000101169 001__ 101169 000101169 005__ 20210902121827.0 000101169 0247_ $$2doi$$a10.1039/d0nr00322k 000101169 0248_ $$2sideral$$a118332 000101169 037__ $$aART-2020-118332 000101169 041__ $$aeng 000101169 100__ $$aJaafar, M. 000101169 245__ $$aCustomized MFM probes based on magnetic nanorods 000101169 260__ $$c2020 000101169 5060_ $$aAccess copy available to the general public$$fUnrestricted 000101169 5203_ $$aFocused Electron Beam Induced Deposition (FEBID) for magnetic tip fabrication is presented in this work as an alternative to conventional sputtering-based Magnetic Force Microscopy (MFM) tips. FEBID enables the growth of a high-aspect-ratio magnetic nanorod with customized geometry and composition to overcome the key technical limitations of MFM probes currently on the market. The biggest advantage of these tips, in comparison with CoCr coated pyramidal probes, lies in the capability of creating sharp ends, nearly 10 nm in diameter, which provides remarkable (topographic and magnetic) lateral resolution in samples with magnetic features close to the resolution limits of the MFM technique itself. The shape of the nanorods produces a very confined magnetic stray field, whose interaction with the sample is extremely localized and perpendicular to the surface, with negligible in-plane components. This effect can lead to a better analytical and numerical modelling of the MFM probes and to an increase in the sensitivity without perturbing the magnetic configuration of soft samples. Besides, the high-aspect ratio achievable in FEBID nanorod tips makes them magnetically harder than the commercial ones, reaching coercive fields higher than 900 Oe. According to the results shown, tips based on magnetic nanorods grown by FEBID can be eventually used for quantitative analysis in MFM measurements. Moreover, the customized growth of Co- or Fe-based tips onto levers with different mechanical properties allows MFM studies that demand different measuring conditions. To showcase the versatility of this type of probe, as a last step, MFM is performed in a liquid environment, which still remains a challenge for the MFM community largely due to the lack of appropriate probes on the market. This opens up new possibilities in the investigation of magnetic biological samples. 000101169 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E13-20R$$9info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823717-ESTEEM3$$9info:eu-repo/grantAgreement/ES/MINECO-FSE/BES-2015-072950$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-2-R$$9info:eu-repo/grantAgreement/ES/MINECO/RED2018-102627-T 000101169 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000101169 590__ $$a7.79$$b2020 000101169 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b62 / 333 = 0.186$$c2020$$dQ1$$eT1 000101169 591__ $$aPHYSICS, APPLIED$$b23 / 160 = 0.144$$c2020$$dQ1$$eT1 000101169 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b32 / 178 = 0.18$$c2020$$dQ1$$eT1 000101169 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b29 / 106 = 0.274$$c2020$$dQ2$$eT1 000101169 592__ $$a2.037$$b2020 000101169 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1 000101169 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1 000101169 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000101169 700__ $$0(orcid)0000-0001-6771-6941$$aPablo-Navarro, J. 000101169 700__ $$aBerganza, E. 000101169 700__ $$aAres, P. 000101169 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, C.$$uUniversidad de Zaragoza 000101169 700__ $$aMasseboeuf, A. 000101169 700__ $$aGatel, C. 000101169 700__ $$aSnoeck, E. 000101169 700__ $$aGómez-Herrero, J. 000101169 700__ $$0(orcid)0000-0001-9566-0738$$ade Teresa, J.M.$$uUniversidad de Zaragoza 000101169 700__ $$aAsenjo, A. 000101169 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000101169 773__ $$g12, 18 (2020), 10090-10097$$pNanoscale$$tNanoscale$$x2040-3364 000101169 8564_ $$s1113531$$uhttps://zaguan.unizar.es/record/101169/files/texto_completo.pdf$$yPostprint 000101169 8564_ $$s1168549$$uhttps://zaguan.unizar.es/record/101169/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000101169 909CO $$ooai:zaguan.unizar.es:101169$$particulos$$pdriver 000101169 951__ $$a2021-09-02-10:12:58 000101169 980__ $$aARTICLE