000101183 001__ 101183 000101183 005__ 20241024130536.0 000101183 0247_ $$2doi$$a10.1109/EMBC.2019.8856400 000101183 0248_ $$2sideral$$a122973 000101183 037__ $$aART-2019-122973 000101183 041__ $$aeng 000101183 100__ $$0(orcid)0000-0002-0690-3193$$aPelaez Coca, M.D. 000101183 245__ $$aPhotoplethysmographic Waveform in Hyperbaric Environment 000101183 260__ $$c2019 000101183 5060_ $$aAccess copy available to the general public$$fUnrestricted 000101183 5203_ $$aThe objective of this work is the identification of significant variations of morphological parameters of the photoplethysmographic (PPG) signal when the subjects are exposed to an increase in atmospheric pressure. To achieve this goal, the PPG signal of 26 subjects, exposed to a hyperbaric environment whose pressure increases up to 5 atm, has been recorded. From this record, segments of 4 minutes have been processed at 1 atm, 3 atm and 5 atm, both in the descending (D) and ascending (A) periods of the immersion. In total, four states (3D, 5, 3A and 1A) normalized to the basal state (1D) have been considered. In these segments, six morphological parameters of the PPG signal were studied. The width, the amplitude, the widths of the anacrotic and catacrotic phases, and the upward and downward slopes of each PPG pulse were extracted. The results showed significant increases in the three parameters related to the pulse width. This increase is significant in the four states analysed for the anacrotic phase width. Furthermore, a significant decrease in the amplitude and in both slopes (in the states 1A) was observed. These results show that the PPG width responds rapidly to the increase in pressure, indicating an activation of the sympathetic system, while amplitude and pulse slopes are decreased when the subjects are exposed to the hyperbaric environment for a considerable period of time. 000101183 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T39-17R-BSICoS$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/RTI2018-097723-B-I00$$9info:eu-repo/grantAgreement/ES/UZ/CUD2018-08$$9info:eu-repo/grantAgreement/ES/UZ/UZCUD2017-TEC-04 000101183 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000101183 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000101183 700__ $$0(orcid)0000-0003-2596-7237$$aHernando, A. 000101183 700__ $$0(orcid)0000-0002-8236-825X$$aSanchez, C.$$uUniversidad de Zaragoza 000101183 700__ $$0(orcid)0000-0003-0630-4366$$aLozano Albalate, M.T. 000101183 700__ $$0(orcid)0000-0002-4746-3139$$aIzquierdo, D. 000101183 700__ $$0(orcid)0000-0001-7285-0715$$aGil, E.$$uUniversidad de Zaragoza 000101183 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada 000101183 7102_ $$15007$$2520$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ingen.Sistemas y Automát. 000101183 773__ $$g(2019), 3490-3493$$pConf. proc. (IEEE Eng. Med. Biol. Soc., Conf.)$$tConference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.)$$x1557-170X 000101183 8564_ $$s99416$$uhttps://zaguan.unizar.es/record/101183/files/texto_completo.pdf$$yPostprint 000101183 8564_ $$s3482505$$uhttps://zaguan.unizar.es/record/101183/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000101183 909CO $$ooai:zaguan.unizar.es:101183$$particulos$$pdriver 000101183 951__ $$a2024-10-24-13:01:42 000101183 980__ $$aARTICLE