
Trabajo Fin de Máster

Aprendizaje automático para
conducción autónoma

Machine learning for autonomous driving

Autora: Beatriz Salvador Ramos

Directora: Ana Cristina Murillo Arnal

Co-director: Rubén Mart́ınez Cant́ın

Máster en Ingenieŕıa Electrónica
Departamento de Informática e Ingenieŕıa de Sistemas

Escuela de Ingenieŕıa y Arquitectura
Universidad de Zaragoza

Noviembre 2020

Resumen

Actualmente, se está produciendo un fuerte desarrollo de los veh́ıculos autóno-
mos, ya que pueden ayudar en diversos aspectos tanto cotidianos como medioam-
bientales. La conducción autónoma se sustenta en diferentes disciplinas, entre
las que se encuentra el aprendizaje automático. Concretamente el aprendizaje
profundo o deep learning, está logrando los avances más importantes en este
ámbito hoy en d́ıa. Por ello, este proyecto se centra en el estudio de algunos
de los métodos más utilizados en el estado del arte y en la implementación
de un sistema de aprendizaje automático para esta aplicación, tras analizar los
modelos obtenidos con distintos algoritmos y variaciones de entre los estudiados.

El objetivo de este trabajo es la implementación de un sistema de deep lear-
ning para aprender el control de velocidad y dirección de un veh́ıculo autónomo,
utilizando un simulador de conducción autónoma. El uso de un simulador rea-
lista como el utilizado y la conexión con él durante el entrenamiento, es parte
importante cuando se utilizan algoritmos de aprendizaje por refuerzo como los
implementados en este trabajo por su caracteŕıstica de aprender de la experien-
cia, mediante prueba y error, convirtiéndose en esencial en una aplicación como
la estudiada, ya que hacer esto en el mundo real seŕıa inviable (costoso e insegu-
ro). Por ello, aunque la puesta en marcha no sea sencilla, es fundamental lograr
conectar estos algoritmos con los escenarios realistas del entorno de simulación.
Dicho simulador, también se utilizará como plataforma para evaluar en distin-
tos escenarios los modelos obtenidos de manera segura. La idea es implementar
varias versiones del sistema, con diferentes algoritmos y modificaciones de ellos,
y evaluar los resultados obtenidos con cada una de estas versiones comparando
su rendimiento y generalización en distintos entornos.

En este proyecto, primero se aborda el estudio de las diferentes técnicas
utilizadas en conducción autónoma y del software necesario para el desarrollo del
sistema, aśı como la elección del simulador a utilizar, su instalación y aprendizaje
de su manejo. En este trabajo se ha decidido utilizar el simulador realista de
conducción autónoma Airsim, y entornos estándar de deep learning como Keras
y TensorFlow. Otra parte importante después del estudio ha sido la puesta
en marcha y el desarrollo de las distintas versiones y variaciones propuestas,
que proporcionan los diversos modelos a evaluar, con los que se implementa el
sistema final.

Como resultado de este trabajo, se ha desarrollado un sistema de conducción
autónoma que consta de dos partes, aunando aśı dos técnicas de aprendizaje
automático distintas, siguiendo las propuestas de la literatura existente. Por un
lado, el aprendizaje por refuerzo, parte principal del sistema implementado, y
por otro lado, el aprendizaje supervisado, ya que se utiliza una red neuronal
convolucional (CNN) para obtener un modelo preentrenado que proporcionar a
los algoritmos de reinforcement learning como base para no partir desde cero
su entrenamiento.

Los algoritmos, resultados y entorno de simulación y evaluación de este pro-
yecto son interesantes dentro del grupo de investigación en el que se ha rea-
lizado, ya que hay pocas soluciones completas que incluyan la interacción con
el simulador realista que se utiliza en este proyecto. Los resultados obtenidos
son comparables o de mejor calidad que los ejemplos encontrados disponibles
públicamente, por lo cual este trabajo es un gran punto de partida para ĺıneas
de investigación que continúan en este sentido.

i

Índice general

Índice II

Índice de figuras IV

Índice de tablas VI

1. Introducción 1
1.1. Motivación . 1
1.2. Contexto de realización del trabajo 2
1.3. Objetivos y tareas . 3
1.4. Contenido de la memoria . 5

2. Machine Learning en conducción autónoma 6
2.1. Tipos de Machine Learning . 7

2.1.1. Aprendizaje supervisado 7
2.1.2. Aprendizaje no supervisado 8
2.1.3. Aprendizaje por refuerzo 8

2.2. Algoritmos estudiados . 9
2.2.1. Redes neuronales convolucionales (CNN) 9
2.2.2. Redes neuronales recurrentes (RNN) 9
2.2.3. Deep Q networks (DQN) 10

3. Simulación para autonomous driving 12
3.1. Simulador de conducción autónoma 12

3.1.1. Simuladores existentes . 14
3.1.2. Airsim . 16

4. Sistema Implementado 19
4.1. Resumen general y partes del sistema 19
4.2. Algoritmo de aprendizaje supervisado implementado 20
4.3. Algoritmos de deep reinforcement learning implementados 22
4.4. Modificaciones implementadas en la DQN 24

5. Experimentación y evaluación 26
5.1. Configuración de los experimentos 26
5.2. Experimentos realizados y evaluación de los resultados 27

5.2.1. Análisis de las distintas variaciones implementadas 27
5.2.2. Análisis de un modelo entrenado en el mismo escenario

que el encoder . 29

ii

ÍNDICE GENERAL iii

5.2.3. Actuación en distintos escenarios 31

6. Conclusiones 33
6.1. Conclusiones técnicas . 33
6.2. Conclusiones personales . 34
6.3. Problemas encontrados . 34
6.4. Trabajo Futuro . 35

Anexos 35

A. Detalles y resultados adicionales de los entrenamientos 36
A.1. Configuración general de los entrenamientos 36
A.2. Base DQN con reward base (v0) 37
A.3. Base DQN con reward v1 . 38
A.4. Base DQN con reward v2 . 39
A.5. Double DQN con reward base . 40
A.6. DQN con reward v2 entrenado en landscape 41

Bibliograf́ıa 42

Índice de figuras

1.1. Coche autónomo circulando por una carretera. 1
1.2. Diagrama de Gantt aproximado de la distribución de tareas lle-

vadas a cabo en el proyecto. 4

2.1. Red neuronal recurrente con su bucle (izquierda) y esa misma red
desplegada (derecha). 10

2.2. Arquitectura de las deep Q networks utilizadas en deep reinfor-
cement learning. 11

3.1. Sistema de conducción autónoma con un enfoque modular frente
a otro end to end o de extremo a extremo. 13

3.2. Simuladores de conducción autónoma: (a) Javascript racer, (b)
CARLA (fuente: [1]), (c) TORCS y (d) AirSim. 15

3.3. Paso de imágenes virtuales del simulador TORCS a imágenes
sintéticas realistas para entrenar un sistema de conducción autóno-
ma utilizando reinforcement learning, propuesto en [2]. 15

3.4. Escenarios existentes en el paquete de Airsim utilizado: (a) Neigh-
borhood, (b) city, (c) landscape y (d) coastline. 17

3.5. Ejemplo de dos imágenes del dataset utilizado para entrenar la
CNN. 18

4.1. Esquema general del sistema implementado. 20
4.2. Arquitectura de la CNN utilizada. 21

5.1. Evolución del tiempo en la carretera, tdriving, durante diferentes
puntos del entrenamiento de los cuatro modelos analizados. (a)
DQN base (v0), (b) DQN reward v1, (c) DQN reward v2 y (d)
DDQN. 29

5.2. Evolución del tiempo en la carretera, tdriving, durante diferentes
puntos del entrenamiento del modelo DQN con reward v2 entre-
nado en landscape . 31

A.1. Gráfica de evolución de la loss durante el tiempo de entrenamien-
to (en horas) del modelo 1. 37

A.2. Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 1. 37

A.3. Gráfica de evolución de la loss durante el tiempo de entrenamien-
to (en horas) del modelo 2. 38

iv

ÍNDICE DE FIGURAS v

A.4. Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 2. 38

A.5. Gráfica de evolución de la loss durante el tiempo de entrenamien-
to (en horas) del modelo 3. 39

A.6. Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 3. 39

A.7. Gráfica de evolución de la loss durante el tiempo de entrenamien-
to (en horas) del modelo 4. 40

A.8. Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 4. 40

A.9. Gráfica de evolución de la loss durante el tiempo de entrenamien-
to (en horas) del modelo 5. 41

A.10.Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 5. 41

Índice de tablas

5.1. Tiempo de conducción (tdriving) medio en 10 ejecuciones y des-
viación estándar con entrenamiento y validación en el mismo es-
cenario (neighborhood). 28

5.2. Tiempo de conducción (tdriving) medio en 10 ejecuciones y des-
viación estándar con entrenamiento y validación en el mismo es-
cenario que el encoder (landscape). 30

5.3. Tiempo de conducción (tdriving) medio de 10 ejecuciones y des-
viación estándar con entrenamiento y validación en distintos es-
cenarios. 32

vi

Caṕıtulo 1

Introducción

Este proyecto se centra en el estudio de diferentes técnicas de aprendizaje
automático utilizadas en conducción autónoma, explicando su fundamento y
analizando los retos que enfrentan y la manera en la que estos se abordan en
la literatura, y en la implementación de un sistema de deep learning para dicha
aplicación tras la evaluación de dos técnicas diferentes. A continuación se va a
exponer la motivación y el contexto que han impulsado la realización de este
trabajo, aśı como los objetivos que se esperan obtener y las tareas llevadas a
cabo en el mismo.

fuente:

https://www.youtube.com/watch?time_continue=13&v=tlThdr3O5Qo&feature=emb_title

Figura 1.1: Coche autónomo circulando por una carretera.

1.1. Motivación

Tanto los avances en el desarrollo de los veh́ıculos autónomos como el crecien-
te número de investigaciones y éxitos del aprendizaje automático, sobre todo
del deep learning cada vez más en auge, han motivado la realización de este
proyecto y se van a explicar a continuación.

1

 https://www.youtube.com/watch?time_continue=13&v=tlThdr3O5Qo&feature=emb_title

CAPÍTULO 1. INTRODUCCIÓN 2

Avances en conducción autónoma. Cada vez son más los avances en tec-
noloǵıa, comunicaciones y robótica que se producen actualmente y que tienen
influencia en diversos ámbitos de nuestra vida cotidiana. En el transporte, dichos
avances han dado lugar a multitud de investigaciones sobre conducción autóno-
ma en la última década. El objetivo es el desarrollo de veh́ıculos autónomos[3],
de los que se puede ver un ejemplo en la Figura 1.1, que pueden ayudar a dismi-
nuir la contaminación, el consumo de enerǵıa y el coste de los trayectos, reducir
los choques y la congestión en las carreteras, al mismo tiempo que aumenta
la accesibilidad del transporte a todo el mundo (por ejemplo a personas con
problemas de movilidad), siendo aśı de gran ayuda en distintos aspectos tanto
cotidianos como medioambientales.

Aprendizaje automático y deep learning. La conducción autónoma se
sustenta en diferentes disciplinas, como por ejemplo las comunicaciones, la in-
genieŕıa de hardware, de software o las tecnoloǵıas de Big Data e internet de las
cosas (IoT). Entre ellas se encuentra el aprendizaje automático, que gracias al
uso de varias técnicas basadas en deep learning, está logrando los avances más
importantes en este ámbito hoy en d́ıa. El deep learning no solo está presente
en conducción autónoma, se utiliza en muchos aspectos de la sociedad moderna,
desde filtrado de búsquedas o recomendaciones en la web, identificación de obje-
tos en imágenes, hasta en dispositivos como cámaras inteligentes y smartphones.
Este está haciendo grandes avances en problemas muy variados como pueden
ser el reconocimiento de voz, de texto o incluso en el ámbito de la medicina en
temas como la genética y la predicción de enfermedades.

La gran cantidad de aplicaciones en las que se utiliza el deep learning y el
gran número de investigaciones y rápidos avances dentro de este campo, han sido
una de las principales motivaciones a la hora de elegir un trabajo relacionado
con el aprendizaje automático, centrado además en una aplicación que puede
ayudar en diferentes aspectos tanto de la sociedad como de la vida cotidiana y
muy en auge actualmente, como lo es la conducción autónoma.

1.2. Contexto de realización del trabajo

Este proyecto se ha realizado en el grupo de investigación Robotics, Percep-
tion and Real Time (RoPeRT), dentro del Instituto de Ingenieŕıa e Investigación
de Aragón (I3A). Se ha desarrollado bajo la supervisión de la directora de este
grupo y la ayuda y experiencia de otros integrantes de él.

El objetivo es implementar un sistema de deep learning basado en visión para
el control de un veh́ıculo autónomo, obteniendo los datos de entrenamiento de un
simulador. A pesar de que dentro del grupo no se hab́ıa utilizado un simulador
de este tipo y part́ıa desde cero en su instalación y estudio, śı contaba con la
experiencia en visión por computador y aprendizaje automático de los miembros
del grupo para poder iniciar un aprendizaje básico en esas materias.

Desde un punto de vista personal, gracias a trabajar en este laboratorio
he aprendido algunos de los fundamentos básicos en visión por computador y
deep learning, campos que están muy presente en diversas aplicaciones en la
actualidad, y además también he visto como se trabaja dentro de un equipo,
algo muy importante de cara al futuro.

CAPÍTULO 1. INTRODUCCIÓN 3

1.3. Objetivos y tareas

El objetivo principal de este proyecto es la implementación de un sistema
de deep learning basado en visión para aprender el control de la velocidad y
dirección de un veh́ıculo autónomo, obteniendo los datos de entrenamiento de
un simulador. Para ello, se propone utilizar un entorno de simulación realista de
veh́ıculos autónomos como AirSim[4], estudiar al menos una técnica de aprendi-
zaje supervisado y otra de aprendizaje por refuerzo para la aplicación planteada,
y finalmente, tras el análisis de los algoritmos más utilizados en la literatura en
el ámbito de la conducción autónoma y la implementación de alguna variación,
desarrollar un sistema de conducción autónoma.

Los problemas abordados son, en primer lugar, la obtención de datos de
entrenamiento a partir de simulación (elección del simulador, instalación y uso
del mismo) y, en segundo lugar, el estudio, implementación y evaluación de
diferentes técnicas de deep learning para conducción autónoma (aprendiendo a
utilizar un entorno de programación t́ıpico de Keras-Tensorflow con Python y
los fundamentos de las técnicas utilizadas).

Dentro de las tareas realizadas se encuentran las siguientes:

Tarea 1. Instalación y estudio del software necesario, tanto del entorno
de desarrollo Anaconda como del simulador Airsim (basado en Unreal
Engine1), y realización de tutoriales para la familiarización con ellos y el
aprendizaje de su funcionamiento.

Tarea 2. Estudio y análisis de diferentes técnicas de deep learning para
utilizarlas en el ámbito de la conducción autónoma, viendo cuáles son las
más usadas en las investigaciones actualmente.

Tarea 3. Puesta en marcha y comparación de dos sistemas de aprendizaje
de parámetros esenciales de la conducción autónoma, como pueden ser
la velocidad o el control de la dirección del volante, utilizando entornos
estándar de deep learning como Keras y Tensorflow. Evaluación de su
rendimiento y generalización en distintos entornos.

Tarea 4. Propuesta e implementación de modificaciones o adaptaciones
y evaluación de estos resultados respecto a los previos.

Tarea 5. Elaboración de la documentación del proyecto realizado.

Distribución temporal. La distribución temporal de cada una de las tareas
llevadas a cabo durante la realización del trabajo se puede ver en la Figura 1.2 de
manera aproximada. En la imagen cada fila representa una tarea y cada columna
un mes. Las columnas están divididas en dos de forma que quede separado en
cada mes la primera quincena de la segunda. Se observan cinco tareas principales
que se corresponden con las detalladas en el párrafo anterior, con su duración
aproximada.

1https://www.unrealengine.com/en-US/

https://www.unrealengine.com/en-US/

CAPÍTULO 1. INTRODUCCIÓN 4

Figura 1.2: Diagrama de Gantt aproximado de la distribución de tareas llevadas
a cabo en el proyecto.

CAPÍTULO 1. INTRODUCCIÓN 5

1.4. Contenido de la memoria

En el caṕıtulo 2 se explican los fundamentos del aprendizaje automático, los
tres tipos que existen, las diversas aplicaciones en las que se utiliza, los algorit-
mos estudiados y ejemplos de estos en el ámbito de la conducción autónoma. El
caṕıtulo 3 describe los motivos por los que el uso de los simuladores de veh́ıculos
autónomos es adecuado y muy utilizado hoy en d́ıa, analizando las alternativas y
centrándose en la opción elegida y en los datos utilizados y obtenidos con él. En
el caṕıtulo 4 se detallan los pasos seguidos para la implementación del sistema de
deep learning, explicando en primer lugar la red neuronal convolucional (CNN)
para clasificación y posteriormente los algoritmos de reinforcement learning y
sus modificaciones. En el caṕıtulo 5 se describen los experimentos llevados a
cabo en este trabajo y la evaluación de los resultados obtenidos en ellos. Final-
mente, el caṕıtulo 6 recoge las conclusiones extráıdas durante la realización del
proyecto.

Como material adicional se incluye un anexo A en el que se detalla la confi-
guración de los entrenamientos de todos los modelos desarrollados y se explican
los resultados obtenidos en cada entrenamiento (concretamente la loss y las
recompensas obtenidas durante el tiempo de entrenamiento).

Caṕıtulo 2

Machine Learning en
conducción autónoma

Machine learnng. El aprendizaje automático o machine learning [5] es una
disciplina relacionada con la inteligencia artificial, que sirve para lograr que un
sistema, máquina o software, sea capaz de aprender automáticamente respecto
a una entrada dada, mediante la adaptación de ciertos algoritmos. Se utiliza
en muchos aspectos de la sociedad moderna, desde filtrado de búsquedas o re-
comendaciones en la web, hasta en dispositivos como cámaras inteligentes y
smartphones. Dentro del machine learning se distinguen tres tipos diferentes de
aprendizaje, el supervisado, el no supervisado y el aprendizaje por refuerzo o
reinforcement learning. Estos se distinguen por la información que recibe el agen-
te o sistema durante el aprendizaje, para saber lo que es correcto o incorrecto.
Los más utilizados en veh́ıculos autónomos, el tema que atañe a este proyecto,
son el aprendizaje supervisado y por refuerzo. Por esta razón, a continuación en
la sección 2.1, estos dos se explicarán más en detalle.

Deep learnng. Sin embargo, dado que los métodos convencionales de machine
learning tienen limitaciones para procesar datos en su forma original y requieren
de gran experiencia para diseñar extractores de caracteŕısticas que proporcio-
nen una representación interna adecuada de la entrada, se utilizan métodos de
deep learning [6] cada vez en mayor medida. El deep learning permite que los
modelos computacionales que se componen de múltiples capas de procesamiento
aprendan automáticamente, y con diversos niveles de abstracción, las represen-
taciones necesarias para la detección o clasificación de datos sin procesar. Con
la composición de suficientes transformaciones, se pueden aprender funciones
muy complejas, por esto las redes neuronales profundas (con una gran cantidad
de capas ocultas) encajan dentro de esta técnica.

Avances y aplicaciones. El deep learning está haciendo grandes avances
en los últimos años en algunos de los problemas que se han resistido con las
técnicas clásicas de visión por computador, tratadas en [7], y machine learning.
Algunos ejemplos de ello son las mejoras logradas con el uso de redes neuro-
nales convolucionales profundas en reconocimiento y detección de objetos en
imágenes[8] y en reconocimiento de voz y audio[9], o los avances conseguidos

6

CAPÍTULO 2. MACHINE LEARNING EN CONDUCCIÓN AUTÓNOMA 7

gracias a las redes recurrentes en el procesamiento de datos secuenciales como
el texto[10] y sonido. Gracias al deep learning se han logrado buenos resultados
incluso en dominios como el descubrimiento de fármacos[11], en traducción de
idiomas[12] y comprensión del lenguaje natural[13], en genética[14] y predicción
de enfermedades[15], aśı como también en el ámbito en el que se centra este
art́ıculo, la conducción autónoma[16]. Estos avances cada vez se dan más rápido
debido a que el deep learning requiere muy poca ingenieŕıa manual, por lo que
puede aprovechar los aumentos en la cantidad de cómputo y datos disponibles,
lo que lo convierte en un foco de investigación muy importante actualmente.

2.1. Tipos de Machine Learning

Como se ha dicho anteriormente, el machine learning se divide en tres tipos
de aprendizaje automático: el supervisado, el no supervisado y el reinforcement
learning.

En ámbito de la conducción autónoma, la mayor parte de investigaciones
actualmente estudian técnicas basadas en deep learning, como se ve en [17],
tanto de aprendizaje supervisado como de reinforcement learning, por ello en
esta sección se van a desarrollar más estos dos.

2.1.1. Aprendizaje supervisado

La forma más común de machine learning es el aprendizaje supervisado. En
este caso, el sistema aprende de un conjunto proporcionado de datos etiquetados,
es decir, de datos que tienen ejemplos de entrenamiento que enseñan cual es la
entrada, con su correspondiente etiqueta que se corresponde con su valor de
salida deseado.

Dentro de él, los algoritmos de deep learning más utilizados para aplicaciones
de conducción autónoma son las redes neuronales convolucionales (CNN) y en
menor medida las redes neuronales recurrentes (RNN). Por esta razón, en la
sección 2.2, se van a explicar los fundamentos de cada uno de ellos.

Además de estos algoritmos, existe una forma de aprendizaje supervisado,
que es utilizada en conducción autónoma, denominada aprendizaje por imita-
ción o Imitation learning (IL)[18]. La idea básica que sustenta esta técnica es la
del entrenamiento a través de la imitación del comportamiento de un experto.
Con esta idea de aprendizaje, se distinguen dos categoŕıas: la clonación de com-
portamiento y el aprendizaje por refuerzo inverso. Debido a que la clonación de
comportamiento de extremo a extremo ha atráıdo interés dentro del ámbito de
la conducción autónoma recientemente, es la categoŕıa que se va a analizar. En
esta forma de aprendizaje el sistema necesita recibir datos de entrenamiento con
imágenes u observaciones de la entrada asociadas con acciones del demostrador
o experto. De esta manera la red neuronal profunda, utilizada como clasificador
o regresor, aprende a reconocer patrones con los que asocia la entrada a los
parámetros de control que permitan replicar la acción del experto.

La clonación de comportamiento es una de las técnicas más ampliamente
utilizadas en conducción autónoma, como se ve en el ejemplo de [19], junto con
algoritmos de deep reinforcement learning, de los que se estudiará un ejemplo en
el siguiente apartado 2.2. El aprendizaje por imitación tiene ventajas como la
capacidad de imitar al demostrador sin necesidad de interactuar con el entorno,

CAPÍTULO 2. MACHINE LEARNING EN CONDUCCIÓN AUTÓNOMA 8

a diferencia del aprendizaje por refuerzo que se basa en la prueba y error, lo
cual es algo a tener en cuenta en el entrenamiento de veh́ıculos autónomos.
Aunque también tiene ciertos inconvenientes o limitaciones como por ejemplo
la dificultad para generalizar lo aprendido a nuevas tareas o escenarios como se
analiza en [1].

2.1.2. Aprendizaje no supervisado

En el aprendizaje no supervisado, sin embargo, se proporcionan al sistema
datos de entrenamiento sin etiquetar, es decir, sin el valor deseado de salida, por
lo que habitualmente se utilizan técnicas como el clustering o agrupamiento,
como se ve en el ejemplo ((Deep clustering for unsupervised learning of visual
features))[20], para encontrar patrones en los datos.

2.1.3. Aprendizaje por refuerzo

Entre los dos tipos de aprendizaje anteriores, se encuentra el aprendizaje
por refuerzo o reinforcement learning, en el que el agente aprende patrones
gracias a la experiencia, interaccionando con el entorno, realizando acciones y
viendo si obtiene un resultado positivo o negativo. En este tercer tipo, hay un
enfoque de prueba y error, ya que lo que controla el aprendizaje no son los datos
etiquetados introducidos, sino una función de recompensa que le indica si las
acciones llevadas a cabo son correctas o no, de manera que el agente adapte su
estrategia en función de esta recompensa.

Este método ha sido ampliamente utilizado en tareas de control durante
mucho tiempo, y actualmente, la mezcla de reinforcement learning, del que hay
una extensa descripción en [21], con deep learning es uno de los enfoques más
prometedores en tareas como la conducción autónoma, como se expone en ((Deep
reinforcement learning framework for autonomous driving))[22]. Esta combina-
ción ha dado lugar a una técnica llamada deep reinforcement learning o deep
Q learning , dentro de la que existen diferentes algoritmos entre los que se
encuentran las deep Q networks que se van a analizar en el apartado 2.2.

A pesar de ser uno de los tipos de machine learning más utilizados en con-
ducción autónoma, tiene ciertos inconvenientes como los problemas de reprodu-
cibilidad que son habituales en esta técnica, estudiados en [23]. Esto se debe a su
necesidad de explorar el escenario realizando distintas acciones para obtener la
recompensa correspondiente, ya que el entorno objetivo puede variar cada vez y
un modelado expĺıcito de cada escenario posible no es una solución realista. Por
último y en relación también a esto surge otro problema, en el deep reinforce-
ment learning se requieren millones de pruebas y errores en el entorno objetivo
que, en el ámbito de la conducción autónoma, son imposibles de ensayar en el
mundo real ya que por coste e inseguridad es algo inviable. Además existen li-
mitaciones al pasar de los resultados de los entrenamientos off line a las pruebas
en un sistema real , que aparecen en todos los métodos de deep learning en el
ámbito del desarrollo de veh́ıculos autónomos.

CAPÍTULO 2. MACHINE LEARNING EN CONDUCCIÓN AUTÓNOMA 9

2.2. Algoritmos estudiados

En este apartado se van a explicar tres de los algoritmos comúnmente utiliza-
dos en el ámbito de la conducción autónoma mencionados en la sección anterior
y se va a poner un ejemplo de su uso en dicha aplicación.

2.2.1. Redes neuronales convolucionales (CNN)

Las redes neuronales convolucionales (CNN)[24] son un tipo de red neuronal
artificial que se utiliza principalmente para el procesamiento de imágenes y que
se clasifica dentro del aprendizaje supervisado. Se pueden ver como extractores
de caracteŕısticas y aproximadores de funciones no lineales muy complejas, que
logran identificar patrones y objetos en los datos de entrada a dicha red. Para
ello, son necesarias múltiples capas ocultas de procesamiento que aprenden con
distintos niveles de abstracción, ya que se van especializando cada vez más. En
cada capa se filtra la imagen con máscaras que la recorren y se obtiene una salida
o mapa de caracteŕısticas que pasa a la siguiente capa, hasta lograr reconocer o
clasificar esa entrada. Las CNN están parametrizadas por un conjunto de pesos,
W, y por unos valores de sesgo o bias, b. Su objetivo es encontrar durante
el entrenamiento los valores de dichos parámetros que hacen que el error sea
mı́nimo, gracias al algoritmo de backpropagation y al gradiente descendente,
capturando aśı las caracteŕısticas más discriminantes de la imagen. Las redes
neuronales profundas explotan la propiedad de que muchas señales naturales son
jerarqúıas de composición, es decir, que las caracteŕısticas de nivel superior se
obtienen componiendo las de nivel inferior. En las imágenes, las combinaciones
locales de bordes forman motivos, los motivos se ensamblan en partes y las partes
forman objetos reconocibles. Ocurre algo similar en el habla y el texto, desde
sonidos, fonemas, śılabas, palabras hasta oraciones. La agrupación permite que
las representaciones vaŕıen muy poco cuando los elementos de la capa anterior
vaŕıan en posición y apariencia lo que permite generalizar, por ejemplo a la hora
de detectar un coche lo hace de igual manera independientemente de su color,
tamaño, forma o posición.

En el ámbito de la conducción autónoma, se utiliza habitualmente tomando
como entrada imágenes de carreteras vistas desde un veh́ıculo y como etiqueta
la acción que debeŕıa realizar el automóvil si estuviera en ese entorno (por
ejemplo, el ángulo de posición del volante), de lo que se ve un ejemplo en [25].
Además las CNN pueden identificar tanto la carretera como obstáculos en ella,
por ejemplo otros coches o peatones. También es común verlo como extractor de
caracteŕısticas que después se utilizará como base para realizar un entrenamiento
con métodos de reinforcement learning, haciendo aśı que este segundo se realice
más rápido. Esta última aplicación de las CNN es la que se va a utilizar en el
sistema implementado del que se hablará en el caṕıtulo 4.

2.2.2. Redes neuronales recurrentes (RNN)

Las redes neuronales recurrentes (RNN)[26] son el tipo de red neuronal arti-
ficial que, de entre las técnicas de deep learning, obtiene los mejores resultados
en el procesamiento de datos que tienen una secuencia temporal como el habla
o el texto, por lo que se utiliza t́ıpicamente para aplicaciones como la traduc-
ción automática. También se clasifican dentro del aprendizaje supervisado pero

CAPÍTULO 2. MACHINE LEARNING EN CONDUCCIÓN AUTÓNOMA10

a diferencia de otros tipos de redes, estas tienen un ciclo de realimentación, que
se puede desplegar para generar una arquitectura de red sin bucle para su mejor
comprensión (esto no se hace en la práctica), como se observa en la Fig. 2.1,
viendo aśı que comparte los mismos pesos aprendidos en cada capa. Estas redes
procesan un elemento de la secuencia de entrada cada vez, manteniendo en sus
unidades ocultas un ”vector de estado”que contiene impĺıcitamente información
sobre la historia de todos los elementos de la secuencia pasados. Las RNN tra-
dicionales no son adecuadas para datos secuenciales muy largos, ya que si la red
es muy profunda su gradiente de salida tiene dificultades para propagarse hacia
las capas anteriores. Esto se soluciona en las redes de memoria a corto y largo
plazo, LSTM, gracias a la incorporación de tres puertas que controlan el estado
de entrada, de salida y de memoria.

En el desarrollo de veh́ıculos autónomos se aprovecha el buen rendimien-
to de las RNN, más concretamente de la arquitectura LSTM, para aprender
la dinámica temporal en series de datos secuenciales. Se utiliza, por ejemplo,
en sistemas de predicción de trayectorias de automóviles o peatones eficientes,
como se propone en ((Probabilistic vehicle trajectory prediction over occupancy
grid map via recurrent neural network))[27], ya que en conducción autónoma
se debe garantizar un alto grado de seguridad incluso en entornos inciertos y
dinámicamente cambiantes.

Figura 2.1: Red neuronal recurrente con su bucle (izquierda) y esa misma red
desplegada (derecha).

2.2.3. Deep Q networks (DQN)

El deep reinforcement learning es una técnica que aprovecha los buenos re-
sultados del deep learning y de redes neuronales profundas como las CNN, so-
bre todo a la hora de extraer caracteŕısticas para clasificar y detectar objetos en
imágenes, y lo junta con el enfoque de prueba y error del reinforcement learning.
Dentro de ella, uno de los algoritmos más utilizados son las deep Q networks
(DQN)[28], que se pueden observar en la Fig. 2.2, en las que la salida de la red
no son clases, son valores Q dados a las acciones que el agente ha aprendido a
llevar a cabo en función del estado del entorno que ha identificado a la entrada.
El objetivo es encontrar los pesos óptimos de la red que hagan que se maximi-
ce el valor de Q en cada par estado-acción que haya recibido una recompensa
positiva del entorno.

Esta técnica ya ha tenido importantes éxitos como por ejemplo en los jue-
gos clásicos de Atari 2600, como se ve en los resultados de ((Playing atari with
deep reinforcement learning))[29], donde se demostró que en una DQN el rein-

CAPÍTULO 2. MACHINE LEARNING EN CONDUCCIÓN AUTÓNOMA11

forcemnet learning es el responsable de la parte de planificación de la acción,
mientras que el deep learning es el responsable de la parte de representación
del entorno. También se ha probado, en [28], que con este tipo de algoritmos
se puede lograr un nivel de control humano e incluso mejor. En el ámbito de la
conducción autónoma hay numerosas investigaciones que estudian está técnica,
como ((Autonomous driving system based on deep Q learnig))[30], en las que se
están obteniendo buenos resultados. Se espera lograr avances prometedores gra-
cias al deep reinforcement learning, que se está convirtiendo en el método más
utilizado en este campo, por ello es en el que más se va a profundizar en este
proyecto.

Figura 2.2: Arquitectura de las deep Q networks utilizadas en deep reinforcement
learning.

Caṕıtulo 3

Simulación para
autonomous driving

En este caṕıtulo se van a exponer los motivos por los que es adecuado uti-
lizar un simulador de conducción autónoma en esta aplicación, algunos de los
simuladores existentes más utilizados, el simulador elegido para la realización
de este proyecto y los datos utilizados y obtenidos de él.

3.1. Simulador de conducción autónoma

En conducción autónoma se dan ciertos retos y limitaciones, algunos de
ellos relacionados con el uso de técnicas de deep learning y otros con la propia
aplicación, para los que puede resultar útil el uso de simuladores.

Retos abordados en conducción autónoma. Por un lado, en cuanto a los
retos ligados a la conducción autónoma, la mayoŕıa radican en su carácter de
aplicación cŕıtica para la seguridad y en las limitaciones que hay para pasar de
los modelos entrenados off line a la implementación en un veh́ıculo autónomo
real. Estos han de tener la capacidad de lidiar con situaciones impredecibles
y tomar la mejor decisión y la más segura para todos los implicados, incluso
en escenarios complejos de conducción y con muchos elementos dinámicos. Pa-
ra ello, actualmente se tiende al reinforcement learning de extremo a extremo,
en el que se analizan experiencias reales de conducción considerando el proce-
so completo, sin enfocarse en los detalles de los componentes individuales del
escenario ya que para el objetivo final no se necesita conocer cada parte del
escenario o de otro automóvil, únicamente la posición de la carretera y de los
obstáculos relevantes en ella, tanto peatones como otros veh́ıculos. Se centra solo
en las mejores decisiones para cada situación, por lo que es la mejor alternativa
para esta aplicación como ya se ha dicho anteriormente. Sin embargo, el uso
esta técnica implica la necesidad de realizar millones de pruebas y errores en el
entorno objetivo, incluyendo casos extremos y fuera de lo normal que, en esta
aplicación debido a su naturaleza, son imposibles de ensayar y explorar con un
veh́ıculo en el mundo real, como ya se ha mencionado en la sección 2.1, por lo
que el uso de un simulador puede resultar de gran ayuda.

12

CAPÍTULO 3. SIMULACIÓN PARA AUTONOMOUS DRIVING 13

Limitaciones ligadas al uso de técnicas basadas en deep learning. Por
otro lado, el uso de técnicas basadas en deep learning conlleva la necesidad de
poseer una gran cantidad de datos, o bien etiquetados o bien obtenidos median-
te la exploración del entorno, con los que poder entrenar el sistema. Esta es su
mayor limitación, ya que a pesar de que el creciente desarrollo de las tecnoloǵıas
IoT y Big Data supone un gran avance en el reto de la adquisición de los datos
y en el almacenamiento y procesamiento de petabytes de ellos, respectivamen-
te, en algunas aplicaciones siguen sin ser suficientes para lograr unos buenos
resultados. Además existen dos enfoques a la hora de implementar el sistema:
el tradicional con distintos bloques secuenciales para cada proceso, en los que
se puede utilizar deep learning o técnicas clásicas de visión de forma indepen-
diente en cada etapa, y el enfoque end to end o de extremo a extremo, ambos
mostrados en la Fig. 3.1. Actualmente se tiende a las arquitecturas end to end
en diversas aplicaciones, entre las cuales está la conducción autónoma, ya que
puede reemplazar las múltiples etapas del enfoque tradicional, que en ocasiones
resuelve problemas por separado más complejos que el del objetivo final, por
una sola red neuronal profunda, lo cual puede simplificar el sistema extrayen-
do solo la información relevante. Esta arquitectura requiere una cantidad aún
mayor de datos para lograr un funcionamiento óptimo y con mejores resultados
que en el enfoque modular. Por ello, su uso agrava el problema de la necesidad
de una gran suma de datos, necesarios para que no se produzcan problemas de
generalización a la hora de reconocer nuevos objetos, situaciones o escenarios, lo
cual es grave en aplicaciones cŕıticas para la seguridad como lo es la conducción
autónoma. Este problema se acrecenta en entornos de conducción complejos,
con tráfico denso y muchos agentes dinámicos.

Ventajas del uso de un simulador. Por todo ello, hoy en d́ıa en vez de
analizar experiencias reales de conducción, se tiende cada vez más a extraer
datos de simuladores de veh́ıculos autónomos para el entrenamiento sobre todo
de sistemas de deep reinforcement learning de extremo a extremo, como es el caso
de [31]. Con el uso de estos simuladores se consiguen cantidades casi ilimitadas
de datos, que pueden ser tanto de escenarios comunes en la conducción autónoma

Figura 3.1: Sistema de conducción autónoma con un enfoque modular frente a
otro end to end o de extremo a extremo.

CAPÍTULO 3. SIMULACIÓN PARA AUTONOMOUS DRIVING 14

como de situaciones extremas de una manera totalmente segura, atajando aśı
algunos de los problemas relativos a esta aplicación aśı como de limitaciones
ligadas al uso de técnicas de deep learning mencionados anteriormente. El uso
de simuladores permite obtener la gran cantidad de datos requerida, siendo
una fuente adecuada para algoritmos de deep learning de extremo a extremo,
que permiten que una red neuronal profunda asigne la entrada sin formato
(en bruto) a la salida directa, como los utilizados en conducción autónoma y
en este proyecto. La posibilidad de obtener una gran suma de datos mejora
problemas de reproducibilidad y disminuye en buena medida los problemas de
generalización al llevar a cabo comportamientos de conducción más realistas
y desafiantes durante el entrenamiento que los que se podŕıan realizar con un
coche en el mundo real. También a la hora de realizar las pruebas y errores
necesarios en reinforcement learning de manera segura, que son inviables en un
entorno objetivo real, es útil el uso de simuladores aśı como lo es para validar
los modelos entrenados.

3.1.1. Simuladores existentes

Respecto a dichos simuladores de conducción autónoma, hay de dos tipos,
unos que ofrecen un aspecto similar al de un videojuego, más virtual e irreal,
y otros que tienen un aspecto mucho más realista, más similar a los escenarios
que se puede encontrar un veh́ıculo autónomo en el mundo real.

Simuladores irreales. Ejemplo de los primeros son Javascript racer utilizado
en [31] o TORCS (The open racing car simulator)[32], que es más conocido y
utilizado en multitud de investigaciones como se puede ver en ((Deepdriving:
Learning affordance for direct perception in autonomous driving))[16], ((Deep
reinforcement learning framework for autonomous driving))[22] o ((End-to-End
Autonomous Driving Decision Based on Deep Reinforcement Learning))[33]. Es-
te último está diseñado como un juego de carreras pero se utiliza comúnmente
como plataforma de investigación.

Simuladores realistas. En cuanto a los segundos, son simuladores desarro-
llados más recientemente con el propósito claro de producir avances en el ámbi-
to de la conducción autónoma, ya que probar algoritmos en el mundo real es
caro, inseguro y requiere mucho tiempo. Los más utilizados actualmente son
CARLA[34], que es de código abierto para apoyar el desarrollo, entrenamien-
to y validación de sistemas autónomos de conducción en entornos urbanos, y
AirSim[4], que está construido sobre Unreal Engine y ofrece simulaciones realis-
tas tanto f́ısica como visualmente en variedad de condiciones y entornos y con
posibilidad de adaptarse a otro tipo de veh́ıculos o robots, como por ejemplo
drones. Se pueden ver resultados y validaciones de modelos que aprovechan el
potencial de CARLA en ((Behavioral cloning from observation))[18], ((Exploring
the limitations of behavior cloning for autonomous driving))[1] o ((Controllable
imitative reinforcement learning for vision-based self-driving))[35], mientras que
en ((Federated transfer reinforcement learning for autonomous driving))[36] o ((

Autonomous driving via deep reinforcement learning))[37] exploran con el recien-
te AirSim. El aspecto de los escenarios en los cuatro simuladores mencionados
se puede ver en la Fig. 3.2.

CAPÍTULO 3. SIMULACIÓN PARA AUTONOMOUS DRIVING 15

(a) (b)

(c) (d)

Figura 3.2: Simuladores de conducción autónoma: (a) Javascript racer, (b) CAR-
LA (fuente: [1]), (c) TORCS y (d) AirSim.

A pesar de las ventajas que ofrecen estos simuladores, con ellos aparece el
problema de adaptar los resultados obtenidos en simulación al mundo real, aun-
que utilizando los más realistas este problema mejora en cierta medida. Otros es-
tudios como ((Virtual to real reinforcement learning for autonomous driving))[2],
analizan la posibilidad de utilizar un simulador más sencillo (como TORCS)
cuyas imágenes de escenarios pasen, gracias a una red neuronal profunda, de
virtuales e irreales a imágenes sintéticas con escenas realistas manteniendo la
misma estructura del entorno. Con estas últimas se entrena posteriormente el
sistema utilizando reinforcement learning, como se observa en la Fig. 3.3.

Sin embargo, aún con todos los avances que se están produciendo y con el
uso de simuladores, la ampliación al espectro completo de los comportamientos
dados en la conducción sigue siendo un problema sin resolver. Al igual que lo es
el paso de los modelos entrenados en entornos virtuales con las técnicas de deep
learning aprendidas a sistemas y veh́ıculos en el mundo real, aunque trabajos
como [38] y [39] han mostrado resultados alentadores para el futuro respecto a
esto.

Figura 3.3: Paso de imágenes virtuales del simulador TORCS a imágenes sintéti-
cas realistas para entrenar un sistema de conducción autónoma utilizando rein-
forcement learning, propuesto en [2].

CAPÍTULO 3. SIMULACIÓN PARA AUTONOMOUS DRIVING 16

3.1.2. Airsim

Para este proyecto, se ha decidido utilizar el simulador de conducción autóno-
ma en entornos realistas Airsim[4], dados los buenos resultados de este tipo de
simuladores en otras investigaciones. Este es uno de los desarrollados más re-
cientemente y se ha elegido por la gran variedad de escenarios y condiciones
realistas que posee. Otras razones para su elección son, la existencia de una
amplia documentación sobre él debido a que se ha utilizado en múltiples tra-
bajos, también de versiones más reducidas del simulador que permiten entrenar
modelos de manera más sencilla y con menos requerimientos hardware para su
uso y, además, ya se poséıa experiencia en el manejo del motor gráfico Unreal
Engine en el que está basado.

Airsim es una plataforma de código abierto que permite recolectar un gran
número de datos de entrenamiento etiquetados en distintos entornos. Ofrece
simulaciones realistas y está diseñado para ser extensible a nuevos tipos de
veh́ıculos, plataformas hardware y protocolos de software. Este simulador tiene
como objetivo reducir la brecha entre la simulación y la realidad para ayudar
al desarrollo de veh́ıculos autónomos, ya que desarrollar y probar estos algorit-
mos en el mundo real es un proceso largo, caro y a menudo inseguro, siendo
necesario transferir el aprendizaje que se lleva a cabo en simulación a la reali-
dad. Por ello, es importante desarrollar modelos precisos del entorno y de la
dinámica del sistema, con la mayor riqueza y diversidad posible, para que el
comportamiento simulado imite de cerca el mundo real. Esto es logrado en gran
medida por Airsim, que ofrece simulaciones de alta fidelidad, además de que
sus componentes principales incluidos el motor de f́ısica, los modelos de veh́ıcu-
los, los modelos de entorno y los modelos de sensores, están diseñados para ser
utilizados independientemente con dependencias mı́nimas fuera de Airsim.

Extracción de datos AirSim posee APIs (interfaz de programación de apli-
caciones), descritas en su documentación1, para que se pueda interactuar con
el veh́ıculo en la simulación desde un entorno de programación. Con ellas se
pueden obtener imágenes del simulador, validar la conexión con él, obtener el
estado del veh́ıculo (parámetros como su velocidad, posición dentro del escenario
o información sobre colisiones con elementos del entorno), controlar el veh́ıculo
(tanto su velocidad como el ángulo del volante para realizar giros), incluso se
pueden activar efectos de tiempo meteorológico (como lluvia), etc. Gracias a
esto, se puede lograr una gran cantidad de datos etiquetados y muy variados,
ya que además de existir varios escenarios, es posible cambiar las condiciones de
estos (como el tiempo o la iluminación), algo que en el mundo real podŕıa llevar
d́ıas o incluso meses. De este modo con Airsim podemos lograr, en primer lugar
obtener imágenes del simulador etiquetadas para formar un dataset. En segundo
lugar utilizar los escenarios para las pruebas y errores durante el entrenamiento
de algoritmos de reinforcement learning que solo se pueden entrenar en simula-
ción. En tercer lugar, se puede realizar clonación de comportamiento guardando
una trayectoria realizada por el usuario a replicar por el agente, extrayendo del
simulador las posiciones objetivo y los parámetros de conducción que realiza el
veh́ıculo para realizar la trayectoria. Por último, también proporciona un banco
de pruebas seguro para validar y evaluar modelos ya entrenados.

1https://microsoft.github.io/AirSim/

https://microsoft.github.io/AirSim/

CAPÍTULO 3. SIMULACIÓN PARA AUTONOMOUS DRIVING 17

Escenarios de Airsim. Se ha utilizado un paquete compilado del entorno de
simulación Airsim, independiente y más reducido que el simulador completo, del
repositorio de GitHub ((AutonomousDrivingCookbook))2. Este contiene cuatro es-
cenarios distintos con caracteŕısticas muy diferentes: neighborhood en el que se
puede conducir por las calles de un vecindario, city en el que se ve una carretera
de ciudad por la que circulan otros veh́ıculos y hay más elementos dinámicos,
landscape donde aparece una carretera de montaña con diversas curvas y un
camino nevado y escarpado y, por último, coastline en el cual se observa una
carretera con unos alrededores llenos de vegetación y el mar. Se puede ver una
imagen de cada uno de los entornos descritos en la Figura 3.4. Se ha decidido
utilizar este paquete reducido debido a que con él se requieren menos requisitos
hardware y menos espacio y memoria. Además, el tiempo de preparación previo
a la utilización del simulador es menor, ya que no es necesario compilar cada
escenario por separado, basta con ejecutar el paquete en la PowerShell de Win-
dows y darle como parámetro el nombre del escenario que se desee abrir, siendo
aśı más sencillo su uso para la familiarización con él pero manteniendo a la vez
una buena variedad de entornos y condiciones de conducción.

(a) (b)

(c) (d)

Figura 3.4: Escenarios existentes en el paquete de Airsim utilizado: (a) Neigh-
borhood, (b) city, (c) landscape y (d) coastline.

Dataset. Además de esto para la red neuronal convolucional que se ha entre-
nado, para posteriormente utilizar ese modelo como encoder (modelo que haya
extráıdo y codificado las caracteŕısticas del entorno de conducción de manera
previa a otro entrenamiento) o base para el algoritmo de reinforcement learning
y aśı reducir el tiempo de entrenamiento necesario en este último, se ha utilizado
un dataset del mismo repositorio de GitHub3 mencionado en el párrafo anterior.

2https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/

DistributedRL
3https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/

AirSimE2EDeepLearning

https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/AirSimE2EDeepLearning
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/AirSimE2EDeepLearning

CAPÍTULO 3. SIMULACIÓN PARA AUTONOMOUS DRIVING 18

Las imágenes de este dataset pertenecen al escenario landscape de Airsim y en
ellas se observa el entorno con una única cámara frontal para la entrada visual,
como se ve en el ejemplo de la Figura 3.5.

El dataset se divide en dos partes, por un lado las imágenes y por otro fiche-
ros .tsv en los que para cada imagen contiene la etiqueta del ángulo de dirección
del volante adecuado en ese momento. Además las imágenes se dividen en dos
estrategias de conducción, la normal y la de desv́ıos, en las primeras el ángulo
etiquetado es pequeño (cercano a cero) para que el coche vaya recto por la ca-
rretera, mientras que en las segundas los ángulos son bruscos, llevando al coche
lado a lado de la carretera para que pueda corregirse si se está saliendo o evitar
un obstáculo en la carretera, proporcionándole aśı suficientes ejemplos de las
distintas situaciones que se pueden dar en la conducción para el entrenamiento.
Todos estos datos se tratan, en primer lugar tomando solo la parte de interés
de cada imagen, la mitad de abajo en la que se encuentra la carretera, redu-
ciendo aśı el tiempo de entrenamiento y evitando que el modelo se enfoque en
caracteŕısticas irrelevantes del entorno. Posteriormente se unen todos los datos
de los ficheros .tsv en un solo marco de datos, combinándolos en archivos .h5,
adecuados para grandes conjuntos de datos. Este conjunto final, tiene cuatro
partes: una matriz con los datos de la imagen, una matriz con el estado ante-
rior del coche que contiene la dirección del volante, el freno, el acelerador y la
velocidad, una matriz con las etiquetas correspondientes al ángulo de dirección
normalizado en el rango de -1 a 1 y una matriz con datos sobre los archivos. El
marco final de datos se divide un 70 % para train, un 20 % para eval y un 10 %
para test.

(a) (b)

Figura 3.5: Ejemplo de dos imágenes del dataset utilizado para entrenar la CNN.

Caṕıtulo 4

Sistema Implementado

En este caṕıtulo se detallan los pasos seguidos para llevar a cabo la im-
plementación del sistema de conducción autónoma. Explicando las partes y el
esquema general del sistema desarrollado, desde la red neuronal convolucional
utilizada para obtener el modelo que servirá de encoder para dicho sistema,
hasta el algoritmo de reinforcement learning que se va a utilizar como base y
las variaciones implementadas en él para dar lugar al sistema final.

4.1. Resumen general y partes del sistema

En este trabajo se plantea un sistema de conducción autónoma que aúna dos
técnicas de aprendizaje automático distintas, como se ve en la Figura 4.1, por un
lado el aprendizaje supervisado ya que se utiliza una red neuronal convolucional
y por otro lado el aprendizaje por refuerzo, la parte principal del sistema desarro-
llado. Por lo tanto, dicho sistema consta de dos partes diferenciadas. En primer
lugar se entrena una red convolucional con los datos del escenario landscape de
Airsim, descritos en el apartado dataset de la subsección 3.1.2. Esta red aprende
únicamente un parámetro de conducción, el ángulo del volante adecuado para
la situación de cada imagen, y el modelo obtenido con ella servirá como encoder
para que el algoritmo de reinforcement learning parta desde ah́ı. Su estructura
y funcionamiento se va a explicar en más detalle en la sección 4.2. En segundo
lugar, se utiliza un algoritmo de aprendizaje por refuerzo, que es el que realiza
la mayor parte del trabajo a la hora de aprender la tarea de conducción, ya que
como se ha estudiado en caṕıtulos anteriores, es la técnica más usada y que me-
jores resultados está obteniendo para esta aplicación. Se analizan, implementan
y evalúan distintos algoritmos y variaciones t́ıpicos en este tipo de aprendizaje,
explicados en la sección 4.3. En este trabajo, los algoritmos de reinforcement
learning se entrenan en su mayoŕıa en un escenario diferente al del encoder, en
este caso en neighborhood, realizando el coche acciones y pruebas online en el
simulador durante el entrenamiento, y ajustando a este nuevo entorno los pe-
sos del modelo proporcionado por la CNN, aunque también se entrena uno de
los algoritmos en el escenario landscape para aśı analizar su funcionamiento en
distintos entornos. Estos algoritmos, no aprenden únicamente el ángulo de giro
del volante como la CNN, aprenden también a controlar la velocidad (control
de acelerador y freno del veh́ıculo), una conducción más completa.

19

CAPÍTULO 4. SISTEMA IMPLEMENTADO 20

Figura 4.1: Esquema general del sistema implementado.

4.2. Algoritmo de aprendizaje supervisado im-
plementado

Como se ha descrito en la sección anterior, en el sistema implementado se
utiliza como base para los posteriores algoritmos de aprendizaje por refuerzo un
modelo proporcionado por una red neuronal convolucional que predice el ángulo
del volante dada una imagen. Dicha red es la que se va a explicar a continuación.

Red neuronal convolucional (CNN). Se utiliza una red neuronal convo-
lucional tomada de un repositorio de GitHub de Microsoft, desarrollador de
Airsim, llamado ((AutonomousDrivingCookbook)). El algoritmo ((TrainModel))
utilizado se encuentra en la carpeta ((AirSimE2EDeepLearning))1. Está imple-
mentada utilizando Keras y TensorFlow, marcos de desarrollo t́ıpicos en deep
learning. Esta red usa los datos de train y eval en ficheros .h5 separados, ya
tratados como se ha descrito en el apartado dataset de la subsección 3.1.2, para
resolver un problema de regresión y devolviendo aśı el ángulo adecuado de giro
del volante. La arquitectura de esta red consta de la capa de entrada, a la cual
se le proporciona la imagen de entrada con su tamaño esperado, diversas capas
ocultas convolucionales en las que su entrada es la salida de la capa anterior y
finalmente se añaden varias capas fully connected, sin embargo, en la primera
de ellas la entrada ya no es únicamente la salida de las capas convolucionales,
sino que además se le concatena el último estado conocido del coche.

1https://github.com/microsoft/AutonomousDrivingCookbook/blob/master/

AirSimE2EDeepLearning/TrainModel.ipynb

https://github.com/microsoft/AutonomousDrivingCookbook/blob/master/AirSimE2EDeepLearning/TrainModel.ipynb
https://github.com/microsoft/AutonomousDrivingCookbook/blob/master/AirSimE2EDeepLearning/TrainModel.ipynb

CAPÍTULO 4. SISTEMA IMPLEMENTADO 21

A continuación se va a explicar dicha arquitectura, que se puede ver en la
Figura 4.2, en más detalle. En primer lugar, se cuenta con tres capas convolu-
cionales (Conv2D), con 16, 32 y 32 filtros respectivamente de con un tamaño de
3x3 cada uno de ellos, las cuales utilizan la función de activación ReLu (t́ıpica en
CNNs), y el relleno same en el argumento padding para solucionar el problema
de efecto de borde. Tras cada una de las capas de convolución, se encuentra una
capa MaxPooling2D (también hay tres capas de este tipo) que agrupan un área
de 2x2 ṕıxeles (filtro 2x2) y lo sustituyen por el valor máximo dentro de ella,
para aśı reducir el tamaño de los mapas de caracteŕısticas que salen tras las
convoluciones a la mitad. Después de esto hay un dropout, que lo que hace es
desactivar diferentes neuronas de la red para aśı que se reduzca el overfitting o
sobreajuste durante el entrenamiento. En la red utilizada el parámetro de esta
capa, que indica el porcentaje de neuronas desactivadas en cada iteración, era de
0.2 pero se decidió cambiarlo a 0.5 ya que segúıa habiendo algo de sobreajuste.
Ahora se pasa a añadir las capas fully connected, tres en total, con un dropout
de 0.5 como el descrito anteriormente entre ellas (en total dos dropout más).
Pero como ya se ha dicho anteriormente, como entrada a la primera de ellas se
concatena la salida tras el dropout que hay después de las convoluciones con el
estado del coche. Son capas dense, las dos primeras con 64 y 10 neuronas res-
pectivamente, mientras que la última, la capa de salida, tiene una única neurona
que es la que predice el valor numérico del ángulo del volante. Finalmente, a la
hora de compilar el modelo se utiliza el optimizador Nadam con un learning rate
diferente al dado en el repositorio (en vez de 0.0001 se utiliza uno un poco más
grande, de 0.0005) y para la loss se utiliza la métrica mse (media de los erro-
res cuadráticos). El modelo obtenido se guarda para utilizarlo posteriormente y
partir desde él.

Figura 4.2: Arquitectura de la CNN utilizada.

CAPÍTULO 4. SISTEMA IMPLEMENTADO 22

4.3. Algoritmos de deep reinforcement learning
implementados

Como parte fundamental del sistema implementado, se tiene el algoritmo
de reinforcement learning. Se parte desde el algoritmo de una deep Q network
(DQN) que utiliza Airsim del mismo repositorio de GitHub mencionado en la
sección anterior, dentro de la carpeta DistributedRL2. Se utilizan como base los
códigos encontrados en dicho repositorio de distributed agent.py, rl model.py y
airsim client.py y los datos de road lines.txt y reward points.txt, en los cuales
se encuentran puntos aleatorios del escenario en los que iniciar la simulación y
las posiciones de una trayectoria correcta dentro del escenario neighborhood que
sirven para calcular la recompensa obtenida en cada episodio respectivamente.
Primero se realiza un entrenamiento sin realizar ninguna modificación en este
algoritmo que se explica en el siguiente párrafo y posteriormente, sobre él se
implementan distintas variaciones que se detallan más adelante.

Deep Q network (DQN). Para entrenar se lanza el algoritmo distribu-
ted agent.py, en el que se importa airsim client.py para posibilitar la conexión
y extracción de datos del simulador durante el entrenamiento y rl model.py en
el cual se encuentra la DQN.

Este código en distributed agent.py, como su nombre indica, estaba pensado
para entrenarse de manera distribuida en Azure mientras que en este trabajo
se va a hacer de manera local, por lo que el primer cambio realizado es quitar
las partes del código que se utilizan para el entrenamiento distribuido, dejando
únicamente la parte local. En este script, lo primero que se hace es inicializar
la clase agente con varios parámetros proporcionados como argumentos por la
terminal como por ejemplo el batch size, el tamaño del buffer de memoria para
guardar diferentes acciones en cada episodio, la épsilon mı́nima para el algorit-
mo, el número de iteraciones tras el cual se guarda un checkpoint del modelo
en ese momento o distintos paths, entre otros. A continuación, se crea un objeto
modelo de la clase RLModel cargando en él los pesos de la CNN explicada en la
sección 4.2 y se realiza la conexión con Airsim para explorar el entorno y comen-
zar el aprendizaje. En el simulador se realizan varias acciones, hasta completar
el buffer de memoria, y con los datos obtenidos del simulador al completar el epi-
sodio se actualizan los pesos del modelo entrenando el algoritmo DQN. Dichas
acciones al principio son todas aleatorias, ya que el parámetro épsilon tiene valor
1, pero conforme van realizándose iteraciones este valor va bajando lentamente
hasta llegar al mı́nimo establecido, en este caso de 0.1, donde el 10 % de accio-
nes son aleatorias para que el veh́ıculo pueda seguir explorando, encontrando
acciones que generen mejores recompensas que las aprendidas mejorando aśı la
conducción y evitando que el agente se atasque durante el aprendizaje y pueda
seguir mejorando a lo largo del entrenamiento. Esto es un método denominado
epsilon-greedy, en el cual se puede ir disminuyendo épsilon de distintas maneras,
pero en este caso está implementado de forma que el valor de épsilon se obtiene
restando en cada epoch un 0.003 al valor actual de épsilon hasta llegar al mı́nimo
donde se queda constante.

2https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/

DistributedRL/Share/scripts_downpour/app

https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL/Share/scripts_downpour/app
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL/Share/scripts_downpour/app

CAPÍTULO 4. SISTEMA IMPLEMENTADO 23

Para que la red aprenda es muy importante un cálculo adecuado de la re-
compensa o reward de cada episodio. En este caso, se calcula obteniendo del
simulador la posición del coche en cada momento y hallando la distancia de es-
ta a los segmentos formados al tomar las coordenadas de un punto y el siguiente
de la trayectoria guardada en el archivo reward points.txt. A dicha distancia se
la multiplica después por una tasa a la cual decae la recompensa y se hace la
exponencial, obteniendo aśı el valor de la recompensa correspondiente a la po-
sición. En la recompensa, además de la posición del coche, influyen la velocidad
y las colisiones, asignándoles en este caso una recompensa de cero tanto si hay
un choque como si el veh́ıculo está parado (velocidad menor que 2). En la pri-
mera versión del sistema implementado esto no se ha modificado, se realizará
en variaciones posteriores, lo que śı se ha hecho es añadir un pequeño código
para guardar los valores de la recompensa acumulada en cada episodio durante
el entrenamiento, para posteriormente poder representarla.

En cuanto a la arquitectura de la red utilizada y el algoritmo DQN pro-
piamente dicho, se encuentran en el script rl model.py que se va a detallar a
continuación. El algoritmo deep Q network combina el algoritmo Q-learning
con las redes neuronales profundas (DNN), las cuales utiliza para aproximar la
función Q. Se utilizan dos redes neuronales para estabilizar el proceso de apren-
dizaje. La primera, la red neuronal principal (en este caso action model), está
representada por los parámetros θ y se utiliza para estimar los valores Q del
estado, s, y acción, a, actuales. La segunda, la red neuronal objetivo (en este
caso target model), parametrizada por θ’, tiene la misma arquitectura que la
red principal pero se usa para aproximar los valores Q del estado siguiente s’ y
la siguiente acción a’. El aprendizaje ocurre en la red principal, ya que la red
objetivo se congela (sus parámetros no se cambian) durante varias iteraciones, y
después los parámetros de la red principal se copian a la red objetivo, transmi-
tiendo aśı el aprendizaje de una a otra, haciendo que las estimaciones calculadas
por la red objetivo sean más precisas. La arquitectura de dichas redes, es muy
similar a la utilizada en la CNN descrita en la sección anterior. La parte convo-
lucional consta de igual modo de tres capas Conv2D, seguidas cada una de ellas
de una capa de MaxPooling y tras todo ello un dropout. La parte de capas fully
connected difiere algo más, teniendo en este caso únicamente dos capas Dense,
entre las cuales aparece un dropout. La primera tiene 128 neuronas mientras
que la segunda, que se corresponde con la capa de salida, consta de 5 neuronas,
una por cada acción posible, siendo cada acción un ángulo de giro de volante
(ángulos normalizados entre -1 y 1: -1, -0.5, 0, 0.5 y 1). A la hora de compilar
el modelo se utiliza el optimizador Adam con un learning rate de 0.001 y para
el argumento loss la métrica de la media de los errores cuadráticos.

Una vez se conoce la arquitectura de las redes utilizadas se pasa a imple-
mentar el cálculo de los targets en las DQN, ecuación 4.1. Para ello, se realiza
una predicción con el target model de los valores Q correspondientes a todas las
acciones posibles de llevar a cabo en el estado siguiente y se toma el máximo
valor de Q obtenido tras dicha predicción. A esto se le multiplica γ, un factor
de descuento entre cero y uno que determina la importancia de las recompensas
futuras (si es cercano a cero solo tendrá en cuenta las recompensas actuales
mientras que si es cercano intentará que la recompensa sea alta a más largo
plazo) y finalmente se le suman las recompensas. El valor obtenido de esta ope-
ración debe ser igual al valor de Q en el estado actual para las acciones elegidas,
por lo tanto se actualizan los valores Q en el action model.

CAPÍTULO 4. SISTEMA IMPLEMENTADO 24

Q(s, a; θ) = r + γmaxa′Q(s′, a′; θ′) (4.1)

Li(θi) = Es,a,r,s′ [((r + γmaxa′Q(s′, a′; θ′)) −Q(s, a; θ))2] (4.2)

Tras esto, se implementa la ecuación de Bellman con la que se calcula la fun-
ción de coste o loss, ecuación 4.2. En ella, se realiza el cuadrado de la diferencia
entre ambos lados del igual de la ecuación 4.1. Finalmente, en este código se ha
añadido a la hora de realizar el fit del modelo un callback de Tensorboard que
permite la visualización de la loss durante el tiempo de entrenamiento.

Double deep Q network (DDQN). Se implementa también un algoritmo
distinto de reinforcement learning, utilizando ahora una double deep Q network
(DDQN) en lugar de una DQN simple. Una DDQN[40] es un algoritmo t́ıpico
en deep reinforcement learning y el siguiente paso tras una DQN para intentar
obtener un modelo mejor. Se decide implementar para comparar los resultados
con los obtenidos anteriormente en la aplicación de conducción autónoma, ya
que se ha visto que es una variación muy utilizada en otras investigaciones.
Se usa para reducir las sobreestimaciones que se producen en una DQN, ya
que el algoritmo piensa que la recompensa que va a obtener con los valores Q
que aprende será mayor de lo que realmente obtendrá. La solución propuesta
en las DDQN consiste en separar la selección de la acción de su evaluación,
primero decidiendo cuál es la mejor acción de todas las posibles con la red
principal (action model) y después evaluando dicha acción en la red objetivo
(target model) para conocer su valor Q, tal y como se observa en la ecuación
4.3.

En este algoritmo no se cambia ni el cálculo de la recompensa, ni la arqui-
tectura de las redes, únicamente se sustituye la parte del código en rl model.py
que se encarga del cálculo de la ecuación 4.1 por la ecuación 4.3 como se ha
explicado.

Q(s, a; θ) = r + γQ(s′, argmaxa′Q(s′, a′; θ); θ′) (4.3)

4.4. Modificaciones implementadas en la DQN

Cambios en la reward. Una vez estudiado y analizado el algoritmo DQN
de base desde el que se parte en este proyecto, se procede a realizar algunas
variaciones en él con el fin de comparar los resultados de varios modelos e
intentar encontrar una implementación que logre mejores resultados que dicho
algoritmo base.

Como primeras modificaciones se han propuesto dos variaciones en el cálculo
de la recompensa:

Variación de la recompensa, v1 (colisiones). En primer lugar se
decide dar una recompensa negativa si se produce una colisión con algún
elemento del entorno, en este caso de -10, en lugar de dar una recompensa
de cero. Esto se debe a que tanto un choque como que el veh́ıculo estuviera
parado teńıan, en el algoritmo de base, la misma recompensa de cero
asignada, siendo una colisión un escenario mucho peor en la conducción
de un veh́ıculo, una situación que se debe evitar a toda costa.

CAPÍTULO 4. SISTEMA IMPLEMENTADO 25

Variación de la recompensa, v2 (colisiones + acelerones). Al cam-
bio realizado en la modificación anterior se decide añadirle además una
recompensa en función de la aceleración. Esta consiste en darle -5 cuando
el veh́ıculo tiene un valor de aceleración muy alto, con el objetivo de que el
coche vaya a una velocidad más o menos constante y sin dar acelerones. De
este modo, el coche obtiene una recompensa negativa con la realización de
dos acciones, los acelerones bruscos y las colisiones, siempre asignándole
la menor recompensa al peor caso que se debe evitar, en conducción a los
choques.

Entrenamiento en distinto escenario. Con el algoritmo de DQN que me-
jores resultados se obtienen, en este caso con la implementación de la variación
de la recompensa v2 como se va a analizar en caṕıtulo 5, se decide realizar
un entrenamiento en otro de los escenarios de Airsim. Se considera interesante,
ver que resultados se obtienen si se utiliza el mismo escenario que se usa para
entrenar el encoder (CNN), por ello se elige el escenario landscape.

Sobre el código implementado en la variación de la recompensa v2, en el
script distributed agent.py, se precisan las siguientes modificaciones. En primer
lugar, a la hora de realizar la conexión con Airsim se debe cambiar el argumento
que selecciona el escenario de neighborhood a landscape. Después es necesario
obtener unos nuevos ficheros de reward points.txt y road lines.txt para este es-
cenario, ya que los proporcionados por el repositorio de GitHub utilizados en el
resto de algoritmos se corresponden con los puntos por los que pasa el coche en
una trayectoria correcta y coordenadas del escenario neighborhood, respectiva-
mente. Para la obtención de dichos archivos, la parte más importante para esta
modificación, se ha escrito un pequeño programa llamado guarda posicion.py.

En este programa lo primero que se hace es la conexión con Airsim, pero
en lugar de darle el control del veh́ıculo a los pesos de los modelos entrenados
como en la evaluación, es el usuario el que mediante las flechas del teclado puede
mover el coche por el escenario, creando aśı la trayectoria de referencia deseada
en dicho entorno con la que se calculará la recompensa. Después de conectarse
con el simulador se crea un bucle en el que se obtiene información de Airsim, en
concreto las coordenadas x e y del coche cada dos segundos. Con ellas, tomando
un punto y el siguiente se crea la variable segmento y cada segmento es escrito
en una ĺınea del nuevo archivo creado llamado reward points landscape.txt, para
lograr un fichero de texto con el mismo formato que el dado para neighborhood.

Las puntos de road lines.txt, sin embargo, están en un sistema de coorde-
nadas diferente, el de Unreal Engine. Para pasar del punto de inicio en este
escenario en coordenadas del veh́ıculo a coordenadas de Unreal hay que sumar-
le al primero un offset que está definido en el código distributed agent.py como
car start coords. Además es necesario un pequeño ajuste más, en el escenario
neighborhood se comenzaba la simulación en cada iteración en una coordenada
de road lines.txt diferente con un ángulo de inicio distinto (o de frente o girado
180 grados de manera aleatoria, ya que es un vecindario en el que ambos lados
de la carretera tienen salida). Sin embargo, el nuevo escenario es un camino muy
estrecho, con vallas a los lados y solo se puede avanzar, ya que detrás tiene una
pared de rocas, por lo que no tendŕıa sentido iniciar la simulación con un ángulo
aleatorio, por ello se deja el ángulo adecuado fijo para que el veh́ıculo comience
enderezado en la carretera.

Caṕıtulo 5

Experimentación y
evaluación

En este caṕıtulo se va a detallar el set up utilizado para todos los experimen-
tos realizados y la configuración concreta con los parámetros determinados de
cada uno de ellos. Posteriormente se van a evaluar los resultados de los modelos
obtenidos, analizando y discutiendo su funcionamiento y el comportamiento del
veh́ıculo dentro de distintos escenarios del simulador Airsim.

5.1. Configuración de los experimentos

Set up. Para realizar los experimentos ha sido necesario utilizar un ordena-
dor potente del laboratorio en el que se trabaja cuyas caracteŕısticas son: un
procesador Intel Core i7-6700 CPU @3.40GHz x 8, una memoria RAM de 32
GB y una GPU GeForce GTX 1070/PCIe/SSE2.

Los códigos del repositorio de GitHub1 explicados en el caṕıtulo 4 y utili-
zados como base para emprender este trabajo estaban desactualizados, por ello
en el entorno virtual creado en Anaconda se han instalado unas versiones, tanto
de Python como de las libreŕıas esenciales, bastante anteriores a la última que
existe. Esto dificultó y alargó la puesta en marcha más de lo previsto inicial-
mente porque no se sab́ıa cuales eran las versiones exactas de todas las libreŕıas
utilizadas, lo que dio problemas de compatibilidad en su instalación. Concre-
tamente, se utiliza la versión 3.6.12 de Python, la versión 2.3.1 de Keras y la
versión 1.14.0 de TensorFlow para poner en marcha los programas de base y
que funcione también el paquete reducido del simulador utilizado, que al igual
que los códigos tampoco usa la última versión de Airsim.

Los datos y escenarios utilizados en todos los algoritmos ya se han explicado
tanto en el apartado dataset como en el de escenarios de Airsim del caṕıtulo 3
respectivamente.

Dado que la velocidad del veh́ıculo es constante, como métrica de calidad del
modelo obtenido se va a medir el tiempo que aguanta el coche en la carretera
sin chocar con nada, viendo como evoluciona este tiempo en distintos puntos
del entrenamiento.

1https://github.com/microsoft/AutonomousDrivingCookbook

26

https://github.com/microsoft/AutonomousDrivingCookbook

CAPÍTULO 5. EXPERIMENTACIÓN Y EVALUACIÓN 27

En particular se calcula como la media de n ejecuciones para calcular el valor
esperado con respecto a las variaciones ambientales y perturbaciones:

tdriving =

n∑
i=1

(ti)/n (5.1)

donde ti es el tiempo (en segundos) que el veh́ıculo logra conducir de manera
autónoma, es decir, permanecer en la carretera sin colisionar ni salirse de ella y
en este caso n = 10.

Además también se analiza su comportamiento en diferentes escenarios de
manera cualitativa durante la ejecución de la evaluación. Todos los modelos se
han entrenado aproximadamente durante 48 horas y los detalles de los entre-
namientos de cada uno de ellos, como la reward o recompensa acumulada por
episodio, la loss durante el entrenamiento y los hiperparámetros elegidos, se
pueden ver en detalle en el Anexo A.

Modelos utilizados para los experimentos. Se han entrenado los siguien-
tes modelos con los algoritmos y variaciones detallados en el caṕıtulo 4 para
realizar los experimentos de la sección 5.2:

1. Base DQN con Reward base . DQN versión 0: Se lanza el algoritmo de
base del repositorio AutonomousDrivingCookbook2 sin cambios.

2. Base DQN con Reward v1 . DQN versión 1: Se utiliza el algoritmo
DQN con la variación de la recompensa v1 detallada en 4.3, dando más
penalización a las colisiones en el cálculo de la reward.

3. Base DQN con Reward v2 . DQN versión 2: Se utiliza el algoritmo DQN
con la variación de la recompensa v2 detallada en 4.3, donde a versión 1
se le añade una recompensa también negativa a las aceleraciones bruscas.

4. Double DQN con Reward base . Cambio del algoritmo DQN por el
DDQN, utilizando el resto del código, incluido el cálculo de la reward,
como en el experimento DQN versión 0.

5. Base DQN con Reward v2 entrenado en otro escenario. Mismo
código que en el experimento 3 pero utilizando el escenario landscape du-
rante el entrenamiento en lugar del neighborhood.

5.2. Experimentos realizados y evaluación de los
resultados

5.2.1. Análisis de las distintas variaciones implementadas

Objetivo. En el primer experimento se pretende evaluar, utilizando el simu-
lador, el comportamiento de los distintos algoritmos implementados, para deter-
minar cuál de los modelos obtenidos logra mejores resultados y tiene una mejor
actuación en el mismo escenario en el que se ha entrenado (neighborhood).

2https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/

DistributedRL/Share/scripts_downpour/app

https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL/Share/scripts_downpour/app
https://github.com/microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL/Share/scripts_downpour/app

CAPÍTULO 5. EXPERIMENTACIÓN Y EVALUACIÓN 28

Descripción del experimento. En este experimento, en primer lugar se co-
necta con el escenario neighborhood para evaluar los modelos desarrollados en
el mismo entorno que el utilizado para su entrenamiento. Al haber guardado
varios checkpoints del modelo en diferentes puntos de su entrenamiento, se tie-
nen sus pesos en distintos momentos del aprendizaje. Esto sirve para poder ver
la evolución de la conducción durante el entrenamiento, además de analizar los
resultados del modelo final obtenido. Para cada variación implementada, se lle-
van a cabo cinco pruebas diferentes, correspondientes a cinco de los checkpoints
guardados aproximadamente en los momentos en los que se llevaba un tiempo
de entrenamiento de 10h, 20h, 30h, 40h y 50h (al finalizar los dos d́ıas apro-
ximados de entrenamiento). Cada una de dichas pruebas, consiste en realizar
10 ejecuciones del algoritmo de evaluación para obtener una media del tiempo
(en segundos), tdriving, que el veh́ıculo logra permanecer en la carretera sin co-
lisionar ni salirse de ella. Los tiempos tdriving obtenidos como resultado son los
que permiten analizar el desempeño de cada modelo, además de las valoraciones
cualitativas que el usuario puede realizar mientras se ejecuta la evaluación, ya
que se puede ver el comportamiento del coche en el escenario de Airsim durante
la evaluación.

Resultados. La Tabla 5.1 muestra en primer lugar el tiempo medio, tdriving,
y en segundo lugar la desviación t́ıpica entre paréntesis, tras las 10 ejecuciones
realizadas y la evolución de este en cinco puntos distintos del aprendizaje del
modelo.

Modelo 10h entre- 20h entre- 30h entre- 40h entre- Modelo
evaluado namiento namiento namiento namiento final
DQN 3.57s 3.89s 9.90s 10.27s 11.99s
base (v0) (0.48s) (0.54s) (1.93s) (2.48s) (4.21)
DQN 7.61s 8.39s 16.52s 16.45s 18.72s
reward v1 (2.23s) (2.30)s (3.69s) (4.68s) (4.84s)
DQN 7.93s 9.34s 10.49s 13.00s 18.85s
reward v2 (1.30s) (2.48s) (3.98s) (3.88s) (5.88s)
DDQN 4.31s 5.12s 5.78s 7.12s 10.74s
base (0.55s) (2.01s) (2.49s) (3.48s) (4.41s)

Tabla 5.1: Tiempo de conducción (tdriving) medio en 10 ejecuciones y desviación
estándar con entrenamiento y validación en el mismo escenario (neighborhood).

Como se puede ver en la tabla 5.1, el modelo que mejor resultado obtiene
al finalizar el entrenamiento es el del algoritmo DQN con la versión 2 de la
reward, aunque con tiempos muy similares a los de la DQN con la versión v1 de
la reward. Esto se debe a que en ambos modelos, la colisión está penalizada con
una recompensa negativa, por lo que el veh́ıculo ha aprendido a intentar evitar
esta situación de manera más rápida que el DQN base. Sin embargo, de manera
cualitativa se ha observado que esto lleva también a que el coche decida la mayor
parte de las veces seguir recto en lugar de girar, en los cruces de carretera que
se encuentra. En cuanto a la DDQN no se han obtenido los resultados pensados,
se esperaba lograr un tiempo mejor que en la DQN base, sin embargo es algo
menor. Esto se debe a que la mejora de la DDQN respecto al DQN se suele ver

CAPÍTULO 5. EXPERIMENTACIÓN Y EVALUACIÓN 29

más adelante, con un número de epoch y por tanto un tiempo de entrenamiento
del algoritmo mayor al realizado en este trabajo.

Además, la evolución del tiempo en la carretera en cada uno de los cuatro
modelos se puede ver de manera más clara en las gráficas mostradas en la Figura
5.1. Tanto en esta figura como en la tabla anterior se observa como en el DQN
con reward v1 y en el DQN con reward v2 la conducción mejora de manera más
rápida que en el DQN base, aguantando más tiempo en la carretera incluso en
los primeros momentos del entrenamiento. En cambio, en la evolución del tiempo
en la carretera de la DDQN, se ve como tiene un comportamiento similar a la
DQN base en un principio pero sin llegar a alcanzar el tiempo de esta en el
modelo final, aunque se observa una tendencia más creciente en los puntos de
la DDQN que en los de la DQN básica.

Con estos resultados, se elige como mejor modelo de entre los analizados la
DQN base con reward v2.

(a) (b)

(c) (d)

Figura 5.1: Evolución del tiempo en la carretera, tdriving, durante diferentes
puntos del entrenamiento de los cuatro modelos analizados. (a) DQN base (v0),
(b) DQN reward v1, (c) DQN reward v2 y (d) DDQN.

5.2.2. Análisis de un modelo entrenado en el mismo esce-
nario que el encoder

Objetivo. Analizar la influencia de los datos que se utilizan en el encoder,
entrenando el algoritmo con mejores resultados del experimento anterior (DQN
con reward v2) en el mismo escenario del que se han sacado las imágenes del
dataset para la CNN (landscape), y comprobando si el aprendizaje es más rápido
y la conducción en este entorno mejor que la lograda entrenando el encoder y
el algoritmo de reinforcement learning en escenarios distintos.

Descripción del experimento. En este experimento, se conecta con el es-
cenario landscape para evaluar el modelo DQN con reward v2 entrenado en

CAPÍTULO 5. EXPERIMENTACIÓN Y EVALUACIÓN 30

dicho escenario, realizando aśı un análisis de su rendimiento utilizando el mis-
mo entorno para el entrenamiento del encoder, el entrenamiento de la DQN y
la evaluación. Al igual que en el experimento anterior, se han guardado diver-
sos checkpoints durante el entrenamiento, por lo que se puede analizar tanto el
proceso de aprendizaje como el comportamiento al finalizar, viendo aśı si difiere
del caso en el que encoder y DQN están entrenados en un escenario distinto y
la influencia que tiene en el aprendizaje de la conducción los datos utilizados
en el encoder. Como en el experimento anterior, se calcula el tdriving medio de
diez ejecuciones en cinco momentos diferentes del entrenamiento. Los tiempos
obtenidos son los que se van a analizar en el apartado de resultados, aśı como
las valoraciones cualitativas del usuario sobre el comportamiento del veh́ıculo
durante la evaluación.

Resultados. La Tabla 5.2 muestra en primer lugar el tiempo medio, tdriving,
y en segundo lugar la desviación t́ıpica entre paréntesis, tras las 10 ejecuciones
realizadas y la evolución de este en cinco puntos distintos del aprendizaje del
modelo.

Modelo 10h entre- 20h entre- 30h entre- 40h entre- Modelo
evaluado namiento namiento namiento namiento final
DQN v2 2.94s 3.18s 3.94s 5.19s 5.34s

(landscape) (0.21s) (0.32s) (0.16s) (1.22s) (0.65s)
DQN 7.93s 9.34s 10.49s 13.00s 18.85s

reward v2 (1.30s) (2.48s) (3.98s) (3.88s) (5.88s)

Tabla 5.2: Tiempo de conducción (tdriving) medio en 10 ejecuciones y desviación
estándar con entrenamiento y validación en el mismo escenario que el encoder
(landscape).

Como se observa en la tabla 5.2, el tiempo obtenido con el modelo final
entrenado en landscape es mucho menor que el del mismo algoritmo (DQN
con reward v2) entrenado en neighborhood. Esto se debe a que la carretera
existente en landscape es estrecha, con vallas, muchas curvas, subidas y bajadas
del terreno y cubierta de nieve (por lo tanto es un camino resbaladizo ya que
Airsim es realista en la f́ısica del escenario), a diferencia de las grandes rectas
llanas de neighborhood, como se ve en la Figura 3.4, siendo por tanto el primero
un entorno más complicado.

Atendiendo ahora a la evolución del tdriving en el modelo entrenado en lands-
cape, que también se muestra en la Figura 5.2, se puede ver que a lo largo del
aprendizaje va aumentando dicho tiempo, pero no lo hace de manera más rápida
que en los casos en que el entrenamiento del encoder y del algoritmo de reinfor-
cement learning se realiza en un entorno distinto. Durante la evaluación se ve
que no comienza ya con una trayectoria más adecuada aunque el encoder utilice
datos del mismo escenario, por ello se extrae, que el entorno del que procedan
los datos utilizados en la CNN no tienen una gran influencia sobre el entrena-
miento posterior. Esto se puede deber a que en el encoder se teńıa en cuenta
solo la mitad inferior de las imágenes del dataset, fijándose aśı en la dirección
de la carretera únicamente y sin tener en cuenta el resto de aspectos del en-
torno (existencia de árboles, edificios, montañas...) y por lo tanto afectando del

CAPÍTULO 5. EXPERIMENTACIÓN Y EVALUACIÓN 31

mismo modo a los algoritmos de reinforcement learning entrenados en cualquier
escenario.

Lo que también se puede ver es que en los dos últimos puntos de análisis del
tdriving en el modelo (con 40h de entrenamiento y modelo final), este aumenta
más notablemente (tendencia hacia arriba) que en los checkpoints anteriores,
algo que también se ha podido apreciar viendo la mejora del comportamiento
del coche en el simulador durante la evaluación, lo que lleva a pensar que con un
mayor tiempo de entrenamiento se podŕıan alcanzar unos resultados mejores.

Figura 5.2: Evolución del tiempo en la carretera, tdriving, durante diferentes
puntos del entrenamiento del modelo DQN con reward v2 entrenado en lands-
cape

5.2.3. Actuación en distintos escenarios

Objetivo. Analizar el comportamiento del coche evaluando los cinco modelos
propuestos en distintos escenarios, para estudiar aśı la generalización a distintos
entornos de cada uno de ellos.

Descripción del experimento. En este experimento se realiza el análisis del
rendimiento de los modelos obtenidos al final del entrenamiento de cada ver-
sión en distintos escenarios. En este caso, como en los experimentos anteriores,
también se calcula el tdriving de diez ejecuciones, pero sin analizar puntos inter-
medios del entrenamiento, únicamente con el modelo final. Esto se lleva a cabo
en tres entornos distintos, en los que se incluye el escenario en el que ha sido en-
trenado el algoritmo de reinforcement learning (neighborhood en todos los casos
excepto en el último modelo que ha sido entrenado en landscape), el del encoder
(landscape) y otro totalmente nuevo (coastline, aunque en el caso del último
modelo entrenado en landscape tanto coastline como neighborhood son nuevos).
Los tiempos tdriving obtenidos y las valoraciones cualitativas realizadas por el
usuario durante la evaluación van a permitir el análisis de la generalización de
los modelos desarrollados y su rendimiento en nuevos entornos.

CAPÍTULO 5. EXPERIMENTACIÓN Y EVALUACIÓN 32

Resultados. La Tabla 5.3 muestra el tiempo medio, tdriving, tras 10 ejecu-
ciones, y su desviación t́ıpica entre paréntesis, evaluando el modelo final en
distintos escenarios. En las cuatro primeras filas se muestran los resultados de
los 4 modelos entrenados en neighborhood mientras que la última corresponde
al modelo entrenado en landscape.

En ella se puede observar, en cuanto a los cuatro primeros modelos, que el
tdriving en los escenarios de landscape y coastline es notablemente menor que en
el escenario neighborhood de entrenamiento, siendo la modificación de la DQN
con reward v2 la que mayores tiempos alcanza. Esto se puede deber a que son tres
escenarios con caracteŕısticas muy diferentes, como se muestra en la Figura 3.4
y se ha explicado en el caṕıtulo 3, y por lo tanto resulta dif́ıcil la generalización
de un entorno a otro. Además cualitativamente durante la evaluación se aprecia
que en los cuatro casos, el modelo desarrollado ha aprendido que ir recto en el
centro de la carretera es la opción con la que obtiene recompensas más altas
(ya que en neighborhood hay grandes rectas de carreteras anchas y los giros en
cruces son más complicados de realizar y hay más posibilidades de chocar con
algo), por lo tanto es la acción que decide llevar a cabo en todos los escenarios,
lo cual muestra que no se está generalizando bien. Las caracteŕısticas de cada
entorno, explican que el tdriving en coastline sea mayor que en landscape en
estos cuatro casos, ya que en landscape apenas hay rectas (la carretera ya tiene
al comienzo una gran curva cuesta abajo), mientras que en coastline la carretera
es algo más ancha y no tiene un gran giro hasta varios metros más adelante.

En la última fila, se ven los resultados del modelo entrenado en landscape,
en el que se observa que los tiempos medios de conducción en los otros dos
escenarios tampoco son altos, como ocurre con el resto de modelos. También
durante la evaluación se ha apreciado que el comportamiento del modelo en
todos los escenarios es el adecuado para la trayectoria de landscape (avanzar
recto entre dos y tres segundos y girar a la derecha después), por lo que este
modelo tampoco generaliza correctamente a los diferentes entornos. Del mismo
modo que en los otros modelos, los tiempos en neighborhood y coastline se
explican con las caracteŕısticas de cada entorno. Mientras que en neighborhood
hay una gran carretera recta y un giro a la derecha provoca un choque rápido
contra un edificio en ese lado, en coastline la carretera no tiene edificios con los
que chocar a sus laterales por lo que aguanta más tiempo hasta chocar.

Modelo evaluado Neighborhood Landscape Coastline
DQN 11.99s 4.46s 8.18s
base (v0) (4.21s) (0.90s) (1.88s)
DQN 18.72s 4.84s 14.76s
reward v1 (4.84s) (0.51s) (0.21s)
DQN 18.85s 5.11s 15.30s
reward v2 (5.88s) (1.08s) (1.76s)
DDQN 10.74s 4.16s 6.54s
base (4.41s) (0.43s) (0.47s)
DQN v2 3.51s 5.34s 7.93s
(landscape) (0.42s) (0.65s) (0.80s)

Tabla 5.3: Tiempo de conducción (tdriving) medio de 10 ejecuciones y desviación
estándar con entrenamiento y validación en distintos escenarios.

Caṕıtulo 6

Conclusiones

Este caṕıtulo presenta las conclusiones extráıdas durante la realización de
este proyecto, tanto técnicas como personales, aśı como los problemas abordados
en él. También se exponen algunas alternativas de trabajo futuro que se pueden
realizar partiendo de este proyecto.

6.1. Conclusiones técnicas

El objetivo principal de este proyecto era implementar y poner en marcha
un sistema de conducción autónoma basado en técnicas de deep learning, utili-
zando un simulador para la extracción de los datos necesarios, el entrenamiento
de los algoritmos y la evaluación de los modelos desarrollados de manera se-
gura y fácil. Este objetivo se ha cumplido, logrando aprender los fundamentos
de distintas técnicas de aprendizaje automático, profundizando sobre todo en
algunos algoritmos de reinforcement learning. También conocer el manejo de
un simulador realista de conducción como es Airsim, algo muy importante de
cara al entrenamiento y evaluación de dichos algoritmos ya que necesitan que
el agente explore el entorno y realice muchas pruebas en él, algo que en el mun-
do real seŕıa inviable en el caso de veh́ıculos autónomos. Como conclusión de
ello, se ha comprobado la gran importancia y potencial que tienen este tipo de
simuladores en esta aplicación aśı como la adecuación de las técnicas de deep
learning estudiadas, sobre todo de deep reinforcement learning como apuntaban
otras investigaciones actuales, para una tarea como la conducción autónoma.

Tras la realización de los experimentos planteados, que se muestran en el
caṕıtulo 5, se ha analizado que las modificaciones propuestas logran unos resul-
tados comparables o incluso de mejor calidad que los obtenidos con el ejemplo
del repositorio de GitHub ((AutonomousDrivingCookbook)) que se ha tomado co-
mo base para comenzar este proyecto. Se consigue aśı un resultado satisfactorio,
dando lugar un trabajo que sirva de punto de partida para seguir investigando
en este ámbito como se expone en la sección 6.4 ya que hay muchos caminos
para seguir mejorando en este campo.

Además, como conclusión más general, decir que el sistema implementado,
los resultados obtenidos y entorno de simulación utilizado en este proyecto ser-
virán dentro del grupo de investigación como base para continuar con otras
investigaciones en esta ĺınea.

33

CAPÍTULO 6. CONCLUSIONES 34

6.2. Conclusiones personales

Personalmente, estoy satisfecha con el trabajo ya que me ha servido como
experiencia para ver como se trabaja en un laboratorio de investigación, rodeada
de personas con más experiencia de las que he podido aprender y las cuales me
han ayudado y aconsejado.

Eleǵı este trabajo debido a que los veh́ıculos autónomos son una aplicación
que actualmente se está investigando mucho y que se sustenta en un campo
tan en auge como el aprendizaje automático y deep learning, en el cual estoy
interesada y del que me gustaŕıa aprender más. Esta decisión ha sido adecuada
ya que me ha permitido tanto aprender los fundamentos básicos de un algoritmo
de aprendizaje supervisado ampliamente utilizado para diferentes aplicaciones
como son las CNNs como de aprender qué es el aprendizaje por refuerzo e
implementar alguno de sus algoritmos más t́ıpicos, estudiando y analizando
otros trabajos de investigación.

Además he mejorado en la programación con Python, aprendiendo a utilizar
libreŕıas t́ıpicas de deep learning como son keras y TensorFlow, dentro de un
entorno virtual en la plataforma Anaconda. También me he dado cuenta de
la utilidad de los simuladores de conducción autónoma, comprobando por mi
misma el potencial que tienen al haber utilizado Airsim en este proyecto.

Pienso que todo lo aprendido, tanto la parte técnica como la de trabajo en
equipo, me puede servir en un futuro.

6.3. Problemas encontrados

Durante la realización de este proyecto se han tenido que abordar diversos
problemas. El primero fue encontrar documentación y publicaciones cient́ıficas
de calidad en el ámbito de la investigación académica y comprenderlos y anali-
zarlos de manera cŕıtica. Además se tuvo que aprender los fundamentos básicos
de muchos algoritmos nuevos ya que no se teńıa ningún conocimiento previo de
reinforcement learning.

Una vez adquiridos los conocimientos básicos en el campo de aprendiza-
je automático y la conducción autónoma necesarios para empezar, aparecieron
problemas en el set up de un entorno adecuado en el que se pudieran implemen-
tar y evaluar los experimentos. Por un lado, el portátil del que se dispońıa no
era lo suficientemente potente para la realización de los entrenamientos con el
simulador, por lo que era necesaria la utilización de uno más potente del labora-
torio en el que se trabajaba con el que deb́ıa establecer conexión remota dada la
situación sanitaria, la cual se logró tras varios intentos con diferentes métodos
y programas, utilizando finalmente TeamViewer. Por otro lado, el código del
repositorio de GitHub AutonomousDrivingCookbook utilizado como base para
comenzar este trabajo, estaba desactualizado y requeŕıa el uso de versiones más
antiguas de Python, keras, TensorFlow y el resto de libreŕıas necesarias, por lo
que se encontraron algunos problemas de compatibilidad en las versiones a la
hora de crear un entorno virtual adecuado en Anaconda e instalar dichos pa-
quetes, los cuales finalmente se lograron solucionar pero hicieron que la puesta
en marcha del proyecto fuera más costosa de lo esperado. También el paque-
te reducido del simulador utilizado era antiguo, por lo que no teńıa las últimas
actualizaciones, aunque esto no ha afectado demasiado al desarrollo del trabajo.

Finalmente, el último reto encontrado está relacionado con la dificultad de
la aplicación estudiada, la conducción autónoma, ya que debido a esto, es com-
plicado obtener unos grandes resultados a la primera, ya que aún disponiendo
de un ordenador potente y con una buena tarjeta gráfica necesitan de mucho
tiempo de entrenamiento. Por un lado, porque son necesarias miles de epoch
(incluso se realizan millones en algunos trabajos) para que el algoritmo empiece
a aprender y converja y, por otro lado, porque la simulación de la conducción se
realiza en tiempo real, por lo que cada episodio de simulaciones para llevarse a
cabo necesita un tiempo que va aumentando conforme el algoritmo aprende ya
que el veh́ıculo va aguantando un mayor tiempo en la carretera. El tiempo de
entrenamiento es un problema ya que se pueden llegar a necesitar d́ıas, incluso
más de una semana, para extraer buenos resultados.

6.4. Trabajo Futuro

Este proyecto es una base que se puede continuar desarrollando y profundizar
más en él, abriendo el camino a diferentes alternativas en las que se puede seguir
trabajando en un futuro.

El primer paso, puede ser con los mismos algoritmos estudiados en este
trabajo, realizar entrenamientos en un ordenador más potente y durante más
tiempo para comprobar si los resultados que se pueden llegar a lograr con ellos
son mejores. También se puede entrenar el encoder de base (CNN) con una
mayor cantidad y más variada de datos, utilizando imágenes de otros escenarios
del simulador, para analizar de qué manera afecta esto al modelo final y si ayuda
a la generalización en distintos escenarios.

Otra alternativa, es seguir investigando algoritmos de deep reinforcement
learning estudiados en otras investigaciones y que hayan logrado buenos re-
sultados. Se pueden implementar muchos algoritmos. Un ejemplo es la dueling
DQN [41], en el que los valores Q se dividen en dos partes distintas, la función de
valor, V(s), que dice cuánta recompensa obtendremos desde el estado actual y
la función de ventaja, A(s, a) que dice cuánto mejor es una acción respecto a las
demás, de manera que se propone que la red neuronal utilizada divida su capa
final en dos que estimen estas dos partes por separado y en la capa de salida
juntar ambas partes estimando en ella los valores Q. Otro ejemplo interesante
es el algoritmo rainbow [42], que combina los avances y ventajas de muchos algo-
ritmos de deep reinforcement learning y según algunas investigaciones obtiene
los mejores resultados.

Para finalizar, una última posibilidad puede ser explorar los retos que se
abordan en el paso de un modelo entrenado en simulación al mundo real, utili-
zando para ello alguno de los robots móviles disponibles en el laboratorio en el
que se utilice uno de los modelos obtenidos viendo aśı su funcionamiento en un
sistema real.

Apéndice A

Detalles y resultados
adicionales de los
entrenamientos

A.1. Configuración general de los entrenamien-
tos

Encoder. Para todos los entrenamientos se utiliza un mismo encoder entre-
nado con datos del escenario landscape.

Escenarios. En los cuatro primeros modelos se utiliza el escenario neighbor-
hood del simulador durante el entrenamiento del algoritmo de reinforcement
learning. En cambio, el último se entrena con el escenario landscape.

Hiperparámetros. Los hiperparámetros elegidos son un batch size de 32,
un tamaño de replay memory (buffer de memoria que guarda las acciones del
coche durante cada episodio) de 50, una batch update frequency (que concreta
cada cuantos batches se guarda un checkpoint del modelo) de 500, se define una
épsilon inicial de 1 que baja 0.003 en cada iteración y una épsilon mı́nima de 0.1,
un γ o factor de descuento de 0.9 y un learning rate de 0.001 con para Adam.

Tiempo de entrenamiento. Todos los entrenamientos han tenido una du-
ración aproximada de dos d́ıas y por lo tanto se han realizado aproximadamente
10.000 epoch en cada uno (esto vaŕıa un poco en cada experimento concreto).

Resultados obtenidos en el entrenamiento. Se obtiene, en primer lugar,
un archivo CSV con los valores “en crudo” de la reward, guardado durante el
entrenamiento con todos los valores de recompensa obtenidos, viendo en cada
ĺınea las de cada episodio completo. Este sirve para obtener la gráfica de la
reward acumulada total por episodio, en la que se muestra el valor de esta en el
eje de ordenadas y las epoch en el de abscisas. Y por último, una gráfica de la
loss que se obtiene con Tensorboard, en la que se muestra su valor en el eje de
ordenadas y el tiempo de entrenamiento en horas en el eje de abscisas.

36

APÉNDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS37

A.2. Base DQN con reward base (v0)

Gráfica de la loss. Como se ve en la Figura A.1, la loss disminuye en un pri-
mer momento del entrenamiento, subiendo después ligeramente. En algoritmos
de aprendizaje por refuerzo, esto se suele dar en las partes iniciales del entrena-
miento sobre todo, cuando el modelo aún necesita más tiempo de entrenamiento
y no ha convergido, por lo que se puede dar un aumento en ella, a diferencia de
en aprendizaje supervisado.

Figura A.1: Gráfica de evolución de la loss durante el tiempo de entrenamiento
(en horas) del modelo 1.

Gráfica de la reward. Se observa en la Figura A.2, donde se ve que los
valores de la recompensa, a partir de la epoch 4000, se van haciendo más altos,
rondando entre valores de 100 y 150, llegando en algunos casos incluso a valores
de 200. Se observa a lo largo de toda la gráfica que hay muchos valores bajos
de recompensa, lo que es debido a que la épsilon mı́nima está constante en un
valor de 0.1, por lo que el 10 % de las acciones que se realizan son aleatorias
de manera que no se estanque el aprendizaje y el agente siga explorando. Lo
que también se puede apreciar es que las recompensas siguen sin llegar a un
valor máximo en el que se queden más o menos fijas, lo que significa que aún
se necesita un mayor tiempo de entrenamiento para que el modelo converja y
aprenda la mejor poĺıtica de conducción posible con este algoritmo.

Figura A.2: Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 1.

APÉNDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS38

A.3. Base DQN con reward v1

Gráfica de la loss. Se muestra en la Figura A.3, donde se ve que la loss
disminuye en un primer momento del entrenamiento, subiendo después ligera-
mente, de la misma manera que en el entrenamiento del modelo anterior, aunque
llegando a valores algo más altos.

Figura A.3: Gráfica de evolución de la loss durante el tiempo de entrenamiento
(en horas) del modelo 2.

Gráfica de la reward. Se observa en la Figura A.4. En este caso, se ve que las
recompensas empiezan a ser más altas antes que en el modelo anterior, sobre la
epoch 1000, siendo el aprendizaje más rápido que en el experimento 1. Además
se observa que ya a partir de la epoch 5000, las rewards obtenidas en el episodio
se encuentran entre los valores de 200 y 250, en lugar de estar entre 100 y 150
como en el entrenamiento anterior, aunque también se aprecia que con más
tiempo de entrenamiento puede llegar a seguir aumentando. Por lo tanto, a la
vista de estos resultados de entrenamiento se puede decir que esta modificación
del código de base mejora en cierta medida la conducción, aunque es necesario
realizar la evaluación del modelo para tener una conclusión definitiva.

Figura A.4: Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 2.

APÉNDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS39

A.4. Base DQN con reward v2

Gráfica de la loss. Se muestra en la Figura A.5, donde se ve que la loss dis-
minuye en un primer momento del entrenamiento, subiendo después, del mismo
modo que ocurŕıa en el entrenamiento del primer modelo detallado en la sección
A.2, obteniendo sin embargo unos valores sobre 0.8 similares a los de la sección
A.3.

Figura A.5: Gráfica de evolución de la loss durante el tiempo de entrenamiento
(en horas) del modelo 3.

Gráfica de la reward. Se muestra en la Figura A.6. En este caso, se ve que
las recompensas son más altas antes que en el entrenamiento de la sección A.3,
sobre todo apreciándose a partir de la epoch 6000. Se observa que a partir de
ah́ı, las rewards obtenidas en el episodio se encuentran entre los valores de 250 y
300, en lugar de estar entre 200 y 250 como en el caso anterior, aunque también
se aprecia, de igual modo, que con más tiempo de entrenamiento puede llegar a
seguir aumentando. Por lo tanto, esta modificación del código de base mejora los
valores de las recompensas, siendo el mejor resultado de estas hasta el momento,
aunque con valores muy similares a los de la DQN con la reward v1 de la sección
A.3.

Figura A.6: Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 3.

APÉNDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS40

A.5. Double DQN con reward base

Gráfica de la loss. Se muestra en la Figura A.7, donde se ve que la loss
disminuye en un primer momento del entrenamiento, subiendo después ligera-
mente, de la misma manera que en el entrenamiento del modelo DQN base de
la sección A.2. Sin embargo, en este caso se obtiene un valor de loss menor,
sobre 0.2, apreciándose aśı la diferencia en el cálculo de los valores Q entre la
DQN y la DDQN, siendo en esta segunda los predichos más aproximados a los
obtenidos realmente.

Figura A.7: Gráfica de evolución de la loss durante el tiempo de entrenamiento
(en horas) del modelo 4.

Gráfica de la reward. Se observa en la Figura A.8, donde se ve que los valores
de la recompensa, a partir de la epoch 3000, se van haciendo más altos, en un
momento del entrenamiento más temprano que en el DQN base de la sección
A.2. A partir de aqúı, la reward acumulada por episodio ronda entre valores de
150 y 200, llegando en algunos casos incluso a valores puntuales superiores a
250, recompensas ligeramente superiores a las del DQN base. Lo que también
se puede apreciar es que las recompensas siguen sin llegar a un valor máximo
en el que se queden más o menos fijas, lo que significa que aún se necesita un
mayor tiempo de entrenamiento para que el modelo converja y aprenda la mejor
poĺıtica de conducción posible con este algoritmo.

Figura A.8: Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 4.

APÉNDICE A. DETALLES Y RESULTADOS ADICIONALES DE LOS ENTRENAMIENTOS41

A.6. DQN con reward v2 entrenado en lands-
cape

Gráfica de la loss. Se muestra en la Figura A.9, donde se ve que la loss dismi-
nuye en un primer momento del entrenamiento, subiendo después y quedándose
en un valor sobre 0.8, al igual que en su versión entrenada en neighborhood
detallada en la sección A.4.

Figura A.9: Gráfica de evolución de la loss durante el tiempo de entrenamiento
(en horas) del modelo 5.

Gráfica de la reward. Se observa en la Figura A.10, donde se ve que los
valores de la recompensa acumulada por episodio ronda entre 100 y 150, llegando
en algunos casos incluso a valores puntuales superiores a 300 y superiores. Lo
que también se puede apreciar es que las recompensas oscilan continuamente
entre estos valores, siguen sin llegar a un valor máximo en el que se queden
más o menos fijas, lo que significa que aún se necesita un mayor tiempo de
entrenamiento para que el modelo converja y la conducción sea más adecuada.

Figura A.10: Gráfica del valor de la reward acumulada del episodio en cada
iteración del modelo 5.

Bibliograf́ıa

[1] Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon.
Exploring the limitations of behavior cloning for autonomous driving. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 9329–9338, 2019.

[2] Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to real reinfor-
cement learning for autonomous driving. arXiv preprint arXiv:1704.03952,
2017.

[3] Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi, and Tracey Oliver.
Autonomous vehicles: challenges, opportunities, and future implications for
transportation policies. Journal of modern transportation, 24(4):284–303,
2016.

[4] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In
Field and service robotics, pages 621–635. Springer, 2018.

[5] Rene Y. Choi, Aaron S. Coyner, Jayashree Kalpathy-Cramer, Michael F.
Chiang, and J. Peter Campbell. Introduction to machine learning, neural
networks, and deep learning. Translational Vision Science and Technology,
9(2):14–14, 2020.

[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[7] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer-
Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

[8] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[9] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Moha-
med, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,
Tara N Sainath, et al. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal
processing magazine, 29(6):82–97, 2012.

[10] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural net-
work for text classification with multi-task learning. arXiv preprint ar-
Xiv:1605.05101, 2016.

[11] Junshui Ma, Robert P Sheridan, Andy Liaw, George E Dahl, and Vladimir
Svetnik. Deep neural nets as a method for quantitative structure–activity
relationships. Journal of chemical information and modeling, 55(2):263–
274, 2015.

42

BIBLIOGRAFÍA 43

[12] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence lear-
ning with neural networks. In Advances in neural information processing
systems, pages 3104–3112, 2014.

[13] Yoav Goldberg. A primer on neural network models for natural language
processing. Journal of Artificial Intelligence Research, 57:345–420, 2016.

[14] James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali Torka-
mani, and Amalio Telenti. A primer on deep learning in genomics. Nature
genetics, 51(1):12–18, 2019.

[15] Hui Y Xiong, Babak Alipanahi, Leo J Lee, Hannes Bretschneider, Daniele
Merico, Ryan KC Yuen, Yimin Hua, Serge Gueroussov, Hamed S Najafaba-
di, Timothy R Hughes, et al. The human splicing code reveals new insights
into the genetic determinants of disease. Science, 347(6218):1254806, 2015.

[16] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdri-
ving: Learning affordance for direct perception in autonomous driving. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 2722–2730, 2015.

[17] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu.
A survey of deep learning techniques for autonomous driving. Journal of
Field Robotics, 2019.

[18] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from
observation. arXiv preprint arXiv:1805.01954, 2018.

[19] Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen Koltun, and
Alexey Dosovitskiy. End-to-end driving via conditional imitation lear-
ning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1–9. IEEE, 2018.

[20] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze.
Deep clustering for unsupervised learning of visual features. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 132–149,
2018.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

[22] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yoga-
mani. Deep reinforcement learning framework for autonomous driving.
Electronic Imaging, 2017(19):70–76, 2017.

[23] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. Deep reinforcement learning that matters. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[24] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458, 2015.

[25] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer. Squeezedet:
Unified, small, low power fully convolutional neural networks for real-time
object detection for autonomous driving. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, pages
129–137, 2017.

[26] Mikael Boden. A guide to recurrent neural networks and backpropagation.
the Dallas project, 2002.

BIBLIOGRAFÍA 44

[27] ByeoungDo Kim, Chang Mook Kang, Jaekyum Kim, Seung Hi Lee,
Chung Choo Chung, and Jun Won Choi. Probabilistic vehicle trajectory
prediction over occupancy grid map via recurrent neural network. In 2017
IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC), pages 399–404. IEEE, 2017.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[30] Takafumi Okuyama, Tad Gonsalves, and Jaychand Upadhay. Autonomous
driving system based on deep q learnig. In 2018 International Conference
on Intelligent Autonomous Systems (ICoIAS), pages 201–205. IEEE, 2018.

[31] April Yu, Raphael Palefsky-Smith, and Rishi Bedi. Deep reinforcement
learning for simulated autonomous vehicle control. Course Project Reports:
Winter, pages 1–7, 2016.

[32] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitra-
kakis, Rémi Coulom, and Andrew Sumner. Torcs, the open racing car
simulator. Software available at http://torcs. sourceforge. net, 4(6):2, 2000.

[33] Zhiqing Huang, Ji Zhang, Rui Tian, and Yanxin Zhang. End-to-end auto-
nomous driving decision based on deep reinforcement learning. In 2019 5th
International Conference on Control, Automation and Robotics (ICCAR),
pages 658–662. IEEE, 2019.

[34] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. arXiv preprint
arXiv:1711.03938, 2017.

[35] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Controlla-
ble imitative reinforcement learning for vision-based self-driving. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages
584–599, 2018.

[36] Xinle Liang, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang. Federa-
ted transfer reinforcement learning for autonomous driving. arXiv preprint
arXiv:1910.06001, 2019.

[37] Roy Amante Salvador and Maria Isabel Saludares. Autonomous driving
via deep reinforcement learning. 2019.

[38] Matthias Müller, Alexey Dosovitskiy, Bernard Ghanem, and Vladlen Kol-
tun. Driving policy transfer via modularity and abstraction. arXiv preprint
arXiv:1804.09364, 2018.

[39] Luona Yang, Xiaodan Liang, Tairui Wang, and Eric Xing. Real-to-virtual
domain unification for end-to-end autonomous driving. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 530–545,
2018.

[40] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. arXiv preprint arXiv:1509.06461, 2015.

BIBLIOGRAFÍA 45

[41] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and
Nando Freitas. Dueling network architectures for deep reinforcement lear-
ning. In International conference on machine learning, pages 1995–2003,
2016.

[42] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver. Rainbow: Combining improvements in deep reinforcement
learning. arXiv preprint arXiv:1710.02298, 2017.

	Índice
	Índice de figuras
	Índice de tablas
	Introducción
	Motivación
	Contexto de realización del trabajo
	Objetivos y tareas
	Contenido de la memoria

	Machine Learning en conducción autónoma
	Tipos de Machine Learning
	Aprendizaje supervisado
	Aprendizaje no supervisado
	Aprendizaje por refuerzo

	Algoritmos estudiados
	Redes neuronales convolucionales (CNN)
	Redes neuronales recurrentes (RNN)
	Deep Q networks (DQN)

	Simulación para autonomous driving
	Simulador de conducción autónoma
	Simuladores existentes
	Airsim

	Sistema Implementado
	Resumen general y partes del sistema
	Algoritmo de aprendizaje supervisado implementado
	Algoritmos de deep reinforcement learning implementados
	Modificaciones implementadas en la DQN

	Experimentación y evaluación
	Configuración de los experimentos
	Experimentos realizados y evaluación de los resultados
	Análisis de las distintas variaciones implementadas
	Análisis de un modelo entrenado en el mismo escenario que el encoder
	Actuación en distintos escenarios

	Conclusiones
	Conclusiones técnicas
	Conclusiones personales
	Problemas encontrados
	Trabajo Futuro

	Anexos
	Detalles y resultados adicionales de los entrenamientos
	Configuración general de los entrenamientos
	Base DQN con reward base (v0)
	Base DQN con reward v1
	Base DQN con reward v2
	Double DQN con reward base
	DQN con reward v2 entrenado en landscape

	Bibliografía

