras. Además, cada punto debe permanecer en el mismo lugar en la escena indepen-
dientemente desde dónde es capturado el punto de vista. De esta manera, la profundidad
se mantiene en cada vista. Escenas complejas con puntos muy cercanos y distantes de-
beŕıan conservar la misma profundidad para cada punto de vista. Estas dos condiciones
hacen que las dos configuraciones mencionadas arriban sean incompatibles. Además, la
EPI obtenida, por ejemplo, con la segunda configuración, carece de propiedades que la
hagan útil, como ĺıneas rectas.

Con respecto a las cámaras paralelas o recentradas, las primeras tienen una desventaja.
La mayoŕıa de los puntos de vista contienen información que no puede ser usada. Por
lo tanto, es información inútil que es procesada pero nunca grabada en el holograma
final. Las cámaras paralelas conllevan una configuración más sencilla, pero su desventaja
implica demasiada información fuera del plano de proyección. La cuarta configuración
mostrada en Fig. 2.5 es la elegida. Una manera de conseguir esas imágenes renderizadas,
como es explicado más en profundidad en el siguiente caṕıtulo, consiste en usar la primera
configuración y cámaras con un campo de visión que abarque el plano de proyección incluso

11

(a) (b) (c)

Figura 2.6: a) Las cámaras paralelas preservan las correspondencias geométricas, pero la
mayor parte, en negro, suponen información inútil. b) La EPI presenta geometŕıa deformada
causada por una configuración errónea. c) Las cámaras recentradas proveen información útil
independientemente del punto de vista y preservan las correspondencias geométricas.

desde el punto de vista más extremo (lateralmente hablando). Fig. 2.6 presenta las EPIs
finales que seŕıan producidas por las diversas configuraciones de cámara.

Los parámetros elegidos para el siguiente desarrollo son los siguientes. La resolución
de la cámara es de 600 ṕıxeles y 3 capas dado el espacio de color RGB. El número de
vistas elegidas es 512, lo que simplificará post-procesados de los renders al trabajar con
potencias de 2. Renderizar 512 vistas de una escena compleja puede resultar en un proceso
de computación largo y pesado. Optimizar el número de cámaras a través de interpolación
será una de las tareas a ser pulidas.

12

3. Análisis

Como ha sido expuesto en caṕıtulos anteriores, optimizar el número de cámaras implica
el análisis de interpolación y re-muestreado. Con este propósito, el análisis de EPIs tiene
que hacerse en el dominio espacial y de frecuencia para entender como manipular las
imágenes.

3.1 Relaciones entre las caracteŕısticas de la escena
y la representación en el dominio de Fourier

Antes de afrontar el estudio del filtrado e interpolación de imágenes epipolares, es apropi-
ado tener un primer contacto con las propiedades de la escena y su representación en el
dominio de Fourier, i.e: la profundidad. La profundidad juega un papel muy importante
en estereogramas holográficos. Como diferentes profundidades afectan la representación
de objetos en el dominio epipolar y de frecuencia se explicará en esta sección.

Inicialmente, se considera un punto z(v,t) en una escena en particular (Fig. 3.1). El
punto es visto por dos cámaras, c1 y c2 con una distancia focal f, las cuales se mueven
a lo largo de la pista de cámara t, grabando la posición horizontal donde caeŕıan los
dos puntos (el mismo punto visto desde dos posiciones diferentes). Estas dos posiciones
donde el punto z(v,t) es visto desde las cámaras son v para c1 y v’ para c2. La función
de disparidad v − v′ = ft/z describe la geometŕıa de la escena.

Fig. 3.2 muestra el modelo de una señal con profundidad constante. Las ĺıneas rojas
representan la profundidad mı́nima y máxima. También se observa el soporte espectral
del campo de luz. La ĺınea azul, con un ángulo de 45º respecto de los ejes representa
la profundidad constante. Las ĺıneas rojas determinan los ĺımites de de profundidad del
soporte espectral. La inclinación considerada en este dominio puede ser traducida como
la profundidad de los objetos en la escena.

De acuerdo a Chai[6], ”Cualquier escena con una profundidad entre zmin y zmax tendrá
su soporte espectral continuo limitado en el dominio de frecuencia”. El uso de imágenes
epipolares conecta las caracteŕısticas de la escena, como la profundidad, con el dominio
de Fourier, el cual puede ser adecuadamente manipulado. Finalmente, un par de ejemplo

13

Figura 3.1: A la izquierda, el punto situado en la escena es capturado por ambas cámaras.
A la derecha, la ĺınea formada apilando el ṕıxel capturado a lo largo de toda la pista de
cámara.

Figura 3.2: A la izquierda, un modelo de profundidad constante. A la derecha, la repre-
sentación del dominio de frecuencia con los ĺımites para la profundidad mı́nima y máxima.

de EPIs con su 2D transformada rápida de Fourier (FFT2D) se muestran en Fig. 3.3.

3.2 Análisis de la transformación de dominio de las
imágenes EPI

Las Epipolar Plane Images reconstruidas con todas las vistas disponibles representan el
escenario horizontal parallax-only perfecto. No hay información perdida. Sin embargo,
una de las metas de esta tesis es reconstruir las vistas originales con un número inferior
de cámaras. Una manera directa de generar esta propuesta se basa en decimación, lo que
directamente descarta filas de forma expĺıcita. Por ejemplo, una decimación de factor 2
descartaŕıa las filas partes obteniendo una imagen final con la mitad de resolución vertical,
y una decimación de factor 4 descartaŕıa 3 filas por cada fila que queda, etc.. Aunque
este método para manipular imágenes está claro y puede parecer inicialmente correcto,
introduce aliasing. Por lo tanto, se requiere un filtro anti-aliasing.

El filtro es del tipo paso-bajo, y discrimina de la imagen la información correspondiente
a la alta frecuencia. Producirá algunos cambios visibles en las regiones con colores planos

14

Figura 3.3: La imagen superior muestra un ejemplo de EPI y su transformada de Fourier.
La imagen inferior, con un objeto detrás del de la primera imagen, esta más alejado de la
escena, y su transformada de Fourier lo muestra en su inclinación.

cercanas a cambios abruptos en el color. Como un efecto colateral, suaviza la aspereza
en los bordes. La pérdida de información en el pre-filtrado vale la pena con respecto a
los beneficios que proveerá con interpolaciones posteriores, como los resultados probarán
cuando se apliquen a imágenes con anti-aliasing.

Dada una imagen (img), se aplica el filtro por columnas. Con la intención de describir
la esencia de esta técnica, se ha considerado una señal unidimensional sgn, representando
una columna de la imagen. Fig. 3.4 muestra este proceso en más detalle.

Primeramente, la imagen necesita ser expandida verticalmente por el doble del factor
de interpolación utilizado. El primer y último valor de la señal son extendidos hacia el
principio y hacia el final correspondientemente. La razón de esta modificación reside en
la propiedad circular de la transformada de Fourier. Si esto no se tiene en cuenta, los
primero ṕıxeles interpolaŕıan con los últimos ṕıxeles, produciendo un efecto indeseado
como un espejo en los extremos.

Una vez la señal sgn está preparada, se aplica la Transformada Discreta de Fourier.

sgn fourier = DFT (sgn)

La señal está ahora en el dominio de frecuencia. En este ejemplo se ha considerado
un factor de interpolación 2, y por lo tanto, la mitad de la señal tiene que ser filtrada.
El filtro remueve la mitad de las muestras correspondientes a la alta frecuencia. Además
de este filtrado, la señal tiene que ser normalizada, porque no debe de contener la misma
enerǵıa. Las fórmulas siguientes representan la teoŕıa detrás de este método, no el código

15

(a) (b)

(c) (d)

Figura 3.4: a) Señal original con 512 muestras. b) Transformada de Fourier de la señal. La
zona resaltada contiene la región de alta frecuencia que tiene que ser filtrada. c) Transfor-
mada de Fourier filtrada e interpolada. d) Señal final, la cual ha sido interpolada y suavizada
una vez es aplicado el filtro de paso-bajo.

desarrollado completo.

normalization = N.ofcameras
N.ofcameras

2 + 2

sgn decimated =
sgn fourier(1 : N.ofcameras

4 + 2, 3
4N.ofcameras+ 1 : end)

normalization

Después de este paso, la señal está filtrada en el dominio de frecuencia. La fase final
incluye la transformada inversa de Fourier, y descartar las muestras añadidas inicialmente
a los extremos.

sgn final extended = IDFTsng decimated

sgn final = sgn final extended(2 : end− 2)

Fig. 3.5 compara dos imágenes epipolares con y sin pre-filtrado. No obstante, se ha
aplicado la decimación directa con el propósito de comparar los resultados en la recon-
strucción de vistas con ambos métodos.

16

(a) (b)

Figura 3.5: a) Región detallada de una EPI donde el aliasing es visible. b) La misma EPI
con filtro anti-aliasing.

3.3 Filtrado de EPI y optimización del número de
vistas

En este momento del proceso, las vistas han sido convertidas en EPIs con cinco factores
de interpolación diferentes. El proceso real de optimización tiene lugar ahora, donde
las imágenes epipolares pre-filtradas son re-muestreadas a su resolución natural, y se
recuperan las filas omitidas inicialmente.

Cuatro de las interpolaciones usadas en esta fase son kernels de interpolación t́ıpicamente
disponibles en Matlab: triangle (bilinear), cubi (bicubic), lanczos2 y lanczos3. Se ha im-
plementado un nuevo algoritmo: fast DCT-based scaling algorithm basado en el trabajo
de [10].

La fórmula siguiente describe el kernel de interpolación desarrollado. Se ha aplicado
a señales 1D. Cuando se aplica este método a imágenes (señales 2D), se considera cada
columna como una señal individual.

signalk =
N−1∑

n=0
an{ sincd

(
2N◦ − 2, 2N, k + 1/2

factor
− n− 1/2

)
cos

[
π

2N

(
k + 1/2
factor

− n− 1/2
)]

+sincd
(

2N◦ − 2, 2N, k + 1/2
factor

+ n+ 1/2
)
cos

[
π

2N

(
k + 1/2
factor

+ n+ 1/2
)]
}

donde el término entre llaves representa un kernel de interpolación:

N◦ = min (N, bfactorNc)

sincd (M,N, x) =
sin

(
πM
N
x
)

Nsin
(
π
N
x
)

17

En las fórmulas previas, N representa la longitud de la señal; factor, el factor de
interpolación elegido; n es la muestra procesada en cada bucle del sumatorio; y k, la
muestra de salida obtenida. Esta propuesta tiene que ser aplicada para cada muestra
de salida (k) de la señal, para calcular su valor interpolado. Con la ayuda de Matlab
estas operaciones pueden llevarse a cabo más fácilmente, usando operaciones vectoriales
y matriciales, especialmente cuando es hecho en dos dimensiones.

El método comentado ha sido desarrollado y testado y se mostrará en el caṕıtulo de
resultados. Sin embargo, es fácil descubrir rápidamente algunas limitaciones. El algo-
ritmo acepta cualquier factor mayor que 1, pero diferentes de (1.4, 4.8, 2.2, 2.6, 3, 3.4,
3.8, 4.2, 4.6, 5, 5.4, 5.8, 6.2) y cualquier otro factor impar. Para estos valores, el deenomi-
nador en sincd devuelve valor infinito. Este método funciona bastante bien con funciones
sinusoidales, pero no resulta tan aceptable cuando se trabaja con imágenes con bordes
cortantes como el siguiente caṕıtulo mostrará. Esto es un inconveniente dado que las
imágenes epipolares contienen señales de este tipo.

Los métodos de interpolación han re-muestreado las imágenes epipolares, pero no
pueden ser comparadas directamente a las EPIs originales. Primero las vistas finales
tienen que ser reconstruidas, lo que se consigue con el proceso inverso a cómo las EPIs
han sido creadas. En vez de seleccionar la misma fila de cada vista para crear la imagen
epipolar, se selecciona la misma fila de cada EPI, y se obtiene la nueva vista. La fase
de diseño demostrará cómo obtener las vistas reconstruidas a partir de 600 EPIs de 512
ṕıxeles de resolución vertical, y entonces obtener las 512 vistas finales con 600 ṕıxeles de
resolución vertical.

La comparación de EPIs originales y reconstruidas arrojarán pruebas de cómo de
precisa es la reconstrucción, y consecuentemente, el grado de interpolación que puede ser
aplicado en relación con el ruido que aparece. La medición utilizada para analizar esta
relación es PSNR (Peak Signal-to-Noise Ratio), conocida como el ratio entre la potencia
máxima de una señal de acuerdo con la potencia del ruido presente en la imagen original
y comprimida. La compresión, entendida esta vez como el re-muestreo ejecutado en las
imágenes epipolares, y más tarde trasladado a las vistas de la escena.

PSNR contiene otro método de medición en su algoritmo, Mean Squared Error (MSE),
que mide la media de los errores cuadrados. Una imagen original tiene un Mean Square
Error igual a cero, y por lo tanto, infinito PSNR. Cuanto más alto es el PSNR, la calidad
de la imagen es mejor.

MSE = 1
mn

m−1∑

i=0

n−1∑

j=0
[Original(i, j)− Interpolated(i, j)]2

con imágenes de tamaño mxn. La fórmula final del PSNR es:

PSNR = 10log10

(
MAX2

MSE

)

donde MAX es el máximo posible valor de ṕıxel de la imagen (255 para las imágenes

18

usadas). Cuanto más alto es el valor del PSNR, mejor es la calidad de la interpolación,
lo cual es explicado con más detalle en el último caṕıtulo.

19

4. Diseño del sistema multi-vista

Este caṕıtulo examina las técnicas usadas para obtener los elementos necesarios para
construir un sistema de holograma generado por ordenador. Las siguientes secciones
explicarán las herramientas desarrolladas para obtener apropiadamente las vistas de una
escena virtual 3D, el post-proceso ejecutado a ellas y las técnicas de re-muestreo que
consiguen la deseada optimización en cuanto al número de vistas.

Figura 4.1: 1) Rendering y recortado de las imágenes para obtener la parte útil de ellas.
2) Creación de EPIs de densidad completa y pre-filtradas para obtener EPIs anti-aliased y
re-muestradas. 3) Interpolación vertical de las EPIs para recuperar su resolución original.
4) Reconstrucción de las vistas a partir de las EPIs interpoladas.

A través de las fases de desarrollo y testado, se han creado más de 32.000 ficheros y se
han manipulado casi 3GB de información, lo que requiere una organización de directorios
clara y estructurada:

/.
functions.blend/py/m (1)
scene_name/epis_density (2)
scene_name/epis_density_interpolation (3)
scene_name/parallel_r_density (4)
scene_name/parallel_rc_density (5)
scene_name/parallel_density_interpolation (6)

1) El directorio representa todas las funciones scripts de Blender, Python y Matlab.
2) El directorio contiene las EPIs de densidad completa y pre-filtradas con 5 factores de
interpolación.
3) Cada directorio contiene las EPIs interpoladas con 5 factores de interpolación.
4) El directorio contiene los renders originales.
5) El directorio contiene las vistas recortadas a la resolución adecuada.
6) El directorio contiene las vistas reconstruidas para cada factor de interpolación. En
el árbol de directorios presentado, densidad es representado por un número (512 en este
caso) e interpolación por uno de los 5 kernels de interpolación usado.

20

4.1 Construyendo el sistema multi-vista para escenas
3D

El primer paso antes de analizar las vistas de la escena implica obtener dichas vistas.
El software utilizado es Blender como escena virtual 3D y configuración de cámaras. El
script que coloca las cámaras en su posición correcta está escrito en Python, e incluye
una interfaz gráfica (Fig. 4.2.

(a) (b)

Figura 4.2: a) Interfaz para el modo paralelo. b) Interfaz para el modo convergente.

Inicialmente, el script desarrollado ofrece dos posibles configuraciones, incluyendo
cámaras paralelas y convergentes (Fig. 4.3. En caṕıtulos anteriores ya se ha comentado
la razón por la que las cámaras convergentes no proveerán las propiedades geométricas
apropiadas. Sin embargo, se ha desarrollado este modo con el objetivo de obtener pruebas
gráficas de la distorsión producida y estudiar sus consecuencias en el dominio epipolar.

(a) (b)

Figura 4.3: a) Posicionamiento de las cámaras en el modo paralelo. b) Posicionamiento de
las cámaras en el modo convergente.

Los atributos que definen la escena están relacionados con los siguientes parámetros:

• Mode: Cambia entre el modo paralelo y convergente.

• Width Field: Longitud total de la pista de cámara (Unidades Blender * 1000).

21

• Field Density: Número total de cámaras.

• Distance to scene (Disponible sólo en el modo convergente): Distancia al
centro de la escena donde las cámaras enfocarán.

De acuerdo al modo paralelo, las cámaras se mueven a lo largo de la pista de cámara,
capturando vistas paralelas a la escena. La cámara en el centro de la pista tiene el campo
de visión necesario para abarcar la escena entera. Sin embargo, cuando la cámara se
mueve de un lado a otro, la vista capturada contiene información no necesaria. Fig. 4.4
muestra cómo información vaćıa es grabada en vez de ṕıxeles pertenecientes a la escena.

Figura 4.4: La cámara número 2, en el extremo de la pista, captura información no necesaria
(en rojo).

Una manera simple de resolver este problema es ensanchar el campo de visión de
la cámara, adquiriendo la porción entera del plano de proyección desde cualquier punto
de vista. Esta solución requiere más información que renderizar, aunque las regiones
adicionales renderizadas suelen contener pocos o ningún objeto, lo que no implica apenas
extra tiempo de rendering. Una vez todas las vistas han sido renderizadas, es el momento
de post-procesarlas y convertirlas en vistas con la resolución adecuada. Un script escrito
en Matlab (desde ahora en adelante, todos los scripts usados para procesar imágenes
estarán basados en Matlab) recorta la imagen manteniendo solo la región correspondiente
con el plano de proyección. Las imágenes procesadas tendrán la misma resolución después
de este recortado. Fig. 4.5 muestra cómo el siguiente script (crop renders.m) transformará
los renders iniciales en imágenes adecuadas para procedimientos posteriores.

function crop_renders(object,density,h_res)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% h_res: Horizontal resolution of views
% It crops renders to normal resolution
...
for i=1:density

img = imread(strcat(name_in,int2str(density-i+1)),’png’);
cropped = img(:,(i-1)*2+1:(i-1)*2+h_res,:);

imwrite(cropped,strcat(name_out,int2str(density-i+1),’.png’));
end

22

Figura 4.5: La cámara se caracteriza por un campo de visión más ancho. El área innecesaria
de la imagen es descartada en la imagen de la derecha.

La escena trabajada en este trabajo contiene 512 vistas, y los scripts de rendering
producen imágenes de 1622x600 ṕıxeles. Esas imágenes están recortadas a una resolución
final de 600x600 ṕıxeles. La siguiente Fig. (4.6) contiene algunos ejemplos producidos.

Figura 4.6: De izquierda a derecha, muestras de las vistas número 1, 64, 128, 192, 256, 320,
384, 448 y 512.

4.2 Creación y pre-filtrado de EPIs

Todas las vistas obtenidas en la sección anterior componen la representación espacial.
Para conseguir una representación del campo de luz de la escena, las vistas tienen que ser
transformadas en imágenes epipolares.

Los siguientes pasos incluyen la creación de las ya mencionadas imágenes epipolares
y el pre-filtrado de esas imágenes para remover el aliasing. El primer script se encarga
de crear EPIs de densidad completa, las cuales tienen el mismo número de columnas que
número de vistas renderizadas de la escena (512 en este caso). Un total de 600 diferentes
EPIs serán creadas, dado que las vistas tienen 600 ṕıxeles de resolución vertical. Esto es
completado por el siguiente script, el cual toma la misma fila de cada vista para crear una
única EPI. Por ejemplo, para crear la primera EPI, asigna la primera fila de la primera
vista a la primera fila de la EPI, la primera fila de la segunda vista a la segunda fila de
la EPI, etc.

function epi(object,density,v_res)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% v_res: Vertical resolution of views -> Number of EPIs
% It creates epipolar images with full density

23

Como resultado de este script en esta particular escena, las primeras y últimas 30-40
filas son completamente negras, dado que ningún objeto aparece al comienzo o final de
las vistas. Fig. 4.7 muestra algunas muestras obtenidas por esta función.

Figura 4.7: Desde la izquierda a la derecha, muestras de las EPIs número 1, 100, 200, 300,
400, 500 y 600.

Como ha sido explicado, el filtro anti-aliasing es requerido antes de la decimación.
La función presentada más abajo (una versión simplificada) aplica un filtro anti-aliasing.
Funciona con 5 factores de interpolación diferentes [2, 4, 8, 16, 32] todos potencia de 2,
lo que facilita el procesado de transformadas de Fourier. El re-muestreado produce una
salida mostrada en Fig. 4.8.

function prefiltering(object,density,v_res)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% v_res: Vertical resolution of views -> Number of EPIs
% It filters EPIs with anti-aliasing filter
% and down-samples vertically in 5 factors [2, 4, 8, 16, 32]

%Preparation of extended signal
epi = im2double(...);
epi_ext(1+factor:end-factor,:,:) = epi;
epi_ext(1:factor,:,:) = epi(1,:,:);
epi_ext(end-factor+1:end,:,:) = epi(end,:,:);

%Fourier transform, filtering and normalization
epi_f = fft(epi_ext);
normal = density/((density/factor) + 2);
fraction = density/(2*factor);
epi_fdec = [epi_f(1:fraction+2,:,:); epi_f(end-fraction+1:end,:,:)] / normal;

%Inverse Fourier transform and cropping extended samples.
epi_factor = ifft(epi_fdec);
epi_final = epi_factor(2:end-1,:,:);

24

Figura 4.8: La EPI original y las 5 EPIs anti-aliased con sus 5 factores de interpolación
diferentes.

4.3 Optimización del número de vistas

En este punto del diseño, los siguientes desarrollos trabajarán en las vistas convertidas en
EPIs filtradas, para convertirlas de nuevo a su resolución original. El re-muestreado que
optimiza el número de vistas para construir el sistema multi-vista.

Los scripts responsables de esta fase son presentados a continuación:

function run_epi_interp(object)
% Object: Name of the scene
% It runs epi_interp() with 5 factors [2, 4, 8, 16, 32] and
% 5 interpolation kernels [triangle, cubic, lanczos2, lanczos3, fastdct]

function epi_interp(object,density,factor,v_res,interpolation)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% Factor: Interpolation magnitude
% v_res: Vertical resolution of views -> Number of EPIs
% interpolation: Interpolation kernel used
% It up-samples vertically EPIs

La función epi interp utiliza la función de Matlab imresize() con los kernels de inter-
polación bilinear, bicubic, lanczos2 and lanczos3, o la siguiente función fdctEPI, la cual
implementa el algoritmo de escalado fast DCT [10].

Este algoritmo ha sido implementado para escalar señales 1D, y más tarde adaptado a
dos dimensiones. Todos los scripts codificados que mejoran el código en cuanto a tiempo de
computación son presentados en los apéndices. El ejemplo siguiente (versión simplificada)
tiene como objetivo demostrar y presentar los fundamentos básicos de la interpolación fast
DCT.

function img_out = fdctEPI(img_in,factor)
% img_in: input image

25

% factor: interpolation magnitud
% It up-samples vertically img_in using fastDCT interpolation

No = rows_in;
n = repmat(0:rows_in-1,rows_out,1);
k = repmat((0:rows_out-1)’,1,rows_in);

DCT = sincd(2*No-2, 2*rows_in, (k+1/2)/factor -n -1/2) .* ...
cos(pi/(2*rows_in) * ((k+1/2)/factor -n -1/2)) + ...
sincd((2*No-2), 2*rows_in, (k+1/2)/factor +n +1/2) .* ...
cos(pi/(2*rows_in) * ((k+1/2)/factor +n +1/2));

% Multiplication by DCT-Matrix to all image component layers
for i=1:components
img_out(:,:,i) = DCT*img_in(:,:,i);
end

% Truncating negative and greater than 1 values
img_out(img_out<0) = 0;
img_out(img_out>1) = 1;

function result = sincd(M,N,x)
% sincd(M,N,x) = sin(piMx/N)/(Nsin(pix/N))
% Digital sinc function used in fastDCT

Una de las secciones cŕıticas en el código de fdctEPI() es la población de n y k, dado que
representan las matrices que substituyen los bucles iniciales, que operan por filas y colum-
nas. Ejecutar esta operación con dos bucles anidados hace la computación ineficiente. En
una versión preliminar, uno de los bucles fue substituido por una operación vectorial, pero
popular dos matrices y efectuar operaciones lineales con ellas es más coherente.

Matriz k y n responden al siguiente patrón:

k =




0 0 · · · 0
1 1 · · · 1
...
n n · · · n



n =




0 1 · · · n
0 1 · · · n
...
0 1 · · · n




Tres métodos de población de matrices fueron considerados.

% Kronecker tensor product
ns = kron([1:size_in]-1,ones(1,size_out)’);
ks = kron(ones(1,size_in),[1:size_out]’-1);

26

% Replicating matrices
ns = repmat([0:size_in-1],size_out,1);
ks = repmat([0:size_out-1]’,1,size_in);

% Manual with ones
temp= [0:size_in-1];
ns= temp(ones(1,size_out),:);
temp= [0:size_out-1]’;
ks= temp(:,ones(1,size_in));

Los resultados para unas resoluciones de 300, 600 and 900 ṕıxeles y factores 2-10 se
muestran en la Fig. 4.9.

Figura 4.9: El método kron es notablemente peor que los otros dos. No hay grandes difer-
encias entre el manual y ones, pero al mismo tiempo, manual requiere menos memoria y
número de instrucciones.

La reconstrucción de vistas desde las EPIs interpoladas usando los kernels explicados
arriba es directa. Una vista es formaba apilando filas que provienen de la misma fila de
cada EPI. Las siguientes funciones son las responsables de la fase final.

function run_reconstruct_views(object)
% object: Name of the scene
% It runs reconstruct_views() with 5 factors [2, 4, 8, 16, 32] and
% 5 interpolation kernels [triangle, cubic, lanczos2, lanczos3, fastdct]

function reconstruct_views(object,density,factor,v_res,interpolation)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs

27

% Factor: Factor of interpolation applied vertically
% v_res: Vertical resolution of views -> Number of EPIs
% interpolation: Method/kernel used for re-sampling
% It reconstructs all the views from the re-sampled EPIs

La Fig. 4.10 presenta el proceso completo visto desde una perspectiva gráfica.

Figura 4.10: La imagen muestra todos los pasos seguidos en este trabajo, y cómo las imágenes
son transformadas y manipuladas en cada fase.

28

5. Resultados

En este caṕıtulo se presentan e interpretan todo los resultados gráficos y numéricos.
Los tests principales ejecutados en este trabajo incluyen el algoritmo fast DCT [10] y
otros kernels de interpolación, aśı como la comparación final entre las vistas originales e
interpoladas.

5.1 Algoritmo Fast DCT

El algoritmo Fast DCT ha sido usado para re-muestrear verticalmente Epipolar Planar
Images. Previo a los tests de imágenes, un set de señales 1D fueron testadas para un
mejor entendimiento de los efectos producidos en ciertos casos. Fig. (5.1) muestra alguno
de los efectos que el escalado produce en dichas señales.

Consecuencia de este efecto, los bordes de las imágenes epipolares que contienen
básicamente lineas y franjas, presentan desenfoque y artefactos. Otro ejemplo, testado
para confrontar los resultados de [10] presenta iterativamente el escalado de una imagen
de texto. Los resultados arrojan la impresión de que independientemente del número de
iteraciones ejecutadas, el texto permanece inteligible, a diferencia de lo que ocurre con
otros métodos de interpolación. Fig. 5.2 muestra claramente la diferencia entre dichos
métodos.

As it was mentioned above, the border artefacts present will have to be tackled down
in posterior steps. The artefacts appearing beyond the borders will take its utility away.
Figure 5.3 depicts why the displayed results are not useful for epipolar image interpolation.
Como ha sido mencionado previamente, los artefactos presentes en los bordes tendrán que
ser abordados en pasos posteriores. Fig. 5.3 explica por qué los resultados mostrados no
son útiles para interpolación epipolar.

Otro aspecto considerado en este texto es el tiempo de computación empleado por
cada uno de los métodos. Los resultados presentados en Fig. 5.4 muestran que la imple-
mentación de Fast DCT realizada para Matlab es más lenta que las funciones built-in en
Matlab, dado que Fast DCT comprende dos funciones externas. El hardware usado en
la ejecución de estos tests no influencia los resultados, dado que no se están comparando
mediciones con información en otro hardware. Además, cada test fue ejecutado 10 veces

29

Figura 5.1: El escalado produce en las señales cuadradas un efecto sinusoidal.

(a) (b) (c) (d)

Figura 5.2: a) Imagen de texto original. Escalado iterativo (zoom-in&zoom-out) 75 veces,
factor sqrt(2) b) algoritmo bilinear, c) algoritmo bicubic, d) algoritmo Fast DCT.

en las mismas condiciones. Fig. 5.4 muestra la media de todas las ejecuciones.

5.2 Resultados experimentales

El resultado más importante a ser discutido incluye EPIs originales e interpoladas. Esta
comparación ha sido llevada a cabo a través de la medición PSNR (Peak Signal-to-Noise
Ratio), como se ha explicado en el caṕıtulo de análisis.

El primer resultado experimental con PSNR comprueba cada vista reconstruida para
cada método de interpolación. El siguiente script permite obtener dichos resultados:

30

(a) (b)

Figura 5.3: La imagen de texto escalada 1000 veces con factor sqrt(2) a) Región de la imagen
obtenida mostrada como en el estudio [10]. b) Imagen de texto completa, conteniendo los
artefactos en los bordes.

Figura 5.4: La implementación del algoritmo Fast DCT es más lenta que los algoritmos
built-in.

function test_psnr(object,density,factor)
% Object: Name of the scene
% Density: Number of views
% Factor: Interpolation magnitud

31

% It calculates the PSNR for every factor and view

Los picos que aparecen en Fig. Figure 5.5 representan las vistas verdaderas no inter-
poladas que permanecen en la EPI filtrada. Las vistas cercanas a una vista verdadera
obtendrán, por lo tanto, mejores resultados PSNR. De acuerdo con esto, las vistas ex-
tremas muestras los peores valores, dado que no tienen vecinos a un lado con los que
interpolar. Fig. 5.5 pertenece al test con factor 8. Los tests con el resto de factores de
interpolación están disponibles en los apéndices.

Figura 5.5: Los picos representan vistas originales, y por lo tanto no interpoladas. Las vistas
en los extremos tienden a generar peores resultados debido a su isolación.

De igual manera, otro script ha sido escrito para comparar todos los métodos de
interpolación en la misma gráfica. El script completo esta disponible en los apéndices.

function PSNR = test_psnr_average(object,density)
% Object: Name of the scene
% Density: Number of views
% Factor: Interpolation magnitud
% It calculates the PSNR for every factor and its average between all the
% views

La misma gráfica es usada para contrastar los valores PSNR obtenidos en los tests con
pre-filtered EPIs y los valores obtenidos con EPIs sólamente decimadas. En el caso de
vistas basadas en imágenes epipolares aliased, el factor máximo aplicado ha sido 12, dado
que es esperado que con factores mayores los valores PSNR resultaŕıan absolutamente
inaceptables.

Vistas basadas en EPIs pre-filtradas son presentadas en la gráfica como puntos, mien-
tras que las no pre-filtradas como ĺıneas. El primer aspecto que se puede notar es que

32

la diferencia entre diferentes kernels de interpolación no es apreciable en dicha magnitud,
por lo tanto, el factor de interpolación será el parámetro decisivo.

A diferencia de como podŕıa haber parecido en el análisis del dominio de Fourier de
las EPIs, descartar cierta información relacionada con la alta frecuencia, se ha probado
que el filtro anti-aliasing es suficientemente útil. En el próximo caṕıtulo, esta Fig. 5.6 se
discutirá más en profundidad. El número mı́nimo de cámaras necesarias para reconstruir
un sistema multi-vista aceptable será determinado en concordancia con esta última gráfica.

Figura 5.6: Las vistas basadas en EPIs pre-filtradas obtienen muchos mejores resultados
para el mismo factor de interpolación que vistas basadas simplemente en EPIs decimadas.

33

6. Conclusiones

En este trabajo se ha cubierto el objetivo de diseñar herramientas y técnicas que ha-
cen posible un sistema multi-vista basado en una posible escena virtual. Además, las
caracteŕısticas de la escena han sido analizadas en el dominio espacial y de frecuencia.
Comprender estas propiedades nos permite desarrollar nuevos métodos e interpretar el
resultado producido durante los tests. Finalmente, un conjunto de tests presentan la
eficiencia de cada método y sus limitaciones.

6.1 Conclusiones sobre los resultados

Se ha desarrollado un nuevo filtro basado en el trabajo de [10]. Se ha probado que el filtro
funciona mejor para interpolar imágenes de texto iterativamente. Sin embargo, en ciertos
casos con bordes, el caso de imágenes epipolares, los artefactos producidos alrededor de
los bordes afectan el rendimiento total en el momento de reconstruir las vistas.

El algoritmo Fast DCT ha sido implementado en Matlab, y por lo tanto, es más lento
que las funciones built-in.

La optimización de cámaras se ha realizado mediante interpolación vertical de las
imágenes. Estas Epipolar Planar Images representan cómo el campo de luz de cada ṕıxel
cambia a lo largo de diferentes puntos de vista. Para obtener mejores resultados después
del re-muestreo, se ha aplicado un filtro anti-aliasing. Los resultados mostrados en el
caṕıtulo anterior prueba que filtrar EPIs beneficia el resultado general.

Los tests ejecutados para determinar la calidad de las vistas reconstruidas están basa-
dos en la medición Peak Signal-to-Noise Ratio Las imágenes comparadas están repre-
sentadas en el espacio de color RGB. Otra opción es convertir dichas imágenes primero
en el espacio de color YCbCr y entonces comparar el canal Y (luminancia). La razón
para tomar esta decisión reside en la capacidad de la vista humana para percibir mayores
perturbaciones y ruido en el brillo que en el color.

Finalmente, con los tests experimentales PSNR, es posible hacer una estimación del
número óptimo de cámaras. Fig. 6.1 ayuda a entender esta estimación. No hay un valor
exacto del número apropiado de cámaras a elegir, sino un intervalo donde los resultados

34

serán aceptables con referencia a su aplicación. PSNR no dicta una decisión final. Al-
gunos resultados visuales, percibidos por el sistema visual humano como mejores, pueden
conducir a peores valores PSNR. Las interpolaciones son también altamente dependientes
de la escena escogida. En este trabajo, el camaleón virtual contiene diferentes formas y
superficies, y está situado en una profundidad media.

No obstante, la posibilidad de probar este sistema multi-vista desarrollado junto con
la escena virtual interpolada y optimizada en una placa de holograma no ha sido posible.
Por lo tanto, la apariencia visual no esta considerada, y el juicio a tener en cuenta es
la medición PSNR. Un valor aceptable para imágenes con pérdidas se sitúa entre 30dB
y 50dB. Se ha solapado una franja en la figura 6.1. No se ha encontrado una gran
diferencia entre los diferentes métodos de interpolación. Como consecuencia directa, la
opción recomendada debe de ser la más rápida y simple. El kernel de interpolación
triangle, también conocido como bilinear, es el más rápido y provee el mejor valor PSNR,
sin embargo, no muy distante del resto.

Figura 6.1: La franja azul contiene valores muy buenos para imágenes con pérdidas. La
franja roja contiene imágenes con pérdidas para transmisiones wireless, por debajo de los
requisitos de calidad para este objetivo.

Consecuentemente, los factores de interpolación que proveen sistemas multi-vista de
buena calidad pertenecen al intervalo [2-16]. En otras palabras, usar desde la mitad hasta
una dieciseisava parte del número de vistas iniciales. 512 vistas han sido usadas en este
trabajo. 32 vistas procesadas con algoritmos anti-aliasing y de re-muestreado permiten
reconstruir las 512 vistas iniciales con un valor PSNR de 29dB. Usar una interpolación
de factor 32 generaŕıa un valor relativamente bueno (24dB); sin embargo, se necesita
establecer un criterio con algunos ĺımites.

35

6.2 Trabajo futuro

Este proyecto estudia un intento inicial de establecer una metodoloǵıa para un render-
ing multi-vista. Usa cámaras virtuales debido a la libertad de manipulación de sus
parámetros. También toma ventaja del entorno 3D para renderizar objetos y escenas
que pueden ser adaptados de mejor manera a los requisitos establecidos, a diferencia de
los objetos en el mundo real.

El siguiente paso a seguir implicaŕıa el uso de cámaras f́ısicas para adquirir las vistas,
nuevos métodos de interpolación incluyendo técnicas mixtas. Varias propuestas avanzadas
con respecto la configuración de cámaras, siendo estas re-centradas más complejas que
lleven a una configuración full-parallax. También, parámetros intŕınsecos del las lentes en
las cámaras reales jugarán un papel importante en los temas relacionados con la profun-
didad.

Llevar este estudio a posible aplicaciones es el siguiente paso a dar. Por ejemplo, juegos
gráficos por ordenador con interacción en tiempo real requieren más y más simplificados
modelos de poĺıgonos, dado que toman la ventaja de mapping de texturas avanzados. Los
modelos, más simples, pueden ser manipulados mejor en el dominio epipolar, y la calidad
del producto final será más dependiente a nivel de textura.

El trabajo de este proyecto simboliza un número independiente de fases para obtener
un resultado final. Sin embargo, un estudio futuro podŕıa desarrollar todos estos pasos
en una única unidad de producción. Las especificaciones de dicho software de producción
variaŕıa considerablemente, dependiente de las diferentes plataformas, herramientas y
software de desarrollo usado durante el proceso. Si una herramienta de producción tiene
que ser desarrollada, algunos aspectos tendŕıan que ser tenidos en cuenta. Por ejemplo,
todos los algoritmos debeŕıan de ser escritos en lenguajes compilados, donde una verdadera
optimización podŕıa tener lugar. Mex o C podŕıan ser un buen punto de partida como
alternativa a Matlab. Algunas partes del código que requieren una inmensa transferencia
de entrada/salida podŕıa ser paralelizados. El aspecto más importante en la optimización
de código reside en la Ley de Amdahl: la optimización de un bloque de código optimizará
la aplicación general en la misma proporción que ese código representa el proceso general.
Algunas veces un gran esfuerzo es puesto en optimizar algo que, como ha ocurrido en
el estudio de población de matrices, no refleja un beneficio digno en comparación con el
tiempo invertido.

6.3 Valoración personal

Esta tesis ha significado un proyecto completamente especial en el peŕıodo que ha tenido
lugar, por varias razones. Primero, afronté este proyecto en un ambiente internacional,
como parte de mi estancia Erasmus en Finlandia en la Tampere university of Technol-
ogy. En segundo lugar, ser investigador en el departamento de Signal Processing me ha

36

mostrado una cara de la universidad en la que no hab́ıa estado involucrado antes. También
me ha dado la posibilidad de acudir a la 3D Media Training School en el verano de 2012
en Tampere. Finalmente, aunque mis conocimientos previos son enteramente basados
en Computer Science, el reto de adaptar mi conocimiento y comprender algoritmos y
propiedades relacionados con el procesado de señal (la mayoŕıa de ellos no estudiados
en mi programa con anterioridad) me ha impulsado a afrontar los problemas desde una
perspectiva diferente. Además, hacer uso de mi experiencia en software y computación ha
sido de ayuda a la hora de desarrollar ciertos algoritmos. Mi visión de cómo las imágenes
son procesadas y cómo esa tecnoloǵıa es usada ha cambiado después de completar esta
tesis.

37

38

Bibliography

[1] E. N. Leith. White light holograms. Scientific American, (1976).

[2] Michal W. Halle. The Generalized Holographic Stereogram. Massachusetts Institute of
Technology, (1991).

[3] Michal W. Halle, Adam B. Kropp. Fast computer graphics rendering for full parallax
spatial displays. Brigham and Women’s Hospital, Massachusetts Institute of Technol-
ogy, (1997).

[4] Ravikanth Pappu et al. A Generalized Pipeline for Preview and Rendering of Syn-
thetic Holograms. Massachusetts Institute of Technology, Interval Research Corpora-
tion, (1997).

[5] Michal W. Halle. Multiple Viewpoint Rendering. Brigham and Women’s Hospital,
(1998).

[6] Jin-Xiang Chai et al. Plenoptic Sampling. Microsoft Research China, (2000).

[7] Wendy Plesniak et al. Reconfigurable Image Projection Holograms. Brigham and
Women’s Hospital, MIT Media Laboratory, ThingMagic, Inc., (2006).

[8] Smithwick, Quinn Y. J. et al. Real-time Shader Rendering of Holographic Stereograms.
Society of Photo-Optical Instrumentation Engineers, (2009).

[9] Melania Paturzo et al. Holographic Display of synthetic 3D dynamic scene. 3D Re-
search Center and Springer, (2010).

[10] Leonid Yaroslavsky, Leonid Bilevich. Fast DCT-based Algorithm for Signal and Ac-
curate Scaling . Tel Aviv University, (2012).

39

40

7. Apéndices

Las secciones siguiente contienen todo el material que no pod́ıa ser incluido en el texto
principal debido a su extensión o relevancia.

7.1 Original MSc Thesis at Tampere University of
Technology

El primer anexo incluye el proyecto realizado originalmente en inglés, en la Tampere
University of Technology, Tampere, Finlandia. La numeración de dichas páginas no se
ha cambiado para mantener una coherencia con la tabla de contenidos e ı́ndice de figuras
con las que el documento comienza.

41

Table of Contents

1 Introduction 46

1.1 Context and motivation . 46

1.2 Scope and objective of the project . 50

1.3 Structure . 51

2 Background 52

2.1 Computer generated hologram method . 52

2.2 EPI representation . 53

2.3 Requirements of the approach . 55

3 Analysis 58

3.1 Relations between scene characteristics and Fourier domain representation 58

3.2 Transform-domain analysis of EPI images 60

3.3 Filtering of EPI and optimizing the number of views 61

4 Design of the multi-view system 64

4.1 Building a multi-view system from 3D scenes 65

4.2 Creation and pre-filtering of EPIs . 67

4.3 Optimizing number of views . 68

5 Results 73

5.1 Fast DCT algorithm . 73

5.2 Experimental results . 75

i

6 Conclusions 78

6.1 Conclusions about the results . 78

6.2 Future Work . 80

6.3 Personal Assessment . 80

ii

List of Figures

1.1 Hologram in Star Wars . 47

1.2 Horizontal Parallax Only vs. Full-parallax stereograms 48

1.3 Cross-section of a camera with projection plane 48

1.4 Holographic table layout . 49

1.5 Collimating lens . 49

1.6 Typical holographic recording scheme . 50

1.7 Example of holography reconstruction . 50

2.1 Representation of the hogel (hologram element) 53

2.2 Camera arrangement for full or horizontal only parallax 54

2.3 EPI construction process . 55

2.4 Example of occlusion in EPI . 55

2.5 Four possible configurations for camera arrangement 56

2.6 EPIs obtained with different camera configurations 56

3.1 Depth function represented in spatial and epipolar domain 58

3.2 Spectral support of light field bounded in frequency domain. 59

3.3 EPI representation and 2D Fourier transform 59

3.4 Anti-aliasing steps for a one-dimensional signal. 61

3.5 Comparison between anti-aliasing filtered and non filtered EPIs. 62

4.1 Scheme of developing process . 64

iii

4.2 Interfaces for parallel and convergent scripts in Blender 65

4.3 3D example of parallel and convergent cameras in Blender 65

4.4 Cropping problem of views with parallel cameras 66

4.5 Solution for cropping renders. 67

4.6 Samples of views. 67

4.7 Samples of EPIs. 68

4.8 Samples of EPIs filtered with anti-aliasing. 69

4.9 Populating matrices with kron, repmat and ones. 71

4.10 Graphical perspective of the whole process. 72

5.1 Sample signals scaled with Fast DCT algorithm 73

5.2 Comparison iterative scaling between bilinear, bicubic and fast DCT. . . . 74

5.3 Border effects in the DCT method . 74

5.4 Time comparison between fast DCT implementation and rest of interpola-
tion kernels. 75

5.5 PSNR of reconstructed views for every interpolation method. 76

5.6 Average of PSNR for every factor against aliased EPIs-based views. 77

6.1 Average of PSNR for every factor and range of acceptable PSNR values. . . 79

1

1. Introduction

In this work we review the holographic stereogram printing approaches studied thus far
and its implementation through a multi-view image rendering system. In this chapter,
the fundamental concepts of holographic printing are presented, as well as the motivation
to explore this topic, and the structure of the rest of the document.

1.1 Context and motivation

Since the first stereoscopic displays, researches have tried to improve the virtual reality
experience bringing more realistic and immersive 3D environments to the customers. The
challenge rests here in recording a scene from the real world and displaying the recorded
data onto synthetic material. Sometimes, precisely the case we work with in this thesis,
the source material does not belong to the real world; it is computer generated, hence,
easier to manipulate.

First holographic displays, developed in 1964 by Leith [1], were illuminated by laser.
Since then, media and film productions showed holograms as a futuristic way of recording
and displaying the real world in real time. The best example of all, first Star Wars movie
in 1977 (one year later than Leith’s development) already introduced holocameras and
holoprojectors as figure 1.1 shows.

A hologram contains the interference pattern produced by the reference and object
wavelength, which have different phase. Unlike typical stereoscopic photographs a holo-
gram is both the recording medium and its display. Holograms were disadvantaged by
some recording requirements whereas a hologram must be recorded with a monochromatic
and coherent light. Furthermore, objects being subject of recording had to stay stable
within a fraction of light wavelength [2].

Unlike recent synthetic display holograms [9] traditional holograms required to store a
massive amount of data in them, making the computation a heavy process. Holographic
stereography supposes that only a limited number of viewpoints are recorded, regarding
human perception desired rather than the storage capacity of the hologram. This is a
notable difference between the former true hologram. Another great difference means a
separated recording process. As any traditional stereogram, images can be captured with

46

Figure 1.1: Star Wars frame where a hologram is projected from a board below.

an ordinary photographic camera and processed by computer graphic techniques later on.
Moreover, we can substitute real life object by computer graphic models, virtually costless
to configure.

A stereogram is created in three stages [2]:

1. Photographic capture, either from real objects or synthetic 3D models.

2. Holographic recording.

3. Final viewing.

Before going deeper into the holographic recording process, some terms have to be
explained to understand distinct approaches relating ways of acquiring views from an
object such as Full-parallax and Horizontal Parallax Only (HPO) stereogram. While
former attempt to simulate the real world, the latter offers a decent three-dimensional
view with much less camera viewpoints. Figure 1.2 illustrates this difference.

All cameras are always pointing ahead, and their axis are parallel to the hologram
plane and camera track line. Camera projections allude to pyramids representing their
field of view. Given pyramid is intersected by the hologram plane resulting in projection
plane of every camera. A more detailed view of the cross-section of the viewing pyramid is
shown in Figure 1.3. We use a parallel camera-scene setting to explain how a multi-view
system works. Nevertheless, further settings will be discussed later in next chapters.

A holographic plate is composed by vertical slit holograms along the plate. Each slit
is exposed to an image projected onto a rear-projection screen, representing a different
viewpoint. After the hologram is recorded, every viewpoint can be seen through each slit
conforming an aperture. A viewer looking at the stereogram will see through two different
apertures, one for each eye. The brain interprets the differences between the two views
as three-dimensional information. The appearance of a three-dimensional scene works

47

(a) (b)

Figure 1.2: a) Scheme of HPO stereogram. Cameras are placed along a camera track parallel
to the same hologram plane. b) Scheme of full-parallax stereogram. Cameras are placed
along a plane parallel to hologram plane.

Figure 1.3: In this configuration, the camera always points ahead. Note the cross-section
between its pyramid and the projection plane as it is moving along the stereogram track.

according to a binocular depth cue. Both viewer’s eyes follow two different slits of the
hologram. Images that appeared in those slits fall precisely in front of the eyes, producing
the stereoscopic effect of being at infinite. Nonetheless, the observer focus his sight to
projection plane, placing the image on there. If the viewer moves laterally, a new pair of
images are shown, simulating the 3D scene. As slits are recorded horizontally, following
HPO scheme, the viewer sees always the same vertical perspective regardless the vertical
position where he observes from. As a matter of fact, the image will move as if it is on
the vertical projection plane.

Concerning the holographic recording presented in [2], two beams of coherent light
are used. Laser beam is split in two, originating a reference beam and an object beam.

48

This object beam is enlarged as it passes through the camera and projection lens. It
illuminates the hologram by projecting onto the projection screen an image recorded
on cine film in the camera. The projection frames represents a 2D object located on
the boundless projection plane, and at the same time the projected image represents a
visible subarea of the projection frame for any viewpoint. The projection screen and the
holographic plate along with the slit mechanism faced each other, and it can be seen in the
Figure 1.4 more precisely. The holographic plate is exposed both to the image projected
and the reference beam. However, only one stripe of the hologram is open for exposure,
considering a opaque piece perforated with slit-shaped holes covering the hologram plate.

Figure 1.4: Holographic table layout from above (Source [2]).

Each slit has to be illuminated with a reference beam of the same direction, regardless
the lateral position of the slit. This is achieved by gathering the beam with collimating
lens or Frensel Lens, the same principle used in lighthouses. Figure 1.5 gives a more
detailed idea of how a collimator works.

(a) (b) (c)

Figure 1.5: a) Fresnel lens used in lighthouses. b) Equivalent plano-convex lens. c) Scheme
of collimator that aligns the beams causing a parallel output.

Another typical configuration used for holographic recording consists of casting laser
beams at a physical object and recording the interference of wavelengths that the object
releases together with the reference beam. The detailed scheme is presented in Figure
1.6. Instead of collimating beams, lenses and mirrors are used to redirect them towards
the holographic plate. The recording is done in darkness to avoid any type of interference
coming from day light.

49

(a) (b)

Figure 1.6: a) Scheme of holographic recording with object exposed to laser beams. Bob
Mellish. b) Photography of the same scenario in a laboratory. College of Optics & Photonics,
University of Central Florida.

When the holographic plate is illuminated by an equivalent reference beam, a recon-
struction of the object can be seen. If the position of the plate or the viewer changes
the appearance of the object changes as well as if it was the real object. An example of
holographic reconstruction is given in Figure 1.7.

Figure 1.7: The dog is reconstructed with reference laser beam applied to the hologram.
Hologram presented by Dr.Kenji Yamamoto at 3D Media Training School, Tampere, 2012.

1.2 Scope and objective of the project

The objective of this project is to understand the creation process of a hologram in order
to develop novel techniques. Necessary software is developed in this work with the purpose
of providing data needed for following steps of the process.

The milestones to be achieved in this thesis include:

50

• Design and development of a script that provides a set of rendered images corre-
sponding to a horizontal-parallax only system from a 3D scene.

• Creation of epipolar images (EPI) from rendered images, allowing to represent all
views into a single image.

• Analysis of EPI images in frequency domain. Relation between scene characteristics
and representation in Fourier domain.

• Design and development of a filter to process EPI images, optimizing minimum
number of cameras.

1.3 Structure

This thesis is organized with the following structure:

Chapter 2 describes the state of the art related with the topic.

Chapter 3 presents a theoretical analysis which is combined with the experiments.

Chapter 4 explains the tools developed to accomplish the experiments and justifies
their purpose.

Chapter 5 shows the results obtained and their graphical representation.

Chapter 6 completes the research providing both the conclusions and the future work
that could pursue the present study.

Chapter 7 contains the bibliography references used for the development of this re-
search.

Next chapters contains the appendices including the rest of development accomplished
during this work.

51

2. Background

This chapter reviews the state of art in the area as well as all the necessary knowledge to
understand the topic. It overviews the holographic stereogram printing approach.

2.1 Computer generated hologram method

As explained in the previous chapter, a hologram contains light field information. A
holographic stereogram is a discretised version composed of several hologram elements
called hogels. Every hogel contains 3D information from various perspectives, which was
previously recorded depending on the the angle of refraction (i.e: viewer’s point of view).

A fully computed hologram offers an infinite number of perspectives. On the other
hand, a holographic stereogram offers only a finite number of perspectives instead, using
wavefront reconstruction. Holographic stereograms form an approximation of the wave-
front, for decreased computation time. This approximation is done with a discrete number
of perspectives. The approach developed in this thesis will pursuit the optimization of
number the views needed [6], obtaining a similar holographic perception.

One method of diffraction-specific encoding [8] refers to the holographic stereogram
as a sum of overlapping amplitude modulated chirp gratings. A chirp signal increases its
frequency over time. This amplitude modulated chirped grating on the hologram plane
produces a set of view-directional emitters on an emitter plane. Each chirp focuses light
to create a point emitter, while the angle-dependent brightnesses of the views are encoded
in the amplitude modulation.

According to Quinn [8], the parallel vector computation of a hologram is divided into
three steps:

1. Pre-computing the chirp vectors into a chirp texture.

2. Multi-view rendering of the scene directly into the modulation vectors stored in the
modulation texture using a double frustum camera.

3. Assembling the hologram by gathering chirp and modulation vectors via texture
fetches and then performing a dot product.

52

This thesis will focus on a portion that is developed during the second, with some
variations, e.g., horizontal parallax-only cameras instead of using double frustum. The
exact differences will be discussed in Section 2.3 at the end of this chapter, where the
requirements of the developed approach are presented.

Figure 2.1: On the left, the hologram and an magnified picture of a single hogel. On the
right, the pixel stored in the sensor, representing the same pixel of the scene, is recorded in
the hogel. The camera sensors (in red color), are placed in the actual camera.

A more general approach to understand how the multi-view rendering system works is
based on the hogels introduced previously. Figure 2.1 will picture intelligibly the following
explanation. Every hogel contains the light wavefront corresponding to one pixel in the
scene, coming from every point of view. This information can be reconstructed applying
the proper light to the hogel, then emitting the data recorded depending on the point of
view. Several cameras record from different positions along the camera track line. Each
sensor is composed of many pixels. A single hogel contains the information associate to
the same pixel of every view. It means that it holds data from as many different directions
as number of views used in the scene.

2.2 EPI representation

The correlation between images from different positions of the same static scene connotes
the perspective coherence. The main distinction between perspective and temporal co-
herence is that the former is more restricted than the latter, related to changes in images
along time. Scene characteristics, i.e: shading and geometric changes, can be analysed in
the epipolar domain.

An Epipolar Plane Image (EPI) is a 2D representation of the light field. It constitutes
the transformation of a set of multi-view images into a multi-perspective light field cut. In
order to obtain this representation, first cameras should be arranged as shown in Figure

53

2.2 exhibits. Halle [5] describes these two different arrangements as regular shearing (RS)
cameras: planar regular shearing (PSR) and linear regular shearing (LSR).

Figure 2.2: On the left, the LSR disposition provides only horizontal parallax while the right
dispotition, PSR, captures horizontal and vertical information.

The LSR disposition, which consists of a single array of cameras represents a HPO set-
ting, providing all the necessary information with only one row of cameras, but removing
vertical parallax. Viewer will receive the same image as he sees from a different vertical
position. On the other hand, the PSR disposition supplies full parallax, but, it requires
many more cameras.

Apprehending how EPIs are formed helps to understand the holographic printing
system, since EPIs conform an essential element within the process. Imagine that all
images rendered from the multi-view system are stacked as deck of cards. The image
corresponding to the rightmost view is placed on the front, and the leftmost view on
the back. Then, the created spatio-perspective volume is sliced horizontally. The multi-
perspective cut obtained, i.e: the EPI, holds the same equivalent row of every view and
it is lying down, pointing at the top. In other words, the bottom row of the EPI belongs
to the rightmost view and the top row belongs to the leftmost view. Figure 2.3 shows
graphically the technique used to obtain the EPI.

Although Figure 2.3 displays a single EPI, all of them should be calculated in order to
build the entire spatio-perspective volume. There are as many EPIs as height resolution
of the camera plane.

The convenience of using EPIS is strongly notable with regard to possibilities of using
some of the features in further developments. For instance, their linear structure allows
to effectively apply interpolation algorithms. This is utterly important as one of the
goals of this project (explained in more detail in the next chapter) responds to optimizing
the number of views. Additionally, EPIs gather extra features, such as side detection,
shading and occlusion of the objects. The last one can be observed in the Figure 2.4
where a different row has been chosen.

54

Figure 2.3: On the left, five views representing from the leftmost to the rightmost views,
with some intermediate ones in between. In the middle, both 3D perspectives show the views
stacked. The red frame designates the row chosen for this EPI, which reposes horizontally.
On the right, the resultant EPI contains the leftmost views on the top and the rightmost
views on the bottom. Notice how the right eye of the chameleon disappear from the EPI as
the camera goes to the right.

Figure 2.4: On the left, our 3D chameleon and the row chosen marked in red. On the right,
the resultant EPI where occlusions produced by both pair of legs are enclosed in a red circle.

2.3 Requirements of the approach

After presenting the necessary background, this chapter will describe the requirements
adopted for the approach undertaken and the reasons of why certain parameters are
chosen and why others are dismissed.

First of all, as the holographic printing system is multi-view image-based, a determined
setting with reference to cameras has to be chosen: it specifies their placement and posi-
tion in relation to the scene. Four configurations are available: cameras pointing ahead
parallel to the projection plane and three sorts of re-centering cameras; two of them are
automatically discarded because of distortions introduced. Figure 2.5 displays in a more
understandable manner the arrangement of the cameras in those four configurations. The
size of the projection plane and its distance to the camera track, or slit, will determine
the angle of view and focal length specified in the lens of the camera. Furthermore, the
projection plane accommodates the cross-section with the pyramid projected from the

55

camera, thus making the camera able to image properly the corresponding area.

Figure 2.5: On the left, parallel cameras. In the middle, convergent cameras heading the
center of the scene along the track and spinning around the center. Theses two configurations
lead to distortions. On the right, recentering cameras with their rear films shifted according
to the lens to keep the image centered.

Then, the second and third configurations must be discarded. They violate the cor-
respondences in terms of geometry between the position of the cameras and the position
of the viewer. The place in the area where images are taken must correspond with the
stereogram point of view. The track where the camera moves along must to be straight,
remaining with the same geometry as the holographic plane plate. The camera takes view
from every position corresponding to the position of the slits. Besides, every point must
remain in the same place in the scene regardless where the viewpoint is capturing from.
This way, depth is maintained in every view. Complex scenes with too distant and too
close points should remain at the same depth from each viewpoint. With a tilted film
respecting the projection plane, its contained image would be scaled vertically, known as
keystone effect. These two conditions make the two configurations mentioned above in-
compatible. Furthermore, the EPI obtained, for instance, with the second configuration,
lacks of properties that make it useful such as linear tracks.

(a) (b) (c)

Figure 2.6: a) Parallel cameras preserve geometry correspondences, but most of the black
region means useless data. b) EPI presents deformed geometry caused by wrong camera
configuration. c) Recentered cameras provides useful data regardless the point of view and
preserve geometry correspondences.

Regarding the parallel or recentering cameras, the former have a disadvantage. Most
of the viewpoints contain image data that could never be seen. Therefore, it is useless

56

information that is processed but never recorded in the final hologram. Parallel cameras
brings an easier setting, but its disadvantage is that it implies too much data out of
the projection plane. The fourth configuration showed in Figure 2.5 is considered. A
way to achieve these rendered images, as it is explained in the chapter below, consists of
using the first configuration and cameras with a wider field of view that accommodate
the projection plane even from the most extreme points of views. Figure 2.6 presents the
final EPIs that will be produced by the diverse camera configurations.

The parameters chosen for later development are as follows. The resolution of the
camera is 600 square pixels and 3 layers for RGB color space. The number of views
chosen is 512, what will simplify some post-processing of the renders working with some
power of 2. Rendering 512 views from a complex scene might result in a heavy and long
computation process. Optimizing the number of cameras through interpolation will be
one of the tasks to be polished.

57

3. Analysis

As it was stated in previous chapters, optimizing the number of cameras involves the
analysis of interpolation and re-sampling. With this purpose, the analysis of EPIs has to
done in both spacial and frequency domain to understand how to manipulate the images.

3.1 Relations between scene characteristics and Fourier
domain representation

Before approaching the study of filtering and interpolation of epipolar images, it may
be appropriate a first contact with a property of scenes and its Fourier domain repre-
sentation, i.e: depth. Depth plays an important role in holographic stereograms. How
different depths affect the representation of object in epipolar and frequency domain will
be explained in this section.

Initially, one point z(v,t) in a particular scene is considered (see Figure 3.1). It is
seen by two cameras, c1 and c2 with focal length f, which go alone the camera track t,
recording the horizontal position where the two points would fall onto. The two positions
where the point z(v,t) fall onto the cameras are v for c1 and v’ for c2. The disparity
function v − v′ = ft/z describes the geometry of the scene.

Figure 3.1: On the left, the point placed in the scene captured by both cameras. On the
right, line formed by stacking pixel captured along the camera track.

Figure 3.2 depicts the model of a signal with constant depth. The red lines represent

58

the minimum and maximum depth. The same figure also shows the spectral support of
light field. The blue line, with angle of 45º respect to the axis represents the constant
depth. The red lines set the spectral support boundaries of depth. The tilt pictured in
this domain can be translated into the depth of the signals in the scene.

Figure 3.2: On the left, a model of constant depth. On the right, the frequency domain
representation with boundaries for minimum and maximum depth.

According to Chai[6], ”Any scene with a depth between zmin and zmax will have its
continuous spectral support bounded in the frequency domain”. The use of epipolar
images connects scene characteristics such as depth with the Fourier domain, which can
be adequately manipulated. Finally, a couple of examples of EPIs and their 2D fast
Fourier Transform (FFT2D) is shown in Figure 3.3.

Figure 3.3: The image above displays an example of EPI and its Fourier transform. The
image below, with an object behind the first shown above, is further in the scene, and its
Fourier transform shows it in its tilt.

59

3.2 Transform-domain analysis of EPI images

Epipolar plane images reconstructed with all the available views represent the perfect
horizontal parallax-only scenario. No information is missing. However, one of the goals
of this thesis is to reconstruct the original views with an smaller number of cameras.
A straightforward way to generate this scenario is decimation, which directly discards
explicit rows. For instance, a decimation of factor 2 would dismiss even rows obtaining
a final image with half vertical resolution, a decimation of factor 4 would dismiss three
rows for every row that remains and so on. Although this method to manipulate images is
clear and it might sound correct initially, it introduces aliasing. Therefore, an anti-aliasing
filter was required.

The filter is a low-pass type and it discriminates the high-frequency information from
the image. It will produce some visible changes in the plane color regions close to abrupt
color changes. Aside from this collateral effect, it softens the sharpness on the borders.
The loss of information in the pre-filtering is worth respect to the benefits provided by
the posterior interpolations, when applied on anti-aliased images, as the final results will
prove.

The filter is applied column-wise given an image (img). With the intention of describ-
ing the essence of this technique, a one-dimensional signal (sgn) is considered, representing
one column in the image. Figure 3.4 shows this process in more details.

Firstly, the image needs to be enlarged vertically by double of the factor applied,
and the first and last value of the signal extended to the beginning and end of the signal
correspondingly. The reason of this arrangement resides in the circular property of Fourier
transform. If this is not taken into account, the first pixels would interpolate with the
last pixels, producing undesirable effects such as mirror at the extremes.

Once the signal sgn is prepared, the Discrete Fourier Transform is applied.

sgn fourier = DFT (sgn)

The signal is now handled in the frequency domain. In this example an interpolation
factor of 2 is considered, hence, half of the signal has to be filtered. The filter removes
the middle half samples, corresponding to high-frequency. Besides this filtered, the signal
has to be normalized, because it should not contain the same energy. The next formulas
represent the theory behind this method for this example, not the actual development.

normalization = N.ofcameras
N.ofcameras

2 + 2

sgn decimated =
sgn fourier(1 : N.ofcameras

4 + 2, 3
4N.ofcameras+ 1 : end)

normalization

60

(a) (b)

(c) (d)

Figure 3.4: a) Original signal of 512 samples. b) Fourier transform of the signal. Highlighted
area contains high-frequency region to be filtered. c) Filtered and normalized Fourier trans-
form. d) Final signal, which softened and interpolated after the low-pass filter is applied.

After this step, the signal is filtered in the frequency domain. The final phase include
the Inverse Fourier transform, and discard the samples added at the extremes.

sgn final extended = IDFTsng decimated

sgn final = sgn final extended(2 : end− 2)

Figure 3.5 compares two epipolar images with and without pre-filtering. Nevertheless,
simple decimation has been applied with the aim of comparing the results, obtained at
the point of reconstructing the initially discriminated views.

3.3 Filtering of EPI and optimizing the number of
views

At this point of the process, the views are converted into EPIs in five available factors
of interpolation. The actual optimization step takes place now, where the pre-filtered

61

(a) (b)

Figure 3.5: a) Detailed region of an EPI where aliasing is visible. b) The same EPI with
anti-aliasing filter.

epipolar images are up-sampled, therefore, dismissed rows which represent missing recon-
structed views.

Four of the interpolation used in this phase are typical interpolation kernels available in
Matlab: triangle (bilinear), cubic (bicubic), lanczos2 and lanczos3. A new fast dct-based
scaling algorithm has been implemented, based on [10].

The next formula describes the interpolation kernel developed. It is applied to 1D
signals. When applying this method to images, which are 2D signals, it is as simple as
considering every column as an individual signal.

signalk =
N−1∑

n=0
an{ sincd

(
2N◦ − 2, 2N, k + 1/2

factor
− n− 1/2

)
cos

[
π

2N

(
k + 1/2
factor

− n− 1/2
)]

+sincd
(

2N◦ − 2, 2N, k + 1/2
factor

+ n+ 1/2
)
cos

[
π

2N

(
k + 1/2
factor

+ n+ 1/2
)]
}

where the term in curly brackets represents an interpolation kernel:

N◦ = min (N, bfactorNc)

sincd (M,N, x) =
sin

(
πM
N
x
)

Nsin
(
π
N
x
)

In the previous formulas, N represents the signal length; factor, the interpolation factor
chosen; n is the sample processed in every iteration in the summation; and k, means the
output sample obtained. The approach has to be applied for every output sample (k)
of the signal, in order to calculate its interpolated value. With the help of Matlab these
operations can be accomplished easier using vector and matrix operations, specially when
it is done in two dimensions.

62

The previous method has been developed and tested, as it will be shown below in
the results chapter, however, it is easy to spot some early limitations. It accepts any
interpolation factor greater than 1, but different from (1.4, 4.8, 2.2, 2.6, 3, 3.4, 3.8, 4.2,
4.6, 5, 5.4, 5.8, 6.2) and any factor number odd. For these values, the denominator in
sincd returns infinite value. This method works quite well in sinusoidal-like signals, but,
its results are not that fully acceptable when working with signals with harsh borders as
next chapters will show. This is an inconvenient because epipolar images contain signals
of this type.

The interpolation methods have up-sampled the epipolar images, but they cannot be
directly compared to the original EPIs. The final views have to be reconstructed, which
is achieved in the opposite direction to how EPIs are created. Instead of selecting the
same row of every view to create an epipolar image, the same row of every EPI is selected,
and the new view is obtained. The designing phase will demonstrate how to acquire the
reconstructed views from 600 EPIs with 512 pixels of vertical resolution, and then to
obtain 512 views with 600 pixels of vertical resolution.

The comparison of original and reconstructed EPIs will depict how accurate the recon-
struction is, and consequently, the degree of interpolation that can be applied in relation
to the noise that appears. The measurement used to analyse this relation is PSNR (peak
signal-to-noise ratio), known as the ratio between the maximum possible power of a signal
regarding the power of the noise present in the original and compressed image. Compres-
sion understood as the down-sampling and re-sampling executed in epipolar images and
translated to scene views.

PSNR contains another measurement method in the algorithm, Mean Squared Error
(MSE), that measures the average of the squares of the errors. An original image has a
Mean Square Error equal to zero, and therefore, infinite PSNR. The higher PSNR is, the
higher quality of the image is.

MSE = 1
mn

m−1∑

i=0

n−1∑

j=0
[Original(i, j)− Interpolated(i, j)]2

where images are mxn size. The final PSNR formula comprises:

PSNR = 10log10

(
MAX2

MSE

)

where MAX is the maximum possible pixel value of the image (255 for images used).
The higher the PSNR value is, the better quality of the interpolation is, which is explained
further in the last chapter.

63

4. Design of the multi-view system

This chapter examines the techniques used to obtain necessary elements to build the
Computer Generated Hologram system. The following sections will explain the tools
developed for obtaining properly the views from a virtual 3D scene, the post-processing
performed to them and the re-sampling techniques that achieve the desired optimization
in number of views.

Figure 4.1: 1) Rendering of images and cropping to obtain the useful region of it. 2)
Creation of full density and pre-filtered EPIs to obtain down-sampled and anti-aliased EPIs.
3) Vertical interpolation of EPIs to recover original resolution. 4) Reconstruction of views
from interpolated EPIs.

Throughout the developing and testing phases, more than 32.000 files have been cre-
ated and almost 3GB of data manipulated, which requires a clear and structured folder
directory:

/.
functions.blend/py/m (1)
scene_name/epis_density (2)
scene_name/epis_density_interpolation (3)
scene_name/parallel_r_density (4)
scene_name/parallel_rc_density (5)
scene_name/parallel_density_interpolation (6)

1) The folder represents all the functions and script from Blender, Python and Matlab.
2) The folder contains the full density EPIs and pre-filtered with 5 interpolation factors.
3) Every folder contains the interpolated EPIs with 5 interpolation factors.
4) The folder contains the raw renders.
5) The folder contains the cropped views with proper resolution.
6) The folder contains the reconstructed views for every interpolation factor. In the
directory tree presented above, density is represented by a number (512 in this case) and
interpolation by one of the 5 interpolation kernel used.

64

4.1 Building a multi-view system from 3D scenes

The first step before analysing the views of a scene implies obtaining those views. The
software used is Blender as 3D virtual scene and camera setting. The script that places
the cameras in the correct place and renders the images is written in Python, and it
includes a graphical interface (Figure 4.2).

(a) (b)

Figure 4.2: a) Interface for parallel mode. b) Interface for convergent mode.

Initially, the developed script offered two possible settings, including parallel and con-
vergent cameras (Figure: 4.3). The reason convergent cameras will not provide the proper
geometry properties have already been mentioned in previous chapters. Nevertheless, this
setting was developed with the aim to obtain graphic proofs of the distortion produced
and study its consequences in the epipolar domain.

(a) (b)

Figure 4.3: a) Placement of cameras in parallel mode. b) Placement of cameras in convergent
mode.

The attributes that define the scene are linked to the following parameters:

• Mode: It switches between parallel and convergent mode.

• Width Field: Total length of the camera track (Blender units * 1000).

• Field Density: Total number of cameras.

65

• Distance to scene (Available only in convergent mode): Distance to center
point of scene where cameras will be focusing on.

According to the parallel mode, the cameras move along the camera track, capturing
views parallel to the scene. The camera in the center of the track has the field of view
needed for including the whole scene. However, as the camera moves from one side to
another, the view captured shows useless information. Figure 4.4 shows how empty data
is recorded instead of pixels belonging to the scene.

Figure 4.4: The camera number 2, on the extreme of the track, captures useless information
(in red).

A simple way to resolve this problem is to enlarge the field of view of the camera,
acquiring the entire projection plane from any point of view. This solution uses more
rendering information, although the additional rendered regions usually contain none or
only a few objects, which does not imply rendering time. Once all views are rendered, it
is time to post-process them and convert them into proper views resolution-wise. A script
written in Matlab (from now on, all scripts used for image processing will be based on it)
crops the image keeping only the region which corresponds with the projection plane. The
processed images will have the same resolution after this cropping. Figure 4.5 shows how
the following script (crop renders.m) will transform the raw renders into suitable images
for further procedures.

function crop_renders(object,density,h_res)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% h_res: Horizontal resolution of views
% It crops renders to normal resolution
...
for i=1:density

img = imread(strcat(name_in,int2str(density-i+1)),’png’);
cropped = img(:,(i-1)*2+1:(i-1)*2+h_res,:);

imwrite(cropped,strcat(name_out,int2str(density-i+1),’.png’));
end

The scene treated in this work contains 512 views, and the rendering script produces

66

Figure 4.5: The camera is characterised by a wider field of view. The unnecessary region of
the image is dismissed in the image on the right.

images of 1622x600 pixels. Those images are cropped to a final resolution of 600x600
pixels. The following figure (4.6) contains some samples of the output.

Figure 4.6: From left to right, samples of views number 1, 64, 128, 192, 256, 320, 384, 448
and 512.

4.2 Creation and pre-filtering of EPIs

All views obtained in the previous section represent the spatial representation. In order
to acquire a light field representation of the scene, the views have to be transformed into
epipolar images.

The next steps to follow involve the creation of the mentioned above epipolar images
and pre-filtering of those images to remove aliasing. The first script is in charge of creating
full density EPIs, which have the same number of rows as the number of views rendered
from the scene (512 in this case). A total of different 600 EPIs will be created, as views
have 600 pixels of vertical resolution. This is carried out by the next script, which takes
the same row of every view to create a single EPI. For example, to create the first EPI,
it assigns the first row of the first view to its first row, the first row of the second view to
its second row, and so on. It completes this process for 512 rows in the 600 EPIs.

function epi(object,density,v_res)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% v_res: Vertical resolution of views -> Number of EPIs
% It creates epipolar images with full density

As a result of this script in this particular scene, the 30-40 first and last EPIs are

67

completely black, by reason of no objects appearing in the top and bottom rows of the
views. Figure 4.7 shows some output samples of this function.

Figure 4.7: From left to right, samples of EPIs number 1, 100, 200, 300, 400, 500 and 600.

As it was explained, the anti-aliasing filter is required before decimation. In the
function presented below (a simplified version of the actual one) applies an anti-aliasing
filter. It works with 5 different interpolation factors [2, 4, 8, 16, 32] power of 2, which
facilitates the processing for Fourier transforms. The down-sampling produces an output
shown in the figure 4.8.

function prefiltering(object,density,v_res)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% v_res: Vertical resolution of views -> Number of EPIs
% It filters EPIs with anti-aliasing filter
% and down-samples vertically in 5 factors [2, 4, 8, 16, 32]

%Preparation of extended signal
epi = im2double(...);
epi_ext(1+factor:end-factor,:,:) = epi;
epi_ext(1:factor,:,:) = epi(1,:,:);
epi_ext(end-factor+1:end,:,:) = epi(end,:,:);

%Fourier transform, filtering and normalization
epi_f = fft(epi_ext);
normal = density/((density/factor) + 2);
fraction = density/(2*factor);
epi_fdec = [epi_f(1:fraction+2,:,:); epi_f(end-fraction+1:end,:,:)] / normal;

%Inverse Fourier transform and cropping extended samples.
epi_factor = ifft(epi_fdec);
epi_final = epi_factor(2:end-1,:,:);

4.3 Optimizing number of views

At this moment in the design, the following developments will work on the views converted
into filtered EPIs to bring them back to their original resolution. The up-sampling that
optimizes the number of views necessary to build the multi-view system.

68

Figure 4.8: The original EPI and the 5 anti-aliased EPIs with 5 different interpolation
factors.

The scripts responsible for this step are presented below:

function run_epi_interp(object)
% Object: Name of the scene
% It runs epi_interp() with 5 factors [2, 4, 8, 16, 32] and
% 5 interpolation kernels [triangle, cubic, lanczos2, lanczos3, fastdct]

function epi_interp(object,density,factor,v_res,interpolation)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% Factor: Interpolation magnitude
% v_res: Vertical resolution of views -> Number of EPIs
% interpolation: Interpolation kernel used
% It up-samples vertically EPIs

The function epi interp uses either imresize() Matlab function for bilinear, bicubic,
lanczos2 and lanczos3 kernels interpolation, or the next function fdctEPI, which imple-
ments the fast DCT-based scaling algorithm [10].

This algorithm was implemented to scaling 1D signals, and later it was adapted to
two dimensions. All the scripts coded that improved that code time-wise in every ver-
sion are shown in the appendices. The next sample of code (simplified version) aims to
demonstrate and present the basics of the fast DCT interpolation.

function img_out = fdctEPI(img_in,factor)
% img_in: input image
% factor: interpolation magnitud
% It up-samples vertically img_in using fastDCT interpolation

No = rows_in;
n = repmat(0:rows_in-1,rows_out,1);
k = repmat((0:rows_out-1)’,1,rows_in);

DCT = sincd(2*No-2, 2*rows_in, (k+1/2)/factor -n -1/2) .* ...

69

cos(pi/(2*rows_in) * ((k+1/2)/factor -n -1/2)) + ...
sincd((2*No-2), 2*rows_in, (k+1/2)/factor +n +1/2) .* ...
cos(pi/(2*rows_in) * ((k+1/2)/factor +n +1/2));

% Multiplication by DCT-Matrix to all image component layers
for i=1:components
img_out(:,:,i) = DCT*img_in(:,:,i);
end

% Truncating negative and greater than 1 values
img_out(img_out<0) = 0;
img_out(img_out>1) = 1;

function result = sincd(M,N,x)
% sincd(M,N,x) = sin(piMx/N)/(Nsin(pix/N))
% Digital sinc function used in fastDCT

One of the critic code sections in fdctEPI() is the population of n and k, as they
represent the matrices which substitute the initial loops, operated by rows and columns.
Executing this operation with two nested loops makes its computation inefficient. In
a preliminary version one of the loops was substituted by a vectorized operation, but,
populating two matrices and carrying linear operation is more coherent.

Matrix k and n respond to the following pattern:

k =




0 0 · · · 0
1 1 · · · 1
...
n n · · · n



n =




0 1 · · · n
0 1 · · · n
...
0 1 · · · n




Three methods of populating matrices might be considered.

% Kronecker tensor product
ns = kron([1:size_in]-1,ones(1,size_out)’);
ks = kron(ones(1,size_in),[1:size_out]’-1);

% Replicating matrices
ns = repmat([0:size_in-1],size_out,1);
ks = repmat([0:size_out-1]’,1,size_in);

% Manual with ones
temp= [0:size_in-1];
ns= temp(ones(1,size_out),:);
temp= [0:size_out-1]’;
ks= temp(:,ones(1,size_in));

70

The results for resolution 300, 600 and 900 pixels and factors 2-10 are displayed in
Figure 4.9.

Figure 4.9: Kron method is notably worse than the other two. There is no difference
between repmat and manual, at the same time, manual requires less memory and number
of instructions.

The reconstruction of the views from the interpolated EPIs using the kernels explained
above is straightforward. A view is formed by stacking rows coming from the same row
of every EPI. The following functions are responsible for the final phase.

function run_reconstruct_views(object)
% object: Name of the scene
% It runs reconstruct_views() with 5 factors [2, 4, 8, 16, 32] and
% 5 interpolation kernels [triangle, cubic, lanczos2, lanczos3, fastdct]

function reconstruct_views(object,density,factor,v_res,interpolation)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% Factor: Factor of interpolation applied vertically
% v_res: Vertical resolution of views -> Number of EPIs
% interpolation: Method/kernel used for re-sampling
% It reconstructs all the views from the re-sampled EPIs

The whole process seen from a graphical perspective is pictured in Figure 4.10.

71

Figure 4.10: The figure shows all the steps taken in this work, and how images are trans-
formed and manipulated in every step.

72

5. Results

In this chapter all graphic and numeric results will be presented and interpreted. The main
tests executed in this work involved the fast DCT algorithm [10] and other interpolation
kernels, as well as the final comparison tests between original and interpolated views.

5.1 Fast DCT algorithm

Fast DCT scaling algorithm has been used to up-sample vertically epipolar planar images.
Before the image tests, a set of peculiar one-dimensional signals was tested towards a
better understanding of its effects in the particular cases. The next figure (5.1) shows the
effects of scaling in some peculiar signals and simple images based on those signals.

Figure 5.1: Scaling produced over the sharp signal causes sinusoidal effect.

73

Consequence of this effect, the borders of epipolar images, which contain basically
lines and stripes, present blurring. Another example, tested to confront the outcome of
the paper [10] against this work, presents iteratively scaling of a text image. The results
throw the impression that regardless how many iterations are executed, the text remains
readable unlike with other interpolation kernels. Figure 5.2 show the difference between
interpolation kernels clearly.

(a) (b) (c) (d)

Figure 5.2: a) Original text image. 75 iterative zoom-in&zoom-out scaling, factor sqrt(2) b)
by bilinear algorithm, c) by bicubic algorithm, d) by Fast DCT algorithm.

As it was mentioned above, the border artefacts present will have to be tackled down
in posterior steps. The artefacts appearing beyond the borders will take its utility away.
Figure 5.3 depicts why the displayed results are not useful for epipolar image interpolation.

(a) (b)

Figure 5.3: Text image scaled 1000 times with factor sqrt(2). a) Region of output text image
displayed alike [10]. b) Complete text image, contains the artifacts on the borders.

Another aspect considered in this text is the computing time spent by all these meth-
ods. The results presented in Figure 5.4 prove that the implementation of Fast DCT
coded in Matlab is slower than built-in functions Matlab, since fast DCT is comprised of
two external functions. The hardware used in the execution of these tests does not influ-
ence the results, as we are not comparing time-wise data with any other results obtained
in other hardware. Furthermore, every test was executed 10 times in the same conditions.
Figure 5.4 show the average of all the executions.

74

Figure 5.4: The implementation of the fast DCT algorithm is considerably slower than
built-in algorithms.

5.2 Experimental results

The most important result to be discussed involves original and interpolated EPIs. This
comparison was accomplished through PSNR (Peak Signal-to-Noise Ratio) measurement,
as explained in the analysis chapter.

The first experimental result with PSNR checks every reconstructed view for every
interpolation method. The following script was written to obtain the results:

function test_psnr(object,density,factor)
% Object: Name of the scene
% Density: Number of views
% Factor: Interpolation magnitud
% It calculates the PSNR for every factor and view

The visible peaks that appear in Figure 5.5 represent the true views, non-interpolated
remaining in the filtered EPI. A view closer to a true view will get, therefore, a better
PSNR result. According to this, the extreme views might show the worst values, since
they do not have neighbour views to interpolate with. Figure 5.5 belongs to the test with
factor 8. The tests with the rest of interpolation factors are available in the appendices.

75

Figure 5.5: Peaks represent original and therefore non-interpolated views. Views on the
extreme tend to generate worse result because of their isolation.

Also, another script was written to compare all the interpolation factors in the same
figure. The complete script is available in the appendix:

function PSNR = test_psnr_average(object,density)
% Object: Name of the scene
% Density: Number of views
% Factor: Interpolation magnitud
% It calculates the PSNR for every factor and its average between all the
% views

The same graph is used to contrast the PSNR values obtained in the tests with pre-
filtered EPIs confronted to the same test with only decimated EPIs. In the case of
views based on aliased epipolar images, the maximum factor applied was 12, since it was
expected that greater factors would provide PSNR values utterly unacceptable.

Pre-filtered EPIs-based views are presented as points, and non-pre-filtered as lines.
The first aspect to notice is that the difference between interpolation kernels is not suffi-
ciente in such magnitude, hence, the interpolation factor will be the decisive parameter.

Unlike it could have seemed in the analysis of Fourier domain of EPIs, dismissing
certain information related to high-frequency, it is proved now that an anti-alising filter
is sufficient useful. In the next chapter, this graph 5.6 will be discussed further. The
minimum number of cameras needed to reconstruct an acceptable multi-view system will
be determined accordingly to this last figure.

76

Figure 5.6: Views based on pre-filtered EPIs obtain much better results for the same inter-
polation factor than views based on simple decimated EPIs.

77

6. Conclusions

In this work, the goal of designing the tools are covered as well as the techniques that make
possible a multi-view system based on a virtual possible scene. Besides, the characteristics
of the scene have been analysed in the spatial and frequency domain. Comprehending
these properties allow us to develop new methods and interpret the result produced during
the tests. Finally, a set of tests has presented the efficiency of every method and its
limitations.

6.1 Conclusions about the results

A new filter based on [10] has been developed. It has been proved that the filter works
better in overall for interpolating text images iteratively. However, in certain cases with
sharp borders, like epipolar planar images, the artifacts produced around the borders
affect the overall performance at the moment of view reconstruction.

The fast DCT algorithm has been implemented in Matlab and therefore it is slower
than the built-in functions.

The optimization of the cameras has been done through vertical interpolation of im-
ages. These Epipolar Planar Images represent how the light field of every pixel changes
along different points of view. In order to obtain better results after the up-sampling, an
anti-aliasing filter has been applied. The results displayed in the previous chapter prove
that filtering EPIs benefit the overall outcome.

The tests executed to determine the quality of the reconstructed views are based on
Peak Signal-to-Noise Ratio measurement. The images compared were represented in RGB.
Another option is to convert these images first into YCbCr color space, and compare only
the Y layer (luminance). The reason resides in the higher capability of the human visual
system to perceive disturbances and noise in brightness than its sensitiveness to colour.

Finally with PSNR experimental tests, it is possible to make an estimation of the
optimum number of cameras. Figure 6.1 helps to understand this estimation. There is
no exact value of proper number of cameras to choose, yet an interval where the results
will be acceptable with reference to the intention of application. PSNR does not dictate

78

a final decision. Some visual results, perceived for the human visual system better, might
lead to worse PSNR values. Interpolations are also highly-dependent of the scene chosen.
In this work, the virtual chameleon object contains many different shapes and surfaces,
and it is middle depth placed.

Nevertheless, the possibility to try the multi-view system developed along with the
virtual scene interpolated and optimized in a hologram plate is not possible. Therefore,
the visual looking is not considered, and the judgement taken into account is the PSNR
measurement. An acceptable value for lossy images lays between 30dB and 50dB. A band
is overlapped in the figure 6.1. A great difference in performance between interpolation
methods is not found. As a direct consequence, choice of the fastest and simplest method
indicates the recommended option. Triangle interpolation kernel, also known as bilinear,
is the fastest and rather provides the best PSNR values not distant from the rest.

Figure 6.1: The blue band comprises very good PSNR values for lossy images. The red
band comprises lossy images for wireless transmission beneath our objective sort of quality
required.

Consequently, the factors of interpolation which provide good quality multi-view sys-
tems belong to the interval [2-16], in other words, using from one half to one sixteenth of
the initial number of views. 512 views were used in this work. 32 views processed with
anti-aliasing and re-sampling algorithms allow to reconstruct the initial 512 views with
29dB of square error loss in the PSNR test. Using an interpolation factor of 32 would
generate a relative good PSNR result (around 24); however, it needs to be coherent with
some criteria and boundaries set.

79

6.2 Future Work

This thesis studies an initial attempt to establish a methodology for a multi-view render-
ing. It uses virtual cameras due to their freely manipulation of parameters. It also takes
advantages of the 3D environment to render objects and scenes that can be adapted in a
better way to the requirements comparing to real-life objects.

The next step involves the use of physical cameras to acquire views, new interpolation
techniques including mixed techniques. Diverse advanced approaches respect to the cam-
era setting, more complex re-centered cameras that lead to a full-parallax setting. Also
intrinsic parameters of lenses in real cameras will play an important role in depth-related
topics.

Bringing the study to possible application means to be the next step to take. For
instance, computer gaming graphics with real-time interaction require more and more of
simplified polygon models, they take advantage of advanced texture mappings instead.
The simpler models can be better manipulated in the epipolar domain, and the quality
of the final product will be more dependent on the texture level.

The work of this project symbolises a number of independent steps in order to achieve
a final result. However, a future research may be developing all the steps in a single unit
of production. The specifications of such production software would vary considerably,
regarding the different platforms, tools and developing software used during the process.
If a production tool has to be developed, some aspect should be taken into account. For
example, all the algorithms shall be written in compiled languages, where optimization
could occur. Mex or C might be a starting point as an alternative for Matlab. Some
parts of the code which require a huge input/output transfer can be parallelized. The
most important aspect in the optimization of code resides in the Amdahl’s Law: the
optimization of a block of code will optimize the overall application in the same proportion
as that code represent the overall process. Sometimes a lot of effort is put into some
optimization that, as it happened in the study of matrix population, it does not reflect a
worth benefit in comparison to the time spent.

6.3 Personal Assessment

This thesis has meant an utter special project in the period that has happened, for many
reasons. Firstly, I faced this project in an international environment, as part of my Eras-
mus stay in Finland at Tampere university of Technology. Secondly, being a researcher
in the department of Signal Processing made me discover a side in the university that I
have not been involved before. It also gave me the possibility to attend the 3D Media
Training School in the summer of 2012 in Tampere.Finally, although my background is
entirely based on Computer Science, the challenge to adapt my knowledge and compre-
hend algorithms and properties related to signal processing (most of them not studied

80

in my degree before) has enforced me to raise the problems from a different perspective
of abstraction. Despite, making use of my software and computer expertise has been of
help when developing certain algorithms. My vision of how images are processed and the
technology used behind has changed after this thesis has been completed.

81

82

Bibliography

[1] E. N. Leith. White light holograms. Scientific American, (1976).

[2] Michal W. Halle. The Generalized Holographic Stereogram. Massachusetts Institute of
Technology, (1991).

[3] Michal W. Halle, Adam B. Kropp. Fast computer graphics rendering for full parallax
spatial displays. Brigham and Women’s Hospital, Massachusetts Institute of Technol-
ogy, (1997).

[4] Ravikanth Pappu et al. A Generalized Pipeline for Preview and Rendering of Syn-
thetic Holograms. Massachusetts Institute of Technology, Interval Research Corpora-
tion, (1997).

[5] Michal W. Halle. Multiple Viewpoint Rendering. Brigham and Women’s Hospital,
(1998).

[6] Jin-Xiang Chai et al. Plenoptic Sampling. Microsoft Research China, (2000).

[7] Wendy Plesniak et al. Reconfigurable Image Projection Holograms. Brigham and
Women’s Hospital, MIT Media Laboratory, ThingMagic, Inc., (2006).

[8] Smithwick, Quinn Y. J. et al. Real-time Shader Rendering of Holographic Stereograms.
Society of Photo-Optical Instrumentation Engineers, (2009).

[9] Melania Paturzo et al. Holographic Display of synthetic 3D dynamic scene. 3D Re-
search Center and Springer, (2010).

[10] Leonid Yaroslavsky, Leonid Bilevich. Fast DCT-based Algorithm for Signal and Ac-
curate Scaling . Tel Aviv University, (2012).

83

84

7.2 Metodoloǵıa de trabajo

La metodoloǵıa utilizada en este proyecto se caracteriza por circunstancias particulares.
Previa a la presentación del proyecto como una MSc Thesis, se solicitó el diseño de una
versión preliminar de la aplicación Blender, la cual renderiza la escena desde diferentes
puntos de vista, como una prueba de conocimientos de programación para continuar con
el resto del desarrollo. Más adelante, después del análisis de trabajos anteriores, cada fase
fue analizada, diseñada, implementada y finalmente testada. Si los tests muestran que
los requisitos se han cumplido, la fase de desarrollo se considera finalizada. La escritura
de la memoria comenzó simultáneamente con las fases de diseño y testado.

7.3 Diagrama de Gantt

Figura 7.1: Diagrama de Gantt.

El diagrama muestra un periodo en verano donde el proyecto estuvo paralizado. La
razón es un trabajo de verano en Tampere, Finlandia, que me permitió extender mi
estancia en este páıs desde Septiembre en adelante, cuando las ayudas económicas de la
beca Erasmus hab́ıan finalizado.

7.4 Herramientas utilizadas

A lo largo del análisis, diseño y escritura de la tesis se utilizaron varias herramientas.
Blender es una plataforma de código abierto para gráficos por ordenador 3D, utilizada
para configurar el escenario con la escena virtual y cámaras, aśı como herramienta de
rendering. Los scripts escritos en Blender están basados en Python. La herramienta
principal usada a lo largo del proyecto ha sido Matlab, para el procesado de imágenes y

85

el desarrollo y testado de algoritmos. En la escritura de la presente memoria, el kernel
LaTeX y el editor TeX Maker han sido los elegidos, junto con GIMP para manipular las
imágenes presentadas en este trabajo.

7.5 Código - Sistema de rendering multi-vista

Fichero holographic camera 1 2 0.py

Author: David Valle
Departament of Signal Processing (SGN)
David Valle (230113) david.valle@tut.fi
#

bl_info = {
’name’: "Holographic Camera",
’author’: "David Valle <david.valle@tut.fi>",
’version’: (1, 0, 0),
’blender’: (2, 6, 0),
’api’: 41098,
’location’: "Select a Camera > Properties Panel > Camera Panel >

Holographic Camera",
’description’: "Render images for a future holographic model",
’warning’: "",
’wiki_url’: "",
’tracker_url’: "",
’category’: "Object"}

import bpy
import mathutils
from math import *
from bpy.props import *

GUI (Panel)
class OBJECT_PT_holographic_camera(bpy.types.Panel):

bl_label = "Holographic Camera"
bl_space_type = "PROPERTIES"
bl_region_type = "WINDOW"
bl_context = "data"

show this add-on only in the Camera-Data-Panel
@classmethod

86

def poll(self, context):
return context.active_object.type == ’CAMERA’

bpy.types.Object.holographic_width_field = bpy.props.FloatProperty(
attr="holographic_width_field",
name=’holographic_width_field’,
description=’Camera Width Field’,
min=0.0, soft_min=0.0, max=1000000, soft_max=1000000, default=100)

bpy.types.Object.holographic_field_density = bpy.props.IntProperty(
attr="holographic_field_density",
name=’holographic_field_density’,
description=’Camera Field Density’,
min=0, soft_min=0, max=1000000, soft_max=1000000, default=5)

bpy.types.Object.holographic_distance_to_scene = bpy.props.FloatProperty(
attr="holographic_distance_to_scene",
name=’holographic_distance_to_scene’,
description=’Distance to Scene’,
min=0.000, soft_min=0.000, max=1000000, soft_max=1000000, default=300)

bpy.types.Object.show_mesh_distance = bpy.props.BoolProperty(
attr="show_mesh_distance",
name="show_mesh_distance",
default=False)

bpy.types.Object.holocamera_type = bpy.props.EnumProperty(
attr="holocamera_type",
items=(("PARALLEL", "Parallel", "Parallel camera distribution"),

("CONVERGE", "Converge", "Camera distribution with convergency")),
name="holocamera_type",
description="",
default="PARALLEL")

Draw
def draw(self, context):

layout = self.layout

holocamera = context.scene.camera
row = layout.row()
row.prop(holocamera, "holocamera_type", text="Holographic Camera Type",

expand=True)
row = layout.row()
row.prop(holocamera, "holographic_width_field", text="Width Field")

87

row = layout.row()
row.prop(holocamera, "holographic_field_density", text="Field Density")

if holocamera.holocamera_type == "CONVERGE":
row = layout.row()
row.prop(holocamera, "holographic_distance_to_scene",

text="Distance to Scene")

if holocamera.holocamera_type == "PARALLEL":
pass

row = layout.row()
row.separator()

row = layout.row()
row.operator(’holocamera.render_holographic_cameras’)
row = layout.row()
row.operator(’holocamera.clean_holographic_cameras’)

Operator ’Render Holographic Cameras’
class OBJECT_OT_render_holographic_cameras(bpy.types.Operator):

bl_label = ’Render Holocameras’
bl_idname = ’holocamera.render_holographic_cameras’
bl_description = ’Render the Holographic Cameras’
bl_options = {’REGISTER’, ’UNDO’}

#Call the operator ’Render Holographic Cameras’
def execute(self, context):

cam = bpy.data.objects["Camera"]
density = cam.holographic_field_density
width = (cam.holographic_width_field/1000)/(density-1)

if cam.holocamera_type == "CONVERGE" :
#Distance to focus, 1/100 blender units
distance= cam.holographic_distance_to_scene

#Save original location of camera to restore it at the end
orig_loc = cam.location.copy()

#Save original rotation of camera to restore it at the end
orig_rot = cam.rotation_euler.copy()

local_pos = cam.location.copy()

88

local_rot = cam.rotation_euler.copy()
print(’local_rot(x,y,z)= ’+str(local_rot))

#Hint: Way to bring local coord. to world coord. (world = local*matrix)
matrix = bpy.data.objects[’Camera’].matrix_world.copy()

sceneKey = bpy.data.scenes.keys()[0]
scene = bpy.data.scenes[sceneKey]
scene.camera = cam

for object in scene.objects:
if object.name[:7] == "Camera.":

scene.objects.unlink(object)

i = floor(density / 2)
if 0 == 0 :
#for i in range(density):

for j in range(density):

#Currently location of camera
print()
print(’(’+str(i)+’,’+str(j)+’)’)
local_pos.x = (j - (density-1)/2)*width
local_pos.y = ((density-1)/2 - i)*width
cam.location = matrix*local_pos.copy()
print(’local_pos(x,y,z)= ’+str(local_pos))
print(’world_pos(x,y,z)= ’+str(cam.location))

#Rotate cameras in converge method
if cam.holocamera_type == "CONVERGE" :

#Currently rotation of camera
cam.rotation_euler.x -=

atan(((density - 1) / 2 - i)*width / distance)
cam.rotation_euler.y -=

atan(((density - 1) / 2 - j)*width / distance)
cam.rotation_euler.z = 0.0

#Set output file path
#scene.render.filepath =

’//chameleon/converge_600/’+str(i)+’_’+str(j)
scene.render.filepath = ’//chameleon/converge_600/’+str(j)

else:

89

#Parallel
#scene.render.filepath =

’//chameleon/parallel_300/’+str(i)+’_’+str(j)
scene.render.filepath =

’//chameleon/parallel_r_512/’+str(j+1)

#Create multiple cameras
#bpy.ops.object.camera_add(location=(cam.location.x,
cam.location.y, cam.location.z),rotation=(cam.rotation_euler.x,
cam.rotation_euler.y, cam.rotation_euler.z))

#Render camera
bpy.ops.render.render(write_still=True)

#Restoring initial position and rotation of camera
cam.location = orig_loc.copy()
cam.rotation_euler = orig_rot.copy()

cam = bpy.data.objects["Camera"]
bpy.context.scene.objects.active = cam

return {’FINISHED’}

Operator ’Render Holographic Cameras’
class OBJECT_OT_render_holographic_cameras(bpy.types.Operator):

bl_label = ’Clean Holocameras’
bl_idname = ’holocamera.clean_holographic_cameras’
bl_description = ’Clean the Holographic Cameras’
bl_options = {’REGISTER’, ’UNDO’}

#Call the operator ’Render Holographic Cameras’
def execute(self, context):

sceneKey = bpy.data.scenes.keys()[0]
scene = bpy.data.scenes[sceneKey]

for object in scene.objects:
if object.name[:7] == "Camera.":

scene.objects.unlink(object)

cam = bpy.data.objects["Camera"]
bpy.context.scene.objects.active= cam

90

return {’FINISHED’}

Register
def register():

bpy.utils.register_module(__name__)

def unregister():
bpy.utils.unregister_module(__name__)

if __name__ == "__main__":
register()

91

7.6 Código - Recortado de renders

Fichero crop renders.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi

function crop_renders(object,density,h_res)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% h_res: Horizontal resolution of views
% It crops renders to normal resolution

name_in = strcat(object,’/parallel_r_’,int2str(density),’/’);
name_out = strcat(object,’/parallel_rc_’,int2str(density),’/’);

for i=1:density
i

img = imread(strcat(name_in,int2str(density-i+1)),’png’);
cropped = img(:,(i-1)*2+1:(i-1)*2+h_res,:);
imwrite(cropped,strcat(name_out,int2str(density-i+1),’.png’));

end
end

92

7.7 Código - Creación de EPIs con densidad com-
pleta

Fichero epi.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Creation of EPI’s (full density)

function epi(object,density,v_res)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% v_res: Vertical resolution of views -> Number of EPIs
% It creates epipolar images with full density

% Concatenation of input/output path
name_in = strcat(object,’/parallel_rc_’,int2str(density),’/’);
name_out = strcat(object,’/epis_’,int2str(density),’/’);

% Construction of EPI, one per row, same amount as vertical
% resolution of views
for i=1:v_res

i
for j=1:density

img = imread(strcat(name_in,int2str(j)),’png’);
img_epi(j,:,:) = img(i,:,:);

end
imwrite(img_epi,strcat(name_out,int2str(i),’.png’));

end
end

93

7.8 Código - Pre-filtrado de EPIs

Fichero prefiltering.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Anti-alising pre-filter to EPIs.
% Output: EPIs prefiltered with different densities.

function prefiltering(object,density,v_res)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% v_res: Vertical resolution of views -> Number of EPIs
% It filters EPIs with anti-aliasing filter
% and down-samples vertically in 5 factors [2, 4, 8, 16, 32]

% Concatenation of input/output path
name = strcat(object,’/epis_’,int2str(density),’/’);

for i=1:v_res
epi = im2double(imread(strcat(name,int2str(i)),’png’));
for j=1:5

factor= pow2(j);

%Preparation of extended signal
epi_ext = zeros(factor+density+factor,v_res,3);
epi_ext(1+factor:end-factor,:,:) = epi;
for z=1:factor

epi_ext(z,:,:) = epi(1,:,:);
epi_ext(end-z+1,:,:) = epi(end,:,:);

end

%Fourier transform, filtering and normalization
epi_f = fft(epi_ext);
normalization= density/((density/factor) + 2);
fraction=density/(2*factor);
epi_fdec = [epi_f(1:fraction+2,:,:);

epi_f(end-fraction+1:end,:,:)] / normalization;
epi_fdec(fraction+2,:,:) = real(epi_fdec(fraction+2,:,:))*2;

%Inverse Fourier transform and cropping extended samples.
epi_factor = ifft(epi_fdec);

94

epi_final = epi_factor(2:end-1,:,:);

imwrite(epi_final,
strcat(name,int2str(i),’_’,int2str(factor),’.png’));

end
end

end

95

7.9 Código - Interpolación de EPIs

Fichero epi interp.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Interpolation of EPI’s

function epi_interp(object,density,factor,v_res,interpolation)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% Factor: Interpolation magnitud
% v_res: Vertical resolution of views -> Number of EPIs
% interpolation: Interpolation kernel used
% It up-samples vertically EPIs

% Concatenation of input/output path
name_in = strcat(object,’/epis_’,int2str(density),’/’);
name_out = strcat(object,’/epis_’,int2str(density),’_’,interpolation,’/’);

for i=1:v_res
epi = imread(strcat(name_in,int2str(i),’_’,int2str(factor)),’png’);

if strcmp(interpolation,’fastdct’) % Use of fast dct interpolation
interp = fdctEPI(epi,factor);

else
interp = imresize(epi, [density size(epi,2)], interpolation);

end
imwrite(interp,strcat(name_out,int2str(i),’_’,int2str(factor),’.png’));

end
end

Fichero fdctEPI.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Implementation of a fast DCT-based vertical interpolation
% - Adapted and simplified for interpolating EPI’s

function img_out = fdctEPI(img_in,factor)
% img_in: input image

96

% factor: interpolation magnitud
% It up-samples vertically img_in using fastDCT interpolation

% Images can be any size and factor >1
% Factors that will cause NaN:
% 1, 1.4, 4.8, 2.2, 2.6, 3, 3.4, 3.8, 4.2, 4.6, 5, 5.4, 5.8, 6.2 and
% rest of odd numbers
img_in= im2double(img_in);
cols = size(img_in,2);
rows_in = size(img_in,1);
rows_out = floor(rows_in*factor);

% img_out depends on source rows and cols
% DCT matrix depends only on source and output rows

%Pre-allocating matrices
components= size(img_in,3); %In case RGB image
img_out = zeros(rows_out,cols,components);

DCT = zeros(rows_out,rows_in);

No = rows_in;
n = repmat(0:rows_in-1,rows_out,1);
k = repmat((0:rows_out-1)’,1,rows_in);

DCT = sincd(2*No-2, 2*rows_in, (k+1/2)/factor -n -1/2) .* ...
cos(pi/(2*rows_in) * ((k+1/2)/factor -n -1/2)) + ...
sincd((2*No-2), 2*rows_in, (k+1/2)/factor +n +1/2) .* ...
cos(pi/(2*rows_in) * ((k+1/2)/factor +n +1/2));

% Multiplication by DCT-Matrix to all image component layers
for i=1:components

img_out(:,:,i) = DCT*img_in(:,:,i);
end

% Truncating negative and greater than 1 values
img_out(img_out<0) = 0;
img_out(img_out>1) = 1;

end

Fichero sincd.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)

97

% David Valle (230113) david.valle@tut.fi
% Discrete sinc function

function result = sincd(M,N,x)
% sincd(M,N,x) = sin(piMx/N)/(Nsin(pix/N))
% Digital sinc function used in fastDCT

% Element-by-element multiplication/divisions as parameters
% contain matrices
result= sin(pi*M.*x./N)./(N.*sin(pi*x./N));

end

98

7.10 Código - Reconstrucción de vistas

Fichero reconstruct views.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Recontruction of views from different EPI

function reconstruct_views(object,density,factor,v_res,interpolation)
% Object: Name of the scene
% Density: Number of views -> Vertical resolution of EPIs
% Factor: Factor of interpolation applied vertically
% v_res: Vertical resolution of views -> Number of EPIs
% interpolation: Method/kernel used for re-sampling
% It reconstructs all the views from the re-sampled EPIs

% Concatenation of input/output path
name_in = strcat(object,’/epis_’,int2str(density),’_’,interpolation,’/’);
name_out =

strcat(object,’/parallel_’,int2str(density),’_’,interpolation,’/’);

for i=1:density
for j=1:v_res

epi = imread(strcat(name_in,int2str(j),’_’,int2str(factor)),’png’);
view(j,:,:) = epi(i,:,:);

end
imwrite(view,strcat(name_out,int2str(i),’_’,int2str(factor),’.png’));

end
end

99

7.11 Código - Algoritmos Fast DCT

Fichero fast dct1D.m con sus 3 versiones mejoradas.

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Implementation of a fast DCT-based interpolation

% a = SUM(n=0,N-1)an(A + B)
% A = sincd(2No-2, 2N, (k+1/2)/d -n -1/2) * cos(pi/2N((k+1/2)/d -n -1/2))
% B = sincd(2No-2, 2N, (k+1/2)/d +n +1/2) * cos(pi/2N((k+1/2)/d +n +1/2))
% No = min(N,|dN|)
% sincd(M,N,x) = sin(piMx/N)/(Nsin(pix/N))

% Explanation of variables
% a = Output Signal
% an = Input Signal
% N = signal length
% k = current output signal index
% d = scaling factor

function output = fast_dct1D(sample,factor)

if(round(log2(size(sample,2))) ˜= log2(size(sample,2)))
error(’Lenght of input signal should be power of 2’);

end
if(round(log2(factor)) ˜= log2(factor))

error(’Factor should produce an output signal power of 2’);
end

%1D Sample
size_in= size(sample,2);
size_out= size_in*factor;
output= zeros(1,size_out);

if factor >= 1
No= min(size_in,ceil(factor*size_in));

else
No= min(size_in,floor(factor*size_in));

end

%Version 1

100

for k= 0:size_out-1
for n= 0:size_in-1

part1= sincd(2*No-2, 2*size_in, (k+1/2)/factor -n -1/2);
part3= sincd(2*No-2, 2*size_in, (k+1/2)/factor +n +1/2);
part2= cos((pi/(2*size_in)) * ((k+1/2)/factor -n -1/2));
part4= cos((pi/(2*size_in)) * ((k+1/2)/factor +n +1/2));
output(k+1)= output(k+1) + sample(n+1)*(part1*part2+part3*part4);

end
end

%Version 2
DCT= zeros(size_out,size_in);
%Calc of DCT matrix
for k= 0:size_out-1

DCT(k+1,1:size_in)= ...
sincd(2*No-2, 2*size_in, (k+1/2)/factor -(0:size_in-1) -1/2) .* ...
cos(pi/(2*size_in) * ((k+1/2)/factor -(0:size_in-1) -1/2)) + ...
sincd(2*No-2, 2*size_in, (k+1/2)/factor +(0:size_in-1) +1/2) .* ...
cos(pi/(2*size_in) * ((k+1/2)/factor +(0:size_in-1) +1/2));

end
output= (DCT*sample’)’;

%Final version
%Constructing DCT matrix
n = repmat(0:size_in-1,size_out,1);
k = repmat((0:size_out-1)’,1,size_in);

DCT=sincd(2*No-2, 2*size_in, (k+1/2)/factor -n -1/2) .* ...
cos(pi/(2*size_in) * ((k+1/2)/factor -n -1/2)) + ...
sincd((2*No-2), 2*size_in, (k+1/2)/factor +n +1/2) .* ...
cos(pi/(2*size_in) * ((k+1/2)/factor +n +1/2));

output= (DCT*sample’)’;
end

Fichero fast dct2D.m con sus 3 versiones mejoradas.

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Implementation of a fast DCT-based interpolation in 2 dimensions

%function output = fast_dct2D(image,factor_x,factor_y)

101

function e = fast_dct2D
t = cputime;

%Important to convert to double, imread returns uint8.
img= im2double(imread(’chrome.png’));
img_in= im2double(imread(’chrome.png’));

rows= size(img,1);
cols= size(img,2);
factor= 1;
cols_out= cols*factor;
img_rows= zeros(rows,cols_out);
rows_out= rows*factor;
img_out= zeros(rows_out,cols_out);

% Version 1
for n=1:1

%Zoom-in
for i=1:rows

img_rows(i,:)= fast_dct1D(img_in(i,:),factor);
end
for i=1:cols_out

img_out(:,i)= fast_dct1D(img_rows(:,i).’,factor).’;
end

%Zoom-out
for i=1:cols_out

img_rows(:,i)= fast_dct1D(img_out(:,i).’,1/factor).’;
end
for i=1:rows

img_in(i,:)= fast_dct1D(img_rows(i,:),1/factor);
end

end

% Version 2
%Pre-allocating matrices
img_out= zeros(size_out,size_out);

DCT= zeros(size_out,size_in);
for k= 0:size_out-1

DCT(k+1,1:size_in)= ...
sincd(2*No-2, 2*size_in, (k+1/2)/factor -(0:size_in-1) -1/2) .* ...
cos(pi/(2*size_in) * ((k+1/2)/factor -(0:size_in-1) -1/2)) + ...
sincd(2*No-2, 2*size_in, (k+1/2)/factor +(0:size_in-1) +1/2) .* ...
cos(pi/(2*size_in) * ((k+1/2)/factor +(0:size_in-1) +1/2));

102

end

% Final version
n = repmat(0:size_in-1,size_out,1);
k = repmat((0:size_out-1)’,1,size_in);
DCT=sincd(2*No-2, 2*size_in, (k+1/2)/factor -n -1/2) .* ...
cos(pi/(2*size_in) * ((k+1/2)/factor -n -1/2)) + ...
sincd((2*No-2), 2*size_in, (k+1/2)/factor +n +1/2) .* ...
cos(pi/(2*size_in) * ((k+1/2)/factor +n +1/2));

img_out= DCT*img_in*DCT’;

% Truncating negative and greater than 1 values
img_out(img_out<0)= 0;
img_out(img_out>1)= 1;

end

103

7.12 Código - Tests Fast DCT

Fichero run fdct1D.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Testing Fast DCT-based interpolation

%Ramp signal
signal= 1:128;
factor= 3;
figure
output= fastdct1D(signal,factor);
subplot(1,2,1), plot(1:size(signal,2),signal,’b’,1:size(output,2),output,’r’);
title(sprintf(’Fast-DCT interpolation factor %i’,factor));
output= fdct1D(signal,1/factor);
subplot(1,2,2), plot(1:size(signal,2),signal,’b’,1:size(output,2),output,’r’);
title(sprintf(’Fast-DCT interpolation factor 1/%i’,factor));
legend(’input’,’output’);
clear all

%Ramp with step signal
signal= 1:128;
for i= 64:96

signal(i)= i-20;
end
factor= 2;
figure
output= fastdct1D(signal,factor);
subplot(1,2,1), plot(1:size(signal,2),signal,’b’,1:size(output,2),output,’r’);
title(sprintf(’Fast-DCT interpolation factor %i’,factor));
output= fdct1D(signal,1/factor);
subplot(1,2,2), plot(1:size(signal,2),signal,’b’,1:size(output,2),output,’r’);
title(sprintf(’Fast-DCT interpolation factor 1/%i’,factor));
legend(’input’,’output’);
clear all

%Sinusoidal signal
signal= sind(1:512);
factor= 2;
figure
output= fastdct1D(signal,factor);

104

subplot(1,2,1), plot(1:size(signal,2),signal,’b’,1:size(output,2),output,’r’);
title(sprintf(’Fast-DCT interpolation factor %i’,factor));
output= fdct1D(signal,1/factor);
subplot(1,2,2), plot(1:size(signal,2),signal,’b’,1:size(output,2),output,’r’);
title(sprintf(’Fast-DCT interpolation factor 1/%i’,factor));
legend(’input’,’output’);
clear all

%Pulse signal
for i=1:64

signal(i)= 20;
end
for i=65:192

signal(i)= 200;
end
for i=193:256

signal(i)= 20;
end
factor= 2;
figure
output= fastdct1D(signal,factor);
subplot(1,2,1), plot(1:size(signal,2),signal,’b’,1:size(output,2),output,’r’);
title(sprintf(’Fast-DCT interpolation factor %i’,factor));
output= fdct1D(signal,1/factor);
subplot(1,2,2), plot(1:size(signal,2),signal,’b’,1:size(output,2),output,’r’);
title(sprintf(’Fast-DCT interpolation factor 1/%i’,factor));
legend(’input’,’output’);
clear all

Fichero run fdct2D.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Testing Fast DCT-based interpolation

clear all;
tic;
img_in=im2double(imread(’text.png’));
out2=img_in;
for i=1:1000

out=fdct2D(out2,2);
out2=fdct2D(out,2);

end

105

toc;
figure; imshow(img_in);
figure; imshow(out);
imwrite(out,’text75_out.png’);
figure; imshow(out2);
imwrite(out2,’text75_out2.png’);

Fichero population test.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Testing fastest way to populate matrix with given parameters
% Parameters are according renders we should take
% Around 600x600pixels and factor [2:10]

clear all
times= [];
tests= [2:10; repmat([300; 600; 900],1,9)];

for j=1:size(tests,2)
for i=2:size(tests,1)

factor= tests(1,j);
size_in= tests(i,j);
size_out=factor*size_in;

clear ns ks
tic;
ns = kron([1:size_in]-1,ones(1,size_out)’);
ks = kron(ones(1,size_in),[1:size_out]’-1);
times(j,i-1) = toc;

clear ns ks
tic;
ns = repmat([0:size_in-1],size_out,1);
ks = repmat([0:size_out-1]’,1,size_in);
times(j,i+2) = toc;

clear ns ks
tic;
temp= [0:size_in-1];
ns= temp(ones(1,size_out),:);
temp= [0:size_out-1]’;
ks= temp(:,ones(1,size_in));

106

times(j,i+5) = toc;
end

end

figure;
bar(times,’grouped’);
title(’Comparison population of matrix’,’FontWeight’,’bold’);
times_leg = legend(’kron300’,’kron600’,’kron900’, ...

’repmat300’,’repmat600’,’repmat900’, ...
’ones300’,’ones600’,’ones900’);

set(times_leg,’Location’,’NorthWest’)
xlabel(’Cases: 2 to 10 factor, 300 - 600 - 900pixels’);
ylabel(’Seconds’);

107

7.13 Código - Tests

Fichero run epi interp.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi

function run_epi_interp(object)
% Object: Name of the scene
% It runs epi_interp() with 5 factors [2, 4, 8, 16, 32] and
% 5 interpolation kernels [triangle, cubic, lanczos2, lanczos3, fastdct]

disp(’Processing epi_interp factor 2 density 256’);
epi_interp(object,512,2,600,’triangle’);
epi_interp(object,512,2,600,’cubic’);
epi_interp(object,512,2,600,’lanczos2’);
epi_interp(object,512,2,600,’lanczos3’);
epi_interp(object,512,2,600,’fastdct’);

disp(’Processing epi_interp factor 4 density 128’);
epi_interp(object,512,4,600,’triangle’);
epi_interp(object,512,4,600,’cubic’);
epi_interp(object,512,4,600,’lanczos2’);
epi_interp(object,512,4,600,’lanczos3’);
epi_interp(object,512,4,600,’fastdct’);

disp(’Processing epi_interp factor 8 density 64’);
epi_interp(object,512,8,600,’triangle’);
epi_interp(object,512,8,600,’cubic’);
epi_interp(object,512,8,600,’lanczos2’);
epi_interp(object,512,8,600,’lanczos3’);
epi_interp(object,512,8,600,’fastdct’);

disp(’Processing epi_interp factor 16 density 32’);
epi_interp(object,512,16,600,’triangle’);
epi_interp(object,512,16,600,’cubic’);
epi_interp(object,512,16,600,’lanczos2’);
epi_interp(object,512,16,600,’lanczos3’);
epi_interp(object,512,16,600,’fastdct’);

disp(’Processing epi_interp factor 32 density 16’);
epi_interp(object,512,32,600,’triangle’);

108

epi_interp(object,512,32,600,’cubic’);
epi_interp(object,512,32,600,’lanczos2’);
epi_interp(object,512,32,600,’lanczos3’);
epi_interp(object,512,32,600,’fastdct’);

figure;
timing= reshape(timing,5,6)’;
plot(timing);
title(’Interpolation time comparison’,’FontWeight’,’bold’);
timing_leg = legend(’triangle’,’cubic’,’lanczos2’, ’lanczos3’,’fastdct’);
set(timing_leg,’Location’,’NorthWest’)
xlabel(’Interpolation factors: 32, 16, 8, 6, 4, 2’);
ylabel(’Seconds’);

end

Fichero run reconstruct views.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Script that runs reconstruct_view with all possible configurations

function run_reconstruct_views(object)
% object: Name of the scene
% It runs reconstruct_views() with 5 factors [2, 4, 8, 16, 32] and
% 5 interpolation kernels [triangle, cubic, lanczos2, lanczos3, fastdct]

disp(’Processing reconstruct_views factor 2 density 256’);
reconstruct_views(object,512,2,600,’triangle’);
reconstruct_views(object,512,2,600,’cubic’);
reconstruct_views(object,512,2,600,’lanczos2’);
reconstruct_views(object,512,2,600,’lanczos3’);
reconstruct_views(object,512,2,600,’fastdct’);

disp(’Processing reconstruct_views factor 4 density 128’);
reconstruct_views(object,512,4,600,’triangle’);
reconstruct_views(object,512,4,600,’cubic’);
reconstruct_views(object,512,4,600,’lanczos2’);
reconstruct_views(object,512,4,600,’lanczos3’);
reconstruct_views(object,512,4,600,’fastdct’);

disp(’Processing reconstruct_views factor 8 density 64’);
reconstruct_views(object,512,8,600,’triangle’);

109

reconstruct_views(object,512,8,600,’cubic’);
reconstruct_views(object,512,8,600,’lanczos2’);
reconstruct_views(object,512,8,600,’lanczos3’);
reconstruct_views(object,512,8,600,’fastdct’);

disp(’Processing reconstruct_views factor 16 density 32’);
reconstruct_views(object,512,16,600,’triangle’);
reconstruct_views(object,512,16,600,’cubic’);
reconstruct_views(object,512,16,600,’lanczos2’);
reconstruct_views(object,512,16,600,’lanczos3’);
reconstruct_views(object,512,16,600,’fastdct’);

disp(’Processing reconstruct_views factor 32 density 16’);
reconstruct_views(object,512,32,600,’triangle’);
reconstruct_views(object,512,32,600,’cubic’);
reconstruct_views(object,512,32,600,’lanczos2’);
reconstruct_views(object,512,32,600,’lanczos3’);
reconstruct_views(object,512,32,600,’fastdct’);

figure;
timing= reshape(timing,5,6)’;
plot(timing);
title(’Interpolation time comparison’,’FontWeight’,’bold’);
timing_leg = legend(’triangle’,’cubic’,’lanczos2’, ’lanczos3’,’fastdct’);
set(timing_leg,’Location’,’NorthWest’)
xlabel(’Interpolation factors: 32, 16, 8, 6, 4, 2’);
ylabel(’Seconds’);

end

Fichero test psnr.m

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Script that runs epi with all possible configurations
% It saves process times in file "times.mat"

function test_psnr(object,density,factor)
% Object: Name of the scene
% Density: Number of views
% Factor: Interpolation magnitud
% It calculates the PSNR for every factor and view

110

PSNR = zeros(5,512);

for i=1:density
i
original= double(imread(strcat(object,’/parallel_rc_’,

int2str(density),’/’,int2str(i)),’png’));

image1 =
double(imread(strcat(object,’/parallel_’,int2str(density),’_triangle/’

,int2str(i),’_’,int2str(factor)),’png’));
image2 =

double(imread(strcat(object,’/parallel_’,int2str(density),’_cubic/’,
int2str(i),’_’,int2str(factor)),’png’));

image3 =
double(imread(strcat(object,’/parallel_’,int2str(density),’_lanczos2/’,

int2str(i),’_’,int2str(factor)),’png’));
image4 =

double(imread(strcat(object,’/parallel_’,int2str(density),’_lanczos3/’,
int2str(i),’_’,int2str(factor)),’png’));

image5 =
double(imread(strcat(object,’/parallel_’,int2str(density),’_fastdct/’,

int2str(i),’_’,int2str(factor)),’png’));

PSNR(i,1) = 10 * log10(255ˆ2/mean2((original-image1).ˆ2));
PSNR(i,2) = 10 * log10(255ˆ2/mean2((original-image2).ˆ2));
PSNR(i,3) = 10 * log10(255ˆ2/mean2((original-image3).ˆ2));
PSNR(i,4) = 10 * log10(255ˆ2/mean2((original-image4).ˆ2));
PSNR(i,5) = 10 * log10(255ˆ2/mean2((original-image5).ˆ2));

end

figure;
hold on;
plot(PSNR);
title(’PSNR comparison’,’FontWeight’,’bold’);
timing_leg = legend(’triangle’,’cubic’,’lanczos2’, ’lanczos3’,’fastdct’);
set(timing_leg,’Location’,’SouthEast’)
xlabel(’Different views’);
ylabel(’Squared error loss’);

end

Fichero test psnr average.m

111

% Tampere University of Technology (TUT)
% Departament of Signal Processing (SGN)
% David Valle (230113) david.valle@tut.fi
% Script that runs epi with all possible configurations
% It saves process times in file "times.mat"

function PSNR = test_psnr_average(object,density)
% Object: Name of the scene
% Density: Number of views
% Factor: Interpolation magnitud
% It calculates the PSNR for every factor and
% its average between all the views

PSNR = zeros(5,5);
factors = [2, 4, 8, 16, 32];

for i=1:size(factors,2)
i
for j=1:density

j
original= double(imread(strcat(object,’/parallel_rc_’,int2str(density),

’/’,int2str(j)),’png’));

image1 =
double(imread(strcat(object,’/parallel_’,int2str(density),

’_triangle/’,int2str(j),’_’,int2str(factors(i))),’png’));
image2 =

double(imread(strcat(object,’/parallel_’,int2str(density),
’_cubic/’,int2str(j),’_’,int2str(factors(i))),’png’));

image3 =
double(imread(strcat(object,’/parallel_’,int2str(density),

’_lanczos2/’,int2str(j),’_’,int2str(factors(i))),’png’));
image4 =

double(imread(strcat(object,’/parallel_’,int2str(density),
’_lanczos3/’,int2str(j),’_’,int2str(factors(i))),’png’));

image5 =
double(imread(strcat(object,’/parallel_’,int2str(density),

’_fastdct/’,int2str(j),’_’,int2str(factors(i))),’png’));

PSNR(i,1) = PSNR(i,1) + 10 * log10(255ˆ2/mean2((original-image1).ˆ2))
PSNR(i,2) = PSNR(i,2) + 10 * log10(255ˆ2/mean2((original-image2).ˆ2));
PSNR(i,3) = PSNR(i,3) + 10 * log10(255ˆ2/mean2((original-image3).ˆ2));
PSNR(i,4) = PSNR(i,4) + 10 * log10(255ˆ2/mean2((original-image4).ˆ2));
PSNR(i,5) = PSNR(i,5) + 10 * log10(255ˆ2/mean2((original-image5).ˆ2));

112

end
end

PSNR = PSNR / density;

figure;
hold on;
plot(PSNR,’.’);
title(’PSNR comparisong of every factor’,’FontWeight’,’bold’);
timing_leg = legend(’triangle’,’cubic’,’lanczos2’, ’lanczos3’,’fastdct’);
set(timing_leg,’Location’,’NorthEast’)
xlabel(’Interpolation factors: 2, 4, 8, 16, 32’);
ylabel(’Squared error loss’);

end

113

7.14 Gráficas de los tests

Las siguientes gráficas muestran los resultados PSNR de cada vista para cada método de
interpolación. Cada gráfica representa un factor de interpolación diferente.

Figura 7.2: PSNR de las vistas reconstruidas con cada método de interpolacón, factor 2.

Figura 7.3: PSNR de las vistas reconstruidas con cada método de interpolación, factor 4.

114

Figura 7.4: PSNR de las vistas reconstruidas con cada método de interpolación, factor 8.

Figura 7.5: PSNR de las vistas reconstruidas con cada método de interpolación, factor 16.

115

Figura 7.6: PSNR de las vistas reconstruidas con cada método de interpolación, factor 32.

116

