000101252 001__ 101252
000101252 005__ 20211008114733.0
000101252 0247_ $$2doi$$a10.1021/acsami.0c07364
000101252 0248_ $$2sideral$$a120630
000101252 037__ $$aART-2020-120630
000101252 041__ $$aeng
000101252 100__ $$0(orcid)0000-0001-5063-2987$$aAlmazán, F.
000101252 245__ $$aCu-BTC Functional Microdevices as Smart Tools for Capture and Preconcentration of Nerve Agents
000101252 260__ $$c2020
000101252 5060_ $$aAccess copy available to the general public$$fUnrestricted
000101252 5203_ $$aCu-based metal-organic framework (MOF) microdevices are applied in sampling and preconcentration of nerve agents (NAs) diluted in gaseous streams. An in situ electrochemical-assisted synthesis of a Cu-benzene-1, 3, 5-tricarboxylate (BTC) thick film is carried out to functionalize a Cu-modified glass substrate. This simple, rapid, reproducible, and easy-to-integrate MOF synthesis approach enables the microfabrication of functional micro-preconcentrators with a large Brunauer-Emmett-Teller (BET) surface area (above 2000 cm2) and an active pore volume (above 90 nL) for the efficient adsorption of nerve agent molecules along the microfluidic channel 2.5 cm in length. The equilibrium adsorption capacity of the bulk material has been characterized through thermogravimetric analysis after exposure to controlled atmospheres of a sarin gas surrogate, dimethyl methylphosphonate (DMMP), in both dry and humid conditions (30% RH at 293 K). Breakthrough tests at the ppm level (162 mg/m3) reveal equilibrium adsorption capacities up to 691 mg/g. The preconcentration performance of such µ-devices when dealing with highly diluted surrogate atmosphere, i.e., 520 ppbV (2.6 mg/m3) at 298 K, leads to preconcentration coefficients up to 171 for sample volume up to 600 STP cm3. We demonstrate the potentialities of Cu-BTC micro-preconcentrators as smart first responder tools for "on-field" detection of nerve agents in the gas phase at relevant conditions.
000101252 536__ $$9info:eu-repo/grantAgreement/ES/UZ-DGA/T57-17R-P$$9info:eu-repo/grantAgreement/EC/H2020/823895/EU/SMART SENSING FOR RAPID RESPONSE TO CHEMICAL THREATS ON SOFT TARGETS/SENSOFT$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823895-SENSOFT$$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2013-49068-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-79419-R
000101252 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000101252 590__ $$a9.229$$b2020
000101252 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b21 / 106 = 0.198$$c2020$$dQ1$$eT1
000101252 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b44 / 333 = 0.132$$c2020$$dQ1$$eT1
000101252 592__ $$a2.535$$b2020
000101252 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000101252 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1
000101252 593__ $$aMedicine (miscellaneous)$$c2020$$dQ1
000101252 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000101252 700__ $$0(orcid)0000-0002-4931-1358$$aUrbiztondo, M.A.
000101252 700__ $$aSerra-Crespo, P.
000101252 700__ $$aSeoane, B.
000101252 700__ $$aGascon, J.
000101252 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaría, J.$$uUniversidad de Zaragoza
000101252 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M.P.$$uUniversidad de Zaragoza
000101252 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000101252 773__ $$g12, 38 (2020), 42622-42633$$pACS appl. mater. interfaces$$tACS Applied Materials and Interfaces$$x1944-8244
000101252 8564_ $$s2808280$$uhttps://zaguan.unizar.es/record/101252/files/texto_completo.pdf$$yPostprint
000101252 8564_ $$s1116783$$uhttps://zaguan.unizar.es/record/101252/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000101252 909CO $$ooai:zaguan.unizar.es:101252$$particulos$$pdriver
000101252 951__ $$a2021-10-08-11:37:40
000101252 980__ $$aARTICLE