) Departamento de

»
» =
»

‘i Informatica e Ingenieria
80 deSistemas CS
1542 Universidad Zaragoza ROBOTI

UNIVERSIDAD DE ZARAGOZA

Trabajo Fin de Master

Aprendizaje automatico para
conduccion auténoma

Machine learning for autonomous driving

Autora: Beatriz Salvador Ramos

Directora: Ana Cristina Murillo Arnal

Co-director: Rubén Martinez Cantin

Méster en Ingenieria Electronica
Departamento de Informatica e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza

Noviembre 2020

Resumen

Actualmente, se estd produciendo un fuerte desarrollo de los vehiculos auténo-
mos, ya que pueden ayudar en diversos aspectos tanto cotidianos como medioam-
bientales. La conduccién auténoma se sustenta en diferentes disciplinas, entre
las que se encuentra el aprendizaje automatico. Concretamente el aprendizaje
profundo o deep learning, estd logrando los avances més importantes en este
ambito hoy en dia. Por ello, este proyecto se centra en el estudio de algunos
de los métodos mas utilizados en el estado del arte y en la implementacion
de un sistema de aprendizaje automatico para esta aplicacion, tras analizar los
modelos obtenidos con distintos algoritmos y variaciones de entre los estudiados.

El objetivo de este trabajo es la implementacién de un sistema de deep lear-
ning para aprender el control de velocidad y direcciéon de un vehiculo auténomo,
utilizando un simulador de conduccién auténoma. El uso de un simulador rea-
lista como el utilizado y la conexién con él durante el entrenamiento, es parte
importante cuando se utilizan algoritmos de aprendizaje por refuerzo como los
implementados en este trabajo por su caracteristica de aprender de la experien-
cia, mediante prueba y error, convirtiéndose en esencial en una aplicacién como
la estudiada, ya que hacer esto en el mundo real serfa inviable (costoso e insegu-
ro). Por ello, aunque la puesta en marcha no sea sencilla, es fundamental lograr
conectar estos algoritmos con los escenarios realistas del entorno de simulacién.
Dicho simulador, también se utilizara como plataforma para evaluar en distin-
tos escenarios los modelos obtenidos de manera segura. La idea es implementar
varias versiones del sistema, con diferentes algoritmos y modificaciones de ellos,
y evaluar los resultados obtenidos con cada una de estas versiones comparando
su rendimiento y generalizacion en distintos entornos.

En este proyecto, primero se aborda el estudio de las diferentes técnicas
utilizadas en conduccién auténoma y del software necesario para el desarrollo del
sistema, asi como la eleccién del simulador a utilizar, su instalacién y aprendizaje
de su manejo. En este trabajo se ha decidido utilizar el simulador realista de
conduccion auténoma Airsim, y entornos estandar de deep learning como Keras
y TensorFlow. Otra parte importante después del estudio ha sido la puesta
en marcha y el desarrollo de las distintas versiones y variaciones propuestas,
que proporcionan los diversos modelos a evaluar, con los que se implementa el
sistema final.

Como resultado de este trabajo, se ha desarrollado un sistema de conduccién
auténoma que consta de dos partes, aunando asi dos técnicas de aprendizaje
automatico distintas, siguiendo las propuestas de la literatura existente. Por un
lado, el aprendizaje por refuerzo, parte principal del sistema implementado, y
por otro lado, el aprendizaje supervisado, ya que se utiliza una red neuronal
convolucional (CNN) para obtener un modelo preentrenado que proporcionar a
los algoritmos de reinforcement learning como base para no partir desde cero
su entrenamiento.

Los algoritmos, resultados y entorno de simulacién y evaluacién de este pro-
yecto son interesantes dentro del grupo de investigacién en el que se ha rea-
lizado, ya que hay pocas soluciones completas que incluyan la interaccién con
el simulador realista que se utiliza en este proyecto. Los resultados obtenidos
son comparables o de mejor calidad que los ejemplos encontrados disponibles
publicamente, por lo cual este trabajo es un gran punto de partida para lineas
de investigacién que contindan en este sentido.

Indice general

Indice

Indice de figuras

Indice de tablas

1.

Introduccion

1.1. Motivacidén
1.2. Contexto de realizacién del trabajo
1.3. Objetivos y tareas
1.4. Contenido de la memoria

Machine Learning en conducciéon auténoma

2.1. Tipos de Machine Learning
2.1.1. Aprendizaje supervisado
2.1.2. Aprendizaje no supervisado
2.1.3. Aprendizaje por refuerzo

2.2. Algoritmos estudiados
2.2.1. Redes neuronales convolucionales (CNN)
2.2.2. Redes neuronales recurrentes (RNN)
2.2.3. Deep Q networks (DQN)

Simulacion para autonomous driving

3.1. Simulador de conduccién auténoma, L.
3.1.1. Simuladores existentes
3.1.2. Airsim

Sistema Implementado

4.1. Resumen general y partes del sistema
4.2. Algoritmo de aprendizaje supervisado implementado
4.3. Algoritmos de deep reinforcement learning implementados
4.4. Modificaciones implementadas en la DQN

Experimentacion y evaluacion
5.1. Configuracion de los experimentos
5.2. Experimentos realizados y evaluacion de los resultados
5.2.1. Andlisis de las distintas variaciones implementadas
5.2.2. Anadlisis de un modelo entrenado en el mismo escenario
que el encoder

= -
< =

3

UL W N = =

SO © ©0ooo g~

19
19
20
22
24

26
26
27
27

INDICE GENERAL

5.2.3. Actuacién en distintos escenarios . .

6. Conclusiones
6.1. Conclusiones técnicas.
6.2. Conclusiones personales
6.3. Problemas encontrados
6.4. Trabajo Futuro

Anexos

A. Detalles y resultados adicionales de los entrenamientos

A.1. Configuracién general de los entrenamientos
A.2. Base DQN con reward base (v0)
A.3. Base DQN con reward v1
A.4. Base DQN con reward v2
A.5. Double DQN con reward base
A.6. DQN con reward v2 entrenado en landscape

Bibliografia

II1

31

33
33
34
34
35

35

36
36
37
38
39
40
41

42

Indice de figuras

1.1.
1.2.

2.1.

2.2.

3.1.

3.2,

3.3.

3.4.

3.9.

4.1.

4.2.

5.1.

5.2.

Al

A.2.

A3.

Coche auténomo circulando por una carretera.
Diagrama de Gantt aproximado de la distribucion de tareas lle-
vadas a cabo en el proyecto. L.

Red neuronal recurrente con su bucle (izquierda) y esa misma red
desplegada (derecha).
Arquitectura de las deep Q) networks utilizadas en deep reinfor-
cement learning. Lo e

Sistema de conduccién auténoma con un enfoque modular frente
a otro end to end o de extremo a extremo.
Simuladores de conduccién auténoma: (a) Javascript racer, (b)
CARLA (fuente: [1]), (¢) TORCS y (d) AirSim.
Paso de imdagenes virtuales del simulador TORCS a imégenes
sintéticas realistas para entrenar un sistema de conduccién auténo-
ma utilizando reinforcement learning, propuesto en [2].
Escenarios existentes en el paquete de Airsim utilizado: (a) Neigh-
borhood, (b) city, (c) landscape y (d) coastline.
Ejemplo de dos imagenes del dataset utilizado para entrenar la
CNN. e

Esquema general del sistema implementado.
Arquitectura de la CNN utilizada.

Evolucién del tiempo en la carretera, tariving, durante diferentes
puntos del entrenamiento de los cuatro modelos analizados. (a)
DQN base (v0), (b) DQN reward v1, (¢) DQN reward v2 y (d)
DDQN. . . e
Evolucién del tiempo en la carretera, tgrijving, durante diferentes
puntos del entrenamiento del modelo DQN con reward v2 entre-
nado en landscapeo

Gréfica de evolucién de la loss durante el tiempo de entrenamien-
to (en horas) del modelo 1.
Grafica del valor de la reward acumulada del episodio en cada
iteracién del modelo 1.
Grafica de evolucion de la loss durante el tiempo de entrenamien-
to (en horas) del modelo 2. L.

v

INDICE DE FIGURAS

A4

A5,

A6.

AT

A8.

A9.

Gréfica del valor de la reward acumulada del episodio en cada
iteracién del modelo 2. oL L Lo L
Gréfica de evolucién de la loss durante el tiempo de entrenamien-
to (en horas) delmodelo 3.
Grafica del valor de la reward acumulada del episodio en cada
iteracién del modelo 3. Lo oL
Gréfica de evolucién de la loss durante el tiempo de entrenamien-
to (en horas) del modelo 4.,
Grafica del valor de la reward acumulada del episodio en cada
iteracién del modelo 4.
Grafica de evolucion de la loss durante el tiempo de entrenamien-
to (en horas) del modelo 5.

A.10.Gréfica del valor de la reward acumulada del episodio en cada

iteracion del modelo 5.

Indice de tablas

5.1. Tiempo de conduccién (tgriving) medio en 10 ejecuciones y des-
viacion estdndar con entrenamiento y validacion en el mismo es-
cenario (neighborhood). Lo L. 28

5.2. Tiempo de conduccién (tgriving) medio en 10 ejecuciones y des-
viacién estandar con entrenamiento y validacién en el mismo es-
cenario que el encoder (landscape). 30

5.3. Tiempo de conduccién (tgriving) medio de 10 ejecuciones y des-
viacién estandar con entrenamiento y validacion en distintos es-
CENATIOS. « « v v v v vt i e e e e e 32

VI

Capitulo 1

Introduccion

Este proyecto se centra en el estudio de diferentes técnicas de aprendizaje
automatico utilizadas en conduccién auténoma, explicando su fundamento y
analizando los retos que enfrentan y la manera en la que estos se abordan en
la literatura, y en la implementacién de un sistema de deep learning para dicha
aplicacién tras la evaluacién de dos técnicas diferentes. A continuacién se va a
exponer la motivacién y el contexto que han impulsado la realizacién de este
trabajo, asi como los objetivos que se esperan obtener y las tareas llevadas a
cabo en el mismo.

fuente:

https://www.youtube.com/watch?time_continue=13&v=t1Thdr305Qo&feature=emb_title

Figura 1.1: Coche auténomo circulando por una carretera.

1.1. Motivacion

Tanto los avances en el desarrollo de los vehiculos auténomos como el crecien-
te numero de investigaciones y éxitos del aprendizaje automatico, sobre todo
del deep learning cada vez mas en auge, han motivado la realizacién de este
proyecto y se van a explicar a continuacién.

 https://www.youtube.com/watch?time_continue=13&v=tlThdr3O5Qo&feature=emb_title

CAPITULO 1. INTRODUCCION 2

Avances en conduccién auténoma. Cada vez son més los avances en tec-
nologia, comunicaciones y robética que se producen actualmente y que tienen
influencia en diversos ambitos de nuestra vida cotidiana. En el transporte, dichos
avances han dado lugar a multitud de investigaciones sobre conduccién auténo-
ma en la Ultima década. El objetivo es el desarrollo de vehiculos auténomos|3],
de los que se puede ver un ejemplo en la Figura 1.1, que pueden ayudar a dismi-
nuir la contaminacion, el consumo de energia y el coste de los trayectos, reducir
los choques y la congestion en las carreteras, al mismo tiempo que aumenta
la accesibilidad del transporte a todo el mundo (por ejemplo a personas con
problemas de movilidad), siendo asi de gran ayuda en distintos aspectos tanto
cotidianos como medioambientales.

Aprendizaje automatico y deep learning. La conduccién auténoma se
sustenta en diferentes disciplinas, como por ejemplo las comunicaciones, la in-
genieria de hardware, de software o las tecnologias de Big Data e internet de las
cosas (IoT). Entre ellas se encuentra el aprendizaje automético, que gracias al
uso de varias técnicas basadas en deep learning, esta logrando los avances mas
importantes en este ambito hoy en dia. El deep learning no solo esta presente
en conduccion auténoma, se utiliza en muchos aspectos de la sociedad moderna,
desde filtrado de bisquedas o recomendaciones en la web, identificacion de obje-
tos en imagenes, hasta en dispositivos como camaras inteligentes y smartphones.
Este estd haciendo grandes avances en problemas muy variados como pueden
ser el reconocimiento de voz, de texto o incluso en el &mbito de la medicina en
temas como la genética y la prediccion de enfermedades.

La gran cantidad de aplicaciones en las que se utiliza el deep learning y el
gran numero de investigaciones y rapidos avances dentro de este campo, han sido
una de las principales motivaciones a la hora de elegir un trabajo relacionado
con el aprendizaje automaético, centrado ademads en una aplicaciéon que puede
ayudar en diferentes aspectos tanto de la sociedad como de la vida cotidiana y
muy en auge actualmente, como lo es la conducciéon auténoma.

1.2. Contexto de realizacién del trabajo

Este proyecto se ha realizado en el grupo de investigaciéon Robotics, Percep-
tion and Real Time (RoPeRT), dentro del Instituto de Ingenierfa e Investigacién
de Aragén (I3A). Se ha desarrollado bajo la supervisién de la directora de este
grupo y la ayuda y experiencia de otros integrantes de él.

El objetivo es implementar un sistema de deep learning basado en vision para
el control de un vehiculo auténomo, obteniendo los datos de entrenamiento de un
simulador. A pesar de que dentro del grupo no se habia utilizado un simulador
de este tipo y partia desde cero en su instalacién y estudio, si contaba con la
experiencia en visién por computador y aprendizaje automatico de los miembros
del grupo para poder iniciar un aprendizaje basico en esas materias.

Desde un punto de vista personal, gracias a trabajar en este laboratorio
he aprendido algunos de los fundamentos bésicos en vision por computador y
deep learning, campos que estdn muy presente en diversas aplicaciones en la
actualidad, y ademés también he visto como se trabaja dentro de un equipo,
algo muy importante de cara al futuro.

CAPITULO 1. INTRODUCCION 3

1.3. Objetivos y tareas

El objetivo principal de este proyecto es la implementaciéon de un sistema
de deep learning basado en vision para aprender el control de la velocidad y
direccién de un vehiculo auténomo, obteniendo los datos de entrenamiento de
un simulador. Para ello, se propone utilizar un entorno de simulacién realista de
vehiculos auténomos como AirSim[4], estudiar al menos una técnica de aprendi-
zaje supervisado y otra de aprendizaje por refuerzo para la aplicacién planteada,
y finalmente, tras el analisis de los algoritmos mds utilizados en la literatura en
el &mbito de la conduccién auténoma y la implementacion de alguna variacion,
desarrollar un sistema de conduccién auténoma.

Los problemas abordados son, en primer lugar, la obtencién de datos de
entrenamiento a partir de simulacién (eleccién del simulador, instalacién y uso
del mismo) y, en segundo lugar, el estudio, implementacién y evaluacién de
diferentes técnicas de deep learning para conduccién auténoma (aprendiendo a
utilizar un entorno de programacién tipico de Keras-Tensorflow con Python y
los fundamentos de las técnicas utilizadas).

Dentro de las tareas realizadas se encuentran las siguientes:

= Tarea 1. Instalacion y estudio del software necesario, tanto del entorno
de desarrollo Anaconda como del simulador Airsim (basado en Unreal
Enginel), y realizacién de tutoriales para la familiarizacion con ellos y el
aprendizaje de su funcionamiento.

s Tarea 2. Estudio y andlisis de diferentes técnicas de deep learning para
utilizarlas en el ambito de la conduccién auténoma, viendo cuales son las
més usadas en las investigaciones actualmente.

s Tarea 3. Puesta en marcha y comparacién de dos sistemas de aprendizaje
de parametros esenciales de la conduccién auténoma, como pueden ser
la velocidad o el control de la direccién del volante, utilizando entornos
estandar de deep learning como Keras y Tensorflow. Evaluacién de su
rendimiento y generalizacién en distintos entornos.

s Tarea 4. Propuesta e implementaciéon de modificaciones o adaptaciones
y evaluacion de estos resultados respecto a los previos.

s Tarea 5. Elaboracién de la documentacién del proyecto realizado.

Distribucién temporal. La distribucién temporal de cada una de las tareas
llevadas a cabo durante la realizacion del trabajo se puede ver en la Figura 1.2 de
manera aproximada. En la imagen cada fila representa una tarea y cada columna
un mes. Las columnas estan divididas en dos de forma que quede separado en
cada mes la primera quincena de la segunda. Se observan cinco tareas principales
que se corresponden con las detalladas en el parrafo anterior, con su duracién
aproximada.

Thttps://www.unrealengine.com/en-US/

https://www.unrealengine.com/en-US/

e

,

CAPITULO 1. INTRODUCCION

€ YIdvl

¥ Y3dvl

€ ¥3dvl

0EBST|STET

TEEST|STEeT

0EBST|STET

TEEGT| STeT

TERST|STRT

OEegr| STeT

TEBST|GTET

OfeST|STeT

Teeqr|STet

87ZEBGT|SIET

T ¥3dvl

T Y3dvl

TEBST|STeT

"AON

gole]

‘dag

08y

I

unr

*Ae Al

iqy

BT

"qa4

"au3

Figura 1.2: Diagrama de Gantt aproximado de la distribucién de tareas llevadas

a cabo en el proyecto.

CAPITULO 1. INTRODUCCION 5

1.4. Contenido de la memoria

En el capitulo 2 se explican los fundamentos del aprendizaje automatico, los
tres tipos que existen, las diversas aplicaciones en las que se utiliza, los algorit-
mos estudiados y ejemplos de estos en el ambito de la conduccién auténoma. El
capitulo 3 describe los motivos por los que el uso de los simuladores de vehiculos
auténomos es adecuado y muy utilizado hoy en dia, analizando las alternativas y
centrandose en la opcién elegida y en los datos utilizados y obtenidos con él. En
el capitulo 4 se detallan los pasos seguidos para la implementacion del sistema de
deep learning, explicando en primer lugar la red neuronal convolucional (CNN)
para clasificaciéon y posteriormente los algoritmos de reinforcement learning y
sus modificaciones. En el capitulo 5 se describen los experimentos llevados a
cabo en este trabajo y la evaluacién de los resultados obtenidos en ellos. Final-
mente, el capitulo 6 recoge las conclusiones extraidas durante la realizacién del
proyecto.

Como material adicional se incluye un anexo A en el que se detalla la confi-
guracion de los entrenamientos de todos los modelos desarrollados y se explican
los resultados obtenidos en cada entrenamiento (concretamente la loss y las
recompensas obtenidas durante el tiempo de entrenamiento).

Capitulo 2

Machine Learning en
conducciéon auténoma

Machine learnng. El aprendizaje automéatico o machine learning[5] es una
disciplina relacionada con la inteligencia artificial, que sirve para lograr que un
sistema, maquina o software, sea capaz de aprender automaticamente respecto
a una entrada dada, mediante la adaptacion de ciertos algoritmos. Se utiliza
en muchos aspectos de la sociedad moderna, desde filtrado de bisquedas o re-
comendaciones en la web, hasta en dispositivos como camaras inteligentes y
smartphones. Dentro del machine learning se distinguen tres tipos diferentes de
aprendizaje, el supervisado, el no supervisado y el aprendizaje por refuerzo o
reinforcement learning. Estos se distinguen por la informacién que recibe el agen-
te o sistema durante el aprendizaje, para saber lo que es correcto o incorrecto.
Los mas utilizados en vehiculos auténomos, el tema que atane a este proyecto,
son el aprendizaje supervisado y por refuerzo. Por esta razon, a continuacion en
la seccién 2.1, estos dos se explicaran mas en detalle.

Deep learnng. Sin embargo, dado que los métodos convencionales de machine
learning tienen limitaciones para procesar datos en su forma original y requieren
de gran experiencia para disenar extractores de caracteristicas que proporcio-
nen una representacion interna adecuada de la entrada, se utilizan métodos de
deep learning[6] cada vez en mayor medida. El deep learning permite que los
modelos computacionales que se componen de multiples capas de procesamiento
aprendan automdéticamente, y con diversos niveles de abstraccion, las represen-
taciones necesarias para la deteccion o clasificacién de datos sin procesar. Con
la composicién de suficientes transformaciones, se pueden aprender funciones
muy complejas, por esto las redes neuronales profundas (con una gran cantidad
de capas ocultas) encajan dentro de esta técnica.

Avances y aplicaciones. El deep learning estd haciendo grandes avances
en los ultimos anos en algunos de los problemas que se han resistido con las
técnicas cldsicas de visién por computador, tratadas en [7], y machine learning.
Algunos ejemplos de ello son las mejoras logradas con el uso de redes neuro-
nales convolucionales profundas en reconocimiento y detecciéon de objetos en
imégenes[8] y en reconocimiento de voz y audio[9], o los avances conseguidos

CAPITULO 2. MACHINE LEARNING EN CONDUCCION AUTONOMA 7

gracias a las redes recurrentes en el procesamiento de datos secuenciales como
el texto[10] y sonido. Gracias al deep learning se han logrado buenos resultados
incluso en dominios como el descubrimiento de farmacos[11], en traduccién de
idiomas[12] y comprensién del lenguaje natural[13], en genética[14] y prediccién
de enfermedades[15], as{ como también en el 4mbito en el que se centra este
articulo, la conduccién auténomall6]. Estos avances cada vez se dan més rapido
debido a que el deep learning requiere muy poca ingenieria manual, por lo que
puede aprovechar los aumentos en la cantidad de computo y datos disponibles,
lo que lo convierte en un foco de investigacion muy importante actualmente.

2.1. Tipos de Machine Learning

Como se ha dicho anteriormente, el machine learning se divide en tres tipos
de aprendizaje automatico: el supervisado, el no supervisado y el reinforcement
learning.

En dmbito de la conduccién auténoma, la mayor parte de investigaciones
actualmente estudian técnicas basadas en deep learning, como se ve en [17],
tanto de aprendizaje supervisado como de reinforcement learning, por ello en
esta seccion se van a desarrollar mas estos dos.

2.1.1. Aprendizaje supervisado

La forma méas comin de machine learning es el aprendizaje supervisado. En
este caso, el sistema aprende de un conjunto proporcionado de datos etiquetados,
es decir, de datos que tienen ejemplos de entrenamiento que ensenian cual es la
entrada, con su correspondiente etiqueta que se corresponde con su valor de
salida deseado.

Dentro de él, los algoritmos de deep learning maés utilizados para aplicaciones
de conduccién auténoma son las redes neuronales convolucionales (CNN) y en
menor medida las redes neuronales recurrentes (RNN). Por esta razén, en la
seccion 2.2, se van a explicar los fundamentos de cada uno de ellos.

Ademais de estos algoritmos, existe una forma de aprendizaje supervisado,
que es utilizada en conduccién auténoma, denominada aprendizaje por imita-
cién o Imitation learning (IL)[18]. La idea bésica que sustenta esta técnica es la
del entrenamiento a través de la imitacién del comportamiento de un experto.
Con esta idea de aprendizaje, se distinguen dos categorias: la clonacién de com-
portamiento y el aprendizaje por refuerzo inverso. Debido a que la clonacion de
comportamiento de extremo a extremo ha atraido interés dentro del a&mbito de
la conduccién auténoma recientemente, es la categoria que se va a analizar. En
esta forma de aprendizaje el sistema necesita recibir datos de entrenamiento con
imagenes u observaciones de la entrada asociadas con acciones del demostrador
o experto. De esta manera la red neuronal profunda, utilizada como clasificador
o regresor, aprende a reconocer patrones con los que asocia la entrada a los
pardmetros de control que permitan replicar la accién del experto.

La clonaciéon de comportamiento es una de las técnicas mas ampliamente
utilizadas en conduccién auténoma, como se ve en el ejemplo de [19], junto con
algoritmos de deep reinforcement learning, de los que se estudiard un ejemplo en
el siguiente apartado 2.2. El aprendizaje por imitacion tiene ventajas como la
capacidad de imitar al demostrador sin necesidad de interactuar con el entorno,

CAPITULO 2. MACHINE LEARNING EN CONDUCCION AUTONOMA 8

a diferencia del aprendizaje por refuerzo que se basa en la prueba y error, lo
cual es algo a tener en cuenta en el entrenamiento de vehiculos auténomos.
Aunque también tiene ciertos inconvenientes o limitaciones como por ejemplo
la dificultad para generalizar lo aprendido a nuevas tareas o escenarios como se
analiza en [1].

2.1.2. Aprendizaje no supervisado

En el aprendizaje no supervisado, sin embargo, se proporcionan al sistema
datos de entrenamiento sin etiquetar, es decir, sin el valor deseado de salida, por
lo que habitualmente se utilizan técnicas como el clustering o agrupamiento,
como se ve en el ejemplo «Deep clustering for unsupervised learning of visual
features»[20], para encontrar patrones en los datos.

2.1.3. Aprendizaje por refuerzo

Entre los dos tipos de aprendizaje anteriores, se encuentra el aprendizaje
por refuerzo o reinforcement learning, en el que el agente aprende patrones
gracias a la experiencia, interaccionando con el entorno, realizando acciones y
viendo si obtiene un resultado positivo o negativo. En este tercer tipo, hay un
enfoque de prueba y error, ya que lo que controla el aprendizaje no son los datos
etiquetados introducidos, sino una funcién de recompensa que le indica si las
acciones llevadas a cabo son correctas o no, de manera que el agente adapte su
estrategia en funcién de esta recompensa.

Este método ha sido ampliamente utilizado en tareas de control durante
mucho tiempo, y actualmente, la mezcla de reinforcement learning, del que hay
una extensa descripcién en [21], con deep learning es uno de los enfoques mds
prometedores en tareas como la conduccién auténoma, como se expone en « Deep
reinforcement learning framework for autonomous driving»[22]. Esta combina-
ci6n ha dado lugar a una técnica llamada deep reinforcement learning o deep
Q learning , dentro de la que existen diferentes algoritmos entre los que se
encuentran las deep @) networks que se van a analizar en el apartado 2.2.

A pesar de ser uno de los tipos de machine learning méas utilizados en con-
duccién auténoma, tiene ciertos inconvenientes como los problemas de reprodu-
cibilidad que son habituales en esta técnica, estudiados en [23]. Esto se debe a su
necesidad de explorar el escenario realizando distintas acciones para obtener la
recompensa correspondiente, ya que el entorno objetivo puede variar cada vez y
un modelado explicito de cada escenario posible no es una solucién realista. Por
altimo y en relacién también a esto surge otro problema, en el deep reinforce-
ment learning se requieren millones de pruebas y errores en el entorno objetivo
que, en el d&mbito de la conduccién auténoma, son imposibles de ensayar en el
mundo real ya que por coste e inseguridad es algo inviable. Ademaés existen li-
mitaciones al pasar de los resultados de los entrenamientos off line a las pruebas
en un sistema real , que aparecen en todos los métodos de deep learning en el
ambito del desarrollo de vehiculos auténomos.

CAPITULO 2. MACHINE LEARNING EN CONDUCCION AUTONOMA 9

2.2. Algoritmos estudiados

En este apartado se van a explicar tres de los algoritmos comtinmente utiliza-
dos en el &mbito de la conduccién auténoma mencionados en la seccién anterior
y se va a poner un ejemplo de su uso en dicha aplicacién.

2.2.1. Redes neuronales convolucionales (CNN)

Las redes neuronales convolucionales (CNN)[24] son un tipo de red neuronal
artificial que se utiliza principalmente para el procesamiento de imagenes y que
se clasifica dentro del aprendizaje supervisado. Se pueden ver como extractores
de caracteristicas y aproximadores de funciones no lineales muy complejas, que
logran identificar patrones y objetos en los datos de entrada a dicha red. Para
ello, son necesarias multiples capas ocultas de procesamiento que aprenden con
distintos niveles de abstraccion, ya que se van especializando cada vez més. En
cada capa se filtra la imagen con méscaras que la recorren y se obtiene una salida
o mapa de caracteristicas que pasa a la siguiente capa, hasta lograr reconocer o
clasificar esa entrada. Las CNN estan parametrizadas por un conjunto de pesos,
W, y por unos valores de sesgo o bias, b. Su objetivo es encontrar durante
el entrenamiento los valores de dichos pardmetros que hacen que el error sea
minimo, gracias al algoritmo de backpropagation y al gradiente descendente,
capturando asi las caracteristicas mas discriminantes de la imagen. Las redes
neuronales profundas explotan la propiedad de que muchas senales naturales son
jerarquias de composicion, es decir, que las caracteristicas de nivel superior se
obtienen componiendo las de nivel inferior. En las imagenes, las combinaciones
locales de bordes forman motivos, los motivos se ensamblan en partes y las partes
forman objetos reconocibles. Ocurre algo similar en el habla y el texto, desde
sonidos, fonemas, silabas, palabras hasta oraciones. La agrupaciéon permite que
las representaciones varien muy poco cuando los elementos de la capa anterior
varian en posicion y apariencia lo que permite generalizar, por ejemplo a la hora
de detectar un coche lo hace de igual manera independientemente de su color,
tamano, forma o posicién.

En el ambito de la conducciéon auténoma, se utiliza habitualmente tomando
como entrada iméagenes de carreteras vistas desde un vehiculo y como etiqueta
la accién que deberia realizar el automdvil si estuviera en ese entorno (por
ejemplo, el d4ngulo de posicién del volante), de lo que se ve un ejemplo en [25].
Ademas las CNN pueden identificar tanto la carretera como obstédculos en ella,
por ejemplo otros coches o peatones. También es comiin verlo como extractor de
caracteristicas que después se utilizara como base para realizar un entrenamiento
con métodos de reinforcement learning, haciendo asi que este segundo se realice
mas rapido. Esta tltima aplicacién de las CNN es la que se va a utilizar en el
sistema implementado del que se hablara en el capitulo 4.

2.2.2. Redes neuronales recurrentes (RNN)

Las redes neuronales recurrentes (RNN)[26] son el tipo de red neuronal arti-
ficial que, de entre las técnicas de deep learning, obtiene los mejores resultados
en el procesamiento de datos que tienen una secuencia temporal como el habla
o el texto, por lo que se utiliza tipicamente para aplicaciones como la traduc-
cién automatica. También se clasifican dentro del aprendizaje supervisado pero

CAPITULO 2. MACHINE LEARNING EN CONDUCCION AUTONOMA10

a diferencia de otros tipos de redes, estas tienen un ciclo de realimentacién, que
se puede desplegar para generar una arquitectura de red sin bucle para su mejor
comprensién (esto no se hace en la préctica), como se observa en la Fig. 2.1,
viendo asi que comparte los mismos pesos aprendidos en cada capa. Estas redes
procesan un elemento de la secuencia de entrada cada vez, manteniendo en sus
unidades ocultas un ”vector de estado” que contiene implicitamente informacion
sobre la historia de todos los elementos de la secuencia pasados. Las RNN tra-
dicionales no son adecuadas para datos secuenciales muy largos, ya que si la red
es muy profunda su gradiente de salida tiene dificultades para propagarse hacia
las capas anteriores. Esto se soluciona en las redes de memoria a corto y largo
plazo, LSTM, gracias a la incorporacion de tres puertas que controlan el estado
de entrada, de salida y de memoria.

En el desarrollo de vehiculos auténomos se aprovecha el buen rendimien-
to de las RNN, mads concretamente de la arquitectura LSTM, para aprender
la dindmica temporal en series de datos secuenciales. Se utiliza, por ejemplo,
en sistemas de prediccién de trayectorias de automdviles o peatones eficientes,
como se propone en «Probabilistic vehicle trajectory prediction over occupancy
grid map via recurrent neural network»[27], ya que en conduccién auténoma
se debe garantizar un alto grado de seguridad incluso en entornos inciertos y
dindmicamente cambiantes.

[Salida (0)] [Salida (1)] [Salida (2)] [Salida (t)]
_—t— f f f f
— — — —
t t t 1

[Entrada (0}] [Entrada(l)] [Entrada(z)] [Entrada (t)]

Figura 2.1: Red neuronal recurrente con su bucle (izquierda) y esa misma red
desplegada (derecha).

2.2.3. Deep Q networks (DQN)

El deep reinforcement learning es una técnica que aprovecha los buenos re-
sultados del deep learning y de redes neuronales profundas como las CNN, so-
bre todo a la hora de extraer caracteristicas para clasificar y detectar objetos en
imégenes, y lo junta con el enfoque de prueba y error del reinforcement learning.
Dentro de ella, uno de los algoritmos mas utilizados son las deep @ networks
(DQN)[28], que se pueden observar en la Fig. 2.2, en las que la salida de la red
no son clases, son valores Q dados a las acciones que el agente ha aprendido a
llevar a cabo en funcién del estado del entorno que ha identificado a la entrada.
El objetivo es encontrar los pesos 6ptimos de la red que hagan que se maximi-
ce el valor de Q en cada par estado-accion que haya recibido una recompensa
positiva del entorno.

Esta técnica ya ha tenido importantes éxitos como por ejemplo en los jue-
gos clasicos de Atari 2600, como se ve en los resultados de «Playing atari with
deep reinforcement learning»[29], donde se demostré que en una DQN el rein-

CAPITULO 2. MACHINE LEARNING EN CONDUCCION AUTONOMAT11

forcemnet learning es el responsable de la parte de planificaciéon de la accién,
mientras que el deep learning es el responsable de la parte de representacion
del entorno. También se ha probado, en [28], que con este tipo de algoritmos
se puede lograr un nivel de control humano e incluso mejor. En el ambito de la
conduccién auténoma hay numerosas investigaciones que estudian esta técnica,
como «Autonomous driving system based on deep @ learnig»[30], en las que se
estan obteniendo buenos resultados. Se espera lograr avances prometedores gra-
cias al deep reinforcement learning, que se estda convirtiendo en el método mas
utilizado en este campo, por ello es en el que méas se va a profundizar en este
proyecto.

Recompensa
Agente
e Ne—a(ad) B
Estado,s |[—@ ® +afsa2) Realizar accién, a
i. ® Q503 T —> Entorno
{ 2 Z@—alsan B

Observar estado, s

Figura 2.2: Arquitectura de las deep @ networks utilizadas en deep reinforcement
learning.

Capitulo 3

Simulaciéon para
autonomous driving

En este capitulo se van a exponer los motivos por los que es adecuado uti-
lizar un simulador de conduccién auténoma en esta aplicacién, algunos de los
simuladores existentes mas utilizados, el simulador elegido para la realizacion
de este proyecto y los datos utilizados y obtenidos de él.

3.1. Simulador de conducciéon autonoma

En conducciéon auténoma se dan ciertos retos y limitaciones, algunos de
ellos relacionados con el uso de técnicas de deep learning y otros con la propia
aplicacién, para los que puede resultar util el uso de simuladores.

Retos abordados en conduccién auténoma. Por un lado, en cuanto a los
retos ligados a la conduccién autéonoma, la mayoria radican en su caracter de
aplicacion critica para la seguridad y en las limitaciones que hay para pasar de
los modelos entrenados off line a la implementacién en un vehiculo auténomo
real. Estos han de tener la capacidad de lidiar con situaciones impredecibles
y tomar la mejor decisién y la mas segura para todos los implicados, incluso
en escenarios complejos de conduccién y con muchos elementos dindmicos. Pa-
ra ello, actualmente se tiende al reinforcement learning de extremo a extremo,
en el que se analizan experiencias reales de conduccién considerando el proce-
so completo, sin enfocarse en los detalles de los componentes individuales del
escenario ya que para el objetivo final no se necesita conocer cada parte del
escenario o de otro automovil, inicamente la posicién de la carretera y de los
obstéculos relevantes en ella, tanto peatones como otros vehiculos. Se centra solo
en las mejores decisiones para cada situacion, por lo que es la mejor alternativa
para esta aplicacién como ya se ha dicho anteriormente. Sin embargo, el uso
esta técnica implica la necesidad de realizar millones de pruebas y errores en el
entorno objetivo, incluyendo casos extremos y fuera de lo normal que, en esta
aplicacién debido a su naturaleza, son imposibles de ensayar y explorar con un
vehiculo en el mundo real, como ya se ha mencionado en la seccién 2.1, por lo
que el uso de un simulador puede resultar de gran ayuda.

12

CAPITULO 3. SIMULACION PARA AUTONOMOUS DRIVING 13

Limitaciones ligadas al uso de técnicas basadas en deep learning. Por
otro lado, el uso de técnicas basadas en deep learning conlleva la necesidad de
poseer una gran cantidad de datos, o bien etiquetados o bien obtenidos median-
te la exploracién del entorno, con los que poder entrenar el sistema. Esta es su
mayor limitacién, ya que a pesar de que el creciente desarrollo de las tecnologias
IoT y Big Data supone un gran avance en el reto de la adquisicién de los datos
y en el almacenamiento y procesamiento de petabytes de ellos, respectivamen-
te, en algunas aplicaciones siguen sin ser suficientes para lograr unos buenos
resultados. Ademas existen dos enfoques a la hora de implementar el sistema:
el tradicional con distintos bloques secuenciales para cada proceso, en los que
se puede utilizar deep learning o técnicas clésicas de visién de forma indepen-
diente en cada etapa, y el enfoque end to end o de extremo a extremo, ambos
mostrados en la Fig. 3.1. Actualmente se tiende a las arquitecturas end to end
en diversas aplicaciones, entre las cuales esta la conduccién auténoma, ya que
puede reemplazar las multiples etapas del enfoque tradicional, que en ocasiones
resuelve problemas por separado mas complejos que el del objetivo final, por
una sola red neuronal profunda, lo cual puede simplificar el sistema extrayen-
do solo la informacion relevante. Esta arquitectura requiere una cantidad aun
mayor de datos para lograr un funcionamiento 6ptimo y con mejores resultados
que en el enfoque modular. Por ello, su uso agrava el problema de la necesidad
de una gran suma de datos, necesarios para que no se produzcan problemas de
generalizacion a la hora de reconocer nuevos objetos, situaciones o escenarios, lo
cual es grave en aplicaciones criticas para la seguridad como lo es la conduccion
autéonoma. Este problema se acrecenta en entornos de conducciéon complejos,
con trafico denso y muchos agentes dindmicos.

Ventajas del uso de un simulador. Por todo ello, hoy en dia en vez de
analizar experiencias reales de conduccién, se tiende cada vez més a extraer
datos de simuladores de vehiculos auténomos para el entrenamiento sobre todo
de sistemas de deep reinforcement learning de extremo a extremo, como es el caso
de [31]. Con el uso de estos simuladores se consiguen cantidades casi ilimitadas
de datos, que pueden ser tanto de escenarios comunes en la conduccién auténoma,

Enfoque modular

S o 0 [® >

Sensado Perce.pmzn’l Y Abstraccion Plan Control Vel’nculo
localizacién auténomo
= . E =g | P
() | | Ao S e
T - N b <+
) - Detectar Comprender escena 2 = -
. UD?H’;I::\.I;AR carretera/objetos - Mapear - Politica de * Acelerar Q - \ ®
% - Segmentacion - Predecir conduccién -Frenar ° > °\
- Ultrasonidos L SLAM - Planear trayectoria Direccién de volante|

fiolides
) L
Enfoque end to end

Figura 3.1: Sistema de conduccién auténoma con un enfoque modular frente a
otro end to end o de extremo a extremo.

CAPITULO 3. SIMULACION PARA AUTONOMOUS DRIVING 14

como de situaciones extremas de una manera totalmente segura, atajando asi
algunos de los problemas relativos a esta aplicacién asi como de limitaciones
ligadas al uso de técnicas de deep learning mencionados anteriormente. El uso
de simuladores permite obtener la gran cantidad de datos requerida, siendo
una fuente adecuada para algoritmos de deep learning de extremo a extremo,
que permiten que una red neuronal profunda asigne la entrada sin formato
(en bruto) a la salida directa, como los utilizados en conduccién auténoma y
en este proyecto. La posibilidad de obtener una gran suma de datos mejora
problemas de reproducibilidad y disminuye en buena medida los problemas de
generalizacién al llevar a cabo comportamientos de conduccién mas realistas
y desafiantes durante el entrenamiento que los que se podrian realizar con un
coche en el mundo real. También a la hora de realizar las pruebas y errores
necesarios en reinforcement learning de manera segura, que son inviables en un
entorno objetivo real, es util el uso de simuladores asi como lo es para validar
los modelos entrenados.

3.1.1. Simuladores existentes

Respecto a dichos simuladores de conduccién auténoma, hay de dos tipos,
unos que ofrecen un aspecto similar al de un videojuego, mas virtual e irreal,
y otros que tienen un aspecto mucho mas realista, mas similar a los escenarios
que se puede encontrar un vehiculo auténomo en el mundo real.

Simuladores irreales. Ejemplo de los primeros son Javascript racer utilizado
n [31] o TORCS (The open racing car simulator)[32], que es mas conocido y
utilizado en multitud de investigaciones como se puede ver en «Deepdriving:
Learning affordance for direct perception in autonomous driving»[16], «Deep
reinforcement learning framework for autonomous driving»[22] o «End-to-End
Autonomous Driving Decision Based on Deep Reinforcement Learning»[33]. Es-
te ultimo estad disenado como un juego de carreras pero se utiliza cominmente
como plataforma de investigacién.

Simuladores realistas. En cuanto a los segundos, son simuladores desarro-
llados mas recientemente con el propésito claro de producir avances en el ambi-
to de la conduccién auténoma, ya que probar algoritmos en el mundo real es
caro, inseguro y requiere mucho tiempo. Los mds utilizados actualmente son
CARLA[34], que es de cédigo abierto para apoyar el desarrollo, entrenamien-
to y validacién de sistemas auténomos de conduccién en entornos urbanos, y
AirSim[4], que esta construido sobre Unreal Engine y ofrece simulaciones realis-
tas tanto fisica como visualmente en variedad de condiciones y entornos y con
posibilidad de adaptarse a otro tipo de vehiculos o robots, como por ejemplo
drones. Se pueden ver resultados y validaciones de modelos que aprovechan el
potencial de CARLA en «Behavioral cloning from observation»[18], « Exploring
the limitations of behavior cloning for autonomous driving»[1] o «Controllable
imitative reinforcement learning for vision-based self-driving»[35], mientras que
en «Federated transfer reinforcement learning for autonomous driving»[36] o «
Autonomous driving via deep reinforcement learning»[37] exploran con el recien-
te AirSim. El aspecto de los escenarios en los cuatro simuladores mencionados
se puede ver en la Fig. 3.2.

CAPITULO 3. SIMULACION PARA AUTONOMOUS DRIVING 15

Figura 3.2: Simuladores de conduccién auténoma: (a) Javascript racer, (b) CAR-

LA (fuente: [1]), (¢) TORCS y (d) AirSim.

A pesar de las ventajas que ofrecen estos simuladores, con ellos aparece el
problema de adaptar los resultados obtenidos en simulacién al mundo real, aun-
que utilizando los més realistas este problema mejora en cierta medida. Otros es-
tudios como « Virtual to real reinforcement learning for autonomous driving»[2],
analizan la posibilidad de utilizar un simulador més sencillo (como TORCS)
cuyas imagenes de escenarios pasen, gracias a una red neuronal profunda, de
virtuales e irreales a imagenes sintéticas con escenas realistas manteniendo la
misma estructura del entorno. Con estas 1ltimas se entrena posteriormente el
sistema utilizando reinforcement learning, como se observa en la Fig. 3.3.

Sin embargo, aun con todos los avances que se estan produciendo y con el
uso de simuladores, la ampliacién al espectro completo de los comportamientos
dados en la conduccién sigue siendo un problema sin resolver. Al igual que lo es
el paso de los modelos entrenados en entornos virtuales con las técnicas de deep
learning aprendidas a sistemas y vehiculos en el mundo real, aunque trabajos
como [38] y [39] han mostrado resultados alentadores para el futuro respecto a

)

Encoder Decoder L Encoder Decnder

Discriminator Discri mmalcr
Reward
Raw Virtual State Synthesized Realistic State
Environment Agent

Action

Virtual Image \ Virtual Parsing

Synthes ized Real

Figura 3.3: Paso de iméagenes virtuales del simulador TORCS a imagenes sintéti-
cas realistas para entrenar un sistema de conduccién auténoma utilizando rein-
forcement learning, propuesto en [2].

CAPITULO 3. SIMULACION PARA AUTONOMOUS DRIVING 16

3.1.2. Airsim

Para este proyecto, se ha decidido utilizar el simulador de conduccién auténo-
ma en entornos realistas Airsim[4], dados los buenos resultados de este tipo de
simuladores en otras investigaciones. Este es uno de los desarrollados més re-
cientemente y se ha elegido por la gran variedad de escenarios y condiciones
realistas que posee. Otras razones para su eleccién son, la existencia de una
amplia documentacién sobre él debido a que se ha utilizado en multiples tra-
bajos, también de versiones mas reducidas del simulador que permiten entrenar
modelos de manera mas sencilla y con menos requerimientos hardware para su
uso y, ademds, ya se poseia experiencia en el manejo del motor grafico Unreal
Engine en el que esta basado.

Airsim es una plataforma de cédigo abierto que permite recolectar un gran
numero de datos de entrenamiento etiquetados en distintos entornos. Ofrece
simulaciones realistas y estd disenado para ser extensible a nuevos tipos de
vehiculos, plataformas hardware y protocolos de software. Este simulador tiene
como objetivo reducir la brecha entre la simulacién y la realidad para ayudar
al desarrollo de vehiculos auténomos, ya que desarrollar y probar estos algorit-
mos en el mundo real es un proceso largo, caro y a menudo inseguro, siendo
necesario transferir el aprendizaje que se lleva a cabo en simulacién a la reali-
dad. Por ello, es importante desarrollar modelos precisos del entorno y de la
dindmica del sistema, con la mayor riqueza y diversidad posible, para que el
comportamiento simulado imite de cerca el mundo real. Esto es logrado en gran
medida por Airsim, que ofrece simulaciones de alta fidelidad, ademas de que
sus componentes principales incluidos el motor de fisica, los modelos de vehicu-
los, los modelos de entorno y los modelos de sensores, estan disenados para ser
utilizados independientemente con dependencias minimas fuera de Airsim.

Extraccién de datos AirSim posee APIs (interfaz de programacién de apli-
caciones), descritas en su documentacién!, para que se pueda interactuar con
el vehiculo en la simulaciéon desde un entorno de programacion. Con ellas se
pueden obtener imagenes del simulador, validar la conexién con él, obtener el
estado del vehiculo (pardmetros como su velocidad, posicién dentro del escenario
o informacién sobre colisiones con elementos del entorno), controlar el vehiculo
(tanto su velocidad como el dngulo del volante para realizar giros), incluso se
pueden activar efectos de tiempo meteorolégico (como lluvia), etc. Gracias a
esto, se puede lograr una gran cantidad de datos etiquetados y muy variados,
ya que ademas de existir varios escenarios, es posible cambiar las condiciones de
estos (como el tiempo o la iluminacién), algo que en el mundo real podria llevar
dias o incluso meses. De este modo con Airsim podemos lograr, en primer lugar
obtener imagenes del simulador etiquetadas para formar un dataset. En segundo
lugar utilizar los escenarios para las pruebas y errores durante el entrenamiento
de algoritmos de reinforcement learning que solo se pueden entrenar en simula-
cién. En tercer lugar, se puede realizar clonaciéon de comportamiento guardando
una trayectoria realizada por el usuario a replicar por el agente, extrayendo del
simulador las posiciones objetivo y los parametros de conduccion que realiza el
vehiculo para realizar la trayectoria. Por tltimo, también proporciona un banco
de pruebas seguro para validar y evaluar modelos ya entrenados.

Ihttps://microsoft.github.io/AirSim/

https://microsoft.github.io/AirSim/

CAPITULO 3. SIMULACION PARA AUTONOMOUS DRIVING 17

Escenarios de Airsim. Se ha utilizado un paquete compilado del entorno de
simulacién Airsim, independiente y mas reducido que el simulador completo, del
repositorio de GitHub « AutonomousDrivingCookbook»?. Este contiene cuatro es-
cenarios distintos con caracteristicas muy diferentes: neighborhood en el que se
puede conducir por las calles de un vecindario, city en el que se ve una carretera
de ciudad por la que circulan otros vehiculos y hay mas elementos dinamicos,
landscape donde aparece una carretera de montana con diversas curvas y un
camino nevado y escarpado y, por ultimo, coastline en el cual se observa una
carretera con unos alrededores llenos de vegetacién y el mar. Se puede ver una
imagen de cada uno de los entornos descritos en la Figura 3.4. Se ha decidido
utilizar este paquete reducido debido a que con él se requieren menos requisitos
hardware y menos espacio y memoria. Ademas, el tiempo de preparacién previo
a la utilizaciéon del simulador es menor, ya que no es necesario compilar cada
escenario por separado, basta con ejecutar el paquete en la PowerShell de Win-
dows y darle como parametro el nombre del escenario que se desee abrir, siendo
asi més sencillo su uso para la familiarizacion con él pero manteniendo a la vez
una buena variedad de entornos y condiciones de conduccién.

Figura 3.4: Escenarios existentes en el paquete de Airsim utilizado: (a) Neigh-
borhood, (b) city, (c) landscape y (d) coastline.

Dataset. Ademds de esto para la red neuronal convolucional que se ha entre-
nado, para posteriormente utilizar ese modelo como encoder (modelo que haya
extraido y codificado las caracteristicas del entorno de conduccién de manera
previa a otro entrenamiento) o base para el algoritmo de reinforcement learning
y asi reducir el tiempo de entrenamiento necesario en este tltimo, se ha utilizado
un dataset del mismo repositorio de GitHub? mencionado en el parrafo anterior.

?https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/
DistributedRL

Shttps://github.com/microsoft/AutonomousDrivingCookbook/tree/master/
AirSimE2EDeepLearning

https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/AirSimE2EDeepLearning
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/AirSimE2EDeepLearning

CAPITULO 3. SIMULACION PARA AUTONOMOUS DRIVING 18

Las imégenes de este dataset pertenecen al escenario landscape de Airsim y en
ellas se observa el entorno con una unica camara frontal para la entrada visual,
como se ve en el ejemplo de la Figura 3.5.

El dataset se divide en dos partes, por un lado las imagenes y por otro fiche-
ros .tsv en los que para cada imagen contiene la etiqueta del angulo de direccion
del volante adecuado en ese momento. Ademaés las imégenes se dividen en dos
estrategias de conduccion, la normal y la de desvios, en las primeras el angulo
etiquetado es pequetio (cercano a cero) para que el coche vaya recto por la ca-
rretera, mientras que en las segundas los angulos son bruscos, llevando al coche
lado a lado de la carretera para que pueda corregirse si se estd saliendo o evitar
un obstaculo en la carretera, proporciondndole asi suficientes ejemplos de las
distintas situaciones que se pueden dar en la conduccién para el entrenamiento.
Todos estos datos se tratan, en primer lugar tomando solo la parte de interés
de cada imagen, la mitad de abajo en la que se encuentra la carretera, redu-
ciendo asi el tiempo de entrenamiento y evitando que el modelo se enfoque en
caracteristicas irrelevantes del entorno. Posteriormente se unen todos los datos
de los ficheros .tsv en un solo marco de datos, combindndolos en archivos .h5,
adecuados para grandes conjuntos de datos. Este conjunto final, tiene cuatro
partes: una matriz con los datos de la imagen, una matriz con el estado ante-
rior del coche que contiene la direccién del volante, el freno, el acelerador y la
velocidad, una matriz con las etiquetas correspondientes al angulo de direccion
normalizado en el rango de -1 a 1 y una matriz con datos sobre los archivos. El
marco final de datos se divide un 70 % para train, un 20 % para eval y un 10 %
para test.

Figura 3.5: Ejemplo de dos imégenes del dataset utilizado para entrenar la CNN.

Capitulo 4

Sistema Implementado

En este capitulo se detallan los pasos seguidos para llevar a cabo la im-
plementacion del sistema de conduccién auténoma. Explicando las partes y el
esquema general del sistema desarrollado, desde la red neuronal convolucional
utilizada para obtener el modelo que servird de encoder para dicho sistema,
hasta el algoritmo de reinforcement learning que se va a utilizar como base y
las variaciones implementadas en él para dar lugar al sistema final.

4.1. Resumen general y partes del sistema

En este trabajo se plantea un sistema de conducciéon auténoma que atina dos
técnicas de aprendizaje automatico distintas, como se ve en la Figura 4.1, por un
lado el aprendizaje supervisado ya que se utiliza una red neuronal convolucional
y por otro lado el aprendizaje por refuerzo, la parte principal del sistema desarro-
llado. Por lo tanto, dicho sistema consta de dos partes diferenciadas. En primer
lugar se entrena una red convolucional con los datos del escenario landscape de
Airsim, descritos en el apartado dataset de la subseccién 3.1.2. Esta red aprende
tUnicamente un parametro de conduccion, el dngulo del volante adecuado para
la situacién de cada imagen, y el modelo obtenido con ella servira como encoder
para que el algoritmo de reinforcement learning parta desde ahi. Su estructura
y funcionamiento se va a explicar en méas detalle en la seccién 4.2. En segundo
lugar, se utiliza un algoritmo de aprendizaje por refuerzo, que es el que realiza
la mayor parte del trabajo a la hora de aprender la tarea de conduccién, ya que
como se ha estudiado en capitulos anteriores, es la técnica mas usada y que me-
jores resultados esta obteniendo para esta aplicacion. Se analizan, implementan
y evalian distintos algoritmos y variaciones tipicos en este tipo de aprendizaje,
explicados en la secciéon 4.3. En este trabajo, los algoritmos de reinforcement
learning se entrenan en su mayoria en un escenario diferente al del encoder, en
este caso en netghborhood, realizando el coche acciones y pruebas online en el
simulador durante el entrenamiento, y ajustando a este nuevo entorno los pe-
sos del modelo proporcionado por la CNN, aunque también se entrena uno de
los algoritmos en el escenario landscape para asi analizar su funcionamiento en
distintos entornos. Estos algoritmos, no aprenden tinicamente el dngulo de giro
del volante como la CNN, aprenden también a controlar la velocidad (control
de acelerador y freno del vehiculo), una conduccién més completa.

19

CAPITULO 4. SISTEMA IMPLEMENTADO 20

[L { | { Modelo

LW — = QEEQ 4 R S
= . s P ;] t de la CNN
2= | = ¢ ¢ }

Pesos iniciales

del algoritmo | ALGORITMO DE REINFORCEMENT LEARNING
de RL

Recompensa

Agente

I:é
Estado, s =
B2

Entorno

q..f;g«;é'-
B Qsa1) § . o
®—afsa2) d Realizar accion, a

eee

Y@ —eals a) §

Observar estado, s

Figura 4.1: Esquema general del sistema implementado.

4.2. Algoritmo de aprendizaje supervisado im-
plementado

Como se ha descrito en la seccién anterior, en el sistema implementado se
utiliza como base para los posteriores algoritmos de aprendizaje por refuerzo un
modelo proporcionado por una red neuronal convolucional que predice el angulo
del volante dada una imagen. Dicha red es la que se va a explicar a continuacién.

Red neuronal convolucional (CNIN). Se utiliza una red neuronal convo-
lucional tomada de un repositorio de GitHub de Microsoft, desarrollador de
Airsim, llamado «AutonomousDrivingCookbook». El algoritmo « TrainModel»
utilizado se encuentra en la carpeta «AirSimE2EDeepLearning»'. Estd imple-
mentada utilizando Keras y TensorFlow, marcos de desarrollo tipicos en deep
learning. Esta red usa los datos de train y eval en ficheros .h5 separados, ya
tratados como se ha descrito en el apartado dataset de la subseccién 3.1.2, para
resolver un problema de regresion y devolviendo asi el angulo adecuado de giro
del volante. La arquitectura de esta red consta de la capa de entrada, a la cual
se le proporciona la imagen de entrada con su tamano esperado, diversas capas
ocultas convolucionales en las que su entrada es la salida de la capa anterior y
finalmente se anaden varias capas fully connected, sin embargo, en la primera
de ellas la entrada ya no es unicamente la salida de las capas convolucionales,
sino que ademas se le concatena el 1ltimo estado conocido del coche.

Ihttps://github.com/microsoft/AutonomousDrivingCookbook/blob/master/
AirSimE2EDeepLearning/TrainModel.ipynb

https://github.com/microsoft/AutonomousDrivingCookbook/blob/master/AirSimE2EDeepLearning/TrainModel.ipynb
https://github.com/microsoft/AutonomousDrivingCookbook/blob/master/AirSimE2EDeepLearning/TrainModel.ipynb

CAPITULO 4. SISTEMA IMPLEMENTADO 21

A continuacién se va a explicar dicha arquitectura, que se puede ver en la
Figura 4.2, en mas detalle. En primer lugar, se cuenta con tres capas convolu-
cionales (Conv2D), con 16, 32 y 32 filtros respectivamente de con un tamano de
3x3 cada uno de ellos, las cuales utilizan la funcién de activacién ReLu (tipica en
CNNs), y el relleno same en el argumento padding para solucionar el problema
de efecto de borde. Tras cada una de las capas de convolucién, se encuentra una
capa MaxzPooling2D (también hay tres capas de este tipo) que agrupan un érea
de 2x2 pixeles (filtro 2x2) y lo sustituyen por el valor méximo dentro de ella,
para asi reducir el tamano de los mapas de caracteristicas que salen tras las
convoluciones a la mitad. Después de esto hay un dropout, que lo que hace es
desactivar diferentes neuronas de la red para asi que se reduzca el overfitting o
sobreajuste durante el entrenamiento. En la red utilizada el parametro de esta
capa, que indica el porcentaje de neuronas desactivadas en cada iteracién, era de
0.2 pero se decidi6é cambiarlo a 0.5 ya que seguia habiendo algo de sobreajuste.
Ahora se pasa a anadir las capas fully connected, tres en total, con un dropout
de 0.5 como el descrito anteriormente entre ellas (en total dos dropout més).
Pero como ya se ha dicho anteriormente, como entrada a la primera de ellas se
concatena la salida tras el dropout que hay después de las convoluciones con el
estado del coche. Son capas dense, las dos primeras con 64 y 10 neuronas res-
pectivamente, mientras que la tltima, la capa de salida, tiene una tinica neurona
que es la que predice el valor numérico del dngulo del volante. Finalmente, a la
hora de compilar el modelo se utiliza el optimizador Nadam con un learning rate
diferente al dado en el repositorio (en vez de 0.0001 se utiliza uno un poco mas
grande, de 0.0005) y para la loss se utiliza la métrica mse (media de los erro-
res cuadraticos). El modelo obtenido se guarda para utilizarlo posteriormente y
partir desde él.

svucarirmos o
Q o
- @ o
N) ° °
= - : :
T P~ 1V S = B 7 TP © S
'~ L. s RS PEiea s 0= o
#hﬂn 5 ! — e e H =] o ®
- . i =™ @ o
- ‘ o) 5)
Q ®)
0 0
o
o
0
o
oo || Y) : j o]

Figura 4.2: Arquitectura de la CNN utilizada.

CAPITULO 4. SISTEMA IMPLEMENTADO 22

4.3. Algoritmos de deep reinforcement learning
implementados

Como parte fundamental del sistema implementado, se tiene el algoritmo
de reinforcement learning. Se parte desde el algoritmo de una deep @ network
(DQN) que utiliza Airsim del mismo repositorio de GitHub mencionado en la
seccién anterior, dentro de la carpeta DistributedRL?. Se utilizan como base los
codigos encontrados en dicho repositorio de distributed_agent.py, ri_model.py y
airsim_client.py vy los datos de road_lines.txt y reward_points.txt, en los cuales
se encuentran puntos aleatorios del escenario en los que iniciar la simulacion y
las posiciones de una trayectoria correcta dentro del escenario neighborhood que
sirven para calcular la recompensa obtenida en cada episodio respectivamente.
Primero se realiza un entrenamiento sin realizar ninguna modificacién en este
algoritmo que se explica en el siguiente parrafo y posteriormente, sobre él se
implementan distintas variaciones que se detallan més adelante.

Deep Q network (DQN). Para entrenar se lanza el algoritmo distribu-
ted_agent.py, en el que se importa airsim_client.py para posibilitar la conexién
y extraccién de datos del simulador durante el entrenamiento y ri_model.py en
el cual se encuentra la DQN.

Este cédigo en distributed_agent.py, como su nombre indica, estaba pensado
para entrenarse de manera distribuida en Azure mientras que en este trabajo
se va a hacer de manera local, por lo que el primer cambio realizado es quitar
las partes del codigo que se utilizan para el entrenamiento distribuido, dejando
tUnicamente la parte local. En este script, lo primero que se hace es inicializar
la clase agente con varios parametros proporcionados como argumentos por la
terminal como por ejemplo el batch size, el tamano del buffer de memoria para
guardar diferentes acciones en cada episodio, la épsilon minima para el algorit-
mo, el nimero de iteraciones tras el cual se guarda un checkpoint del modelo
en ese momento o distintos paths, entre otros. A continuacién, se crea un objeto
modelo de la clase RLModel cargando en él los pesos de la CNN explicada en la
seccion 4.2 y se realiza la conexién con Airsim para explorar el entorno y comen-
zar el aprendizaje. En el simulador se realizan varias acciones, hasta completar
el buffer de memoria, y con los datos obtenidos del simulador al completar el epi-
sodio se actualizan los pesos del modelo entrenando el algoritmo DQN. Dichas
acciones al principio son todas aleatorias, ya que el parametro épsilon tiene valor
1, pero conforme van realizandose iteraciones este valor va bajando lentamente
hasta llegar al minimo establecido, en este caso de 0.1, donde el 10 % de accio-
nes son aleatorias para que el vehiculo pueda seguir explorando, encontrando
acciones que generen mejores recompensas que las aprendidas mejorando asi la
conduccion y evitando que el agente se atasque durante el aprendizaje y pueda
seguir mejorando a lo largo del entrenamiento. Esto es un método denominado
epsilon-greedy, en el cual se puede ir disminuyendo épsilon de distintas maneras,
pero en este caso estd implementado de forma que el valor de épsilon se obtiene
restando en cada epoch un 0.003 al valor actual de épsilon hasta llegar al minimo
donde se queda constante.

’https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/
DistributedRL/Share/scripts_downpour/app

https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL/Share/scripts_downpour/app
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL/Share/scripts_downpour/app

CAPITULO 4. SISTEMA IMPLEMENTADO 23

Para que la red aprenda es muy importante un célculo adecuado de la re-
compensa o reward de cada episodio. En este caso, se calcula obteniendo del
simulador la posicién del coche en cada momento y hallando la distancia de es-
ta a los segmentos formados al tomar las coordenadas de un punto y el siguiente
de la trayectoria guardada en el archivo reward_points.tzt. A dicha distancia se
la multiplica después por una tasa a la cual decae la recompensa y se hace la
exponencial, obteniendo asi el valor de la recompensa correspondiente a la po-
sicién. En la recompensa, ademas de la posicién del coche, influyen la velocidad
y las colisiones, asignandoles en este caso una recompensa de cero tanto si hay
un choque como si el vehiculo estd parado (velocidad menor que 2). En la pri-
mera versiéon del sistema implementado esto no se ha modificado, se realizara
en variaciones posteriores, lo que si se ha hecho es anadir un pequeno codigo
para guardar los valores de la recompensa acumulada en cada episodio durante
el entrenamiento, para posteriormente poder representarla.

En cuanto a la arquitectura de la red utilizada y el algoritmo DQN pro-
piamente dicho, se encuentran en el script rl_model.py que se va a detallar a
continuacién. El algoritmo deep @) network combina el algoritmo Q-learning
con las redes neuronales profundas (DNN), las cuales utiliza para aproximar la
funcién Q. Se utilizan dos redes neuronales para estabilizar el proceso de apren-
dizaje. La primera, la red neuronal principal (en este caso action-model), esta
representada por los parametros 6 y se utiliza para estimar los valores Q del
estado, s, y accidén, a, actuales. La segunda, la red neuronal objetivo (en este
caso target_model), parametrizada por €, tiene la misma arquitectura que la
red principal pero se usa para aproximar los valores Q) del estado siguiente s’ y
la siguiente accién a’. El aprendizaje ocurre en la red principal, ya que la red
objetivo se congela (sus pardmetros no se cambian) durante varias iteraciones, y
después los parametros de la red principal se copian a la red objetivo, transmi-
tiendo asi el aprendizaje de una a otra, haciendo que las estimaciones calculadas
por la red objetivo sean maés precisas. La arquitectura de dichas redes, es muy
similar a la utilizada en la CNN descrita en la seccién anterior. La parte convo-
lucional consta de igual modo de tres capas Conv2D, seguidas cada una de ellas
de una capa de MaxPooling y tras todo ello un dropout. La parte de capas fully
connected difiere algo maés, teniendo en este caso inicamente dos capas Dense,
entre las cuales aparece un dropout. La primera tiene 128 neuronas mientras
que la segunda, que se corresponde con la capa de salida, consta de 5 neuronas,
una por cada accién posible, siendo cada accién un angulo de giro de volante
(dngulos normalizados entre -1 y 1: -1, -0.5, 0, 0.5 y 1). A la hora de compilar
el modelo se utiliza el optimizador Adam con un learning rate de 0.001 y para
el argumento loss la métrica de la media de los errores cuadraticos.

Una vez se conoce la arquitectura de las redes utilizadas se pasa a imple-
mentar el cdlculo de los targets en las DQN, ecuacién 4.1. Para ello, se realiza
una prediccién con el target_model de los valores Q correspondientes a todas las
acciones posibles de llevar a cabo en el estado siguiente y se toma el méximo
valor de Q obtenido tras dicha prediccién. A esto se le multiplica v, un factor
de descuento entre cero y uno que determina la importancia de las recompensas
futuras (si es cercano a cero solo tendrd en cuenta las recompensas actuales
mientras que si es cercano intentard que la recompensa sea alta a mas largo
plazo) y finalmente se le suman las recompensas. El valor obtenido de esta ope-
racion debe ser igual al valor de Q en el estado actual para las acciones elegidas,
por lo tanto se actualizan los valores Q en el action_model.

CAPITULO 4. SISTEMA IMPLEMENTADO 24

Q(s,a;0) =r +ymaz,Q(s',a’;0") (4.1)

Li(0;) =B aro[((r+ymazaQ(s',d';0") — Q(s,a;0))?] (4.2)

Tras esto, se implementa la ecuacién de Bellman con la que se calcula la fun-

cién de coste o loss, ecuacién 4.2. En ella, se realiza el cuadrado de la diferencia

entre ambos lados del igual de la ecuacién 4.1. Finalmente, en este cédigo se ha

anadido a la hora de realizar el fit del modelo un callback de Tensorboard que
permite la visualizacién de la loss durante el tiempo de entrenamiento.

Double deep Q network (DDQN). Se implementa también un algoritmo
distinto de reinforcement learning, utilizando ahora una double deep @ network
(DDQN) en lugar de una DQN simple. Una DDQNJ[40] es un algoritmo tipico
en deep reinforcement learning y el siguiente paso tras una DQN para intentar
obtener un modelo mejor. Se decide implementar para comparar los resultados
con los obtenidos anteriormente en la aplicacién de conduccién auténoma, ya
que se ha visto que es una variacion muy utilizada en otras investigaciones.
Se usa para reducir las sobreestimaciones que se producen en una DQN, ya
que el algoritmo piensa que la recompensa que va a obtener con los valores Q
que aprende serd mayor de lo que realmente obtendra. La solucién propuesta
en las DDQN consiste en separar la seleccion de la accién de su evaluacion,
primero decidiendo cuél es la mejor accién de todas las posibles con la red
principal (action_model) y después evaluando dicha accién en la red objetivo
(target_model) para conocer su valor Q, tal y como se observa en la ecuacién
4.3.

En este algoritmo no se cambia ni el calculo de la recompensa, ni la arqui-
tectura de las redes, inicamente se sustituye la parte del cédigo en rl_model.py
que se encarga del calculo de la ecuacion 4.1 por la ecuacién 4.3 como se ha
explicado.

Q(s,a;0) = +7Q(s', argmaza Q(s',a’;0); 0") (4.3)

4.4. Modificaciones implementadas en la DQN

Cambios en la reward. Una vez estudiado y analizado el algoritmo DQN
de base desde el que se parte en este proyecto, se procede a realizar algunas
variaciones en él con el fin de comparar los resultados de varios modelos e
intentar encontrar una implementacién que logre mejores resultados que dicho
algoritmo base.

Como primeras modificaciones se han propuesto dos variaciones en el cdlculo
de la recompensa:

» Variacién de la recompensa, vl (colisiones). En primer lugar se
decide dar una recompensa negativa si se produce una colisiéon con algin
elemento del entorno, en este caso de -10, en lugar de dar una recompensa
de cero. Esto se debe a que tanto un choque como que el vehiculo estuviera
parado tenian, en el algoritmo de base, la misma recompensa de cero
asignada, siendo una colisién un escenario mucho peor en la conduccién
de un vehiculo, una situacién que se debe evitar a toda costa.

CAPITULO 4. SISTEMA IMPLEMENTADO 25

» Variacién de la recompensa, v2 (colisiones + acelerones). Al cam-
bio realizado en la modificacién anterior se decide anadirle ademds una
recompensa en funcién de la aceleracion. Esta consiste en darle -5 cuando
el vehiculo tiene un valor de aceleraciéon muy alto, con el objetivo de que el
coche vaya a una velocidad mas o menos constante y sin dar acelerones. De
este modo, el coche obtiene una recompensa negativa con la realizacién de
dos acciones, los acelerones bruscos y las colisiones, siempre asignandole
la menor recompensa al peor caso que se debe evitar, en conduccion a los
choques.

Entrenamiento en distinto escenario. Con el algoritmo de DQN que me-
jores resultados se obtienen, en este caso con la implementacién de la variacion
de la recompensa v2 como se va a analizar en capitulo 5, se decide realizar
un entrenamiento en otro de los escenarios de Airsim. Se considera interesante,
ver que resultados se obtienen si se utiliza el mismo escenario que se usa para
entrenar el encoder (CNN), por ello se elige el escenario landscape.

Sobre el cédigo implementado en la variacién de la recompensa v2, en el
script distributed_agent.py, se precisan las siguientes modificaciones. En primer
lugar, a la hora de realizar la conexion con Airsim se debe cambiar el argumento
que selecciona el escenario de neighborhood a landscape. Después es necesario
obtener unos nuevos ficheros de reward_points.txt y road_lines.txt para este es-
cenario, ya que los proporcionados por el repositorio de GitHub utilizados en el
resto de algoritmos se corresponden con los puntos por los que pasa el coche en
una trayectoria correcta y coordenadas del escenario neighborhood, respectiva-
mente. Para la obtencion de dichos archivos, la parte mas importante para esta
modificacién, se ha escrito un pequeno programa llamado guarda_posicion.py.

En este programa lo primero que se hace es la conexion con Airsim, pero
en lugar de darle el control del vehiculo a los pesos de los modelos entrenados
como en la evaluacion, es el usuario el que mediante las flechas del teclado puede
mover el coche por el escenario, creando asi la trayectoria de referencia deseada
en dicho entorno con la que se calcularéd la recompensa. Después de conectarse
con el simulador se crea un bucle en el que se obtiene informacién de Airsim, en
concreto las coordenadas x e y del coche cada dos segundos. Con ellas, tomando
un punto y el siguiente se crea la variable segmento y cada segmento es escrito
en una linea del nuevo archivo creado llamado reward_points_landscape.txt, para
lograr un fichero de texto con el mismo formato que el dado para neighborhood.

Las puntos de road_lines.tzt, sin embargo, estan en un sistema de coorde-
nadas diferente, el de Unreal Engine. Para pasar del punto de inicio en este
escenario en coordenadas del vehiculo a coordenadas de Unreal hay que sumar-
le al primero un offset que esté definido en el cédigo distributed_agent.py como
car_start_coords. Ademads es necesario un pequeno ajuste més, en el escenario
neighborhood se comenzaba la simulacién en cada iteracion en una coordenada
de road_lines.txt diferente con un dngulo de inicio distinto (o de frente o girado
180 grados de manera aleatoria, ya que es un vecindario en el que ambos lados
de la carretera tienen salida). Sin embargo, el nuevo escenario es un camino muy
estrecho, con vallas a los lados y solo se puede avanzar, ya que detrds tiene una
pared de rocas, por lo que no tendria sentido iniciar la simulaciéon con un dngulo
aleatorio, por ello se deja el angulo adecuado fijo para que el vehiculo comience
enderezado en la carretera.

Capitulo 5

Experimentacion y
evaluacion

En este capitulo se va a detallar el set up utilizado para todos los experimen-
tos realizados y la configuracion concreta con los parametros determinados de
cada uno de ellos. Posteriormente se van a evaluar los resultados de los modelos
obtenidos, analizando y discutiendo su funcionamiento y el comportamiento del
vehiculo dentro de distintos escenarios del simulador Airsim.

5.1. Configuracion de los experimentos

Set up. Para realizar los experimentos ha sido necesario utilizar un ordena-
dor potente del laboratorio en el que se trabaja cuyas caracteristicas son: un
procesador Intel Core i7-6700 CPU @3.40GHz x 8, una memoria RAM de 32
GB y una GPU GeForce GTX 1070/PCle/SSE2.

Los cédigos del repositorio de GitHub! explicados en el capitulo 4 y utili-
zados como base para emprender este trabajo estaban desactualizados, por ello
en el entorno virtual creado en Anaconda se han instalado unas versiones, tanto
de Python como de las librerias esenciales, bastante anteriores a la ultima que
existe. Esto dificulté y alargd la puesta en marcha mas de lo previsto inicial-
mente porque no se sabia cuales eran las versiones exactas de todas las librerias
utilizadas, lo que dio problemas de compatibilidad en su instalacién. Concre-
tamente, se utiliza la version 3.6.12 de Python, la version 2.3.1 de Keras y la
versién 1.14.0 de TensorFlow para poner en marcha los programas de base y
que funcione también el paquete reducido del simulador utilizado, que al igual
que los cédigos tampoco usa la tltima version de Airsim.

Los datos y escenarios utilizados en todos los algoritmos ya se han explicado
tanto en el apartado dataset como en el de escenarios de Airsim del capitulo 3
respectivamente.

Dado que la velocidad del vehiculo es constante, como métrica de calidad del
modelo obtenido se va a medir el tiempo que aguanta el coche en la carretera
sin chocar con nada, viendo como evoluciona este tiempo en distintos puntos
del entrenamiento.

Thttps://github.com/microsoft/AutonomousDrivingCookbook

26

https://github.com/microsoft/AutonomousDrivingCookbook

CAPITULO 5. EXPERIMENTACION Y EVALUACION 27

En particular se calcula como la media de n ejecuciones para calcular el valor
esperado con respecto a las variaciones ambientales y perturbaciones:

n

tdriving = Z(tz)/n (51)

i=1

donde t; es el tiempo (en segundos) que el vehiculo logra conducir de manera
auténoma, es decir, permanecer en la carretera sin colisionar ni salirse de ella y
en este caso n = 10.

Ademads también se analiza su comportamiento en diferentes escenarios de
manera cualitativa durante la ejecucion de la evaluacién. Todos los modelos se
han entrenado aproximadamente durante 48 horas y los detalles de los entre-
namientos de cada uno de ellos, como la reward o recompensa acumulada por
episodio, la loss durante el entrenamiento y los hiperpardmetros elegidos, se
pueden ver en detalle en el Anexo A.

Modelos utilizados para los experimentos. Se han entrenado los siguien-
tes modelos con los algoritmos y variaciones detallados en el capitulo 4 para
realizar los experimentos de la seccién 5.2:

1. Base DQN con Reward_base. DQN versién 0: Se lanza el algoritmo de
base del repositorio AutonomousDrivingCookbook? sin cambios.

2. Base DQN con Reward_v1. DQN version 1: Se utiliza el algoritmo
DQ@QN con la variaciéon de la recompensa v1 detallada en 4.3, dando mas
penalizacién a las colisiones en el cédlculo de la reward.

3. Base DQN con Reward_v2. DQN versién 2: Se utiliza el algoritmo DQN
con la variacién de la recompensa v2 detallada en 4.3, donde a versién 1
se le anade una recompensa también negativa a las aceleraciones bruscas.

4. Double DQN con Reward_base. Cambio del algoritmo DQN por el
DDQN, utilizando el resto del cdédigo, incluido el célculo de la reward,
como en el experimento DQN version 0.

5. Base DQN con Reward_v2 entrenado en otro escenario. Mismo
c6digo que en el experimento 3 pero utilizando el escenario landscape du-
rante el entrenamiento en lugar del neighborhood.

5.2. Experimentos realizados y evaluacion de los
resultados

5.2.1. Analisis de las distintas variaciones implementadas

Objetivo. En el primer experimento se pretende evaluar, utilizando el simu-
lador, el comportamiento de los distintos algoritmos implementados, para deter-
minar cuél de los modelos obtenidos logra mejores resultados y tiene una mejor
actuacion en el mismo escenario en el que se ha entrenado (neighborhood).

?https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/
DistributedRL/Share/scripts_downpour/app

https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL/Share/scripts_downpour/app
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL/Share/scripts_downpour/app

CAPITULO 5. EXPERIMENTACION Y EVALUACION 28

Descripcion del experimento. En este experimento, en primer lugar se co-
necta con el escenario neighborhood para evaluar los modelos desarrollados en
el mismo entorno que el utilizado para su entrenamiento. Al haber guardado
varios checkpoints del modelo en diferentes puntos de su entrenamiento, se tie-
nen sus pesos en distintos momentos del aprendizaje. Esto sirve para poder ver
la evolucién de la conduccién durante el entrenamiento, ademéas de analizar los
resultados del modelo final obtenido. Para cada variaciéon implementada, se lle-
van a cabo cinco pruebas diferentes, correspondientes a cinco de los checkpoints
guardados aproximadamente en los momentos en los que se llevaba un tiempo
de entrenamiento de 10h, 20h, 30h, 40h y 50h (al finalizar los dos dias apro-
ximados de entrenamiento). Cada una de dichas pruebas, consiste en realizar
10 ejecuciones del algoritmo de evaluaciéon para obtener una media del tiempo
(en segundos), tariving, que el vehiculo logra permanecer en la carretera sin co-
lisionar ni salirse de ella. Los tiempos tgr;ving Obtenidos como resultado son los
que permiten analizar el desempeno de cada modelo, ademads de las valoraciones
cualitativas que el usuario puede realizar mientras se ejecuta la evaluacién, ya
que se puede ver el comportamiento del coche en el escenario de Airsim durante
la evaluacién.

Resultados. La Tabla 5.1 muestra en primer lugar el tiempo medio, t4riving,
y en segundo lugar la desviacién tipica entre paréntesis, tras las 10 ejecuciones
realizadas y la evolucién de este en cinco puntos distintos del aprendizaje del
modelo.

Modelo 10h entre- | 20h entre- | 30h entre- | 40h entre- | Modelo
evaluado | namiento namiento namiento namiento final
DQN 3.57s 3.89s 9.90s 10.27s 11.99s
base (v0) (0.48s) (0.54s) (1.93s) (2.48s) (4.21)
DQN 7.61s 8.39s 16.52s 16.45s 18.72s
reward v1 (2.23s) (2.30)s (3.69s) (4.68s) (4.84s)
DQN 7.93s 9.34s 10.49s 13.00s 18.85s
reward v2 (1.30s) (2.48s) (3.98s) (3.88s) (5.88s)
DDQN 4.31s 5.12s 5.78s 7.12s 10.74s
base (0.55s) (2.01s) (2.49s) (3.48s) (4.41s)

Tabla 5.1: Tiempo de conduccion (¢4riving) medio en 10 ejecuciones y desviacién
estdndar con entrenamiento y validacién en el mismo escenario (neighborhood).

Como se puede ver en la tabla 5.1, el modelo que mejor resultado obtiene
al finalizar el entrenamiento es el del algoritmo DQN con la versién 2 de la
reward, aunque con tiempos muy similares a los de la DQN con la versién v1 de
la reward. Esto se debe a que en ambos modelos, la colision esta penalizada con
una recompensa negativa, por lo que el vehiculo ha aprendido a intentar evitar
esta situacién de manera mas rapida que el DQN base. Sin embargo, de manera
cualitativa se ha observado que esto lleva también a que el coche decida la mayor
parte de las veces seguir recto en lugar de girar, en los cruces de carretera que
se encuentra. En cuanto a la DDQN no se han obtenido los resultados pensados,
se esperaba lograr un tiempo mejor que en la DQN base, sin embargo es algo
menor. Esto se debe a que la mejora de la DDQN respecto al DQN se suele ver

CAPITULO 5. EXPERIMENTACION Y EVALUACION 29

mas adelante, con un niimero de epoch y por tanto un tiempo de entrenamiento
del algoritmo mayor al realizado en este trabajo.

Ademas, la evolucién del tiempo en la carretera en cada uno de los cuatro
modelos se puede ver de manera mas clara en las graficas mostradas en la Figura
5.1. Tanto en esta figura como en la tabla anterior se observa como en el DQN
con reward v1 y en el DQN con reward v2 la conduccién mejora de manera més
rapida que en el DQN base, aguantando méas tiempo en la carretera incluso en
los primeros momentos del entrenamiento. En cambio, en la evolucién del tiempo
en la carretera de la DDQN, se ve como tiene un comportamiento similar a la
DQN base en un principio pero sin llegar a alcanzar el tiempo de esta en el
modelo final, aunque se observa una tendencia mas creciente en los puntos de
la DDQN que en los de la DQN baésica.

Con estos resultados, se elige como mejor modelo de entre los analizados la
DQN base con reward v2.

Evolucion del tiempo en la carretera (DQN v0) Evolucion del tiempo en la carretera (DQN v1)

16 16 o *

Tiempo (s)

o 1 3 3 4 5 6 0 1 2 3 4 5 6
Progresion del modelo Progresion del modelo

(a) (b)

Evolucion del tiempo en la carretera (DQN v2) Evolucion del tiempo en la carretera (DDQN v0)

Tiempo (s)
-
o
Tiempo (s)

Progresion del modelo Progresién del modelo
(c) (d)

Figura 5.1: Evolucién del tiempo en la carretera, tgriving, durante diferentes
puntos del entrenamiento de los cuatro modelos analizados. (a) DQN base (v0),
(b) DQN reward v1, (¢) DQN reward v2 y (d) DDQN.

5.2.2. Analisis de un modelo entrenado en el mismo esce-
nario que el encoder

Objetivo. Analizar la influencia de los datos que se utilizan en el encoder,
entrenando el algoritmo con mejores resultados del experimento anterior (DQN
con reward v2) en el mismo escenario del que se han sacado las imdgenes del
dataset para la CNN (landscape), y comprobando si el aprendizaje es més rapido
y la conduccién en este entorno mejor que la lograda entrenando el encoder y
el algoritmo de reinforcement learning en escenarios distintos.

Descripcién del experimento. En este experimento, se conecta con el es-
cenario landscape para evaluar el modelo DQN con reward v2 entrenado en

CAPITULO 5. EXPERIMENTACION Y EVALUACION 30

dicho escenario, realizando asi un anélisis de su rendimiento utilizando el mis-
mo entorno para el entrenamiento del encoder, el entrenamiento de la DQN y
la evaluacion. Al igual que en el experimento anterior, se han guardado diver-
sos checkpoints durante el entrenamiento, por lo que se puede analizar tanto el
proceso de aprendizaje como el comportamiento al finalizar, viendo asi si difiere
del caso en el que encoder y DQN estan entrenados en un escenario distinto y
la influencia que tiene en el aprendizaje de la conduccion los datos utilizados
en el encoder. Como en el experimento anterior, se calcula el t4jving medio de
diez ejecuciones en cinco momentos diferentes del entrenamiento. Los tiempos
obtenidos son los que se van a analizar en el apartado de resultados, asi como
las valoraciones cualitativas del usuario sobre el comportamiento del vehiculo
durante la evaluacién.

Resultados. La Tabla 5.2 muestra en primer lugar el tiempo medio, tariving,
y en segundo lugar la desviacién tipica entre paréntesis, tras las 10 ejecuciones
realizadas y la evolucion de este en cinco puntos distintos del aprendizaje del
modelo.

Modelo 10h entre- | 20h entre- | 30h entre- | 40h entre- | Modelo
evaluado namiento namiento namiento namiento final
DQN v2 2.94s 3.18s 3.94s 5.19s 5.34s
(landscape) (0.21s) (0.32s) (0.16s) (1.22s) (0.65s)
DQN 7.93s 9.34s 10.49s 13.00s 18.85s
reward v2 (1.30s) (2.48s) (3.98s) (3.88s) (5.88s)

Tabla 5.2: Tiempo de conduccion (¢griving) medio en 10 ejecuciones y desviacién
estandar con entrenamiento y validaciéon en el mismo escenario que el encoder
(landscape).

Como se observa en la tabla 5.2, el tiempo obtenido con el modelo final
entrenado en landscape es mucho menor que el del mismo algoritmo (DQN
con reward v2) entrenado en neighborhood. Esto se debe a que la carretera
existente en landscape es estrecha, con vallas, muchas curvas, subidas y bajadas
del terreno y cubierta de nieve (por lo tanto es un camino resbaladizo ya que
Airsim es realista en la fisica del escenario), a diferencia de las grandes rectas
llanas de neighborhood, como se ve en la Figura 3.4, siendo por tanto el primero
un entorno mas complicado.

Atendiendo ahora a la evolucién del ¢g5ving €n el modelo entrenado en lands-
cape, que también se muestra en la Figura 5.2, se puede ver que a lo largo del
aprendizaje va aumentando dicho tiempo, pero no lo hace de manera mas rapida
que en los casos en que el entrenamiento del encoder y del algoritmo de reinfor-
cement learning se realiza en un entorno distinto. Durante la evaluacion se ve
que no comienza ya con una trayectoria mas adecuada aunque el encoder utilice
datos del mismo escenario, por ello se extrae, que el entorno del que procedan
los datos utilizados en la CNN no tienen una gran influencia sobre el entrena-
miento posterior. Esto se puede deber a que en el encoder se tenia en cuenta
solo la mitad inferior de las imédgenes del dataset, fijindose asi en la direcciéon
de la carretera tnicamente y sin tener en cuenta el resto de aspectos del en-
torno (existencia de drboles, edificios, montanas...) y por lo tanto afectando del

CAPITULO 5. EXPERIMENTACION Y EVALUACION 31

mismo modo a los algoritmos de reinforcement learning entrenados en cualquier
escenario.

Lo que también se puede ver es que en los dos ultimos puntos de anélisis del
tariving €0 €l modelo (con 40h de entrenamiento y modelo final), este aumenta
més notablemente (tendencia hacia arriba) que en los checkpoints anteriores,
algo que también se ha podido apreciar viendo la mejora del comportamiento
del coche en el simulador durante la evaluacién, lo que lleva a pensar que con un
mayor tiempo de entrenamiento se podrian alcanzar unos resultados mejores.

Evolucion del tiempo en la carretera (DQN v2 landscape)
20
18
16

[
NS

Tiempo (s)
© ©

o N & oo
L 2
*

0 i 2 3 4 5 6
Progresion del modelo

Figura 5.2: Evolucién del tiempo en la carretera, tgriving, durante diferentes
puntos del entrenamiento del modelo DQN con reward v2 entrenado en lands-
cape

5.2.3. Actuacion en distintos escenarios

Objetivo. Analizar el comportamiento del coche evaluando los cinco modelos
propuestos en distintos escenarios, para estudiar asi la generalizacién a distintos
entornos de cada uno de ellos.

Descripciéon del experimento. FEn este experimento se realiza el analisis del
rendimiento de los modelos obtenidos al final del entrenamiento de cada ver-
sién en distintos escenarios. En este caso, como en los experimentos anteriores,
también se calcula el t4,ving de diez ejecuciones, pero sin analizar puntos inter-
medios del entrenamiento, tinicamente con el modelo final. Esto se lleva a cabo
en tres entornos distintos, en los que se incluye el escenario en el que ha sido en-
trenado el algoritmo de reinforcement learning (neighborhood en todos los casos
excepto en el ultimo modelo que ha sido entrenado en landscape), el del encoder
(landscape) y otro totalmente nuevo (coastline, aunque en el caso del dltimo
modelo entrenado en landscape tanto coastline como neighborhood son nuevos).
Los tiempos tgriving Obtenidos y las valoraciones cualitativas realizadas por el
usuario durante la evaluacién van a permitir el andlisis de la generalizacion de
los modelos desarrollados y su rendimiento en nuevos entornos.

CAPITULO 5. EXPERIMENTACION Y EVALUACION 32

Resultados. La Tabla 5.3 muestra el tiempo medio, tgriving, tras 10 ejecu-
ciones, y su desviacion tipica entre paréntesis, evaluando el modelo final en
distintos escenarios. En las cuatro primeras filas se muestran los resultados de
los 4 modelos entrenados en neighborhood mientras que la Ultima corresponde
al modelo entrenado en landscape.

En ella se puede observar, en cuanto a los cuatro primeros modelos, que el
tariving €0 los escenarios de landscape y coastline es notablemente menor que en
el escenario neighborhood de entrenamiento, siendo la modificacién de la DQN
con reward v2 la que mayores tiempos alcanza. Esto se puede deber a que son tres
escenarios con caracteristicas muy diferentes, como se muestra en la Figura 3.4
y se ha explicado en el capitulo 3, y por lo tanto resulta dificil la generalizacion
de un entorno a otro. Ademds cualitativamente durante la evaluacion se aprecia
que en los cuatro casos, el modelo desarrollado ha aprendido que ir recto en el
centro de la carretera es la opcién con la que obtiene recompensas mas altas
(va que en neighborhood hay grandes rectas de carreteras anchas y los giros en
cruces son mas complicados de realizar y hay mas posibilidades de chocar con
algo), por lo tanto es la accién que decide llevar a cabo en todos los escenarios,
lo cual muestra que no se estd generalizando bien. Las caracteristicas de cada
entorno, explican que el tgriving €0 coastline sea mayor que en landscape en
estos cuatro casos, ya que en landscape apenas hay rectas (la carretera ya tiene
al comienzo una gran curva cuesta abajo), mientras que en coastline la carretera
es algo mas ancha y no tiene un gran giro hasta varios metros mas adelante.

En la iltima fila, se ven los resultados del modelo entrenado en landscape,
en el que se observa que los tiempos medios de conduccién en los otros dos
escenarios tampoco son altos, como ocurre con el resto de modelos. También
durante la evaluacién se ha apreciado que el comportamiento del modelo en
todos los escenarios es el adecuado para la trayectoria de landscape (avanzar
recto entre dos y tres segundos y girar a la derecha después), por lo que este
modelo tampoco generaliza correctamente a los diferentes entornos. Del mismo
modo que en los otros modelos, los tiempos en neighborhood y coastline se
explican con las caracteristicas de cada entorno. Mientras que en neighborhood
hay una gran carretera recta y un giro a la derecha provoca un choque rapido
contra un edificio en ese lado, en coastline la carretera no tiene edificios con los
que chocar a sus laterales por lo que aguanta mas tiempo hasta chocar.

Modelo evaluado | Neighborhood | Landscape | Coastline
DQN 11.99s 4.46s 8.18s
base (v0) (4.21s) (0.90s) (1.88s)
DQN 18.72s 4.84s 14.76s
reward vl (4.84s) (0.51s) (0.21s)
DQN 18.85s 5.11s 15.30s
reward v2 (5.88s) (1.08s) (1.76s)
DDQN 10.74s 4.16s 6.54s
base (4.41s) (0.43s) (0.47s)
DQN v2 3.51s 5.34s 7.93s
(landscape) (0.42s) (0.65s) (0.80s)

Tabla 5.3: Tiempo de conduccion ({4riving) medio de 10 ejecuciones y desviacién
estandar con entrenamiento y validacion en distintos escenarios.

Capitulo 6

Conclusiones

Este capitulo presenta las conclusiones extraidas durante la realizaciéon de
este proyecto, tanto técnicas como personales, asi como los problemas abordados
en él. También se exponen algunas alternativas de trabajo futuro que se pueden
realizar partiendo de este proyecto.

6.1. Conclusiones técnicas

El objetivo principal de este proyecto era implementar y poner en marcha
un sistema de conduccién auténoma basado en técnicas de deep learning, utili-
zando un simulador para la extraccién de los datos necesarios, el entrenamiento
de los algoritmos y la evaluacién de los modelos desarrollados de manera se-
gura y facil. Este objetivo se ha cumplido, logrando aprender los fundamentos
de distintas técnicas de aprendizaje automatico, profundizando sobre todo en
algunos algoritmos de reinforcement learning. También conocer el manejo de
un simulador realista de conduccién como es Airsim, algo muy importante de
cara al entrenamiento y evaluacién de dichos algoritmos ya que necesitan que
el agente explore el entorno y realice muchas pruebas en él, algo que en el mun-
do real serfa inviable en el caso de vehiculos auténomos. Como conclusién de
ello, se ha comprobado la gran importancia y potencial que tienen este tipo de
simuladores en esta aplicacién asi como la adecuacién de las técnicas de deep
learning estudiadas, sobre todo de deep reinforcement learning como apuntaban
otras investigaciones actuales, para una tarea como la conduccién auténoma.

Tras la realizacién de los experimentos planteados, que se muestran en el
capitulo 5, se ha analizado que las modificaciones propuestas logran unos resul-
tados comparables o incluso de mejor calidad que los obtenidos con el ejemplo
del repositorio de GitHub « AutonomousDrivingCookbook» que se ha tomado co-
mo base para comenzar este proyecto. Se consigue asi un resultado satisfactorio,
dando lugar un trabajo que sirva de punto de partida para seguir investigando
en este ambito como se expone en la seccién 6.4 ya que hay muchos caminos
para seguir mejorando en este campo.

Ademaés, como conclusién més general, decir que el sistema implementado,
los resultados obtenidos y entorno de simulacién utilizado en este proyecto ser-
viran dentro del grupo de investigacién como base para continuar con otras
investigaciones en esta linea.

33

CAPITULO 6. CONCLUSIONES 34

6.2. Conclusiones personales

Personalmente, estoy satisfecha con el trabajo ya que me ha servido como
experiencia para ver como se trabaja en un laboratorio de investigacion, rodeada
de personas con mas experiencia de las que he podido aprender y las cuales me
han ayudado y aconsejado.

Elegi este trabajo debido a que los vehiculos auténomos son una aplicacién
que actualmente se estd investigando mucho y que se sustenta en un campo
tan en auge como el aprendizaje automatico y deep learning, en el cual estoy
interesada y del que me gustaria aprender mas. Esta decisién ha sido adecuada
ya que me ha permitido tanto aprender los fundamentos basicos de un algoritmo
de aprendizaje supervisado ampliamente utilizado para diferentes aplicaciones
como son las CNNs como de aprender qué es el aprendizaje por refuerzo e
implementar alguno de sus algoritmos mas tipicos, estudiando y analizando
otros trabajos de investigacion.

Ademas he mejorado en la programacién con Python, aprendiendo a utilizar
librerias tipicas de deep learning como son keras y TensorFlow, dentro de un
entorno virtual en la plataforma Anaconda. También me he dado cuenta de
la utilidad de los simuladores de conducciéon auténoma, comprobando por mi
misma el potencial que tienen al haber utilizado Airsim en este proyecto.

Pienso que todo lo aprendido, tanto la parte técnica como la de trabajo en
equipo, me puede servir en un futuro.

6.3. Problemas encontrados

Durante la realizacién de este proyecto se han tenido que abordar diversos
problemas. El primero fue encontrar documentacion y publicaciones cientificas
de calidad en el ambito de la investigacién académica y comprenderlos y anali-
zarlos de manera critica. Ademads se tuvo que aprender los fundamentos béasicos
de muchos algoritmos nuevos ya que no se tenia ningin conocimiento previo de
reinforcement learning.

Una vez adquiridos los conocimientos béasicos en el campo de aprendiza-
je automatico y la conduccién auténoma necesarios para empezar, aparecieron
problemas en el set up de un entorno adecuado en el que se pudieran implemen-
tar y evaluar los experimentos. Por un lado, el portétil del que se disponia no
era lo suficientemente potente para la realizacion de los entrenamientos con el
simulador, por lo que era necesaria la utilizacién de uno més potente del labora-
torio en el que se trabajaba con el que debia establecer conexién remota dada la
situaciéon sanitaria, la cual se logré tras varios intentos con diferentes métodos
y programas, utilizando finalmente Team Viewer. Por otro lado, el cédigo del
repositorio de GitHub AutonomousDrivingCookbook utilizado como base para
comenzar este trabajo, estaba desactualizado y requeria el uso de versiones mas
antiguas de Python, keras, TensorFlow y el resto de librerias necesarias, por lo
que se encontraron algunos problemas de compatibilidad en las versiones a la
hora de crear un entorno virtual adecuado en Anaconda e instalar dichos pa-
quetes, los cuales finalmente se lograron solucionar pero hicieron que la puesta
en marcha del proyecto fuera mas costosa de lo esperado. También el paque-
te reducido del simulador utilizado era antiguo, por lo que no tenia las ultimas
actualizaciones, aunque esto no ha afectado demasiado al desarrollo del trabajo.

Finalmente, el ultimo reto encontrado estd relacionado con la dificultad de
la aplicacién estudiada, la conduccién auténoma, ya que debido a esto, es com-
plicado obtener unos grandes resultados a la primera, ya que ain disponiendo
de un ordenador potente y con una buena tarjeta grafica necesitan de mucho
tiempo de entrenamiento. Por un lado, porque son necesarias miles de epoch
(incluso se realizan millones en algunos trabajos) para que el algoritmo empiece
a aprender y converja y, por otro lado, porque la simulacién de la conduccién se
realiza en tiempo real, por lo que cada episodio de simulaciones para llevarse a
cabo necesita un tiempo que va aumentando conforme el algoritmo aprende ya
que el vehiculo va aguantando un mayor tiempo en la carretera. El tiempo de
entrenamiento es un problema ya que se pueden llegar a necesitar dias, incluso
mas de una semana, para extraer buenos resultados.

6.4. Trabajo Futuro

Este proyecto es una base que se puede continuar desarrollando y profundizar
més en él, abriendo el camino a diferentes alternativas en las que se puede seguir
trabajando en un futuro.

El primer paso, puede ser con los mismos algoritmos estudiados en este
trabajo, realizar entrenamientos en un ordenador més potente y durante mas
tiempo para comprobar si los resultados que se pueden llegar a lograr con ellos
son mejores. También se puede entrenar el encoder de base (CNN) con una
mayor cantidad y més variada de datos, utilizando imagenes de otros escenarios
del simulador, para analizar de qué manera afecta esto al modelo final y si ayuda
a la generalizacion en distintos escenarios.

Otra alternativa, es seguir investigando algoritmos de deep reinforcement
learning estudiados en otras investigaciones y que hayan logrado buenos re-
sultados. Se pueden implementar muchos algoritmos. Un ejemplo es la dueling
DQN41], en el que los valores Q se dividen en dos partes distintas, la funcién de
valor, V(s), que dice cudnta recompensa obtendremos desde el estado actual y
la funcién de ventaja, A(s, a) que dice cudnto mejor es una accién respecto a las
demas, de manera que se propone que la red neuronal utilizada divida su capa
final en dos que estimen estas dos partes por separado y en la capa de salida
juntar ambas partes estimando en ella los valores Q. Otro ejemplo interesante
es el algoritmo rainbow[42], que combina los avances y ventajas de muchos algo-
ritmos de deep reinforcement learning y segun algunas investigaciones obtiene
los mejores resultados.

Para finalizar, una tltima posibilidad puede ser explorar los retos que se
abordan en el paso de un modelo entrenado en simulacién al mundo real, utili-
zando para ello alguno de los robots moviles disponibles en el laboratorio en el
que se utilice uno de los modelos obtenidos viendo asi su funcionamiento en un
sistema real.

Apéndice A

Detalles y resultados
adicionales de los
entrenamientos

A.1. Configuracion general de los entrenamien-
tos

Encoder. Para todos los entrenamientos se utiliza un mismo encoder entre-
nado con datos del escenario landscape.

Escenarios. En los cuatro primeros modelos se utiliza el escenario neighbor-
hood del simulador durante el entrenamiento del algoritmo de reinforcement
learning. En cambio, el iltimo se entrena con el escenario landscape.

Hiperparametros. Los hiperpardmetros elegidos son un batch size de 32,
un tamano de replay memory (buffer de memoria que guarda las acciones del
coche durante cada episodio) de 50, una batch update frequency (que concreta
cada cuantos batches se guarda un checkpoint del modelo) de 500, se define una
épsilon inicial de 1 que baja 0.003 en cada iteracién y una épsilon minima de 0.1,
un 7y o factor de descuento de 0.9 y un learning rate de 0.001 con para Adam.

Tiempo de entrenamiento. Todos los entrenamientos han tenido una du-
racién aproximada de dos dias y por lo tanto se han realizado aproximadamente
10.000 epoch en cada uno (esto varia un poco en cada experimento concreto).

Resultados obtenidos en el entrenamiento. Se obtiene, en primer lugar,
un archivo CSV con los valores “en crudo” de la reward, guardado durante el
entrenamiento con todos los valores de recompensa obtenidos, viendo en cada
linea las de cada episodio completo. Este sirve para obtener la grafica de la
reward acumulada total por episodio, en la que se muestra el valor de esta en el
eje de ordenadas y las epoch en el de abscisas. Y por ultimo, una gréfica de la
loss que se obtiene con Tensorboard, en la que se muestra su valor en el eje de
ordenadas y el tiempo de entrenamiento en horas en el eje de abscisas.

36

APENDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS37

A.2. Base DQN con reward base (v0)

Grafica de la loss. Como se ve en la Figura A.1, la loss disminuye en un pri-
mer momento del entrenamiento, subiendo después ligeramente. En algoritmos
de aprendizaje por refuerzo, esto se suele dar en las partes iniciales del entrena-
miento sobre todo, cuando el modelo ain necesita més tiempo de entrenamiento
y no ha convergido, por lo que se puede dar un aumento en ella, a diferencia de
en aprendizaje supervisado.

epoch_loss

IR]

09
08
o7
0s

05

o w A1 RTAYIS

03 ‘L i
02 ‘ —

01

0

Figura A.1: Gréafica de evolucion de la loss durante el tiempo de entrenamiento
(en horas) del modelo 1.

Grafica de la reward. Se observa en la Figura A.2, donde se ve que los
valores de la recompensa, a partir de la epoch 4000, se van haciendo més altos,
rondando entre valores de 100 y 150, llegando en algunos casos incluso a valores
de 200. Se observa a lo largo de toda la gréfica que hay muchos valores bajos
de recompensa, lo que es debido a que la épsilon minima estd constante en un
valor de 0.1, por lo que el 10% de las acciones que se realizan son aleatorias
de manera que no se estanque el aprendizaje y el agente siga explorando. Lo
que también se puede apreciar es que las recompensas siguen sin llegar a un
valor maximo en el que se queden mas o menos fijas, lo que significa que aun
se necesita un mayor tiempo de entrenamiento para que el modelo converja y
aprenda la mejor politica de conduccién posible con este algoritmo.

Reward_v0

Figura A.2: Grafica del valor de la reward acumulada del episodio en cada
iteraciéon del modelo 1.

APENDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS38

A.3. Base DQN con reward v1

Grafica de la loss. Se muestra en la Figura A.3, donde se ve que la loss
disminuye en un primer momento del entrenamiento, subiendo después ligera-
mente, de la misma manera que en el entrenamiento del modelo anterior, aunque
llegando a valores algo mas altos.

epoch_loss

12
1
08
TR
06
04

0 5 10 15 20 2 30 » 20 r 50

Figura A.3: Gréfica de evolucién de la loss durante el tiempo de entrenamiento
(en horas) del modelo 2.

Grafica de la reward. Se observa en la Figura A.4. En este caso, se ve que las
recompensas empiezan a ser mas altas antes que en el modelo anterior, sobre la
epoch 1000, siendo el aprendizaje més rapido que en el experimento 1. Ademds
se observa que ya a partir de la epoch 5000, las rewards obtenidas en el episodio
se encuentran entre los valores de 200 y 250, en lugar de estar entre 100 y 150
como en el entrenamiento anterior, aunque también se aprecia que con maés
tiempo de entrenamiento puede llegar a seguir aumentando. Por lo tanto, a la
vista de estos resultados de entrenamiento se puede decir que esta modificacion
del cédigo de base mejora en cierta medida la conduccion, aunque es necesario
realizar la evaluacién del modelo para tener una conclusién definitiva.

Reward v1

Figura A.4: Gréfica del valor de la reward acumulada del episodio en cada
iteracién del modelo 2.

APENDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS39

A.4. Base DQN con reward v2

Grafica de la loss. Se muestra en la Figura A.5, donde se ve que la loss dis-
minuye en un primer momento del entrenamiento, subiendo después, del mismo
modo que ocurria en el entrenamiento del primer modelo detallado en la seccion

A.2, obteniendo sin embargo unos valores sobre 0.8 similares a los de la seccién
A.3.

epoch_loss

0 5 10 15 2 2 30 ») 5 50

Figura A.5: Gréfica de evolucién de la loss durante el tiempo de entrenamiento
(en horas) del modelo 3.

Grafica de la reward. Se muestra en la Figura A.6. En este caso, se ve que
las recompensas son més altas antes que en el entrenamiento de la seccién A.3,
sobre todo aprecidndose a partir de la epoch 6000. Se observa que a partir de
ahi, las rewards obtenidas en el episodio se encuentran entre los valores de 250 y
300, en lugar de estar entre 200 y 250 como en el caso anterior, aunque también
se aprecia, de igual modo, que con méas tiempo de entrenamiento puede llegar a
seguir aumentando. Por lo tanto, esta modificacion del cédigo de base mejora los
valores de las recompensas, siendo el mejor resultado de estas hasta el momento,

aunque con valores muy similares a los de la DQN con la reward v1 de la secciéon
A3

Reward_v2

ompee s ee o gee

Figura A.6: Grafica del valor de la reward acumulada del episodio en cada
iteracién del modelo 3.

APENDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS40

A.5. Double DQN con reward base

Grafica de la loss. Se muestra en la Figura A.7, donde se ve que la loss
disminuye en un primer momento del entrenamiento, subiendo después ligera-
mente, de la misma manera que en el entrenamiento del modelo DQN base de
la secciéon A.2. Sin embargo, en este caso se obtiene un valor de loss menor,
sobre 0.2, apreciandose asi la diferencia en el célculo de los valores Q entre la
DQN y la DDQN, siendo en esta segunda los predichos més aproximados a los
obtenidos realmente.

5 10 15 20 2 30 35 r 5

Figura A.7: Grafica de evolucion de la loss durante el tiempo de entrenamiento
(en horas) del modelo 4.

Gréfica de la reward. Se observa en la Figura A.8, donde se ve que los valores
de la recompensa, a partir de la epoch 3000, se van haciendo mas altos, en un
momento del entrenamiento mas temprano que en el DQN base de la seccién
A 2. A partir de aqui, la reward acumulada por episodio ronda entre valores de
150 y 200, llegando en algunos casos incluso a valores puntuales superiores a
250, recompensas ligeramente superiores a las del DQN base. Lo que también
se puede apreciar es que las recompensas siguen sin llegar a un valor maximo
en el que se queden més o menos fijas, lo que significa que ain se necesita un
mayor tiempo de entrenamiento para que el modelo converja y aprenda la mejor
politica de conduccién posible con este algoritmo.

Reward_DDQN

Figura A.8: Grafica del valor de la reward acumulada del episodio en cada
iteracién del modelo 4.

APENDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS41

A.6. DQN con reward v2 entrenado en lands-
cape

Grafica de la loss. Se muestra en la Figura A.9, donde se ve que la loss dismi-
nuye en un primer momento del entrenamiento, subiendo después y quedandose
en un valor sobre 0.8, al igual que en su version entrenada en neighborhood
detallada en la seccién A.4.

Figura A.9: Gréfica de evolucién de la loss durante el tiempo de entrenamiento
(en horas) del modelo 5.

Gréfica de la reward. Se observa en la Figura A.10, donde se ve que los
valores de la recompensa acumulada por episodio ronda entre 100 y 150, llegando
en algunos casos incluso a valores puntuales superiores a 300 y superiores. Lo
que también se puede apreciar es que las recompensas oscilan continuamente
entre estos valores, siguen sin llegar a un valor maximo en el que se queden
més o menos fijas, lo que significa que ain se necesita un mayor tiempo de
entrenamiento para que el modelo converja y la conduccién sea mas adecuada.

Reward v2 landscape
500

.
400

300

-100

Figura A.10: Gréfica del valor de la reward acumulada del episodio en cada
iteracién del modelo 5.

Bibliografia

[1]

Felipe Codevilla, Eder Santana, Antonio M Lépez, and Adrien Gaidon.
Exploring the limitations of behavior cloning for autonomous driving. In

Proceedings of the IEEE International Conference on Computer Vision,
pages 9329-9338, 2019.

Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to real reinfor-

cement learning for autonomous driving. arXiv preprint arXiv:1704.03952,
2017.

Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi, and Tracey Oliver.
Autonomous vehicles: challenges, opportunities, and future implications for
transportation policies. Journal of modern transportation, 24(4):284-303,
2016.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In
Field and service robotics, pages 621-635. Springer, 2018.

Rene Y. Choi, Aaron S. Coyner, Jayashree Kalpathy-Cramer, Michael F.
Chiang, and J. Peter Campbell. Introduction to machine learning, neural
networks, and deep learning. Translational Vision Science and Technology,
9(2):14-14, 2020.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436—444, 2015.

Richard Szeliski. Computer Vision: Algorithms and Applications. Springer-
Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1-9, 2015.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Moha-
med, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,
Tara N Sainath, et al. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal
processing magazine, 29(6):82-97, 2012.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural net-
work for text classification with multi-task learning. arXiv preprint ar-
Xiv:1605.05101, 2016.

Junshui Ma, Robert P Sheridan, Andy Liaw, George E Dahl, and Vladimir
Svetnik. Deep neural nets as a method for quantitative structure-activity

relationships. Journal of chemical information and modeling, 55(2):263—
274, 2015.

42

BIBLIOGRAFIA 43

[12]

[13]

[14]

[26]

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence lear-

ning with neural networks. In Advances in neural information processing
systems, pages 3104-3112, 2014.

Yoav Goldberg. A primer on neural network models for natural language
processing. Journal of Artificial Intelligence Research, 57:345-420, 2016.

James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali Torka-
mani, and Amalio Telenti. A primer on deep learning in genomics. Nature
genetics, 51(1):12-18, 2019.

Hui Y Xiong, Babak Alipanahi, Leo J Lee, Hannes Bretschneider, Daniele
Merico, Ryan KC Yuen, Yimin Hua, Serge Gueroussov, Hamed S Najafaba-
di, Timothy R Hughes, et al. The human splicing code reveals new insights
into the genetic determinants of disease. Science, 347(6218):1254806, 2015.

Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdri-
ving: Learning affordance for direct perception in autonomous driving. In

Proceedings of the IEEE International Conference on Computer Vision,
pages 2722-2730, 2015.

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu.

A survey of deep learning techniques for autonomous driving. Journal of
Field Robotics, 2019.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from
observation. arXiv preprint arXiv:1805.01954, 2018.

Felipe Codevilla, Matthias Miiller, Antonio Lépez, Vladlen Koltun, and
Alexey Dosovitskiy. End-to-end driving via conditional imitation lear-
ning. In 2018 IEEFE International Conference on Robotics and Automation
(ICRA), pages 1-9. IEEE, 2018.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze.
Deep clustering for unsupervised learning of visual features. In Proceedings
of the European Conference on Computer Vision (ECCYV), pages 132-149,
2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yoga-
mani. Deep reinforcement learning framework for autonomous driving.
FElectronic Imaging, 2017(19):70-76, 2017.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. Deep reinforcement learning that matters. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458, 2015.

Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer. Squeezedet:
Unified, small, low power fully convolutional neural networks for real-time
object detection for autonomous driving. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Workshops, pages

129-137, 2017.

Mikael Boden. A guide to recurrent neural networks and backpropagation.
the Dallas project, 2002.

BIBLIOGRAFIA 44

[27]

[31]

[32]

ByeoungDo Kim, Chang Mook Kang, Jaekyum Kim, Seung Hi Lee,
Chung Choo Chung, and Jun Won Choi. Probabilistic vehicle trajectory
prediction over occupancy grid map via recurrent neural network. In 2017
IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC), pages 399-404. IEEE, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529-533, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Takafumi Okuyama, Tad Gonsalves, and Jaychand Upadhay. Autonomous
driving system based on deep q learnig. In 2018 International Conference
on Intelligent Autonomous Systems (ICoIAS), pages 201-205. IEEE, 2018.

April Yu, Raphael Palefsky-Smith, and Rishi Bedi. Deep reinforcement
learning for simulated autonomous vehicle control. Course Project Reports:
Winter, pages 1-7, 2016.

Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitra-
kakis, Rémi Coulom, and Andrew Sumner. Torcs, the open racing car
simulator. Software available at hitp://torcs. sourceforge. net, 4(6):2, 2000.

Zhiqing Huang, Ji Zhang, Rui Tian, and Yanxin Zhang. End-to-end auto-
nomous driving decision based on deep reinforcement learning. In 2019 5th
International Conference on Control, Automation and Robotics (ICCAR),
pages 658-662. IEEE, 2019.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. arXiv preprint
arXiv:1711.03938, 2017.

Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Controlla-
ble imitative reinforcement learning for vision-based self-driving. In Pro-
ceedings of the European Conference on Computer Vision (ECCYV), pages
584-599, 2018.

Xinle Liang, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang. Federa-
ted transfer reinforcement learning for autonomous driving. arXiv preprint
arXi:1910.06001, 2019.

Roy Amante Salvador and Maria Isabel Saludares. Autonomous driving
via deep reinforcement learning. 2019.

Matthias Miiller, Alexey Dosovitskiy, Bernard Ghanem, and Vladlen Kol-
tun. Driving policy transfer via modularity and abstraction. arXiv preprint
arXiv:1804.09364, 2018.

Luona Yang, Xiaodan Liang, Tairui Wang, and Eric Xing. Real-to-virtual
domain unification for end-to-end autonomous driving. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 530-545,
2018.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double g-learning. arXiv preprint arXiv:1509.06461, 2015.

BIBLIOGRAFIA 45

[41]

[42]

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and
Nando Freitas. Dueling network architectures for deep reinforcement lear-

ning. In International conference on machine learning, pages 1995-2003,
2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver. Rainbow: Combining improvements in deep reinforcement
learning. arXiv preprint arXiv:1710.02298, 2017.

	Índice
	Índice de figuras
	Índice de tablas
	Introducción
	Motivación
	Contexto de realización del trabajo
	Objetivos y tareas
	Contenido de la memoria

	Machine Learning en conducción autónoma
	Tipos de Machine Learning
	Aprendizaje supervisado
	Aprendizaje no supervisado
	Aprendizaje por refuerzo

	Algoritmos estudiados
	Redes neuronales convolucionales (CNN)
	Redes neuronales recurrentes (RNN)
	Deep Q networks (DQN)

	Simulación para autonomous driving
	Simulador de conducción autónoma
	Simuladores existentes
	Airsim

	Sistema Implementado
	Resumen general y partes del sistema
	Algoritmo de aprendizaje supervisado implementado
	Algoritmos de deep reinforcement learning implementados
	Modificaciones implementadas en la DQN

	Experimentación y evaluación
	Configuración de los experimentos
	Experimentos realizados y evaluación de los resultados
	Análisis de las distintas variaciones implementadas
	Análisis de un modelo entrenado en el mismo escenario que el encoder
	Actuación en distintos escenarios

	Conclusiones
	Conclusiones técnicas
	Conclusiones personales
	Problemas encontrados
	Trabajo Futuro

	Anexos
	Detalles y resultados adicionales de los entrenamientos
	Configuración general de los entrenamientos
	Base DQN con reward base (v0)
	Base DQN con reward v1
	Base DQN con reward v2
	Double DQN con reward base
	DQN con reward v2 entrenado en landscape

	Bibliografía

