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RESUMEN

A lo largo de este trabajo, se ha propuesto un método general para la rectificacion vertical de la
orientacién (considerando como referencia absoluta la direccion de la gravedad) en todo tipo de
imagenes panoramicas, tanto de interior como de exterior, en ambientes naturales y urbanos y con
cualquier tipo de iluminacion.

El desarrollo de este método se centra principalmente en el entrenamiento de una red neuronal
convolucional mediante deep learning, que es capaz de detectar tanto la linea del horizonte como
los puntos de fuga verticales de las imagenes panoramicas. Estos elementos de las imagenes nos
permiten obtener informaciéon geométrica muy valiosa para conocer la orientacién de la cdmara.

El trabajo aborda todas las fases necesarias para alcanzar los objetivos planteados, comienza con la
creacion desde cero de un dataset suficientemente grande y variado para que el entrenamiento
sea fructifero, esta creacidn del dataset reune las tareas de recoleccién de fotos, procesamiento
de las imagenes y generacién del ground truth. Posteriormente se entrena la red en la que va a
basarse nuestro método de ajuste vertical con el dataset creado.

A partir de las imagenes de salida de nuestra red, se desarrolla un algoritmo basado en el
procesamiento de imdagenes con el que podremos corregir la orientacion de las imagenes
panoramicas a partir de los mapas de pixeles de los puntos de fuga que obtenemos.

Por ultimo se comparan nuestros resultados con el estado del arte mediante la experimentacion
sobre un método geométrico de deteccién de puntos de fuga basado en el algoritmo RANSAC, el
cual se ha implementado con el fin de comparar la efectividad de nuestro método respecto a otros
trabajos existentes y las ventajas de introducir redes neuronales profundas en el desarrollo del
proceso.



ABSTRACT

Throughout this project, a general method is proposed for upright rectification (considering the
direction of gravity as absolute reference) in all types of panoramic images, both indoors and
outdoors, in natural and urban environments and with any type of lighting.

The development of this method is mainly focused on the training of a deep learning convolutional
neural network, which is capable of detecting both the horizon line and the vertical vanishing
points of panoramic images. These elements of the images allow us to obtain very valuable
geometric information to know the orientation of the camera.

The project addresses all the necessary phases to achieve the proposed objectives, it begins with
the creation from scratch of a large and varied dataset enough for the training to be successful,
this creation of the dataset brings together the tasks of collecting photos, processing images and
generation of the ground truth. Subsequently, the network on which our vertical adjustment
method will be based is trained with the created dataset.

From the output images of our network, an algorithm based on image processing is developed in
order to correct the orientation of panoramic images with the information of the pixel maps of the
vanishing points that we obtain.

Finally, our results are compared with the state of the art through experimentation on a vanishing
point detection method based on the RANSAC geometric based algorithm, which has been
implemented in order to evaluate the effectiveness of our method and the advantages of
introducing deep neural networks in the process development, compared to other existing work.
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CAPITULO 1

INTRODUCCION

En los ultimos afios han aparecido numerosas camaras omnidireccionales en el mercado, algunos
de los ejemplos mas conocidos que podemos encontrar son la cdmara Surround 360 de Facebook,
la Google Jump, Jaunt VR, Omni de GoPro, Gear 360 de Samsung, OZO de Nokia, Theta de Ricoh,
Immerge de Lytro, 360 CAM de LG o KeyMision 360 de Nikonn entre otros.

Estas cdmaras, permiten capturar imagenes omnidireccionales esféricas de alta calidad, es decir,
imagenes en las que tenemos un campo de visidn horizontal de 360° y un campo de vision vertical
de 180°. Gracias a la aplicacion para realidad virtual (VR) y la accesibilidad y simplicidad de estos
dispositivos, este tipo de imdagenes se estan popularizando. Por otro lado, el uso de la realidad
virtual se esta generalizando en diversos contextos y aplicaciones, como el entretenimiento,
industria, turismo virtual, patrimonio cultural o publicidad inmobiliaria por nombrar algunos
ejemplos.

Las imdgenes omnidireccionales esféricas pueden ser representadas en cualquier pantalla en el
formato tradicional equirectangular (también llamado formato panoramico), o con un dispositivo
especifico para inmersién en realidad virtual como las gafas de realidad virtual, donde el usuario,
como en la vida real, puede girar la cabeza para visualizar cualquier direccidn de la fotografia.

Figura 1.1 Imagen en formato equirectangular (izquierda) y en formato para realidad virtual.

En la practica, cuando la referencia del sistema de realidad virtual y de la cdmara omnidireccional
no estan alineadas, la imagen se ve inclinada, lo que reduce notablemente la calidad de la
experiencia de realidad virtual y conduce a molestias visuales. Para poder tener una referencia
comun, normalmente nos interesa que la referencia vertical de la cdmara se proyecte en los polos
de la esfera y denominaremos a esta orientacién “orientacién horizontal” (ver Figura 1.1). En esta
configuracion la linea del horizonte es una linea recta que va de izquierda a derecha mientras que
la direccion vertical se proyecta en la primera y ultima fila de la imagen, ya que estas filas
representan los polos de la esfera. Si la imagen se captura en otra orientacion la linea del horizonte
se presenta como una linea curva ondulada (ver Figura 1.2).



Figura 1.2 Imagen mal orientada en formato equirectangular y en formato para realidad virtual.

Sin embargo, al tener una proyeccion esférica, si se conoce la direccion vertical en la referencia de
la cdmara se puede rectificar esta sin problemas a una orientacién horizontal que puede ser usada
por el sistema de realidad virtual como imagen en la referencia base. Se hace necesario por tanto
un método capaz de detectar la direccién vertical de la imagen, de manera que nos facilite la
informacién necesaria para realizar esta rectificacion. Si trabajamos con una secuencia de video
este algoritmo permitird realizar el equivalente a una estabilizacién vertical mecanica.

Hoy en dia podemos encontrar gran variedad de soluciones para el ajuste vertical de la imagen:

e Mediante edicion manual; re-alimentacion visual de la horizontalidad de la linea del
horizonte: una solucién simple consiste en utilizar este tipo de software como Adobe
Premiere Pro CC con VR Plugin, que permite a los usuarios manualmente rectificar la
orientacién de la imagen. Este método, aunque pueda proporcionar unos resultados
visualmente atractivos, tiene como principal inconveniente el tiempo que requiere para
realizarse en la practica ya que el proceso de ajuste debe repetirse manualmente para cada
imagen.

e Maediante hardware para deteccidn de direccidn de la gravedad: Las unidades de medicion
inercial (IMUs) permiten estimar la direccion de la gravedad integrando la informacién
acoplada de aceleracion/gravedad proporcionada por el acelerémetro y la informacién de
velocidad angular proporcionada por el giréscopo. En caso de que la adquisicidn se realice
en reposo el acelerémetro proporciona directamente la direccién de la gravedad. Sin
embargo, aumenta el coste de fabricaciéon de la camara al tener que afiadir un sensor
adicional, ademas del consumo de energia y la necesidad de la calibracién de la cdmara-
giréscopo. Debido a esto, la mayoria de las principales cdmaras omnidireccionales del
mercado no incluyen IMU.

Ademas, un enfoque basado en hardware no se puede aplicar como solucion a imagenes ya
capturadas por otras cdmaras o para imagenes descargadas de internet sin ninguna
informacién previa.



e Mediante métodos de vision por ordenador: Otra solucidn seria estimar la orientacién de
la imagen de entrada mediante métodos de vision por ordenador. Debido a la distorsién
inherente y a los modelos de proyeccién especificos de las imagenes de realidad virtual, se
han propuesto métodos dedicados a las imagenes de realidad virtual [1, 2]. Estos métodos
utilizan la representacién esférica de este tipo de imagenes y, por lo tanto, son aplicables a
imagenes con un amplio campo de visidon, como las obtenidas por cdmaras VR.

Estos métodos pueden rectificar automaticamente la orientacion de la imagen analizando las
estructuras geométricas presentes en la imagen, especialmente lineas y puntos de fuga [1, 2] o
linea del horizonte [3, 4]. Sin embargo, los métodos basados en lineas son aplicables solo a
entornos urbanos artificiales en los que se puede encontrar una composicion de lineas rectas. De
manera similar, los métodos basados en el horizonte requieren de un horizonte facil de reconocer,
y por lo tanto no se puede aplicar en imagenes donde el horizonte no es claramente visible, como
escenas interiores o imagenes tomadas en ambientes naturales como montafias o bosques.

1.1 ESTADO DEL ARTE

La estrategia que se usa de manera general en el ajuste vertical de las imagenes consiste en
estimar la orientacion (o rotacién) de la cdmara mediante el procesamiento de imagenes,
generalmente mediante extraccién de lineas, para posteriormente aplicar el inverso de esta
rotacion a la imagen reconstruyéndola con la orientacién que se desea. Esta estrategia,
originalmente se ha estudiado para la perspectiva estandar de las imagenes [5, 6].

Wy
i

Figura 1.3 Correccion vertical en una imagen de perspectiva clasica [5]

Por su parte, para la correccion de la orientacién en imdagenes de realidad virtual, se han propuesto
otra serie de métodos debido a la distorsion inherente y a los modelos de proyeccién especificos
de este tipo de imagenes [1, 2].



1.1.1 REPRESENTACION ESFERICA DE LA IMAGEN

Los métodos existentes para la rectificacion de la orientacion en imdagenes de realidad virtual
suelen trabajar con una representacién esférica de la imagen mds habitualmente que con
representaciones 2D.

La primera ventaja que nos encontramos en esta representacion es que el punto de encuentro de
las lineas paralelas, que conceptualmente se encuentra en el infinito, queda siempre representado
en algun punto de la superficie limitada de la esfera. La segunda ventaja que presenta esta
representacion es que para modificar la orientacién de la imagen tan solo es necesario aplicar una
simple rotacién esférica.

La representacién esférica ha sido usada en imagenes tradicionales de modelo pinhole [7], y es
directamente aplicable a imagenes equirectangulares gracias a su campo de visién esférico. Esta
representacion ha sido posteriormente extendida al concepto de "esfera equivalente" para poder
manejar varios campos de vision que se extraen de otras cdmaras como las de ojo de pez, las
omnidireccionales o las catadidptricas [8, 9, 10, 11].

Figura 1.4 Imagen tomada con una camara catadioptrica central a la derecha e imagen tomada
con camara de ojo de pez a la izquierda [11]

1.1.2 METODOS BASADOS EN LA EXTRACCION DE LINEAS

Los métodos mas populares para estimar la orientacion de una imagen equirectangular consisten
en el uso de lineas y los puntos de fuga [12, 2]. Esto es debido a que el punto de fuga, la
proyeccién en la imagen del punto donde se cortan dos rectas paralelas, contiene la informacion
de la direccién de las rectas [13]. Obtener la direccién del punto de fuga nos da una indicacion de
la direccion de la vertical (coincidente con la gravedad) en la imagen.



Mientras algunos métodos obtienen cada punto de fuga independientemente [14, 15], se ha
demostrado que imponer restricciones estructurales en las estimaciones de los puntos de fuga da
lugar a unos resultados mas robustos, por ejemplo utilizando las suposiciones basadas en
"Manhattan" [12, 1, 16, 17] o "Atlanta world" [18, 2]. Sin embargo estos métodos funcionan solo
en ambientes urbanos construidos por el hombre, que destacan por estar compuestos de un gran
numero de lineas rectas y paralelas.

Figura 1.5 Ejemplo representativo de la extraccion de lineas y punto de fuga por el método
RANSAC [8]

1.1.3 METODOS BASADOS EN EL HORIZONTE

La estimacion del horizonte da lugar a otra popular categoria de trabajo [3, 4], donde la idea
principal consiste en detectar la linea del horizonte. En la representaciéon esférica, el horizonte es
un plano que pasa por el centro de la esfera. Estos métodos aprovechan las diferencias de color
gue existen entre el cielo y la tierra para maximizar un criterio de separacién, expresado por
ejemplo como la distancia de Mahalanobis.

Figura 1.6 Estimacion del horizonte en una imagen en perspectiva catadioptrica [4]
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Este método sin embargo, no obtiene resultados satisfactorios cuando la linea del horizonte no se
muestra de manera explicita o directamente no es observable como puede ocurrir en imdgenes de
interior.

1.1.4 ESTIMACION DEL MOVIMIENTO DE LA CAMARA

Existen un gran nimero de métodos que han sido propuestos para la estimacién del movimiento
de la camara procedente de las imagenes omnidireccionales [19, 20, 21, 22, 23, 24, 25]. Estos
métodos nos ofrecen unos resultados muy buenos sobre el movimiento y la reconstrucciéon 3D,
pero las soluciones que nos ofrecen son relativas a una referencia elegida previamente, esta
arbitrariedad es un problema para rectificar la orientacién de este tipo de imagenes ya que lo que
necesitamos es conocer la orientacién respecto a una referencia absoluta.

De manera similar, métodos de estabilizacidon de videos gran angular u omnidireccionales, pueden
generar una version refinada de un video tembloroso como entrada, pero no pueden obtener la
orientacién vertical absoluta que se necesita para la rectificacién que estamos buscando.

1.1.5 TECNICAS DEEP LEARNING

Motivados por los grandes avances y logros obtenidos de la mano del deep learning, se han
empezado a estudiar recientemente métodos que se basan en esta técnica para estimar la
orientacién de las imagenes y su rectificacidon. En el contexto de las imdgenes con perspectiva
tradicional, métodos recientes han entrenado redes neuronales con el fin de estimar la rotacién en
el plano de la foto [26, 27], o la rotacidon completa (orientacién) [28, 29, 17].

Figura 1.7 Estimacion de la linea del horizonte mediante Deep learning [28]
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Sin embargo, estos métodos estan dedicados a las perspectivas clasicas de las imagenes que todos
conocemos. Haciendo falta una extension a imagenes omnidireccionales.

1.2 OBJETIVOS

El objetivo principal de este trabajo consiste en lograr un método universal para estimar tanto la
linea del horizonte como los puntos de fuga verticales caracteristicos de cualquier foto en formato
equirectangular, tanto para escenas de interior como para entornos de exterior
independientemente si nos encontramos en una escena de caracter mds urbano o con un paisaje
mas natural, donde hoy en dia tenemos mas limitaciones para extraer ambas caracteristicas.

Para conseguirlo, se propone un método basado en el aprendizaje profundo de una red neuronal
convolucional, la cual serd entrenada con todo tipo de fotos equirectangulares para inferir la linea
del horizonte y los puntos de fuga verticales a partir de elementos geométricos de la imagen pero
también del contexto.

Como segundo objetivo del trabajo, vamos a desarrollar un método para poder estabilizar
imagenes panoramicas estimando su direccién vertical y orientdndolas de manera horizontal
cuando sea necesario. Esta estabilizacidn vertical se realiza a partir de la informaciéon que nos
aporta la salida de la red que vamos a entrenar.

Por ultimo, se va a desarrollar un método basado en geometria y vision por ordenador con el
objetivo de comparar las prestaciones de nuestro método con los métodos actuales, buscando las
limitaciones de ambos métodos.



CAPITULO 2

PANORAMAS ESFERICOS

Como se ha comentado anteriormente, una manera popular y conveniente de representar y proce-
sar imagenes para realidad virtual es la proyeccién esférica equirectangular.

Un panorama esférico es una fotografia que captura un campo de vista de 360° en horizontal y
180° o en vertical. Se trata de una imagen que almacena la proyecciéon del mundo 3D en una esfera
cuyo centro coincide con la posicién del observador.

Esta representacién se utiliza a menudo para que el usuario pueda sumergirse en un entorno.
Quiz3, el ejemplo mds conocido en el que se utilizan este tipo de fotos sea el de la aplicacién
Google Street View que permite a un usuario conocer a pie de calle ciudades de todo el mundo.

Un panorama esférico, queda definido por una matriz de pixeles cuyas filas y columnas son
proporcionales a dos de las tres coordenadas esféricas de los puntos 3Ds de la escena (los angulos
theta y phi) y representa la proyeccidn de la escena en una esfera de radio unidad. En general un
punto 3D puede describirse en coordenadas esféricas mediante tres parametros:

(r, ¢, 6)

Generalmente se definen como:
e Ladistanciar es la distancia de un punto al centro de la esfera (el radio).

e El dangulo ¢ es el acimut (o angulo acimutal): el angulo que nos da una idea de la posicidon
del punto en el sentido horizontal. Se mide de -180° a 180° girando respecto del eje +Z.

e El dngulo 6 es el dngulo polar (también llamado dngulo cenital o colatitud): el angulo que
nos da una idea de la posicidon en el sentido vertical. Se mide de -90° a 90° girando
respecto del eje +X.

Figura 2.1 Representacion de los parametros de la representacion esférica
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Por ejemplo:

— (1,00 09, se corresponde con el eje +Y.
— (1,09 90°), se corresponde con el eje +Z.
— (1,900, 0°), se corresponde con el eje +X.

Los panoramas esféricos cada vez son mas habituales, sin embargo, la complejidad del tipo de
proyeccién que emplean hace que no sea tan intuitivo o directo comprender las proporciones o la
distribucién de las escenas que estas imagenes muestran. Esto es debido a que, tratdndose de una
proyeccion esférica, lo que veriamos como una linea recta en la realidad o en una imagen
convencional, aparece como una linea curva en la imagen panoramica. Ademas, el ser humano no
es capaz de ver lo que hay detras de si mismo y sin embargo si es posible con estas imagenes, lo
cual muchas veces resulta extrafio para nuestro cerebro.

Para ilustrarlo con un ejemplo, vamos a considerar una imagen panoramica en la que se pueda ver
claramente el horizonte. Al pasar esta imagen a una proyeccién esférica, el horizonte se
corresponde con un circulo que es el resultado de la interseccién de la esfera con un plano que
pasa por el centro de la esfera. El vector normal a este plano representa la orientacion del plano
del horizonte y a su vez la orientacion de la cdmara.

Figura 2.2 Representacion equirectangular y esférica: orientacion horizontal (izquierda) y
orientacién cualquiera (derecha).



De manera general, en la representacion esférica de la imagen, la orientacién de la cdmara puede
ser representada por un vector, al cual llamaremos el vector vertical y que coincide con el vector
normal al plano del horizonte. Vamos a considerar que cuando este vector tenga la misma
direccion que la gravedad pero en el sentido contrario a la fuerza que ejerce, la orientacién de la
camara sera horizontal y el vector vertical serd v= (0, 0, 1). Por su parte, cuando la cdmara no esté
en orientacién horizontal, el vector vertical serda otro en funcién del giro respecto a la correcta

orientacion, v= (vx, vy, vz).
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CAPITULO 3

TECNICAS DEEP LEARNING

Las redes neuronales convolucionales han sido aplicadas satisfactoriamente a una extensa
variedad de tareas como pueden ser la deteccion de objetos, clasificacion de escenas o la
segmentacién semantica. En este trabajo hemos entrenado una red neuronal profunda "end-to-
end" adaptada a imdgenes omnidireccionales con el objetivo de obtener una representacion
grafica de la prediccién de la linea del horizonte de la imagen por un lado y del punto de fuga
vertical de la imagen por el otro.

Las FCNs (Fully Convolutional Networks) convierten cada capa totalmente conectada en una capa
convolucional con un kernel cubriendo enteramente la regién de inputs y luego la reajusta para la

tarea de etiquetado a nivel pixel. Los modelos FCN son muy adecuados para tareas que requieren
informacidn contextual de la imagen completa.

3.1 ARQUITECTURA DE LA RED

La red que hemos entrenado estd basada en la arquitectura de CFL [35], donde proponen una FCN
para detectar esquinas y bordes estructurales en imagenes de interior. Esta FCN sigue la estructura
del encoder-decoder cuyas primeras capas se basan en ResNet-50 [16]. En este caso la capa final
totalmente conectada es reemplazada por un codificador-decodificador que predice
conjuntamente las ubicaciones de la linea del horizonte y los puntos de fuga verticales.

/"

/’i

®3
wd XE . /—x
|||||||||
| }

Skip-connections }

ResMNet-50)

Figura 3.1 Imagen representativa de la arquitectura de la red.

11



e Encoder: Para diseiiar el encoder se utiliza ResNet-50 [16], la cual ha sido previamente
entrenada con el conjunto de datos ImageNet [26]. Este entrenamiento previo da lugar a
una convergencia mas rapida gracias a las caracteristicas generales de bajo nivel aprendidas
de ImageNet. Las redes residuales permiten aumentar la profundidad sin aumentar el
numero de parametros. Esto lleva, en ResNet-50, a capturar un campo receptivo de 483 x
483 pixeles, suficiente para la resoluciéon de entrada que vamos utilizar de 256 x 128
pixeles. El encoder incluye ademas una serie de capas convolucionales que permiten
especializar la tarea.

e Decoder: Lo que se propone en la parte de la red que decodifica la informacién es una
Unica rama con dos canales de salida que van a ser los mapas de pixeles que se estén
buscando como solucidn, lo cual ayuda a reforzar la calidad de este tipos de mapas.

En este decoder, se combinan dos ideas diferentes. En primer lugar skip-connections [25]
del encoder al decoder. Mdas concretamente, se concatenan las caracteristicas “up-
convolved” con sus correspondientes caracteristicas de la parte en decodificacién. En
segundo lugar, se hacen predicciones preliminares en una resolucion menor, las cuales
también se concatenan y retroalimentan la red, siguiendo la idea de [10], asegurando que
las primeras etapas de las caracteristicas internas se dirijan hacia la tarea que se busca. Se
usa ReLU como funcién no lineal excepto para las capas de prediccidon, donde usamos
Sigmoid.

Para la arquitectura de red propuesta, vamos a usar EquiConvs, tanto en el encoder como en el
decoder. EquiConvs es una convolucion que se define en el dominio esférico en lugar del dominio
de la imagen y es implicitamente invariante a la distorsién que se da en la representacién de
imagenes equirectangulares.

Figura 3.2 Representacion grafica del ajuste del kernel segin su ubicacion en la escena.
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La principal diferencia de la red que vamos a entrenar con CFL reside en que, al ser la tarea a
realizar completamente distinta, la informacion de salida y el etiquetado ground truth debe ser
distinto. El ground truth (GT) que vamos a tener asociado a cada imagen panoramica y por tanto la
salida que se busca consiste en dos mapas de pixeles, el primero va a ser la linea del horizonte
correspondiente y el segundo la localizacién de los puntos de fuga verticales de la foto. A partir de
este GT, el error de las predicciones se reduce gradualmente a medida que la prediccidon se acerca

al objetivo.

Figura 3.3 Ground truth y salida de la red CFL y ground truth y salida de nuestra red. Corner for

Layouts (CFL) tiene una salida con dos canales (arriba): un canal representando contornos de

elementos constructivos y otro representando esquinas. Nuestra propuesta (abajo) tiene una salida
también con dos canales: uno representando la linea del horizonte (izquierda) y otro representando

los puntos de fuga superior e inferior que describe la direccidon vertical (derecha).
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CAPITULO 4

GENERACION DEL DATASET

Para poder entrenar la red neuronal con la que vamos a extraer la linea del horizonte y los puntos
de fuga de panoramas esféricos necesitamos un numeroso grupo de imagenes equirectangulares
con diferentes orientaciones, junto con su correspondiente ground truth tanto de la linea del
horizonte como de los puntos de fuga, sin embargo, debido a la falta de una dataset con estas
caracteristicas entre los recursos con los que se cuenta, ha sido necesario crearlo de propio para
este proyecto.

4.1 RECOLECCION DE FOTOGRAFIAS

Este dataset ha sido generado a partir de una gran cantidad de fotos equirectangulares obtenidas
en internet, procedentes en parte de otros datasets existentes como SUN360 o F-360iSOD [30],
aunque la mayoria de fotos han sido extraidas de la pagina web Flickr, ya que la existencia de un
grupo especializado en imagenes equirectangulares [31] facilitd la busqueda de este tipo de fotos.

Este conjunto de fotos recolectado contiene 1097 imagenes orientadas de manera vertical, con un
campo de vista esférico completo, en un formato equirectangular y con una resolucién de
1024x2048 pixeles en las imdgenes de exterior y una resolucién de 512x1024 pixeles en las

imagenes de interior.

Figura 4.1 Ejemplo de fotos de exterior e interior del dataset

Las imdagenes han sido capturadas por diferentes tipos de cdmaras omnidireccionales, en varias
localizaciones y escenas, tanto de interior como de exterior, como escenas urbanas/artificiales y
naturales y con distinta iluminacién (en distintos momentos del dia) buscando que la red sea lo
mas universal posible siendo eficaz en el mayor nimero de imagenes panoramicas posibles.
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4.2 GIRO DE LAS FOTOS OBTENIDAS

Una vez recolectadas las fotos, para generar una nueva imagen panordmica con una orientacion
especifica lo que se hace es girarla de manera artificial. Este giro se realiza en tres pasos
principales.

Primero se proyecta la foto equirectangular de entrada en una esfera, esta proyeccién se realiza
haciendo el cambio de coordenadas de pixeles a coordenadas esféricas. Definimos la resolucién de
la imagen panordmica equirectangular como W x H pixeles, siendo W la anchura de la imagen y H,
la altura de ésta. En un primer momento por tanto, la imagen viene definida como un mapa lineal
de coordenadas (u, v), que representan la distancia en pixeles de la imagen.

De esta manera convertimos directamente u a su correspondiente dngulo azimutal de tal manera
qgue u €(1, W), se transforma de manera lineal en 9 €(-180° 180°) y de manera similar operamos
con v convirtiéndolo a su correspondiente angulo polar tal que v €(1, H) se transforma de manera
lineal en ¢ €(-90° 90°).

+n

[

Figura 4.2 Representacion esquematica del cambio de coordenadas

Una vez tenemos la imagen en coordenadas esféricas, el segundo paso es aplicarle una rotacién
determinada a la foto simulando una orientacidn no horizontal cualquiera de la cadmara. Esta
rotacion se realiza cambiando la referencia absoluta de las coordenadas esféricas, respecto a la
referencia correcta en la que el eje Z coincide con la gravedad. La nueva referencia absoluta se
obtiene aplicando una rotacién en el eje Z y una rotacion el eje X.
RAbsCam = rotzRad (giroZ) * rotxRad (giroX)
VertVp = RAbsCam * [0; 0; 1];

vertVpDown = RAbsCam * [0; 0; -1];
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Calculada la nueva referencia de la cdmara se aplica el giro a la imagen en coordenadas esféricas.

Por ultimo como tercer paso quedaria deshacer el cambio de coordenadas pasando, de manera
inversa al primer paso, de coordenadas esféricas a coordenadas de distancia en pixeles.

4.3 GENERACION DEL GROUND TRUTH

Los puntos de fuga son aquellos puntos en el plano imagen donde convergen las proyecciones de
las lineas paralelas del mundo. Son caracteristicas invariantes a escala y rotacién, por lo que
pueden ser utilizadas para multiples tareas como correspondencia entre imagenes, calibracion de
la cdmara o reconocimiento de objetos. Si estas rectas paralelas siguen la direccién de la gravedad
normalmente identificaremos los puntos de fuga asociados como puntos de fuga verticales.

Por su parte el horizonte es la linea que aparentemente separa el cielo y la tierra. Esta linea es en
realidad una circunferencia en la superficie de la Tierra centrada en el observador, en nuestro caso
y para la representacion esférica de la foto panoramica, la linea del horizonte se corresponde con
un circulo que es resultado de la interseccién de la esfera y un plano que pasa por el centro de la
misma. Notese que, excepto por irregularidades del relieve, el plano que contiene a la linea del
horizonte es perpendicular a la direccién de la gravedad.

El ground truth del dataset se corresponde con un mapa de pixeles de la linea del horizonte y otro
de los puntos de fuga verticales asociados a cada foto girada artificialmente tal y como hemos
explicado en la seccidn anterior. Ambos mapas de pixeles son definidos de tal forma que en un
principio sus valores van a ser 1 si el pixel pertenece a la linea del horizonte o al punto de fuga
vertical y O en el caso contrario. Posteriormente se hace un engrosamiento de lineas y desenfoque
gaussiano para facilitar la convergencia durante el entrenamiento, ya que hace que la evaluacion
del error sea continua en lugar de binaria.

Estas dos fotos se generan al mismo tiempo que se realiza el giro de las fotos, ya que el resultado
de la generacién del ground truth depende Unicamente de la rotacidn que se le aplica a cada foto y
de la resolucidn de la foto de entrada, siendo independiente de la foto en si.
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b)

c)

Figura 4.3 Ejemplos de linea del horizonte (derecha) y puntos de fuga (izquierda) generados. a)
Ground truth asociado a una foto orientada de manera horizontal; b) Ground truth asociado a una
foto girada 45° sobre el eje X; ¢) Ground truth asociado a una foto girada 90° sobre el eje X

4.4 EJEMPLOS VISUALES

Figura 4.4 Imagen original extraida de la pagina web Flickr [6]
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b)

Figura 4.5 a) Imagen girada artificialmente para la generacion del dataset; b) Ground truth de la
linea del horizonte y los puntos de fuga de la foto girada




b)

Figura 4.6 a) Imagen girada artificialmente para la generacion del dataset; b) Ground truth de la
linea del horizonte y los puntos de fuga de la foto girada

Con el objetivo de aprovechar al maximo las fotos que hemos conseguido de internet y engrosar al
maximo el tamafio del dataset para que el entrenamiento de la red resulte lo mas fructifero
posible dentro de un tiempo razonable, cada foto panoramica es girada cinco veces, las rotaciones
aplicadas para realizar los giros se hacen de manera aleatoria, siendo el posible angulo de rotacién
sobre el eje Z un dngulo comprendido entre —Pi y Pi, mientras que el posible angulo de rotacién
sobre el eje X esta comprendido entre —Pi/2 y Pi/2.

Finalmente concluimos el proceso con 5485 fotos giradas aleatoriamente con sus respectivas fotos
de linea del horizonte y puntos de fuga verticales asociadas. Estas fotos se van a agrupar en tres
datasets diferentes segun su funcion en el entrenamiento:

e Dataset de entrenamiento: Compuesto por 4375 fotos destinadas a realizar el
entrenamiento de la red.

e Dataset de test: Compuesto por 550 fotos destinadas a evaluar los resultados obtenidos de
la red.

e Dataset de validaciéon: Compuesto por 560 fotos destinadas para dar apoyo durante el

entrenamiento de la red, como paso de comprobacion intermedio durante el
entrenamiento.
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CAPITULO 5

DESHACER GIRO

El uso que se le da a la linea del horizonte y los puntos de fuga verticales calculados, como se ha
comentado en los objetivos de este trabajo, es poder estimar la direccion vertical en la referencia
de la cdmara y rectificar las imagenes panordmicas para que queden en orientacién horizontal. A
través de estos elementos extraidos con la red neuronal podemos calcular los dngulos de giro que
se ha desviado la fotografia respecto a la direccidon vertical (coincidente con la gravedad) y
deshacer ese giro para obtener la foto correctamente ajustada.

En nuestro caso, para este trabajo, vamos a trabajar con los mapas de pixeles de los puntos de fuga
verticales buscando los angulos de giro. Para ello, lo que vamos a hacer, es obtener en que
coordenadas se encuentran los puntos de fuga en la imagen. Esta tarea de procesado de imagen la
vamos a llevar a cabo con Matlab.

En primer lugar, se detectan los pixeles cuya iluminacién es de 255, ya que estos pixeles
representan el centro de ambos puntos de fuga. Lo segundo que se hace, es separar estos pixeles
en grupos segun si representan el punto de fuga vertical positivo o su punto de fuga antipodal
(diametralmente opuesto). Una vez tenemos los dos grupos de pixeles, calculamos las
coordenadas de su centro de gravedad por separado.

Figura 5.1 Puntos antipodales en una esfera

Las coordenadas en pixeles (u, v) en la que se encuentran los centros de gravedad calculados
anteriormente la consideraremos la posicién de los puntos de fuga verticales. Como hemos visto
en el capitulo 4, si conocemos las coordenadas del punto de fuga en coordenadas en pixeles
podemos conocer de manera directa sus coordenadas esféricas, a partir de las cuales podemos
conocer cudl ha sido el giro realizado y corregirlo.

A partir de las coordenadas esféricas del punto de fuga vertical, también podemos calcular de
manera directa cual es el vector vertical de la foto. A partir de este vector se puede corregir la
orientacién aplicando la rotacion necesaria para llevar nuestro vector vertical calculado (vx, vy, vz)
a la posicién (0, 0, 1). El calculo del vector vertical explicado en este apartado se usara en los
siguientes apartados a la hora de evaluar las prestaciones de la red, ya que aparte de poder
rectificar la foto a partir de él, nos sirve para calcular la desviacidén que presenta nuestro calculo del
punto de fuga vertical, respecto al punto de fuga vertical del ground truth conocido de antemano.
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CAPITULO 6

EXPERIMENTACION

6.1 RESULTADOS DEL ENTRENAMIENTO

Para obtener los distintos resultados con los que evaluar las prestaciones de la red vamos utilizar la
red con el dataset de test mencionado en el apartado 4. Mdas concretamente contamos en este
dataset para evaluar la red con 260 fotos de interior (512x1024 pixeles) y 290 fotos de exterior
(1024x2048 pixeles). Aunque la resolucion de descarga de las fotos sea diferente, el tamaio de la
entrada y salida de la red es comun para todas las fotos en los experimentos realizados, tanto en
la inferencia de los resultados de test, como en la comparativa de estos resultados con el ground
truth. La inferencia para la evaluacién de la red mediante el dataset de test se hace procesando los
resultados con la CPU, procedimiento mas lento para procesar imagenes que mediante GPU. El
entrenamiento se realizd procesando la red mediante GPU con un tiempo aproximado de
entrenamiento de 7 horas.

En esta seccidén evaluamos la salida de la red, calculando a nivel de pixeles, las distintas métricas
gue nos ayudan a saber cémo de buenos son los resultados obtenidos. Estas métricas se calculan
teniendo en cuenta la coincidencia de pixeles entre el Ground Truth y su correspondiente imagen
extraida.

Para obtener la coincidencia entre ambos mapas de pixeles se comparan las imagenes con el
operador légico &, que devuelve el valor booleano true si ambos operandos son true, es decir,
devuelve el valor “1” en todos aquellos pixeles que estén en blanco en las dos imagenes que se
comparan.

En las imagenes de salida, debido al desenfoque gaussiano empleado en la generacién del ground
truth, las figuras de la linea del horizonte y los puntos de fuga van perdiendo iluminacién
progresivamente. Considerando estas figuras como funciones de densidad probabilistica vamos a
imponer un nivel de confianza a partir del cual decidiremos si nuestro pixel pertenece o no a la
figura segun su nivel de iluminacidn.

Normalizando el nivel de iluminacién entre 0 y 1, elegimos un umbral de 0,1, lo que significa que
los pixeles que se van a considerar como 1 para hacer la comparativa booleana deben estar
iluminados al menos un 10%. Este umbral en la funcidon de densidad de probabilidad Gaussiana
normalizada corresponde con un intervalo de confianza del 98.41% o lo que es lo mismo, 2.146
veces sigma.

De esta manera ya podemos comparar el ground truth con nuestros resultados de manera binaria,
lo que nos permite dividir los pixeles segun cuatro tipos de resultados posibles:

— True Positives (TP): Pixeles correctamente iluminados.
— True Negatives (TN): Pixeles correctamente no iluminados.
— False Positives (FP): Pixeles iluminados que no deberian estarlo.
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— False Negatives (FN): Pixeles no iluminados que deberian estarlo.

A partir de esta catalogacion de los pixeles calculamos las métricas que nos relacionan ambos
conjuntos (ground truth y prediccién)

e loU (Intersection over Union): Representa el area de superposicidon entre la segmentacion
predicha y ground truth dividida por el drea de unién entre la segmentacién predicha y el
ground truth.

TP
TP+ FP+FN

IoU =

e Pixel Accuracy: Es el porcentaje de pixeles de una imagen que estan clasificados
correctamente. Se calcula mediante la relacién entre los resultados bien clasificados
(comparando con el ground truth) y el total de pixeles.

TP+TN
TP+TN+ FP +FN

Accuracy =

e Pixel Precision: Describe la pureza de nuestras detecciones positivas en relacién con el
ground truth. Se calcula mediante la relacion entre los resultados positivos que coinciden
con el ground truth y el total de positivos que se ha calculado.

TP

p . . —
recision —TP T FP

e Pixel Recall: Describe la integridad de nuestras predicciones positivas en relacion con el
ground truth. Se calcula mediante la relacidn entre los resultados positivos bien clasificados
y el total de resultados que deberian ser positivos.

TP

Recall = TP-I-—FIV

e F1 score: El valor F1 se utiliza para combinar las medidas de precision y recall en un sélo
valor. Esto es practico porque hace mas facil el poder comparar el rendimiento combinado
de la precision y la exhaustividad entre varias soluciones

Precision * Recall
F1=2

*
Precision + Recall
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Operando con ambos tipos de fotos que tenemos (550 fotos), el tiempo de calculo ha sido de 475
segundos y los resultados obtenidos han sido:

| [lu  [Accuracy _ |Precision _ [Recall ___JF1 |

Linea del 0,689 0,925 0,981 0,696 0,814

horizonte

LSRG 0,495 0,973 0,969 0,5 0,66
fuga

Tabla 6.1 Resultados del test para fotos de interior y exterior

Operando con las fotos de interior el tiempo de cdlculo ha sido de 212 segundos y los resultados
obtenidos han sido:

 loUhcuracy |Precsion |Recal  |F___|

tinea del 0,702 0,927 0,999 0,703 0,825
horizonte

Puntos de 0,505 0,976 0,996 0,505 0,67
fuga

Tabla 6.2 Resultados del test para fotos de interior

Operando con las fotos de exterior el tiempo de calculo ha sido de 275 segundos y los resultados
obtenidos han sido:

| [lu  lAccuracy _|Precision  [Recall ___JFL |

0,678 0,922 0,965 0,689 0,804
horizonte
0,487 0,971 0,945 0,459 0,619
fuga

Tabla 6.3 Resultados del test para fotos de exterior

Se puede observar como el entrenamiento de la red ha dado unos buenos resultados. Tanto la
precision como la exactitud (accuracy) estan cercanas al 1, lo que significa que la salida de nuestra
red es muy cercana al groun truth de las imagenes evaluadas, acertando a la hora de detectar
tanto la linea del horizonte como los puntos de fuga verticales de la escena.
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Por su parte, el loU y la exhaustividad (recall), son muy parecidos en todos los casos, pero no estan
tan cercanos a la unidad. Esto se debe a que las imagenes de salida de la red tienen bastantes
pixeles considerados como falsos negativos, pero casi no cuentan con falsos positivos. Esto no
resulta un gran problema ya que con el escaso nimero de falsos positivos y junto con las otras
métricas calculadas podemos asegurar que tanto la linea del horizonte como los puntos de fuga
verticales se encuentran bien representados en nuestros resultados.

6.2 RESULTADOS DE LA CORRECCION DEL GIRO

Para evaluar la eficacia del giro se han utilizado los resultados de los mapas de pixeles de los
puntos de fuga verticales extraidos tras la evaluacion del dataset de test mencionado en el capitulo
4. En los cuales es conocido el giro realizado previamente ya que es un dato que nos guardamos
durante la generacion del dataset.

En primer lugar vamos a comparar los angulos de giro calculados a partir de los puntos de fuga
para la rectificacion de la foto, como hemos explicado en el capitulo 5, con los angulos exactos de
giros realizados, para comprobar en grados como de exacto es nuestro método.

Los resultados obtenidos son:

® Desviacién media respecto al giro en X = 0,5°

® Desviacién media respecto al giroenZ=1,8°

Una vez obtenidos los datos numéricos, y con el objetivo de tener una referencia que nos pueda
indicar cémo de buenos son nuestros resultados, vamos a fijarnos en un estudio realizado a 14
personas en el que se les mostraba una serie de imagenes rotadas artificialmente en un dispositivo
Oculus Rift de realidad virtual con el objetivo de conocer la percepcidon que tienen los humanos
respecto a las imagenes VR y su orientacién [33].

Los participantes fueron preguntados por su nivel de conformidad con la afirmacién "Estoy
satisfecho con la orientacion de la imagen mostrada", las respuestas estaban acotadas en una
escala del 1 al 5 donde cada puntuacién significaba: 1, fuertemente en desacuerdo; 2, en
desacuerdo; 3, neutral; 4, de acuerdo; 5, fuertemente de acuerdo.

1. 1 1 1 1 1 L L 1 ] 1 1 L 1 ] 1 1
1t Ll e Ll R e - 8 ol [0 o U g B B i B el L
Figura 6.1 Percepcion de los humanos respecto a la orientacion en imagenes panoramicas [33]
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La grafica muestra como la desviacidon media para la cual los participantes consideraban que
estaban fuertemente de acuerdo con la orientacidn de la imagen es de 5° y de acuerdo, con un
error en la orientacidn de hasta 12°.

Con esta nueva referencia para evaluar nuestros datos volvemos a procesar los resultados de
nuestra red, esta vez diferenciando entre imdgenes de interior e imagenes de exterior. Para que
nuestros datos puedan compararse directamente con los resultados del estudio que acabamos de
explicar, vamos a evaluar el error de nuestros resultados calculando la desviacion entre el vector
vertical calculado a partir de los puntos de fuga verticales de salida de la red y el vector vertical del
ground truth que ya conocemos. Esta desviacidn se calcula con el arco coseno del producto escalar
entre ambos vectores.

En las fotos de interior, considerando un error angular maximo de 5° entre ambos vectores
verticales, el algoritmo acierta un 99,23% de las veces, con un error angular medio de 0,47° y una

mediana del error de 0,15°.

En las fotos de exterior, considerando un error angular maximo de 5°, el algoritmo aciertan un
93,5% de las veces, con un error angular medio de 1,78° y una mediana del error de 0,33°.
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6.3 RESULTADOS VISUALES

6.3.1 ENTORNOS DE INTERIOR

c)

Figura 6.2 a) Imagen de interior girada artificialmente; b) Mapa de pixeles de los puntos
de fuga y linea del horizonte calculados por la red; c)Ground truth de los puntos de fuga
y la linea del horizonte de la foto girada
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6.3.2 ENTORNOS DE EXTERIOR URBANOS

c)

Figura 6.3 a) Imagen de exterior urbano girada artificialmente; b) Mapa de pixeles de
los puntos de fuga y linea del horizonte calculados por la red; ¢)Ground truth de los
puntos de fuga y la linea del horizonte de la foto girada
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6.3.3 ENTORNOS DE EXTERIOR NATURAL

b)

c)

Figura 6.4 a) Imagen de exterior natural girada artificialmente; b) Mapa de pixeles de
los puntos de fuga y linea del horizonte calculados por la red; ¢)Ground truth de los
puntos de fuga y la linea del horizonte de la foto girada

28



6.4 LIMITACIONES

De entre todos los tipos de fotos usados para evaluar la red, las Unicas fotos que han dado
problemas son las fotos de exterior en entornos naturales en las que la diferencia entre la
superficie, el cielo y otros elementos de la escena no queda bien definida en la informacién que
presenta la foto, como ocurre en cuevas o grutas.

Figura 6.5 Ejemplos de fotos que dan problemas a la red y sus lineas del horizonte mal calculadas
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CAPITULO 7

COMPARACION CON METODO GEOMETRICO

La estimacion de los puntos de fuga en imagenes mediante métodos de visidn artificial es un
problema abordado desde hace mas de una década debido a que su identificacién nos permite
comprender estructuras 3D a partir de caracteristicas 2D.

7.1 FUNCIONAMIENTO DEL METODO GEOMETRICO PROPUESTO

El método que vamos a emplear para poder hacer la comparativa y experimentar sobre él inicia
con la extraccion de lineas en la imagen panoramica mediante el procedimiento RANSAC (RANdom
SAmple Consensous). Nuestro método comienza con la aplicacion de un filtro Canny [32] a la
imagen, el cual permite detectar los bordes existentes. De estos N bordes obtenidos eliminamos
aquellos que estan repetidos o cuya longitud es menor a un determinado umbral para evitar
confusiones con pequeios objetos o ruido.

Figura 7.1 Contornos detectados por el filtro Canny

Al estar trabajando con imagenes panoramicas se debe tener en cuenta que una linea recta en la
realidad, es proyectada como un segmento de arco sobre la esfera, y por tanto, aparece como un
segmento de linea curva en la imagen. Por ello, cada segmento de arco es representado por el
vector normal del plano proyectivo que incluye la propia linea y el centro de la camara.
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Figura 7.2 Lineas en la realidad proyectadas en la imagen esférica como arcos de un
gran circulo. (Imagen de Seon Ho oh et al. [19])

Una vez obtenidos los bordes de la imagen, aplicamos nuestro algoritmo RANSAC para extraccion
de proyecciones de rectas. Este procedimiento elige inicialmente de manera aleatoria dos puntos
de la imagen de uno de los borden extraidos para generar lineas candidatas de la imagen que son
votadas por el resto de puntos del mismo borde. Para ello se computa el producto vectorial entre
las direcciones de los rayos que corresponden a este par de puntos obteniendo asi una posible
direccion normal para este grupo de puntos. La normal obtenida se compara con el resto de rayos
del grupo considerandose inliers del modelo aquellos que cumplen la condicion de
perpendicularidad con la normal calculada bajo un determinado treshold angular, por ejemplo 1°,
y considerandose outlayers aquellos que no la cumplen.

Este procedimiento se repite un numero fijo de veces al tratarse de un algoritmo iterativo.
Finalmente la iteracion que haya dado lugar a un mayor nimero de inliers se considera el mejor
modelo, obteniendo la direccién normal que mejor se ajusta a la linea. Si la linea tiene un numero
de inliers suficiente y su longitud es mayor a la longitud de segmento minima establecida,
conservamos dicha linea para el siguiente paso del algoritmo. En caso contrario, la linea es
eliminada. Este procedimiento se aplica para cada uno de los bordes que se habian obtenido
anteriormente de manera que obtenemos un conjunto de lineas candidatas de longitud
considerable y con su direccién normal como informacién.

A partir de las lineas extraidas segun el primer procedimiento RANSAC, obtendremos los puntos de
fuga aplicando de nuevo un algoritmo tipo RANSAC. La informacidon que tenemos de las lineas
anteriores son las coordenadas de proyeccién de cada linea sobre la esfera y la direccién normal
del circulo que forma la linea en dicha esfera.
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Figura 7.3 Resultado de la extraccion de lineas por RANSAC

Para llevar a cabo la tarea de extraccion de los puntos de fuga haremos la suposicién de que
existen tres puntos de fuga dominantes (Mundo Manhattan [34]), cuyas direcciones son
ortogonales entre ellas y que estan alineados con tres direcciones dominantes en el mundo, una
por cada orientacion posible de las aristas. También hay que tener en cuenta que en imagenes
esféricas las proyecciones lineales dan lugar a curvas de modo que las lineas paralelas intersectan
en dos puntos de fuga antipodales.

El segundo algoritmo tipo RANSAC se inicia con una seleccién aleatoria de pares de lineas de las
extraidas con anterioridad. A partir de cada par de rectas, y considerando la hipdtesis de que son
paralelas se calcula un punto de fuga que es votado por el resto de las rectas. La direccidn de este
punto de fuga se calcula mediante el producto vectorial de las dos normales correspondientes a las
dos rectas. El criterio para la votacion es una distancia basada en la perpendicularidad entre las
normales de cada recta y su direccién. La direccion mas votada se considerard la direccién
dominante de la escena. El algoritmo se repite entre las rectas restantes extrayéndose la segunda
y tercera direccién mas dominante.

Una vez que cada recta ha sido asignada a una direccién y tenemos una estimacién

suficientemente robusta de las tres direcciones dominantes, se refina su estimacion mediante una
optimizacidn en la que se impone la ortogonalidad entre ellas.

7.2 EXPERIMENTACION

Para comprobar la eficacia del método comentado, vamos a hacer una serie de experimentos de
manera que puedan darnos una idea de sus prestaciones.
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7.2.1 EXPERIMENTACION EN FOTOS DE EXTERIOR

Comenzamos evaluando el algoritmo con las fotos de exterior, donde estan presentes entornos en
los que, segun el estado del arte [12], este tipo de métodos no presenta un buen funcionamiento.

En primer lugar se evaluara un set de 60 fotos orientadas horizontalmente, es decir, su vector
vertical coincide con la direccién de la gravedad (0, 0, 1). Dado que el algoritmo usado da como
resultado tres direcciones ortogonales, y a priori, no conocemos cual de ellas es la direccién
vertical, vamos a hacer dos experimentos distintos.

En el primero, a falta de mas informacidn sobre las direcciones extraidas, vamos a considerar como
direccion vertical a la direccion mdas dominante extraida de RANSAC, es decir el primer vector de la
base. En el segundo vamos a darle apoyo al algoritmo seleccionando de las tres direcciones que
nos da la mas cercana al vector vertical (0, 0, 1).

Una vez obtenidos los resultados vamos a considerar como fotos bien calculadas aquellas en las
gue el error entre el vector seleccionado como vertical y el vector vertical real no sea superior a un
treshold angular determinado. Este error se calcula a partir del arco coseno del producto escalar
entre ambas direcciones.

Direccion  seleccionada | % de aciertopara | % de acierto | Media del | Mediana del

como vertical theshold de 5° para theshold | error (grados) | error (grados)
de 10°

Direccion mas dominante
9,6% 9,6% 53,85 57,74

Direccion mas cercana a
la vertical 21,15% 28,85% 21,45 20,74

Tabla 7.1 Resultados en imagenes de exterior horizontales

Comprobamos, que a pesar de que las fotos estan orientadas de manera horizontal, el algoritmo
no es eficaz a la hora de calcular correctamente la direccién vertical de las imagenes.

Pasamos ahora a aplicar el algoritmo a las fotos giradas de exterior del dataset de test, que son las
mismas fotos con las que hemos evaluado las prestaciones de nuestra red. Se incluye también el
resultado obtenido mediante nuestro método, al cual vamos a llamar HorizonLineNet-360, para
facilitar la comparativa de los resultados.

Como en el caso anterior, vamos a hacer distintos experimentos segun la direccién que vamos a
elegir como vertical, pero ahora, a parte de los métodos de seleccidn anterior, vamos a afadir uno
nuevo en el que la direccion seleccionada como vertical va a ser la direcciéon mas cercana a la
direccidén vertical del ground truth, la cual conocemos de antemano.
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Método % de acierto|% de acierto | Media del | Mediana del

para theshold de | para theshold de | error error
5° 10° (grados) (grados)

Geométrico: direccion mas

Lara e 3% 6,47% 43,33 43,36
Geométrico: direccion mas . .
cercana a la vertical 7,96% 14,43% 34,28 30,72
Geométrico: direccion mas

15,92% 33,33% 15,93 15,08

cercana al ground truth

HorizonLineNet-360
93,5% - 1,78 0,33

Tabla 7.4 Resultados en imagenes de exterior rotadas

Como se podia esperar después de ver los resultados del algoritmo en las imagenes horizontales,
se observa que, se confirma la hipdtesis planteada en la introduccién del trabajo, de manera que
en entornos de exterior donde predominan los elementos naturales carentes de lineas rectas y
composiciones geométricas, este método esta lejos de ser eficaz, es decir, no puede ser usado
como solucion al problema de ajuste de la direccién vertical.

7.2.1 EXPERIMENTACION EN FOTOS DE INTERIOR

Como hemos hecho con las fotos de exterior, comenzamos aplicando el algoritmo a 60 fotos, en
este caso de interior, orientadas horizontalmente. Repetimos los mismos experimentos del
apartado anterior manteniendo los criterios que se han seguido.

Direccion seleccionada | % de acierto para | % de acierto | Media del [ Mediana del
como vertical theshold de 5° para theshold de | error error

10° (grados) (grados)

Direccion mas dominante
51,92% 57,69% 33,66 6,02

Direccion mas cercana a la
vertical 75% 86,54% 54 2,12

Tabla 7.3 Resultados en iméagenes de interior horizontales

Se observa que, al tener tres direcciones principales como solucion, si no tenemos un buen criterio
de seleccion a la hora de considerar una direcciéon como la direccion vertical, el método no resulta
eficaz tampoco en entornos de interior. En este caso, en el que las fotos estan orientadas
horizontalmente, el criterio de seleccién de la direccion vertical como la direccién mas cercana a la
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vertical real da unos resultados mas decentes, ya que, aunque el porcentaje de acierto en las
predicciones no llega al 90%, tanto el error medio, como la mediana del error, representan una
desviacion a partir de la cual los humanos siguen estando fuertemente de acuerdo con la
orientacién de la foto, tal y como se ha explicado en el capitulo 6.

En los casos en los que, la direccion mads cercana a la vertical se aleja en mas de 102 de la vertical
real, encontramos que la direccion mas dominante coincide con el eje X (1, 0, 0), o con el eje y (O,
1, 0); y calculadas las otras dos direcciones en base a los criterios de ortogonalidad descritos al
principio del capitulo, en un considerable porcentaje, no se llega a estimar correctamente la
direccion vertical como una de las tres direcciones dominantes en la escena.

Pasamos ahora a aplicar el algoritmo en las fotos giradas de interior del dataset de test con el que
se han evaluado las prestaciones de la red. Se incluye también el resultado obtenido mediante
nuestro método, HorizonLineNet-360, para facilitar la comparativa de los resultados. Y al igual que
con las fotos orientadas horizontalmente, repetimos los mismos criterios de experimentacién
empleados en el apartado anterior

Método % de acierto para | % de acierto para | Media del | Mediana del
theshold de 5° theshold de 10° error

(grados)

dominante

Geométrico: direccion mas

cercana a la vertical 21,4% 28,36% 32,78 32,25
Geométrico: direccion mas . .
cercana al ground truth 79,6% 87,06% 4,08 0,97
HorizonLineNet-360

99,23% - 0,47 0,15

Tabla 7.4 Resultados en imagenes de interior rotadas

Como era de esperar y al igual que sucedia con las fotos horizontales, el algoritmo necesita de un
apoyo para conocer cual de las direcciones extraidas es la que estamos buscando. Eligiendo como
direccion vertical, la direccién mas cercana a la vertical del ground truth, vemos que los resultados
vuelven a ser bastante aceptables, llegando a mejorar el porcentaje de acierto y el error respecto
al grupo de fotos horizontales.

El principal problema de este método, es que para fotos en las que sepamos de antemano que van
a estar orientadas horizontalmente o con desviaciones cercanas, podemos usar como referencia la
direccién vertical de la referencia absoluta. Pero para otras orientaciones con desviaciones
mayores de 452 no nos valdria esta aproximacion, ya que se asignaria como direccién vertical una
de las direcciones horizontales de la escena.

Este problema a la hora de conocer cual es la direccion vertical segun el método geométrico
expuesto, resulta critico a la hora de elegir este algoritmo como solucion para la rectificacion de la
orientaciéon en imagenes panoramicas.
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CAPITULO 8

CONCLUSIONES

En este trabajo se ha investigado el uso de redes de aprendizaje profundo para la estimacidén de la
linea del horizonte y los puntos de fuga verticales a partir de imagenes panoramicas. Como
resultado del trabajo, hemos logrado alcanzar los objetivos planteados al desarrollar un método
eficaz a la hora de rectificar la orientacidn vertical de imagenes panoramicas independientemente
del tipo de escena que representen, solucionando de este modo la problematica presente en las
fotos de exterior natural como bosques o playas, donde al no haber una composicidon de lineas
rectas artificial como si ocurre en entornos de interior o entornos urbanos, los métodos
geométricos clasicos referenciados en el estado del arte fallaban en su cometido.

Una de las principales contribuciones de este trabajo ha sido la explotacién de técnicas de
aprendizaje profundo (deep learning), mds concretamente a partir de las redes neuronales
convolucionales, las cuales son muy apropiadas para tareas que requieren informacion contextual
de la imagen completa. La configuracién autoencoder de la red, representando la salida de la
misma como dos canales de imagenes que representan la linea del horizonte y los puntos de fuga
se ha visto eficaz de cara al entrenamiento, siendo una representacion de salida lo suficientemente
detallada para una eficiente estimacion numérica de la direccidn vertical.

Los resultados experimentales demuestran que el método propuesto tiene un buen desempefio en
la deteccion de la linea del horizonte y los puntos de fuga verticales superando a los métodos
clasicos basados en rectas, no solo en escenarios desfavorables para ellos como entornos naturales
exteriores, sino también en escenas de interior donde se esperaba un comportamiento similar.

Destacar que el método propuesto es capaz de funcionar en escenas y situaciones con las que los
métodos basados en rectas directamente fallan, como escenas de exterior donde la direccién de la
gravedad esta implicita en el contexto de la imagen o en escenas de interior donde la identificacidn
de techo y suelo es capaz de resolver la ambigliedad entre direcciones dominantes.
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