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Abstract

An important problem in Fuzzy OWL 2 ontology building is the definition of fuzzy membership functions for real-valued fuzzy 
sets (so-called fuzzy datatypes in Fuzzy OWL 2 terminology). In this paper, we present a tool, called Fudge, whose aim is to 
support the consensual creation of fuzzy datatypes by aggregating the specifications given by a group of experts. Fudge is freeware 
and currently supports several linguistic aggregation strategies, including the convex combination, linguistic OWA, weighted mean 
and fuzzy OWA, and easily allows to build others in. We also propose and have implemented two novel linguistic aggregation 
operators, based on a left recursive form of the convex combination and of the linguistic OWA.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

OWL 2 ontologies are nowadays widely used to represent and share knowledge representation. In summary, an 
ontology is a formal, explicit specification of a shared conceptualization [45]. They allow the specification of the 
concepts (viz. classes), individuals, and relationships (viz. roles) that exist in an application domain. As ontologies 
were born to provide a shared representation, it is quite common, especially in multidisciplinary application domains, 
that the ontology building phase involves some kind of consensus between the ontology developers. For example, the 
latitude and the longitude of a mountain could be represented as classes or properties, and an agreement is necessary.
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In many real-world applications, there is a need to manage imprecise knowledge. The limitations of classical on-
tologies in such domains have been discussed in several fora. Fuzzy ontologies, specifically Fuzzy OWL 2 ontologies, 
based on fuzzy logic theory, are a very natural and established extension to manage imprecise knowledge [27,42]. In 
fuzzy ontologies, an application domain is represented by using fuzzy concepts (with partial membership degrees), 
fuzzy relationships, fuzzy datatypes (described by fuzzy membership functions), and axioms that only hold to some 
degree of truth in [0, 1].

One of the main features of fuzzy logic is the possibility to use so-called linguistic variables, i.e., variables whose 
values are words (or sentences) in a language; for example, HighMountain may be the value of a linguistic variable 
measuring the height of a mountain. Of course, linguistic variables and values are particularly subjective and context 
dependent. For instance, both Carrauntoohil (Ireland) and Fuji (Japan) are usually considered as high mountains by 
local people, although they have very different elevations (1041 m and 3776 m, respectively).

In Fuzzy OWL 2 ontologies such linguistic variables are represented using fuzzy datatypes. To date, the only 
existing methods to build fuzzy datatypes are agnostic to any information about the domain (for example, computing 
a uniform partitioning of the domain [42]) or determine the fuzzy membership functions from real data (for example, 
using a previous clusterization of real data, as in Datil [23]). However, often no real data (or not enough data, or data 
with not enough quality) are available at the time of the fuzzy ontology building phase but there are some experts 
available to provide the definitions. To the best of our knowledge, how to reach a consensus in Fuzzy OWL 2 ontology 
building when several experts are involved has not received attention so far.

In this paper, we present a tool, called Fudge, whose aim is to support the consensual creation of Fuzzy OWL 2 
datatypes by aggregating the specifications given by a group of experts, e.g. by merging the definitions of HighMoun-
tain given by two Irish and Japanese experts. Fudge is freeware, works on desktop computers and mobile devices, 
and supports currently different linguistic aggregation strategies, including the convex combination, linguistic OWA, 
weighted mean and fuzzy OWA and easily allows to build others in. We also propose and have implemented two novel 
linguistic aggregation operators, based on a left recursive form of the convex combination and of the linguistic OWA. 
Fudge is also able to deal with missing data from some of the experts and can use fuzzy quantifiers to define a vector 
of weights.

The remainder of this paper is organized as follows. Firstly, Section 2 relates our work with other previous works. 
Section 3 provides some background on Fuzzy OWL 2 ontologies and aggregation operators. Then, Section 4 de-
scribes our current strategy to build consensual fuzzy datatypes from several experts and discusses two novel different 
aggregation operators. Next, Section 5 describes our implementation, while Section 6 discusses some uses cases and 
provides a numerical example. Finally, Section 7 sets out some conclusions and ideas for future work.

2. Related work

Fuzzy ontologies have already proved to be useful in several applications, such as information retrieval [8,44,50], 
Semantic Web and the Internet [42], ambient intelligence [15], ontology merging [46], matchmaking [37], decision 
making [33], summarization [25], construction [19], robotics [17], diabetes diagnosis [18], design [35], human re-
sources [43], decision making [41], gait recognition [22], and many others [28,38]. For a more detailed overview, we 
refer the reader to [11].

Some works have previously considered aggregation operators in the fuzzy ontology field [6,9,26,49], but the 
aggregation was restricted to numerical degrees of truth. Furthermore, most of the existing work assumes a unique 
definition of the fuzzy membership functions that define the fuzzy datatypes. In the following we will focus only on 
the few exceptions.

In a series of papers, researchers from the University of Granada and coauthors studied the application of fuzzy 
ontologies to reaching a consensus on decision making scenarios [29,36]; in particular, they used existing fuzzy 
ontologies as part of decision making processes. In related papers, they also studied the process of building a fuzzy 
ontology; for example, [30–32] discussed how to build a fuzzy ontology in scenarios of multi-granular linguistic 
information.

There are significant differences with respect to our proposal. The approach in [31] does not take account the 
opinions of different ontology developers to build a fuzzy ontology. On the other hand, the approach in [32] does 
not focus on fuzzy datatype construction but on assigning a membership degree to individuals of a concept. Finally, 
the approach in [30] considers users’ opinions in social networks and computes the fuzzy membership function from 
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sentiment information (numbers of positive, neutral, and negative words). In contrast, we compute fuzzy membership 
functions by aggregating the fuzzy membership functions of each ontology builder, rather than directly obtaining the 
definitions of the fuzzy membership functions from the opinions of the different users. The latter strongly depends on 
the quality of the sentiment analysis and is more vulnerable to malicious users.

To the best of our knowledge, none uses the de-facto standard for fuzzy ontology representation Fuzzy OWL 2, 
supports several aggregation operators, or provides a publicly available and extensible implementation.

3. Background

This section gives a quick overview on the main ingredients related to fuzzy ontologies and aggregation operators. 
The confident reader may directly skip to the next section.

3.1. Fuzzy OWL 2 ontologies

In fuzzy ontologies, the elements of a classical ontology are extended in such a way that concepts, relations, 
datatypes, and axioms are fuzzy. In particular:

• Fuzzy concepts and fuzzy properties are interpreted as fuzzy sets of individuals and fuzzy binary relations, re-
spectively. For example, YoungHuman denotes the fuzzy set of young people, while hasClimbed denotes a fuzzy 
relationship between people and mountains that they climbed (maybe only partially).

• Fuzzy axioms express statements that are not either true or false but hold to some degree in [0, 1]. For example, we 
can state that john belongs to the concept of YoungHuman with at least degree 0.9, meaning that he is considerably 
young.

• Fuzzy datatypes generalize crisp values by using a fuzzy membership function. In fuzzy ontologies, it is common 
to restrict the membership functions to trapezoidal (Fig. 1 (a)), triangular (Fig. 1 (b)), left-shoulder (Fig. 1 (c)), and 
right-shoulder (Fig. 1 (d)) membership functions.1 For example, instead of considering the age of an individual 
as the crisp value 18, one may consider a fuzzy set about18 defined via a triangular function centered at the value
q2=18.

Fuzzy Description Logics (Fuzzy DLs) [4,42] are the logical formalism behind Fuzzy OWL 2 ontologies [5], in a 
similar way as crisp Description Logics (DLs) [2] are the underlying logical formalism of OWL 2 [12]. Although there 
is not a W3C standard fuzzy ontology language, Fuzzy OWL 2 (based on a fuzzy DL) has become a de facto stan-
dard/popular choice. Fuzzy OWL 2 extends OWL 2 ontologies with OWL 2 annotations encoding fuzzy information 
using an XML-like syntax. The key idea of this representation is to start with an OWL 2 ontology created as usual, 
with a classical ontology editor. Then, it is possible to annotate the elements to represent the features of the fuzzy 
ontology that OWL 2 cannot directly encode. In particular, it is possible to annotate fuzzy axioms by adding a degree 
of truth, to represent fuzzy datatypes, and to define specific elements of fuzzy ontologies (such as fuzzy modifiers or 
aggregated concepts). Fuzzy OWL 2 is supported by the fuzzy ontology reasoner fuzzyDL [7]. For instance, Fig. 2
illustrates how to annotate a fuzzy datatype by using the Fuzzy OWL 2 plug-in available for the Protégé ontology 
editor. (Note that q1, q2, q3 are denoted as a, b, c, respectively.)

We refer the reader to [4,5,42] for further insights on Fuzzy OWL 2 and Fuzzy DLs.

3.2. Aggregation operators

Aggregation Operators (AOs) are mathematical functions that are used to combine different pieces of information. 
There is no standard definition of AO. Usually, given a domain D, an AO is a mapping @ :DK → D, aggregating K
values of K different criteria. Often, AOs also use a vector of weights W = [w1, . . . , wK ] such that wi ∈ [0, 1] and ∑K

i=1 wi = 1.

1 The functions in Fig. 1 (e)–(f) will be addressed later in this paper, as they will be used to compute weights from fuzzy quantifiers.
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Fig. 1. (a) Trapezoidal function; (b) Triangular function; (c) Left-shoulder function; (d) Right shoulder function; (e) Linear function; (f) Power 
function.

Fig. 2. Definition of the fuzzy datatype highValue using Fuzzy OWL 2.

Let us consider first the most usual case, where D = [0, 1]. Then, we will address the case where D is a linguistic 
label. For a more detailed overview on existing AOs, we refer the reader to [3] (for the numerical case) and [51] (for 
the linguistic case).
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Aggregation of numerical degrees of truth. Often, we would like to aggregate degrees of satisfaction of K different 
criteria xi ∈ [0, 1], i ∈ {1, . . . , K}, that are the membership degrees to K fuzzy sets; the range of the AO is also [0, 1]. 
We will denote these AOs as @([w1, . . . , wK ], [x1, . . . , xK ]). A typical example of such an AO is the weighted sum:

WS([w1, . . . ,wK ], [x1, . . . , xK ]) =
K∑

i=1

wixi . (1)

Another very important family of AOs are the Ordered Weighted Averaging (OWA) operators [52]. Formally, an 
OWA operator of dimension K is an AO such that:

OWA([w1, . . . ,wK ], [x1, . . . , xK ]) =
K∑

i=1

wixσ(i) (2)

where σ(i) is a permutation such that xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(K). A key aspect of these operators is the reordering 
step: a weight wi is not associated with the i-th element xi but with the i-th ordered element xσ(i).

Let us recall that the maximum and the minimum can be obtained by using W = [1, 0, . . . , 0] and W = [0, . . . , 0, 1], 
respectively, and that OWA verifies the internality property:

min(x1, . . . , xn) ≤ OWA([w1, . . . ,wK ], [x1, . . . , xK ]) ≤ max(x1, . . . , xn) . (3)

An important measure of OWA operators is the orness [52], which depends only on the weighting vector:

orness([w1, . . . ,wK ]) = 1

K − 1

K∑
i=1

(K − i)wi . (4)

It is easy to check that orness([w1, . . . , wK ]) ∈ [0, 1], orness([1, 0, . . . , 0]) = 1 (the value is 1 for the maximum, 
a t-conorm) and that orness([0, . . . , 0, 1]) = 0 (the value is 0 for the minimum, a t-norm). Hence, the orness measures 
to what extent an AO behaves as a disjunctive operator (a t-conorm).

A common practical problem is how to compute the weights of an OWA operator. Two well-known solutions are 
the following: (i) using quantifier-based aggregation [54] and (ii) applying recursive OWA [48], as illustrated next:

• In quantifier-based aggregation, the vector of weights W can be defined using a fuzzy quantifier [54]. A pro-
portional fuzzy quantifier Q : [0, 1] → [0, 1] is a fuzzy subset such that for each r ∈ [0, 1], the membership 
grade Q(r) indicates the degree to which the proportion r satisfies the linguistic quantifier that Q represents. For 
the sake of illustrative purposes, we will consider here the Regular Increasing Monotone (RIM) quantifiers [53], 
which satisfy the boundary conditions Q(0) = 0 and Q(1) = 1, and are monotone increasing, i.e., Q(x1) ≤ Q(x2)

when x1 ≤ x2. Essentially, these quantifiers reflect the notion that as the proportion increases, the degree of sat-
isfaction does not decrease. Given a RIM Q, the weights of an OWA weighting vector of dimension K can be 
computed as (i ∈ {1, ..., K})

wi = Q(
i

K
) − Q(

i − 1

K
) . (5)

Note that indeed wi ∈ [0, 1] and 
∑K

i=1 wi = 1.
• Recursive OWA starts from a desired value for the orness of the OWA operator and computes the weights in two 

recursive ways, a Left Recursive Form (LRF) and a Right Recursive Form (RRF). LRF is obtained after rewriting 
Eq. (2) as:

OWA([wK
1 , . . . ,wK

K ], [x1, . . . , xK ]) =
vK
L · OWA([wK−1

1 , . . . ,wK−1
K−1], [xσ(1), . . . , xσ(K−1)]) + (1 − vK

L ) · xσ(K) ,
(6)

where the weights are defined as

vK
L = (K − 1) · orness

(K − 2) · orness + 1

wK
i = vK

L · wK−1
i , i ∈ {1, . . . ,K − 1}

wK = 1 − vK .

(7)
K L
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The base case happens when K = 2:

OWA([w2
1,w

2
2], [x1, x2]) = v2

L · xσ(1) + (1 − v2
L) · xσ(2) (8)

Similarly, RRF is obtained after rewriting Eq. (2) as:

OWA([wK
1 , . . . ,wK

K ], [x1, . . . , xK ]) =
(1 − vK

R ) · xσ(1) + vK
R · OWA([wK−1

2 , . . . ,wK−1
K ], [xσ(2), . . . , xσ(K)]) ,

(9)

where the weights are defined as

vK
R = (K − 1)(1 − orness)

(K − 2)(1 − orness) + 1

wK
i = vK

R · wK−1
i , i ∈ {1, . . . ,K − 1}

wK
K = 1 − vK

R .

(10)

Aggregation of fuzzy linguistic values. Although this case is not as usual as the aggregation of numerical values, some 
aggregation operators to combine fuzzy linguistic numbers have been proposed [51]. Among them, we will consider 
here four of them: convex combination (CONV–RRF2), linguistic OWA (LOWA–RRF), weighted mean (WMEAN), 
and fuzzy OWA (FOWA).

To start with, we will assume a vector of weights W and a permutation σ over fuzzy numbers/values (see, e.g., [24,
40]) such that dσ(1) ≥ dσ(2) ≥ · · · ≥ dσ(K) (that is, dσ(i) denotes the i-th largest fuzzy number).3 Now,

1. CONV–RRF was proposed by Delgado et al. [14]. It assumes a fixed vector of possible values for the linguistic 
variables L = [l1, . . . , lL] such that li < lj if i < j . CONV–RRF has a recursive definition. Let us start with the 
base case where we want to aggregate K = 2 fuzzy values di ∈ L. The CONV–RRF of a vector [d1, d2] given a 
vector of weights W = [w1, w2], is defined as

CONVRRF([w1,w2], [d1, d2]) = lc (11)

where dσ(1) = lj , dσ(2) = li , c = i + round(wσ(1) · (j − i)). Note that the permutation is applied both to the 
weights and to the values to be aggregated, so each wi is associated to the value di . Now, if K > 2, then:

CONVRRF([w1, . . . ,wK ], [d1 . . . , dK ]) =
CONVRRF

(
[wπ(1),1 − wπ(1)],

[
dπ(1),CONVRRF([β2, . . . , βk], [dπ(2), . . . , dπ(K)])

])
,

(12)

where βh = wπ(h) / 
∑K

j=2 wπ(j), h ∈ {2, . . . , K}.
2. LOWA–RRF is a variant of CONV–RRF using a reordering step as in standard OWA [20]:

LOWARRF([w1, . . . ,wK ], [d1 . . . , dK ]) =
CONVRRF([w1, . . . ,wK ], [dσ(1), . . . , dσ(K)]) .

(13)

3. WMEAN is an extension of the classical weighted mean to deal with trapezoidal fuzzy numbers [16]. Specifically, 
given K trapezoidal fuzzy numbers di = trap(qi

1, q
i
2, q

i
3, q

i
4) and a vector of K weights W, the result is:

WMEAN([w1, . . . ,wK ], [d1, . . . , dK ]) =

trap
( K∑

i=1

wiq
i
1,

K∑
i=1

wiq
i
2,

K∑
i=1

wiq
i
3,

K∑
i=1

wiq
i
4

)
.

(14)

In general, the result of the aggregation is not any of the original aggregated values, and the weights describe the 
importance of each expert.

2 We write CONV–RRF and LOWA–RRF to distinguish them from the new operators CONV–LRF and LOWA–LRF that we will define in 
Section 4.

3 Of course, this requires an order relation between fuzzy numbers that we will discuss later.
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4. FOWA is a variant of WMEAN with a reordering step [10], so that w1 is associated to the largest fuzzy number. 
Given a permutation σ such that dσ(i) denotes the i-th largest trapezoidal fuzzy number, FOWA is defined as:

FOWA([w1, . . . ,wK ], [d1, . . . , dK ]) =

trap
( K∑

i=1

wiq
σ(i)
1 ,

K∑
i=1

wiq
σ(i)
2 ,

K∑
i=1

wiq
σ(i)
3 ,

K∑
i=1

wiq
σ(i)
4

)
.

(15)

Ordering fuzzy linguistic labels. In CONV–RRF, LOWA–RRF, and FOWA, we need to define an ordering between 
fuzzy linguistic labels. Many approaches can be found in the literature (see, e.g., [24,40]), but we will rely here on 
Delgado et al. [13] transformation function transform(d) from a linguistic domain (trapezoidal fuzzy numbers d) to 
a numerical domain, so that d1 ≥ d2 iff transform(d1) ≥ transform(d2):

transform(trap(q1, q2, q3, q4)) = 8(q3 + q2)H + (q4 + q1)H + 8(H + q3q4 − q1q2)

24H
, (16)

where H = q4 + q3 − q2 − q1 and q1 = q2 = q3 = q4 is assumed not to hold.

4. Consensual aggregation of fuzzy datatypes

In this section we start by illustrating how to use aggregation operators to build consensual fuzzy datatypes. Then, 
we discuss two novel aggregation operators, all of them supported in the Fudge tool.

4.1. Using aggregation operators to build fuzzy datatypes

At first, let us define formally the problem we will address. We assume that there is a group of experts 
E1, E2, . . . , EN providing the definitions of the membership functions F1, F2, . . . , FN characterizing several fuzzy 
datatypes from a fuzzy ontology. dij denotes the definition of the datatype Fi according to expert Ej . dij is assumed 
to be a linguistic value. Furthermore, there could be missing data, i.e., expert Ej might not provide his/her defini-
tion of some datatype Fi . Therefore, for each datatype Fi we have a number of definitions denoted K , with K ≤ N . 
Our objective is to define each Fi as a consensus of the definitions 〈di1, di2, . . . , diK〉. We will sometimes omit the 
subscript i when the particular Fi is not important.

We assume that all the definitions are given using trapezoidal fuzzy numbers of the form trap(q1, q2, q3, q4), as 
they are those supported by Fuzzy OWL 2. Note that triangular (denoted tri), right-shoulder (denoted right), and 
left-shoulder (denoted left) functions can be represented as trapezoidal fuzzy numbers, provided that right-shoulder 
and left-shoulder functions are defined over a fixed range [r1, r2]. For example, a left-shoulder function left(q1, q2)

can be represented as trap(r1, r1, q1, q2).
Now, for each fuzzy datatype Fi , we compute @(W, [di1, di2, . . . , diK ]) as a consensual definition, for some ag-

gregation operator @ taking as input a vector of numerical weights W and a vector of trapezoidal fuzzy numbers, 
returning as output a trapezoidal fuzzy number, and satisfying internality. Possible choices for the aggregation opera-
tor include CONV, LOWA, WMEAN, and FOWA.

An advantage of such a consensus process is that the individual opinions of the ontology builders are only used to 
build the final consensual values, thus respecting the privacy of the experts by hiding their individual opinions.

Example 1. For the sake of illustrative purposes, let us consider the problem of paper reviewing. We assume that we 
want to build a general fuzzy ontology with the relevant definitions (e.g., a hierarchy of publication types, the steps of 
the reviewing process, the different roles that take part in the process, etc.) to reuse it in other applications, to enable 
interoperability, or to detect inconsistencies automatically.

We assume that there are 5 possible decisions for a submission (Reject, WeakReject, Borderline, WeakAccept,
Accept) and that we need to define them by aggregating the definitions given by 4 experts (the coauthors of our work). 
For example, these decisions could correspond to reject, reject and encourage re-submission, major revision, minor 
revision, and accept as it is, respectively. Table 1 shows the definitions of the fuzzy datatypes given by each expert.

Table 2 shows instead the consensual aggregation for several aggregation functions. Note that for CONVEX RRF 
and WMEAN, we used a vector of weights W = [0.2, 0.25, 0.25, 0.3] taking into account the experience (years in 
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Table 1
Individual definitions of the decisions given by the experts.

Alternative Expert 1 Expert 2 Expert 3 Expert 4

Reject left(3.5,4.5) left(3.5,4) left(3,4) left(1,2)

WeakReject tri(3.5,4.5,5.5) trap(3.5,4,4.5,5) tri(3,4,5) trap(1,2,3,4)

Borderline tri(4.5,5.5,6.5) tri(4.5,5,5.5) tri(4,5,6) trap(3,4,6,7)

WeakAccept tri(5.5,6.5,8) trap(5,5.5,6.5,7.5) trap(5,6,7,8) trap(6,7,8,9)

Accept right(6.5,8) right(6.5,7.5) right(7,8) right(8,9)

Table 2
Consensual definitions of the decisions for 4 aggregation strategies.

Alternative CONV–RRF LOWA–RRF WMEAN FOWA

Reject left(3,4) left(3,4) left(2.63,3.5) left(3,3.8)

WeakReject tri(3,4,5) tri(3,4,5) trap(2.63,3.5,3.93,4.8) trap(3,3.8,4.1,4.9)

Borderline tri(4,5,6) tri(4,5,6) trap(3.93,4.8,5.4,6.28) trap(3.65,4.6,5.4,6.35)

WeakAccept tri(5.5,6.5,8) trap(5,6,7,8) trap(5.4,6.28,7.075,8.18) trap(5.2,6.15,6.75,7.95)

Accept right(7,8) right(6.5,8) right(7.08,8.175) right(6.7,7.95)

Fig. 3. Consensual datatypes using (a) CONV; (b) LOWA; (c) WMEAN; and (d) FOWA. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

academia) of the experts, while for LOWA–RRF and FOWA we used a fuzzy quantifier right(0.3, 0.8), leading to a 
vector of weights W = [0, 0.4, 0.5, 0.1] for FOWA.

The resulting datatypes for each aggregation strategy are illustrated in Fig. 3 (a)–(d). It is worth to note that all 
methods result in a left-shoulder and a right-shoulder function, but there are differences for the rest of functions: 
CONV–RRF results in 3 triangular and 0 trapezoidal functions, LOWA results in 2 triangular and 1 trapezoidal 
functions, and both WMEAN and FOWA result in 3 trapezoidal and 0 triangular functions. Note also that CONV–
RRF and LOWA–RRF result in 4 datatypes with the definitions given by Expert 3; CONV–RRF and LOWA–RRF 
coincide in 3 definitions.

Now, let us discuss how to evaluate a given submission. We assume that each submission has a numerical score 
from 0 to 10 that combines the evaluation of several criteria (e.g., originality, technical soundness, significance, pre-
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Table 3
Degree of satisfaction of each decision for a paper with score of 7.5.

Alternative CONV–RRF LOWA–RRF WMEAN FOWA

Reject 0 0 0 0
WeakReject 0 0 0 0
Borderline 0 0 0 0
WeakAccept 0.33 0.5 0.61 0.38
Accept 0.5 0.67 0.39 0.64

sentation, and relevance) given by different reviewers.4 For a paper p0 with a score of 7.5, the membership degrees to 
each category are shown in Table 3.

Therefore, the optimal decision depends on the aggregation strategy: for WMEAN, it is WeakAccept, while for the 
other ones the optimal choice is Accept. �
Computing the vector of weights. In LOWA or FOWA, we propose two different strategies to obtain the vector of 
weights. Namely:

• Quantifier-guided aggregation, using Eq. (5) as in standard OWA [54]. In this case, we propose to use right-
shoulder (Fig. 1 (d)), linear (Fig. 1 (e)), and power (Fig. 1 (f)) functions as RIM quantifiers.

• A recursive procedure to compute a vector of weights with a given orness, using either Eq. (7) (to combine the 
lowest value and the aggregation of the other ones) or Eq. (10) (to combine the highest value and the aggregation 
of the other ones) [48].

Dealing with incomplete data. It could be the case that some of the experts do not provide his/her definition of some 
datatype. In this case, unavailable opinions are not taken into account during the aggregation, so a new vector of 
weights W is computed. Specifically, in CONV–RRF and WMEAN, we can normalize each weight dividing by the 
sum of the weights of the available experts. In LOWA–RRF or FOWA, we can use the previously described strategies 
(quantifier-guided aggregation or a recursive procedure starting from the orness) to get a vector with a smaller size.

Example 2. Assume that there are 4 experts E1, E2, E3, and E4, but E3 does not provide a definition for 
some datatype. To aggregate the other definitions using CONV–RRF or WMEAN, the initial vector of weights 
[w1, w2, w3, w4] can be updated as

[ w1

w1 + w2 + w4
,

w2

w1 + w2 + w4
,

w4

w1 + w2 + w4
] .

To aggregate the available definitions using LOWA-RRF or FOWA, let us firstly assume that the vector of weights 
was computed using a quantifier Q = right(0.3, 0.8). Then, the initial vector [0, 0.4, 0.5, 0.1] is replaced with 
[0.067, 0.667, 0.267].

Now let us assume that the vector of weights was computed from a desired orness 0.6 using a left recursive 
procedure. Then, the initial vector [0.368, 0.245, 0.205, 0.182] is replaced with [0.45, 0.3, 0.25]. �
4.2. Some properties of the linguistic aggregation operators

The first thing to observe is that CONV–RRF (and hence LOWA–RRF) does not care about the concrete definitions 
(e.g., if a trapezoidal function has some value of q1 or another); only the relative ordering matters.

In our case, when using CONV–RRF, rather than assuming a global vector of linguistic labels L (such as VeryLow,
Low, Neutral, High, and VeryHigh), for each fuzzy datatype Fi we assume a different vector Li = [li1, li2, . . . ]. On 
the one hand, it does not make sense to use the same label VeryHigh to define a mountain or a temperature. On the 
other hand, the linguistic labels are not defined a priori, so we can only rely on the definitions given by the experts. 

4 This involves the aggregation of numerical values, which is a well-known problem and out of our scope.
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Table 4
Comparison between the four aggregation strategies.

Criterion CONV–RRF/LRF LOWA–RRF/LRF WMEAN FOWA

Output is always one of the input datatypes Yes Yes No No
Weights are assigned to a specific expert Yes No Yes No

Furthermore, the same of labels can be different for each fuzzy datatype Fi , as some experts might not provide a 
definition. Thus, for each Fi , we define Li = [diσ(K), . . . , diσ(1)]. Therefore, the result of the aggregation is always 
one of the aggregated values, so a single expert (or a group of them giving the same value) is the single provider of 
the consensual definition. The same holds in LOWA as well.

It is worth to note that a pair of labels lij , ljk ∈ Fi may have the same definition. That is, although it is probably 
not very common in practice, two experts may use the very same trapezoidal membership function to define a label. 
This case was not originally considered in [14], where the authors assumed that k > j . However, we consider this case 
because the combining the same definition is not trivial, as Example 3 shows.

Example 3. Assume that there are 5 experts and that E1 and E2 provide the same definition, so we have L =
[Exp1&2, Exp3, Exp4, Exp5] (for ease of presentation, we assume that the i-th expert provides the i-th largest value). 
Given a weighting vector [0.15, 0.15, 0.1, 0.5, 0, 1], one may verify that the consensual definition using CONV–RRF 
is that of expert E3:

CONVRRF
(
[0.15,0.15,0.1,0.5,0,1], [Exp1&2,Exp1&2,Exp3,Exp4,Exp5]) = Exp3

Note that if we group the opinion of the two first experts and assign to this new value the sum of their weights, the 
result of CONV–RRF is different:

CONVRRF
(
[0.3,0.1,0.5,0,1], [Exp1&2,Exp3,Exp4,Exp5]) = Exp4 �

Table 4 summarizes some key features of the four methods, namely if the output is always one of the inputs or not, 
and if weights are assigned to a specific expert or not.

4.3. Left recursive form of CONV and LOWA

In this section, we will propose some new linguistic aggregation operators. Inspired by the rewriting of classical 
OWA in two recursive forms LRF and RRF (see Eqs. (6) and (9)), we may view the standard definition of CONV 
(Eqs. (11)–(12)) as a right recursive form. From that, we propose a left recursive form (CONV–LRF).

Definition 1. The Left Recursive Form of the convex combination (CONV–LLF) of K ≥ 2 linguistic labels given a 
weighting vector [w1, . . . , wK ] is defined as follows:

• if K = 2, then

CONVLRF([w1, . . . ,wK ], [d1 . . . , dK ]) = CONVRRF([w1, . . . ,wK ], [d1 . . . , dK ])
• if K > 2, then:

CONVLRF([w1, . . . ,wK ], [d1 . . . , dK ]) =
CONVLRF

(
[1 − wπ(K),wπ(K)],

[
CONVLRF([β1, . . . , βk−1], [dπ(1), . . . , dπ(K−1)]), dπ(K)

])
, (17)

where βh = wπ(h) / 
∑K−1

j=1 wπ(j), h ∈ {1, . . . , K − 1}.

Example 4. 4 experts provide definitions [VeryHigh, High, Low, VeryLow] and there is a weighting vector [0.45, 0.05,

0.1, 0.4]. Let us firstly aggregate using CONV–RRF:
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CONVRRF([0.45,0.05,0.1,0.4], [VeryHigh,High,Low,VeryLow]) =
CONVRRF

([
0.45,0.55

]
,
[
VeryHigh,

CONVRRF([0.09,0.91], [High,CONVRRF([0.2,0.8], [Low,VeryLow])
])

=

CONVRRF
([

0.45,0.55
]
,
[
VeryHigh,CONVRRF([0.09,0.91], [High,VeryLow])

])
=

CONVRRF
([

0.45,0.55
]
,
[
VeryHigh,VeryLow

])
= Low

Now, let us compute CONV–LRF, obtaining a different result:

CONVLRF([0.45,0.05,0.1,0.4], [VeryHigh,High,Low,VeryLow]) =
CONVLRF

([
0.6,0.4

]
,
[
CONVLRF([0.83,0.17],

[CONVLRF([0.9,0.1], [VeryHigh,High]),Low]),VeryLow
])

=

CONVLRF
([

0.6,0.4
]
,
[
CONVLRF([0.83,0.17], [VeryHigh,Low]),VeryLow

])
=

CONVLRF
([

0.6,0.4
]
,
[
VeryHigh,VeryLow

])
= High �

To understand the differences between CONV–LRF and CONV–RRF, we computed the results of the aggregation 
of four different values with different vectors of weights. Specifically, we evaluated each possible arrangement of 
degrees wi = k · 0.01, 

∑4
i=1 wi = 1, k ∈ {1, 2, . . . , 100}, i ∈ {1, 2, 3, 4}. Out of the 156849 possibilities, CONV–LRF 

and CONV–RRF give the same value in 114259 cases (72.85%). In 39538 cases (25.2%), CONV–LRF returns a 
higher value, whereas in 3052 cases (1.95%) CONV–RRF returns a higher value. Therefore, CONV–LRF seems to 
have a slightly higher orness than CONV–RRF. If the weights associated to the higher value or to the smaller value 
were greater than 0.83, both approaches coincided. This was also the case when the other weights were greater than 
0.74.

CONV–LRF can also be used to define a new version of the linguistic OWA based on the left recursive form of the 
convex combination.

Definition 2. The Left Recursive Form of the linguistic LOWA (LOWA–LLF) of K ≥ 2 linguistic labels given a weight-
ing vector [w1, . . . , wK ] is defined as follows:

LOWALRF([w1, . . . ,wK ], [d1 . . . , dK ]) =
CONVLRF([w1, . . . ,wK ], [dσ(1), . . . , dσ(K)]) . (18)

Example 5. Let us revisit Example 1, considering CONV–LRF and LOWA–LRF but not their right recursive forms. 
It turns out that LOWA–LRF produces exactly the same output, and that CONV–LRF only differs in the consensuated 
definition of Borderline, which is now given by trap(3, 4, 6, 7), i.e., the definition given by Expert 4. The resulting 
datatypes for CONV–LRF are illustrated in Fig. 4.

Using CONV–LRF, the membership degree of paper p0 to Borderline is also 0, as it happens using CONV–RRF. 
Both CONV–LRF and LOWA–LRF return 2 triangular and 1 trapezoidal functions (CONV–RRF returns 3 triangular 
functions), CONV–LRF includes 3 datatypes defined by Expert 3 (CONV–RRF includes 4); and CONV–LRF and 
LOWA–LRF coincide in 2 definitions (the right recursive forms coincide in 3). �

CONV–LRF and LOWA–LRF behave as their right recursive form counterparts with respect to the features ana-
lyzed in Table 4.
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Fig. 4. Consensual datatypes using CONV–LRF.

5. Implementation: fudge

We have developed an implementation of the consensual aggregation of fuzzy datatypes described in the previous 
section. Our tool is called Fudge (FUzzy Datatypes from a Group of Experts) and is available online.5 The application 
has two versions (for desktop computers and for mobile devices) and uses OWL API [21] to manage (fuzzy) OWL 2 
ontologies represented in Fuzzy OWL 2 language. Some snapshots of the tool can be found in Appendix A.

Fudge receives a folder containing the input ontology files, and it imports all the .owl files in the folder. We assume 
that each of the input files includes a Fuzzy OWL 2 ontology—specifically, an OWL 2 ontology where datatypes 
can have an OWL 2 annotation describing the parameters of the fuzzy function. As an output, Fudge creates a new 
ontology with the axioms included in the input files, except the declarations of the datatypes, which are unique. That 
is, if two or more files have a datatype with the same name, it only adds a consensual one to the output ontology.

In theory, all input files should contain the same axioms (ontology schema and individuals), and only the datatype 
annotations may be different. In practice, it could happen that not all ontologies contain the same axioms. In such 
cases, there are several possible choices: adding to the output ontology axioms that are in all input ontologies, adding 
axioms that are in some of the ontologies, adding axioms that are in most of the ontologies, etc. Among them, we 
chose to add the axioms included in the input ontology with a larger number of logical axioms.

Fudge considers as a name of an entity its full URI (e.g., http://sid .cps .unizar.es /engines .owl #HighTemperature) 
rather than its fragment identifier (e.g., HighTemperature), as two experts could use the same fragment to denote two 
different entities (e.g., in the car domain, temperature of an engine and temperature of oil).

Note that some datatype may not be annotated in some of the input files. In such cases, only the existing annotations 
are taken into account, and a vector of weights of the appropriate size is computed, as already discussed in the previous 
section.

The declaration of the fuzzy datatypes must conform the specification of Fuzzy OWL 2, including an annotation 
(with the type of the membership function and the values of the parameters) and a range restriction to an interval 
[r1, r2]. The current implementation is restricted to trapezoidal, triangular, left-shoulder, and right-shoulder functions, 
accordingly to the Fuzzy OWL 2 specification.

So far, the supported aggregation operators are CONV–LRF, CONV–RRF, WMEAN, LOWA–LRF, LOWA–RRF, 
and FOWA. It is worth to stress that the application has been designed to ensure that adding more aggregation operators 
is very easy. Indeed, it is enough to (i) add a new class extending an existing one, (ii) implement a method computing 
the aggregation of K trapezoidal functions, and (iii) update the graphical interface by adding another item to a list of 
aggregation operators.

The following fragment of code illustrates the creation of the new class:

public class NewAO extends AggregationOperator
{

@Override
public TrapezoidalFuzzyNumber aggregate(

ArrayList<TrapezoidalFuzzyNumber> values, Double[] weights)
{

5 http://webdiis .unizar.es /~ihvdis /Fudge .html.

http://sid.cps.unizar.es/engines.owl#HighTemperature
http://webdiis.unizar.es/~ihvdis/Fudge.html
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...
}

}

To obtain the weights for LOWA–LRF, LOWA–RRF, and FOWA one may use quantifier-base aggregation (using 
right-shoulder, linear, and power functions) or two recursive procedures starting from a given orness.

5.1. Desktop computers

The versions for desktop computers is written in Java. A simple user interface allows to select the input ontologies, 
the type of consensus (aggregation operator) and the necessary parameters: a vector of weights for CONV–LRF, 
CONV–RRF, and WMEAN, and the type of fuzzy quantifier and its parameters for LOWA–LRF, LOWA–RRF, and 
FOWA. Fig. A.6 shows the main tab of the user interface. Initially, the second and the third tab are disabled.

If the user selects CONV–LRF, CONV–RRF, or WMEAN as the aggregation operator, the fourth tab is enabled, 
as shown in Fig. A.7. In this case, Fudge checks that all values are positive and normalized, and that the sum is equal 
to 1.

If the user selects LOWA–LRF, LOWA–RRF, or FOWA as an aggregation operator, the second and the third tab 
become enabled. The second tab allows to obtain the weights from a fuzzy quantifier. Figs. A.8–A.10 show how to 
select the type of fuzzy quantifier (right-shoulder, linear, and power functions) and their parameters. The user can see 
a general picture of the selected fuzzy quantifier and a customized picture with the values of the selected parameters 
(Fig. A.11). Fudge checks that all values are correct; for instance, in a right-shoulder function, q2 ≥ q1. The third tab 
allows to use a recursive procedure to obtain the weights. Fig. A.12 shows that the user can select the type of recursive 
(left or right) and an orness value in [0, 1].

5.2. Mobile devices

The version for mobile devices is written in Android. Since the version for desktop computers was written in Java, 
the adaption was relatively easy and only the graphical interface needed to be changed.

Fig. A.13 (a) shows the main activity, where the user can select the input fuzzy ontologies and the aggregation 
operator. Depending on the aggregation operator, s/he will be able to select different ways to compute the weights. 
For example, Fig. A.13 (b) shows how to obtain the weights for LOWA–LRF, LOWA–RRF, and FOWA from a 
quantifier; a customized picture of the quantifier is shown in Fig. A.13 (c). Fig. A.14 (a) shows to obtain the weights 
using the recursive procedure, an example of vector is shown in Fig. A.14 (b). Furthermore, Fig. A.14 (c) shows how 
to manually set the vector of weights for CONV–LRF, CONV–RRF, and WMEAN.

6. Use case: location-based services

In this section we provide a use case illustrating the usefulness of having consensual fuzzy datatypes in the field of 
location-based services by discussing how to extend the SHERLOCK system [55].

SHERLOCK (System for Heterogeneous mobilE Requests by Leveraging Ontological and Contextual Knowledge) 
is a general and flexible system that provides Location-Based Services (LBSs) using semantic technologies and mobile 
agents. The output of the system depends indeed on the location of the user, but also on his/her context, understood in 
a more general sense. SHERLOCK is a knowledge-based system that uses ontologies to represent the knowledge of 
an application domain (objects and interesting areas in a scenario) and the user context. Then, an ontology reasoner 
is used to discover implicit knowledge which is taken it account to answer user requests. The system can be used 
from both fixed and mobile devices. It has been applied to different application scenarios, such as recommendation 
of transportation means, helping firefighting, camera selection for live broadcasting of sport events, or emergency 
management.

Let us focus on the recommendation of transportation means (see Fig. 5). Sherlock uses some background knowl-
edge, stating for example that PublicTransport is a subclass of TransportationMean, and that Cab and Tram are 
subclasses of TransportationMean. Such general schema is populated with concrete instances. For example, cabLi-
cense4815162342 is an instance of Cab tramLine1 is an instances of Tram. By using an ontology reasoner, both 
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Fig. 5. Snapshot of SHERLOCK: recommendation of transportation means.

instances can be inferred to belong to the class TransportationMean. Each transportation mean has some properties 
that can be used to compute the best alternative, such location, direction, speed, or price.

So far, it is possible to ask SHERLOCK to retrieve transportation means that satisfy some strict requirements 
specified with thresholds, e.g., cheaper than a given price, closer than a given distance, or faster than a given time. 
However, while this can be acceptable in some applications, it seems interesting to extend the system with flexible 
queries, so for instance closeness and user satisfaction with the price are a matter of degree. To do so, a possible 
solution is to use fuzzy ontologies with fuzzy datatypes representing the possible values of the linguistic variables 
(such as location or price as fuzzy membership functions. For example, a fuzzy price LessThan10Euro can be defined 
using a function left(10, 15), so that a price of 11 e belongs to LessThan10Euro with degree 0.9. However, providing 
a definition for those fuzzy membership functions is not a trivial step for a non-expert and domain knowledgeable 
user.

As an option, we may use Fudge to compute the values of the fuzzy datatypes. We can ask some domain experts, 
or other users, to provide their individual definitions for the fuzzy membership functions, and then use any of the 
discussed linguistic aggregation operators to compute a consensual definition for each fuzzy datatype. For instance, 
we can assign a weight to each expert/user (e.g. according to his/her professional experience in the field) and use 
CONV–LRF, CONV–RRF, or WMEAN. We may also determine the vector of weights from a fuzzy quantifier or an 
orness value and use LOWA–LRF, LOWA–RRF, or FOWA.6

6 This may also make it possible to evaluate how well the tool may perform in practice, which we leave for further research.
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7. Conclusions and ideas for future work

In this paper, we have solved the problem of building a single fuzzy datatype from multiple fuzzy datatype defini-
tions by using linguistic aggregation operators. Our proposal supports datatypes expressed in any fuzzy membership 
function type available in the Fuzzy OWL 2 language (a de-facto standard to represent fuzzy ontologies), and is imple-
mented in a freeware tool (named Fudge). While aggregation operators have been previously used in fuzzy ontologies 
to combine numerical values in [0, 1], we focus on the aggregation of fuzzy membership functions.

Our approach can use new and existing aggregation operators. In particular, we have proposed two new operators, 
namely a left recursive form of the convex combination (CONV–LRF) and of the linguistic OWA (LOWA–LRF). 
An empirical analysis shows that CONV–LRF and the standard convex combination (CONV–RRF) usually coin-
cide, but CONV–LRF has a slightly higher orness degree. Regarding existing aggregation strategies, we have studied 
CONV–RRF, standard linguistic OWA (LOWA–RRF), weighted mean (WMEAN), and fuzzy OWA (FOWA). We 
have discussed the most relevant characteristics of all these aggregation strategies, e.g. the possibility to assign a 
weight to a specific expert, and the possibility to obtain as an output a value which was not provided by any expert. 
Furthermore, we have shown how to obtain the weights from fuzzy quantifiers or an orness value in problems with 
incomplete data —in which not all experts provide a definition for every fuzzy datatype.

In addition, we have presented the main features of Fudge, such as two user interfaces (one for desktop computers 
and another one for Android devices), and the process for generating a consensual OWL 2 ontology from several 
Fuzzy OWL 2 input files with different fuzzy datatype definitions.

We have illustrated our approach with a concrete use case: extending a real ontology-based system providing 
location-based services to support flexible queries by aggregating the fuzzy datatype definitions of several experts 
through a consensual fuzzy ontology. From the example we can conclude that, in general, any existing fuzzy ontology-
based application could benefit from our proposal to build agreed fuzzy datatypes.

Concerning future work, a first idea is to wrap our implementation as a Protégé plug-in [34] in order to better 
integrate the tool into the (fuzzy) ontology development process. This way, it would be possible to directly create a 
fuzzy ontology, refine it with the opinion of other experts, and query the aggregated ontology from Protégé. Right 
now, these steps can be carried out, but an intermediate step involving Fudge is needed. The plug-in may also be good 
for gathering data from user usage to carry out a more extensive experimental validation.

The modular design of Fudge makes it very easy to incorporate more fuzzy operators. Therefore, we plan to 
add more general linguistic aggregation operators, e.g., some not verifying internality or assuming a vector of non-
numerical weights [51]. More general linguistic operators also include the linguistic weighted OWA [47] or the fuzzy 
triangular ordered weighted arithmetic operators (based on a t-norm and a t-conorm) [39]. It would be interesting to 
support different quantifiers, or alternative rankings between fuzzy numbers.

Last but not least, it would be interesting to study other scenarios in which the experts are allowed to use already 
existing linguistic terms, possibly different to the labels used by other experts. To this aim, we plan to leverage existing 
work on defining reasoning-preserving mappings between local linguistic terms [1].
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Appendix A. Snapshots of fudge

Fig. A.6. Snapshot of Fudge: selection of input files and aggregation operator.

Fig. A.7. Snapshot of Fudge: vector of weights.
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Fig. A.8. Snapshots of Fudge: selection of right-shoulder quantifier.

Fig. A.9. Snapshots of Fudge: selection of linear quantifier.
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Fig. A.10. Snapshots of Fudge: selection of power quantifier.

Fig. A.11. Snapshots of Fudge: customized picture for a power quantifier.
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Fig. A.12. Snapshot of Fudge: computing the weights from an orness value.

Fig. A.13. Snapshots of Fudge app: (a) set of input fuzzy ontologies and aggregation operator, (b) quantifiers interface, and (c) customized picture 
for a right-shoulder quantifier.
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Fig. A.14. Snapshots of Fudge app: (a) interface for recursive operators, (b) LFR vector of weights, and (c) vector of weights for CONV and 
WMEAN.
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