
 
 
 
 

 
 

 
  



 
 
 



RESUMEN 
 

A lo largo de este trabajo, se ha propuesto un método general para la rectificación vertical de la 
orientación (considerando como referencia absoluta la dirección de la gravedad) en todo tipo de 
imágenes panorámicas, tanto de interior como de exterior, en ambientes naturales y urbanos y con 
cualquier tipo de iluminación. 
 
El desarrollo de este método se centra principalmente en el entrenamiento de una red neuronal 
convolucional mediante deep learning, que es capaz de detectar tanto la línea del horizonte como 
los puntos de fuga verticales de las imágenes panorámicas. Estos elementos de las imágenes nos 
permiten obtener información geométrica muy valiosa para conocer la orientación de la cámara. 
 
El trabajo aborda todas las fases necesarias para alcanzar los objetivos planteados, comienza con la  
creación desde cero de un dataset suficientemente grande y variado para que el entrenamiento 
sea fructífero, esta creación del dataset reúne las tareas de  recolección de fotos, procesamiento 
de las imágenes y generación del ground truth. Posteriormente se entrena la red en la que va a 
basarse nuestro método de ajuste vertical con el dataset creado. 
 
A partir de las imágenes de salida de nuestra red, se desarrolla un algoritmo basado en el 
procesamiento de imágenes con el que podremos corregir la orientación de las imágenes 
panorámicas a partir de los mapas de píxeles de los puntos de fuga que obtenemos. 
 
Por último se comparan nuestros resultados con el estado del arte mediante la experimentación 
sobre un método geométrico de detección de puntos de fuga basado en el algoritmo RANSAC, el 
cual se ha implementado con el fin de comparar la efectividad de nuestro método respecto a otros 
trabajos existentes y las ventajas de introducir redes neuronales profundas en el desarrollo del 
proceso. 
  



ABSTRACT 
 
Throughout this project, a general method is proposed for upright rectification (considering the 
direction of gravity as  absolute reference) in all types of panoramic images, both indoors and 
outdoors, in natural and urban environments and with any type of lighting. 
 
The development of this method is mainly focused on the training of a deep learning convolutional 
neural network, which is capable of detecting both the horizon line and the vertical vanishing 
points of panoramic images. These elements of the images allow us to obtain very valuable 
geometric information to know the orientation of the camera. 
 
The project addresses all the necessary phases to achieve the proposed objectives, it begins with 
the creation from scratch of a large and varied dataset enough for the training to be successful, 
this creation of the dataset brings together the tasks of collecting photos, processing images and 
generation of the ground truth. Subsequently, the network on which our vertical adjustment 
method will be based is trained with the created dataset. 
 
From the output images of our network, an algorithm based on image processing is developed in 
order to correct the orientation of panoramic images with the information of the pixel maps of the 
vanishing points that we obtain. 
 
Finally, our results are compared with the state of the art through experimentation on a vanishing 
point detection method based on the RANSAC geometric based algorithm, which has been 
implemented in order to evaluate the effectiveness of our method and the advantages of 
introducing deep neural networks in the process development, compared to other existing work. 
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CAPÍTULO 1 

 
INTRODUCCIÓN 
 

En los últimos años han aparecido numerosas cámaras omnidireccionales en el mercado, algunos 
de los ejemplos más conocidos que podemos encontrar son la cámara Surround 360 de Facebook, 
la Google Jump, Jaunt VR,  Omni de GoPro, Gear 360 de Samsung, OZO de Nokia, Theta de Ricoh, 
Immerge de Lytro, 360 CAM de LG o KeyMision  360 de Nikonn entre otros. 
 
Estas cámaras, permiten capturar imágenes omnidireccionales esféricas de alta calidad, es decir, 
imágenes en las que tenemos un campo de visión horizontal de 360º y un campo de visión vertical 
de 180º. Gracias a la aplicación para realidad virtual (VR) y la accesibilidad y simplicidad de estos 
dispositivos, este tipo de imágenes se están popularizando. Por otro lado, el uso de la realidad 
virtual se está generalizando en diversos contextos y aplicaciones, como el entretenimiento, 
industria, turismo virtual, patrimonio cultural o publicidad inmobiliaria por nombrar algunos 
ejemplos. 
 
Las imágenes omnidireccionales esféricas pueden ser representadas en cualquier pantalla en el 
formato  tradicional equirectangular (también llamado formato panorámico), o con un dispositivo 
específico para inmersión en realidad virtual como las gafas de realidad virtual, donde el usuario, 
como en la vida real, puede girar la cabeza para visualizar cualquier dirección de la fotografía. 
 
 

 
 

 

 

 
 
En la práctica, cuando la referencia del sistema de realidad virtual y de la cámara omnidireccional 
no están alineadas, la imagen se ve inclinada, lo que reduce notablemente la calidad de la 
experiencia de realidad virtual y conduce a molestias visuales. Para poder tener una referencia 
común, normalmente nos interesa que la referencia vertical de la cámara se proyecte en los polos 
de la esfera y denominaremos a esta orientación “orientación horizontal” (ver Figura 1.1). En esta 
configuración la línea del horizonte es una línea recta que va de izquierda a derecha mientras que 
la dirección vertical se proyecta en la primera y última fila de la imagen, ya que estas filas 
representan los polos de la esfera. Si la imagen se captura en otra orientación la línea del horizonte 
se presenta como una línea curva ondulada (ver Figura 1.2).  
 

Figura 1.1 Imagen en formato equirectangular (izquierda) y en formato para realidad virtual. 
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Sin embargo, al tener una proyección esférica, si se conoce la dirección vertical en la referencia de 
la cámara se puede rectificar esta sin problemas a una orientación horizontal que puede ser usada 
por el sistema de realidad virtual como imagen en la referencia base. Se hace necesario por tanto 
un método capaz de detectar la dirección vertical de la imagen, de manera que nos facilite la 
información necesaria para realizar esta rectificación. Si trabajamos con una secuencia de vídeo 
este algoritmo permitirá realizar el equivalente a una estabilización vertical mecánica. 
 
Hoy en día podemos encontrar gran variedad de soluciones para el ajuste vertical de la imagen: 
 

 Mediante edición manual; re-alimentación visual de la horizontalidad de la línea del 

horizonte: una solución simple consiste en utilizar este tipo de software como Adobe 

Premiere Pro CC con VR Plugin, que permite a los usuarios manualmente rectificar la 

orientación de la imagen. Este método, aunque pueda proporcionar unos resultados 

visualmente atractivos, tiene como principal inconveniente el tiempo que requiere para 

realizarse en la práctica ya que el proceso de ajuste debe repetirse manualmente para cada 

imagen. 

 

 Mediante hardware para detección de dirección de la gravedad: Las unidades de medición 

inercial (IMUs) permiten estimar la dirección de la gravedad integrando la información 

acoplada de aceleración/gravedad proporcionada por el acelerómetro y la información de 

velocidad angular proporcionada por el giróscopo. En caso de que la adquisición se realice 

en reposo  el acelerómetro proporciona directamente la dirección de la gravedad. Sin 

embargo, aumenta el coste de fabricación de la cámara al tener que añadir un sensor 

adicional, además del consumo de energía y la necesidad de la calibración de la cámara-

giróscopo. Debido a esto, la mayoría de las principales cámaras omnidireccionales del 

mercado no incluyen IMU. 

 

Además, un enfoque basado en hardware no se puede aplicar como solución a imágenes ya 

capturadas por otras cámaras o para imágenes descargadas de internet sin ninguna 

información previa. 

 

Figura 1.2 Imagen mal orientada en formato equirectangular y en formato para realidad virtual. 
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 Mediante métodos de  visión por ordenador: Otra solución sería estimar la orientación de 

la imagen de entrada mediante métodos de visión por ordenador. Debido a la distorsión 

inherente y a los modelos de proyección específicos de las imágenes de realidad virtual, se 

han propuesto métodos dedicados a las imágenes de realidad virtual [1, 2]. Estos métodos 

utilizan la representación esférica de este tipo de imágenes y, por lo tanto, son aplicables a 

imágenes con un amplio campo de visión, como las obtenidas por cámaras VR. 

 

 

Estos métodos pueden rectificar automáticamente la orientación de la imagen analizando las 

estructuras geométricas presentes en la imagen, especialmente líneas y puntos de fuga [1, 2] o 

línea del horizonte [3, 4]. Sin embargo, los métodos basados en líneas son aplicables solo a 

entornos urbanos artificiales en los que se puede encontrar una composición de líneas rectas. De 

manera similar, los métodos basados en el horizonte requieren de un horizonte fácil de reconocer, 

y por lo tanto no se puede aplicar en imágenes donde el horizonte no es claramente visible, como 

escenas interiores o imágenes tomadas en ambientes naturales como montañas o bosques. 

 

1.1 ESTADO DEL ARTE 
 

La estrategia que se usa de manera general en el ajuste vertical de las imágenes consiste en 

estimar la orientación (o rotación) de la cámara mediante el procesamiento de imágenes, 

generalmente mediante extracción de líneas, para posteriormente aplicar el inverso de esta 

rotación a la imagen reconstruyéndola con la orientación que se desea. Esta estrategia, 

originalmente se ha estudiado para la perspectiva estándar de las imágenes [5, 6]. 

 

 

 

 

 

 

Por su parte, para la corrección de la orientación en imágenes de realidad virtual, se han propuesto 

otra serie de métodos debido a la distorsión inherente y a los modelos de proyección específicos 

de  este tipo de imágenes [1, 2]. 

 

 

 

Figura 1.3 Corrección vertical en una imagen de perspectiva clásica  [5] 
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1.1.1 REPRESENTACIÓN ESFÉRICA DE LA IMAGEN 

 

Los métodos existentes para  la rectificación de la orientación en imágenes de realidad virtual 

suelen trabajar con una representación esférica de la imagen más habitualmente que con 

representaciones 2D. 

 

La primera ventaja que nos encontramos en esta representación es que el punto de encuentro de 

las líneas paralelas, que conceptualmente se encuentra en el infinito, queda siempre representado 

en algún punto de la superficie limitada de la esfera. La segunda ventaja que presenta esta 

representación es que para modificar la orientación de la imagen tan solo es necesario aplicar una 

simple rotación esférica. 

 

La representación esférica ha sido usada en imágenes tradicionales de modelo pinhole [7], y es 

directamente aplicable a imágenes equirectangulares gracias a su campo de visión esférico. Esta 

representación ha sido posteriormente extendida al concepto de "esfera equivalente" para poder 

manejar varios campos de visión que se extraen de otras cámaras como las de ojo de pez, las 

omnidireccionales o las catadióptricas [8, 9, 10, 11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2 MÉTODOS BASADOS EN LA EXTRACCIÓN DE LÍNEAS 

 

Los métodos más populares para estimar la orientación de una imagen equirectangular consisten 

en el uso de líneas y los puntos de fuga [12, 2]. Esto es debido a que el punto de fuga, la 

proyección en la imagen del punto donde se cortan dos rectas paralelas, contiene la información 

de la dirección de las rectas [13]. Obtener la dirección del punto de fuga nos da una indicación de 

la dirección de la vertical (coincidente con la gravedad) en la imagen. 

 

Figura 1.4 Imagen tomada con una cámara catadióptrica central a la derecha e imagen tomada 

con cámara de ojo de pez a la izquierda [11] 
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Mientras algunos métodos obtienen cada punto de fuga independientemente [14, 15], se ha 

demostrado que imponer restricciones estructurales  en las estimaciones de los puntos de fuga da 

lugar a unos resultados más robustos, por ejemplo utilizando las suposiciones basadas en 

"Manhattan" [12, 1, 16, 17] o "Atlanta world" [18, 2]. Sin embargo estos métodos funcionan solo 

en ambientes urbanos construidos por el hombre, que destacan por estar compuestos de un gran 

número de líneas rectas y paralelas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.3 MÉTODOS BASADOS EN EL HORIZONTE 

 

La estimación del horizonte da lugar a otra popular categoría de trabajo [3, 4], donde la idea 

principal consiste en detectar la línea del horizonte. En la representación esférica, el horizonte es 

un plano que pasa por el centro de la esfera. Estos métodos aprovechan las diferencias de color 

que existen entre el cielo y la tierra para maximizar un criterio de separación, expresado por 

ejemplo como la distancia de Mahalanobis. 

 

 

 

 

 

 

 

 

 

 

 

Figura 1.5 Ejemplo representativo de la extracción de líneas y punto de fuga por el método 

RANSAC [8] 

Figura 1.6 Estimación del horizonte en una imagen en perspectiva catadióptrica [4] 
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Este método sin embargo, no obtiene resultados satisfactorios cuando la línea del horizonte no se 

muestra de manera explícita o directamente no es observable como puede ocurrir en imágenes de 

interior. 
 

 

1.1.4 ESTIMACIÓN DEL MOVIMIENTO DE LA CÁMARA 

 

Existen un gran número de métodos que han sido propuestos para la estimación del movimiento 

de la cámara procedente de las imágenes omnidireccionales [19, 20, 21, 22, 23, 24, 25]. Estos 

métodos nos ofrecen unos resultados muy buenos sobre el movimiento y la reconstrucción 3D, 

pero las soluciones que nos ofrecen son relativas a una referencia elegida previamente, esta 

arbitrariedad es un problema para rectificar la orientación de este tipo de imágenes ya que lo que 

necesitamos es conocer la orientación respecto a una referencia absoluta. 

 

De manera similar, métodos de estabilización de vídeos gran angular u omnidireccionales, pueden 

generar una versión refinada de un video tembloroso como entrada, pero no pueden obtener la 

orientación vertical absoluta que se necesita para la rectificación que estamos buscando. 

 

 

1.1.5 TÉCNICAS DEEP LEARNING  
 

Motivados por los grandes avances y logros obtenidos de la mano del deep learning, se han 

empezado a estudiar recientemente métodos que se basan en esta técnica para estimar la 

orientación de las imágenes y su rectificación. En el contexto de las imágenes con perspectiva 

tradicional, métodos recientes han entrenado redes neuronales con el fin de estimar la rotación en 

el plano de la foto [26, 27], o la rotación completa (orientación) [28, 29, 17]. 

 

 
 Figura 1.7 Estimación de la línea del horizonte mediante Deep learning [28] 
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Sin embargo, estos métodos están dedicados a las perspectivas clásicas de las imágenes que todos 

conocemos. Haciendo falta una extensión a imágenes omnidireccionales. 

 

1.2 OBJETIVOS  
 

El objetivo principal de este trabajo consiste en lograr un método universal para estimar tanto la 

línea del horizonte como los puntos de fuga verticales característicos de cualquier foto en formato 

equirectangular, tanto para escenas de interior como para entornos de exterior 

independientemente si nos encontramos en una escena de carácter más urbano o con un paisaje 

más natural, donde hoy en día tenemos más limitaciones para extraer ambas características. 

 

Para conseguirlo, se propone un método basado en el aprendizaje profundo de una red neuronal 

convolucional, la cual será entrenada con todo tipo de fotos equirectangulares para inferir la línea 

del horizonte y los puntos de fuga verticales a partir de elementos geométricos de la imagen pero 

también del contexto. 

 

Como segundo objetivo del trabajo, vamos a desarrollar un método para poder estabilizar 

imágenes panorámicas estimando su dirección vertical y orientándolas de manera horizontal 

cuando sea necesario. Esta estabilización vertical se realiza a partir de la información que nos 

aporta la salida de la red que vamos a entrenar. 

 

Por último, se va a desarrollar un método basado en geometría y visión por ordenador con el 

objetivo de comparar las prestaciones de nuestro método con los métodos actuales, buscando las 

limitaciones de ambos métodos. 
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CAPÍTULO 2 

 

PANORÁMAS ESFÉRICOS 
 

Como se ha comentado anteriormente, una manera popular y conveniente de representar y proce-
sar imágenes para realidad virtual es la proyección esférica equirectangular. 
 

Un panorama esférico es una fotografía que captura un campo de vista de 360º  en horizontal y 

180º o en vertical. Se trata de una imagen que almacena la proyección del mundo 3D en una esfera 

cuyo centro coincide con la posición del observador. 

 

Esta representación se utiliza a menudo para que el usuario pueda sumergirse en un entorno. 

Quizá, el ejemplo más conocido en el que se utilizan este tipo de fotos sea el de la aplicación 

Google Street View que permite a un usuario conocer a pie de calle ciudades de todo el mundo. 

 

Un panorama esférico, queda definido por una matriz de píxeles cuyas filas y columnas son 

proporcionales a dos de las tres coordenadas esféricas de los puntos 3Ds de la escena (los ángulos 

theta y phi) y representa la proyección de la escena en una esfera de radio unidad. En general un 

punto 3D puede describirse en coordenadas esféricas mediante tres parámetros: 

 

(r, φ, θ) 

 

Generalmente se definen como: 

 La distancia r es la distancia de un punto al centro de la esfera (el radio). 

 

 El ángulo φ es el acimut (o ángulo acimutal): el ángulo que nos da una idea de la posición 

del punto en el sentido horizontal. Se mide de -180º a 180º girando respecto del eje +Z. 

 

 El ángulo θ es el ángulo polar (también llamado ángulo cenital o colatitud): el ángulo que 

nos da una idea de la posición en el sentido vertical. Se mide de -90º a 90º  girando 

respecto del eje +X. 

 

 

 

 

 

 

 

 

 

 Figura 2.1 Representación de los parámetros de la representación esférica 
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Por ejemplo: 

 

 (1, 0º, 0º), se corresponde con el eje +Y. 

 (1, 0º, 90º), se corresponde con el eje +Z. 

 (1, 90º, 0º), se corresponde con el eje +X. 

 

Los panoramas esféricos cada vez son más habituales, sin embargo, la complejidad del tipo de 

proyección que emplean hace que no sea tan intuitivo o directo comprender las proporciones o la 

distribución de las escenas que estas imágenes muestran. Esto es debido a que, tratándose de una 

proyección esférica, lo que veríamos como una línea recta en la realidad o en una imagen 

convencional, aparece como una línea curva en la imagen panorámica. Además, el ser humano no 

es capaz de ver lo que hay detrás de sí mismo y sin embargo sí es posible con estas imágenes, lo 

cual muchas veces resulta extraño para nuestro cerebro. 

 

Para ilustrarlo con un ejemplo, vamos a considerar una imagen panorámica en la que se pueda ver 

claramente el horizonte. Al pasar esta imagen a una proyección esférica, el horizonte se 

corresponde con un círculo que es el resultado de la intersección de la esfera con un plano que 

pasa por el centro de la esfera. El vector normal a este plano representa la orientación del plano 

del horizonte y a su vez la orientación de la cámara. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2.2 Representación equirectangular y esférica: orientación horizontal (izquierda) y  

orientación cualquiera (derecha). 
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De manera general, en la representación esférica de la imagen, la orientación de la cámara puede 

ser representada por un vector, al cual llamaremos el vector vertical y que coincide con el vector 

normal al plano del horizonte. Vamos a considerar que cuando este vector tenga la misma 

dirección que la gravedad pero en el sentido contrario a la fuerza que ejerce, la orientación de la 

cámara será horizontal y el vector vertical será v= (0, 0, 1). Por su parte, cuando la cámara no esté 

en orientación horizontal, el vector vertical será otro en función del giro respecto a la correcta 

orientación, v= (vx, vy, vz). 
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CAPÍTULO 3 

 

TÉCNICAS DEEP LEARNING 

 
Las redes neuronales convolucionales han sido aplicadas satisfactoriamente a una extensa 
variedad de tareas como pueden ser la detección de objetos, clasificación de escenas o la 
segmentación semántica. En este trabajo hemos entrenado una red neuronal profunda "end-to-
end" adaptada a imágenes omnidireccionales con el objetivo de obtener una representación 
gráfica de la predicción de la línea del horizonte de la imagen por un lado y del punto de fuga 
vertical de la imagen por el otro. 
 
Las FCNs (Fully Convolutional Networks) convierten cada capa totalmente conectada en una capa 
convolucional con un kernel cubriendo  enteramente la región de inputs y luego la reajusta para la 
tarea de etiquetado a nivel pixel. Los modelos FCN son muy adecuados para tareas que requieren 
información contextual de la imagen completa. 
 
 

3.1 ARQUITECTURA DE LA RED 
 
La red que hemos entrenado está basada en la arquitectura de CFL [35], donde proponen una FCN 
para detectar esquinas y bordes estructurales en imágenes de interior. Esta FCN sigue la estructura 
del encoder-decoder cuyas primeras capas se basan en ResNet-50 [16]. En este caso la capa final 
totalmente conectada es reemplazada por un codificador-decodificador que predice 
conjuntamente las ubicaciones de la línea del horizonte y los puntos de fuga verticales. 
 
 
 

 
 
 

 

Figura 3.1 Imagen representativa de la arquitectura de la red. 
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 Encoder: Para diseñar el encoder se utiliza ResNet-50 [16], la cual ha sido previamente 
entrenada con el conjunto de datos ImageNet [26]. Este entrenamiento previo da lugar a 
una convergencia más rápida gracias a las características generales de bajo nivel aprendidas 
de ImageNet. Las redes residuales permiten aumentar la profundidad sin aumentar el 
número de parámetros. Esto lleva, en ResNet-50, a capturar un campo receptivo de 483 × 
483 píxeles, suficiente para la resolución de entrada que vamos utilizar de 256 × 128 
píxeles. El encoder incluye además una serie de capas convolucionales que permiten 
especializar la tarea. 

 
 

 Decoder: Lo que se propone en la parte de la red que decodifica la información es una 
única rama con dos canales de salida que van a ser los mapas de píxeles que se estén 
buscando como solución, lo cual ayuda a reforzar la calidad de este tipos de mapas.  
 
En este decoder, se combinan dos ideas diferentes. En primer lugar skip-connections [25] 
del encoder al decoder. Más concretamente, se concatenan las características “up-
convolved” con sus correspondientes características de la parte en decodificación. En 
segundo lugar, se hacen predicciones preliminares en una resolución menor, las cuales 
también se concatenan y retroalimentan la red, siguiendo la idea de [10], asegurando que 
las primeras etapas de las características internas se dirijan hacia la tarea que se busca. Se 
usa ReLU como función no lineal excepto para las capas de predicción, donde usamos 
Sigmoid. 
 

 
Para la arquitectura de red propuesta, vamos a usar EquiConvs, tanto en el encoder como en el 
decoder. EquiConvs es una convolución que se define en el dominio esférico en lugar del dominio 
de la imagen y es implícitamente invariante a la distorsión que se da en la representación de 
imágenes equirectangulares.  
 

 
 
 
 

 
Figura 3.2 Representación gráfica del ajuste del kernel según su ubicación en la escena. 
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La principal diferencia de la red que vamos a entrenar con CFL reside en que, al ser la tarea a 
realizar completamente distinta, la información de salida y el etiquetado ground truth debe ser 
distinto. El ground truth (GT) que vamos a tener asociado a cada imagen panorámica y por tanto la 
salida que se busca consiste en dos mapas de píxeles, el primero va a ser la línea del horizonte 
correspondiente y el segundo la localización de los puntos de fuga verticales de la foto. A partir de 
este GT, el error de las predicciones se reduce gradualmente a medida que la predicción se acerca 
al objetivo. 
 
 
 

         
 

                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 3.3  Ground truth y salida de la red CFL y ground truth y salida de nuestra red. Corner for 

Layouts (CFL) tiene una salida con dos canales (arriba): un canal representando contornos de 

elementos constructivos y otro representando esquinas. Nuestra propuesta (abajo) tiene una salida 

también con dos canales: uno representando la línea del horizonte (izquierda) y otro representando 

los puntos de fuga superior e inferior que describe la dirección vertical (derecha). 
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CAPÍTULO 4 

 
GENERACIÓN DEL DATASET 
 
Para poder entrenar la red neuronal con la que vamos a extraer la línea del horizonte y los puntos 

de fuga de panoramas esféricos necesitamos un numeroso grupo de imágenes equirectangulares 

con diferentes orientaciones, junto con su correspondiente ground truth tanto de la línea del 

horizonte como de los puntos de fuga, sin embargo, debido a la falta de una dataset con estas 

características entre los recursos con los que se cuenta, ha sido necesario crearlo de propio para 

este proyecto. 

 

4.1 RECOLECCIÓN DE FOTOGRAFÍAS 
 

Este dataset ha sido generado a partir de una gran cantidad de fotos equirectangulares obtenidas 

en internet, procedentes en parte de otros datasets existentes como SUN360 o F-360iSOD [30], 

aunque la mayoría de fotos han sido extraídas de la página web Flickr, ya que la existencia de un 

grupo especializado en imágenes equirectangulares [31] facilitó la búsqueda de este tipo de fotos. 

 

Este conjunto de fotos recolectado contiene 1097 imágenes orientadas de manera vertical, con un 

campo de vista esférico completo, en un formato equirectangular y con una resolución de 

1024x2048 píxeles en las imágenes de exterior y una resolución de 512x1024 píxeles en las 

imágenes de interior. 

 

 

           
 

 

 

 

 

Las imágenes han sido capturadas por diferentes tipos de cámaras omnidireccionales, en varias 

localizaciones y escenas, tanto de interior como de exterior, como escenas urbanas/artificiales y 

naturales y con distinta iluminación (en distintos momentos del día) buscando que la red sea lo 

más universal posible siendo eficaz en el mayor número de imágenes panorámicas posibles. 

 

Figura 4.1 Ejemplo de fotos de exterior e interior del dataset 
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4.2 GIRO DE LAS FOTOS OBTENIDAS 
 

Una vez recolectadas las fotos, para generar una nueva imagen panorámica con una orientación 

específica lo que se hace es girarla de manera artificial. Este giro se realiza en tres pasos 

principales. 

 

Primero se proyecta la foto equirectangular de entrada en una esfera, esta proyección se realiza 

haciendo el cambio de coordenadas de píxeles a coordenadas esféricas. Definimos la resolución de 

la imagen panorámica equirectangular como W × H píxeles, siendo W la anchura de la imagen y H, 

la altura de ésta. En un primer momento por tanto, la imagen viene definida como un mapa lineal 

de coordenadas (u, v), que representan la distancia en píxeles de la imagen. 

 

De esta manera convertimos directamente u a su correspondiente ángulo azimutal de tal manera 

que   u ∈ (1, W), se transforma de manera lineal en θ ∈ (-180º, 180º) y de manera similar operamos 

con v convirtiéndolo a su correspondiente ángulo polar tal que v ∈ (1, H) se transforma de manera 

lineal en φ ∈ (-90º, 90º). 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Una vez tenemos la imagen en coordenadas esféricas, el segundo paso es aplicarle una rotación 
determinada a la foto simulando una orientación no horizontal cualquiera de la cámara. Esta 
rotación se realiza cambiando la referencia absoluta de las coordenadas esféricas, respecto a la 
referencia correcta en la que el eje Z coincide con la gravedad. La nueva referencia absoluta se 
obtiene aplicando una rotación en el eje Z y una rotación el eje X. 
 

 
RAbsCam = rotzRad (giroZ) * rotxRad (giroX) 

 
VertVp = RAbsCam * [0; 0; 1]; 

 
vertVpDown = RAbsCam * [0; 0; -1]; 

 

Figura 4.2 Representación esquemática del cambio de coordenadas 
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Calculada la nueva referencia de la cámara se aplica el giro a la imagen en coordenadas esféricas. 
 
Por último como tercer paso quedaría deshacer el cambio de coordenadas pasando, de manera 
inversa al primer paso, de coordenadas esféricas a coordenadas de distancia en píxeles. 
 
 

4.3 GENERACIÓN DEL GROUND TRUTH 
 
Los puntos de fuga son aquellos puntos en el plano imagen donde convergen las proyecciones de 
las líneas paralelas del mundo. Son características invariantes a escala y rotación, por lo que 
pueden ser utilizadas para múltiples tareas como correspondencia entre imágenes, calibración de 
la cámara o reconocimiento de objetos. Si estas rectas paralelas siguen la dirección de la gravedad 
normalmente identificaremos los puntos de fuga asociados como puntos de fuga verticales. 
 
Por su parte el horizonte es la línea que aparentemente separa el cielo y la tierra. Esta línea es en 
realidad una circunferencia en la superficie de la Tierra centrada en el observador, en nuestro caso 
y para la representación esférica de la foto panorámica, la línea del horizonte se corresponde con 
un círculo que es resultado de la intersección de la esfera y un plano que pasa por el centro de la 
misma. Nótese que, excepto por irregularidades del relieve, el plano que contiene a la línea del 
horizonte es perpendicular a la dirección de la gravedad. 
 
El ground truth del dataset se corresponde con un mapa de píxeles de la línea del horizonte y otro 
de los puntos de fuga verticales asociados a cada foto girada artificialmente tal y como hemos 
explicado en la sección anterior. Ambos mapas de píxeles son definidos de tal forma que en un 
principio sus valores van a ser 1 si el pixel pertenece a la línea del horizonte o al punto de fuga 
vertical y 0 en el caso contrario. Posteriormente se hace un engrosamiento de líneas y desenfoque 
gaussiano para facilitar la convergencia durante el entrenamiento, ya que hace que la evaluación 
del error sea continua en lugar de binaria. 
 
Estas dos fotos se generan al mismo tiempo que se realiza el giro de las fotos, ya que el resultado 
de la generación del ground truth depende únicamente de la rotación que se le aplica a cada foto y 
de la resolución de la foto de entrada, siendo independiente de la foto en sí.   
 
 
 

              
 
 

 
a) 
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4.4 EJEMPLOS VISUALES 

 
 
 

 
 

 

 

 

Figura 4.4 Imagen original extraída de la página web Flickr [6] 

Figura 4.3 Ejemplos de línea del horizonte (derecha) y puntos de fuga (izquierda) generados. a) 

Ground truth asociado a una foto orientada de manera horizontal; b) Ground truth asociado a una 

foto girada 45º sobre el eje X; c) Ground truth asociado a una foto girada 90º sobre el eje X 

c) 

b) 
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Figura 4.5 a) Imagen girada artificialmente para la generación del dataset; b) Ground truth de la 

línea del horizonte y los puntos de fuga de la foto girada 

 

Ground truth de la línea del horizonte y los puntos de fuga de la foto girada anterior 

a) 

b) 

a) 
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Con el objetivo de aprovechar al máximo las fotos que hemos conseguido de internet y engrosar al 
máximo el tamaño del dataset para que el entrenamiento de la red resulte lo más fructífero 
posible dentro de un tiempo razonable, cada foto panorámica es girada cinco veces, las rotaciones 
aplicadas para realizar los giros se hacen de manera aleatoria, siendo el posible ángulo de rotación 
sobre el eje Z un ángulo comprendido entre –Pi y Pi, mientras que el posible ángulo de rotación 
sobre el eje X está comprendido entre –Pi/2 y Pi/2. 
 
Finalmente concluimos el proceso con 5485 fotos giradas aleatoriamente con sus respectivas fotos 
de línea del horizonte y puntos de fuga verticales asociadas. Estas fotos se van a agrupar en tres 
datasets diferentes según su función en el entrenamiento: 
 

 Dataset de entrenamiento: Compuesto por 4375 fotos destinadas a realizar el 
entrenamiento de la red. 

 

 Dataset de test: Compuesto por 550 fotos destinadas a evaluar los resultados obtenidos de 
la red. 

 

 Dataset de validación: Compuesto por 560 fotos destinadas para dar apoyo durante el 
entrenamiento de la red, como paso de comprobación intermedio durante el 
entrenamiento. 

 
 

 

 
 
 
 
 
 
 

Figura 4.6 a) Imagen girada artificialmente para la generación del dataset; b) Ground truth de la 

línea del horizonte y los puntos de fuga de la foto girada 

 

b) 
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CAPÍTULO 5   
 
DESHACER GIRO 
 
El uso que se le da a la línea del horizonte y los puntos de fuga verticales calculados, como se ha 
comentado en los objetivos de este trabajo, es poder estimar la dirección vertical en la referencia 
de la cámara y rectificar las imágenes panorámicas para que queden en orientación horizontal. A 
través de estos elementos extraídos con la red neuronal podemos calcular los ángulos de giro que 
se ha desviado la fotografía respecto a la dirección vertical (coincidente con la gravedad) y 
deshacer ese giro para obtener la foto correctamente ajustada. 
 
En nuestro caso, para este trabajo, vamos a trabajar con los mapas de píxeles de los puntos de fuga 
verticales buscando los ángulos de giro. Para ello, lo que vamos a hacer, es obtener en que 
coordenadas se encuentran los puntos de fuga en la imagen. Esta tarea de procesado de imagen la 
vamos a llevar a cabo con Matlab. 
 
En primer lugar, se detectan los píxeles cuya iluminación es de 255, ya que estos píxeles 
representan el centro de ambos puntos de fuga. Lo segundo que se hace, es  separar estos píxeles 
en grupos según si representan el punto de fuga vertical positivo o su punto de fuga antipodal 
(diametralmente opuesto). Una vez tenemos los dos grupos de píxeles, calculamos las 
coordenadas de su centro de gravedad por separado. 
 

 
 
 
 
 
Las coordenadas en píxeles (u, v) en la que se encuentran los centros de gravedad calculados 
anteriormente la consideraremos la posición de los puntos de fuga verticales. Como hemos visto 
en el capítulo 4, si conocemos las coordenadas del punto de fuga en coordenadas en píxeles 
podemos conocer de manera directa sus coordenadas esféricas, a partir de las cuales podemos 
conocer cuál ha sido el giro realizado y corregirlo. 
 
A partir de las coordenadas esféricas del punto de fuga vertical, también podemos calcular de 
manera directa cual es el vector vertical de la foto. A partir de este vector se puede corregir la 
orientación aplicando la rotación necesaria para llevar nuestro vector vertical calculado (vx, vy, vz) 
a la posición (0, 0, 1). El cálculo del vector vertical explicado en este apartado se usará en los 
siguientes apartados a la hora de evaluar las prestaciones de la red, ya que aparte de poder 
rectificar la foto a partir de él, nos sirve para calcular la desviación que presenta nuestro cálculo del 
punto de fuga vertical, respecto al punto de fuga vertical del ground truth conocido de antemano. 

Figura 5.1 Puntos antipodales en una esfera 
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CAPÍTULO 6 

 
EXPERIMENTACION 

 
6.1 RESULTADOS DEL ENTRENAMIENTO 

 
Para obtener los distintos resultados con los que evaluar las prestaciones de la red vamos utilizar la 
red con el dataset de test mencionado en el apartado 4. Más concretamente contamos en este 
dataset para evaluar la red con 260 fotos de interior (512x1024 píxeles) y 290 fotos de exterior 
(1024x2048 píxeles). Aunque la resolución de descarga de las fotos sea diferente, el tamaño de la 
entrada y salida de la red es común para todas las fotos en los experimentos realizados, tanto en 
la inferencia de los resultados de test, como en la comparativa de estos resultados con el ground 
truth. La inferencia para la evaluación de la red mediante el dataset de test se hace procesando los 
resultados con la CPU, procedimiento más lento para procesar imágenes que mediante GPU. El 
entrenamiento se realizó procesando la red mediante GPU con un tiempo aproximado de 
entrenamiento de 7 horas. 

 
En esta sección evaluamos la salida de la red, calculando a nivel de píxeles, las distintas métricas 
que nos ayudan a saber cómo de buenos son los resultados obtenidos. Estas métricas se calculan 
teniendo en cuenta la coincidencia de píxeles entre el Ground Truth y su correspondiente imagen 
extraída.  
 
Para obtener la coincidencia entre ambos mapas de píxeles se comparan las imágenes con el 
operador lógico &, que devuelve el valor booleano true si ambos operandos son true, es decir, 
devuelve el valor “1” en todos aquellos píxeles que estén en blanco en las dos imágenes que se 
comparan.  
 
En las imágenes de salida, debido al desenfoque gaussiano empleado en la generación del ground 
truth, las figuras de la línea del horizonte y los puntos de fuga van perdiendo iluminación 
progresivamente. Considerando estas figuras como funciones de densidad probabilística vamos a 
imponer un nivel de confianza a partir del cual decidiremos si nuestro píxel pertenece o no a la 
figura según su nivel de iluminación. 
 
Normalizando el nivel de iluminación entre 0 y 1, elegimos un umbral de 0,1, lo que significa que 
los píxeles que se van a considerar como 1 para hacer la comparativa booleana deben estar 
iluminados al menos un 10%. Este umbral en la función de densidad de probabilidad Gaussiana 
normalizada corresponde con un intervalo de confianza del 98.41% o lo que es lo mismo, 2.146 
veces sigma. 
 
De esta manera ya podemos comparar el ground truth con nuestros resultados de manera binaria, 
lo que nos permite dividir los píxeles según cuatro tipos de resultados posibles: 
 

 True Positives (TP): Píxeles correctamente iluminados. 

 True Negatives (TN): Píxeles correctamente no iluminados. 

 False Positives (FP): Píxeles iluminados que no deberían estarlo. 
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 False Negatives (FN): Píxeles no iluminados que deberían estarlo. 
 
A partir de esta catalogación de los píxeles calculamos las métricas que nos relacionan ambos 
conjuntos (ground truth y predicción) 
 

 IoU (Intersection over Union): Representa el área de superposición entre la segmentación 
predicha y ground truth dividida por el área de unión entre la segmentación predicha y el 
ground truth. 

 
 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 
 

 Pixel Accuracy: Es el porcentaje de píxeles de una imagen que están clasificados 
correctamente. Se calcula mediante la relación entre los resultados bien clasificados 
(comparando con el ground truth) y el total de píxeles. 

 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
 

 Pixel Precision: Describe la pureza de nuestras detecciones positivas en relación con el 
ground truth. Se calcula mediante la relación entre los resultados positivos que coinciden 
con el ground truth y el total de positivos que se ha calculado. 
 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
 

 Pixel Recall: Describe la integridad de nuestras predicciones positivas en relación con el 
ground truth. Se calcula mediante la relación entre los resultados positivos bien clasificados 
y el total de resultados que deberían ser positivos. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
 

 F1 score: El valor F1 se utiliza para combinar las medidas de precision y recall en un sólo 
valor. Esto es práctico porque hace más fácil el poder comparar el rendimiento combinado 
de la precisión y la exhaustividad entre varias soluciones 

 
 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Operando con ambos tipos de fotos que tenemos (550 fotos), el tiempo de cálculo ha sido de 475 
segundos y los resultados obtenidos han sido: 
 
 

 IoU Accuracy Precision Recall F1 

Línea del 
horizonte 

0,689 0,925 0,981 0,696 0,814 

Puntos de 
fuga 

0,495 0,973 0,969 0,5 0,66 

 
 
 
 
 
Operando con las fotos de interior el tiempo de cálculo ha sido de 212 segundos y los resultados 
obtenidos han sido: 
 
 

 IoU Accuracy Precision Recall F1 

Línea del 
horizonte 

0,702 0,927 0,999 0,703 0,825 

Puntos de 
fuga 

0,505 0,976 0,996 0,505 0,67 

 
 
 
 
 
Operando con las fotos de exterior el tiempo de cálculo ha sido de 275 segundos y los resultados 
obtenidos han sido: 
 
 

 IoU Accuracy Precision Recall F1 

Línea del 
horizonte 

0,678 0,922 0,965 0,689 0,804 

Puntos de 
fuga 

0,487 0,971 0,945 0,459 0,619 

 
 
 
 
Se puede observar como el entrenamiento de la red ha dado unos buenos resultados. Tanto la 
precisión como la exactitud (accuracy) están cercanas al 1, lo que significa que la salida de nuestra 
red es muy cercana al groun truth de las imágenes evaluadas, acertando a la hora de detectar 
tanto la línea del horizonte como los puntos de fuga verticales de la escena. 
 

Tabla 6.1 Resultados del test para fotos de interior y exterior 

 

Tabla 6.2 Resultados del test para fotos de interior  

 

Tabla 6.3 Resultados del test para fotos de exterior  
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Por su parte, el IoU y la exhaustividad (recall), son muy parecidos en todos los casos, pero no están 
tan cercanos a la unidad. Esto se debe a que las imágenes de salida de la red tienen bastantes 
píxeles considerados como falsos negativos, pero casi no cuentan con falsos positivos.  Esto no 
resulta un gran problema ya que con el escaso número de falsos positivos y junto con las otras 
métricas calculadas podemos asegurar que tanto la línea del horizonte como los puntos de fuga 
verticales se encuentran bien representados en nuestros resultados. 
 
 

6.2 RESULTADOS DE LA CORRECCIÓN DEL GIRO 
 
Para evaluar la eficacia del giro se han utilizado los resultados de los mapas de píxeles de los 
puntos de fuga verticales extraídos tras la evaluación del dataset de test mencionado en el capítulo 
4. En los cuales es conocido el giro realizado previamente ya que es un dato que nos guardamos 
durante la generación del dataset.  
En primer lugar vamos a comparar los ángulos de giro calculados a partir de los puntos de fuga 
para la rectificación de la foto, como hemos explicado en el capítulo 5, con los ángulos exactos de 
giros realizados, para comprobar en grados como de exacto es nuestro método. 
Los resultados obtenidos son: 
 

 Desviación media respecto al giro en X = 0,5º 
 Desviación media respecto al giro en Z = 1,8º 
 
 
Una vez obtenidos los datos numéricos, y con el objetivo de tener una referencia que nos pueda 
indicar cómo de buenos son nuestros resultados, vamos a fijarnos en un estudio realizado a 14 
personas en el que se les mostraba una serie de imágenes rotadas artificialmente en un dispositivo 
Oculus Rift de realidad virtual con el objetivo de conocer la percepción que tienen los humanos 
respecto a las imágenes VR y su orientación [33].  
 
Los participantes fueron preguntados por su nivel de conformidad con la afirmación "Estoy 
satisfecho con la orientación de la imagen mostrada", las respuestas estaban acotadas en una 
escala del 1 al 5 donde cada puntuación significaba: 1, fuertemente en desacuerdo; 2, en 
desacuerdo; 3, neutral; 4, de acuerdo; 5, fuertemente de acuerdo. 
 

 
 

Figura 6.1  Percepción de los humanos respecto a la orientación en imágenes panorámicas [33] 
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La gráfica muestra como la desviación media para la cual los participantes consideraban que 
estaban fuertemente de acuerdo con la orientación de la imagen es de 5º, y de acuerdo, con un 
error en la orientación de hasta 12º.  
 
Con esta nueva referencia para evaluar nuestros datos volvemos a procesar los resultados de 
nuestra red, esta vez diferenciando entre imágenes de interior e imágenes de exterior. Para que 
nuestros datos puedan compararse directamente con los resultados del estudio que acabamos de 
explicar, vamos a evaluar el error de nuestros resultados calculando la desviación entre el vector 
vertical calculado a partir de los puntos de fuga verticales de salida de la red y el vector vertical del 
ground truth que ya conocemos. Esta desviación se calcula con el arco coseno del producto escalar 
entre ambos vectores. 
 
En las fotos de interior, considerando un error angular máximo de 5º entre ambos vectores 
verticales, el algoritmo acierta un 99,23% de las veces, con un error angular medio de 0,47º y una 
mediana del error de 0,15º. 
 
En las fotos de exterior, considerando un error angular máximo de 5º, el algoritmo aciertan un 
93,5% de las veces, con un error angular medio de 1,78º y una mediana del error de 0,33º. 
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6.3 RESULTADOS VISUALES 
 
6.3.1 ENTORNOS DE INTERIOR 
 
 

 
 
 
 

        
 
 
 

        
 
 
 
 
 

Figura 6.2 a) Imagen de interior girada artificialmente; b) Mapa de píxeles de los puntos 

de fuga y línea del horizonte calculados por la red; c)Ground truth de los puntos de fuga 

y la línea del horizonte de la foto girada 

a) 

b) 

c) 
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6.3.2 ENTORNOS DE EXTERIOR URBANOS 
 
 
 

 
 
 
 

        
 
 
 

        
 
 
 
 
 

Figura 6.3 a) Imagen de exterior urbano girada artificialmente; b) Mapa de píxeles de 

los puntos de fuga y línea del horizonte calculados por la red; c)Ground truth de los 

puntos de fuga y la línea del horizonte de la foto girada 

a) 

b) 

c) c) 
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6.3.3 ENTORNOS DE EXTERIOR NATURAL 
 
 

 
 
 
 

         
 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

         
 
 
 
 
 
 

Figura 6.4 a) Imagen de exterior natural girada artificialmente; b) Mapa de píxeles de 

los puntos de fuga y línea del horizonte calculados por la red; c)Ground truth de los 

puntos de fuga y la línea del horizonte de la foto girada 

a) 

b) 

c) 
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6.4 LIMITACIONES 
 
De entre todos los tipos de fotos usados para evaluar la red, las únicas fotos que han dado 
problemas son las fotos de exterior en entornos naturales en las que la diferencia entre la 
superficie, el cielo y otros elementos de la escena no queda bien definida en la información que 
presenta la foto, como ocurre en cuevas o grutas. 
 
 

 
 

        
 

 
 

        
 
 

 
Figura 6.5 Ejemplos de fotos que dan problemas a la red y sus líneas del horizonte mal calculadas 
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CAPÍTULO 7 
 

COMPARACIÓN CON  MÉTODO GEOMÉTRICO 
 
La estimación de los puntos de fuga en imágenes mediante métodos de visión artificial es un 
problema abordado desde hace más de una década debido a que su identificación nos permite 
comprender estructuras 3D a partir de características 2D. 

 
7.1 FUNCIONAMIENTO DEL MÉTODO GEOMÉTRICO PROPUESTO 
 
El método que vamos a emplear para poder hacer la comparativa y experimentar sobre él inicia 
con la extracción de líneas en la imagen panorámica mediante el procedimiento RANSAC (RANdom 
SAmple Consensous). Nuestro método comienza con la aplicación de un filtro Canny [32] a la 
imagen, el cual permite detectar los bordes existentes. De estos N bordes obtenidos eliminamos 
aquellos que están repetidos o cuya longitud es menor a un determinado umbral para evitar 
confusiones con pequeños objetos o ruido. 
 
 
 

 
 
 
 
 
 
Al estar trabajando con imágenes panorámicas se debe tener en cuenta que una línea recta en la 
realidad, es proyectada como un segmento de arco sobre la esfera, y por tanto, aparece como un 
segmento de línea curva en la imagen. Por ello, cada segmento de arco es representado por el 
vector normal del plano proyectivo que incluye la propia línea y el centro de la cámara. 
 

Figura 7.1 Contornos detectados por el filtro Canny 
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Una vez obtenidos los bordes de la imagen, aplicamos nuestro algoritmo RANSAC para extracción 
de proyecciones de rectas. Este procedimiento elige inicialmente de manera aleatoria dos puntos 
de la imagen de uno de los borden extraídos para generar líneas candidatas de la imagen que son 
votadas por el resto de puntos del mismo borde. Para ello se computa el producto vectorial entre 
las direcciones de los rayos que corresponden a este par de puntos obteniendo así  una posible 
dirección normal para este grupo de puntos. La normal obtenida se compara con el resto de rayos 
del grupo considerándose inliers del modelo aquellos que cumplen la condición de 
perpendicularidad con la normal calculada bajo un determinado treshold angular, por ejemplo 1º,  
y considerándose outlayers aquellos que no la cumplen. 
 
Este procedimiento se repite un número fijo de veces al tratarse de un algoritmo iterativo. 
Finalmente la iteración que haya dado lugar a un mayor número de inliers se considera el mejor 
modelo, obteniendo la dirección normal que mejor se ajusta a la línea. Si la línea  tiene un número 
de inliers suficiente y su longitud es mayor a la longitud de segmento mínima establecida, 
conservamos dicha línea para el siguiente paso del algoritmo. En caso contrario, la línea es 
eliminada. Este procedimiento se aplica para cada uno de los bordes que se habían obtenido 
anteriormente de manera que obtenemos un conjunto de líneas candidatas de longitud 
considerable y con su dirección normal como información. 
 
A partir de las líneas extraídas según el primer procedimiento RANSAC, obtendremos los puntos de 
fuga aplicando de nuevo un algoritmo tipo RANSAC. La información que tenemos de las líneas 
anteriores son las coordenadas de proyección  de cada línea sobre la esfera y la dirección normal 
del círculo que forma la línea en dicha esfera. 
 

Figura 7.2 Líneas en la realidad proyectadas en la imagen esférica como arcos de un 

gran círculo. (Imagen de Seon Ho oh et al. [19]) 

un gran círculo. (Imagen de Seon Ho oh et al. [19]) 
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Para llevar a cabo la tarea de extracción de los puntos de fuga haremos la suposición de que 
existen tres puntos de fuga dominantes (Mundo Manhattan [34]), cuyas direcciones son 
ortogonales entre ellas y que están alineados con tres direcciones dominantes en el mundo, una 
por  cada orientación posible de las aristas. También hay que tener en cuenta que en imágenes 
esféricas las proyecciones lineales dan lugar a curvas de modo que las líneas paralelas intersectan 
en dos puntos de fuga antipodales. 
 
El segundo algoritmo tipo RANSAC se inicia con una selección aleatoria de pares de líneas de las 
extraídas con anterioridad. A partir de cada par de rectas, y considerando la hipótesis de que son 
paralelas se calcula un punto de fuga que es votado por el resto de las rectas. La dirección de este 
punto de fuga se calcula mediante el producto vectorial de las dos normales correspondientes a las 
dos rectas. El criterio para la votación es una distancia basada en la perpendicularidad entre las 
normales de cada recta y su dirección. La dirección más votada se considerará la dirección 
dominante de la escena. El algoritmo se repite entre las rectas restantes extrayéndose la segunda  
y tercera dirección más dominante.  
 
Una vez que cada recta ha sido asignada a una dirección y tenemos una estimación 
suficientemente robusta de las tres direcciones dominantes, se refina su estimación mediante una 
optimización en la que se impone la ortogonalidad entre ellas. 

 
 
7.2 EXPERIMENTACIÓN 
 
Para comprobar la eficacia del método comentado, vamos a hacer una serie de experimentos de 
manera que puedan darnos una idea de sus prestaciones. 
 
 

Figura 7.3 Resultado de la extracción de líneas por RANSAC 
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7.2.1 EXPERIMENTACIÓN EN FOTOS DE EXTERIOR 
 
Comenzamos evaluando el algoritmo con las fotos de exterior, donde están presentes entornos en 
los que, según el estado del arte [12], este tipo de métodos no presenta un buen funcionamiento. 
 
En primer lugar se evaluará un set de 60 fotos orientadas horizontalmente, es decir, su vector 
vertical coincide con la dirección de la gravedad (0, 0, 1). Dado que el algoritmo usado da como 
resultado tres direcciones ortogonales, y a priori, no conocemos cuál de ellas es la dirección 
vertical, vamos a hacer dos experimentos distintos. 
 
En el primero, a falta de más información sobre las direcciones extraídas, vamos a considerar como 
dirección vertical a la dirección más dominante extraída de RANSAC, es decir el primer vector de la 
base. En el segundo vamos a darle apoyo al algoritmo seleccionando de las tres direcciones que 
nos da la más cercana al vector vertical (0, 0, 1).  
 
Una vez obtenidos los resultados vamos a considerar como fotos bien calculadas aquellas en las 
que el error entre el vector seleccionado como vertical y el vector vertical real no sea superior a un 
treshold angular determinado. Este error se calcula a partir del arco coseno del producto escalar 
entre ambas direcciones. 
 
 

 
 
 
 
 
Comprobamos, que a pesar de que las fotos están orientadas de manera horizontal, el algoritmo 
no es eficaz a la hora de calcular correctamente la dirección vertical de las imágenes. 
 
Pasamos ahora a aplicar el algoritmo a las fotos giradas de exterior del dataset de test, que son las 
mismas fotos con las que hemos evaluado las prestaciones de nuestra red. Se incluye también el 
resultado obtenido mediante nuestro método, al cual vamos a llamar HorizonLineNet-360, para 
facilitar la comparativa de los resultados. 
 
Como en el caso anterior, vamos a hacer distintos experimentos según la dirección que vamos a 
elegir como vertical, pero ahora, a parte de los métodos de selección anterior, vamos a añadir uno 
nuevo en el que la dirección seleccionada como vertical va a ser la dirección más cercana a la 
dirección vertical del ground truth, la cual conocemos de antemano. 
 

Dirección seleccionada 
como vertical 

% de acierto para 
theshold de 5º 

% de acierto 
para theshold 
de 10º 

Media del 
error (grados) 

Mediana del 
error (grados) 

Dirección más dominante 
9,6% 9,6% 53,85 57,74 

Dirección más cercana a 
la vertical 21,15% 28,85% 21,45 20,74 

Tabla 7.1 Resultados en imágenes de exterior horizontales 
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Como se podía esperar después de ver los resultados del algoritmo en las imágenes horizontales, 
se observa que, se confirma la hipótesis planteada en la introducción del trabajo, de manera que 
en entornos de exterior donde predominan los elementos naturales carentes de líneas rectas y 
composiciones geométricas, este método está lejos de ser eficaz, es decir, no puede ser usado 
como solución al problema de ajuste de la dirección vertical. 

 
 
7.2.1 EXPERIMENTACIÓN EN FOTOS DE INTERIOR 
 
Como hemos hecho con las fotos de exterior, comenzamos aplicando el algoritmo a 60 fotos, en 
este caso de interior, orientadas horizontalmente. Repetimos los mismos experimentos del 
apartado anterior manteniendo los criterios que se han seguido. 
 

 
 
 
 
 
Se observa que, al tener tres direcciones principales como solución, si no tenemos un buen criterio 
de selección a la hora de considerar una dirección como la dirección vertical, el método no resulta 
eficaz tampoco en entornos de interior. En este caso, en el que las fotos están orientadas 
horizontalmente, el criterio de selección de la dirección vertical como la dirección más cercana a la 

Método % de acierto 
para theshold de 
5º 

% de acierto 
para theshold de 
10º 

Media del 
error 
(grados) 

Mediana del 
error 
(grados) 

Geométrico: dirección más 
dominante 3% 6,47% 43,33 43,36 

Geométrico: dirección más 
cercana a la vertical 7,96% 14,43% 34,28 30,72 

Geométrico: dirección más 
cercana al ground truth 15,92% 33,33% 15,93 15,08 

HorizonLineNet-360 
93,5% - 1,78 0,33 

Dirección seleccionada 
como vertical 

% de acierto para 
theshold de 5º 

% de acierto 
para theshold de 
10º 

Media del 
error 
(grados) 

Mediana del 
error 
(grados) 

Dirección más dominante 
51,92% 57,69% 33,66 6,02 

Dirección más cercana a la 
vertical 75% 86,54% 5,4 2,12 

Tabla 7.3  Resultados en imágenes de interior horizontales 

Tabla 7.4  Resultados en imágenes de exterior rotadas 
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vertical real da unos resultados más decentes, ya que, aunque el porcentaje de acierto en las 
predicciones no llega al 90%, tanto el error medio, como la mediana del error, representan una 
desviación a partir de la cual los humanos siguen estando fuertemente de acuerdo con la 
orientación de la foto, tal y como se ha explicado en el capítulo 6. 
 
En los casos en los que, la dirección más cercana a la vertical se aleja en más de 10º de la vertical 
real, encontramos que la dirección más dominante coincide con el eje X (1, 0, 0), o con el eje y (0, 
1, 0); y calculadas las otras dos direcciones en base a los criterios de ortogonalidad descritos al 
principio del capítulo, en un considerable porcentaje, no se llega a estimar correctamente la 
dirección vertical como una de las tres direcciones dominantes en la escena. 
 
Pasamos ahora a aplicar el algoritmo en las fotos giradas de interior del dataset de test con el que 
se han evaluado las prestaciones de la red. Se incluye también el resultado obtenido mediante 
nuestro método, HorizonLineNet-360, para facilitar la comparativa de los resultados. Y al igual que 
con las fotos orientadas horizontalmente, repetimos los mismos criterios de experimentación 
empleados en el apartado anterior 
 

 
 
 
Como era de esperar y al igual que sucedía con las fotos horizontales, el algoritmo necesita de un 
apoyo para conocer cuál de las direcciones extraídas es la que estamos buscando. Eligiendo como 
dirección vertical, la dirección más cercana a la vertical del ground truth, vemos que los resultados 
vuelven a ser bastante aceptables, llegando a mejorar el porcentaje de acierto y el error respecto 
al grupo de fotos horizontales. 
 
 
El principal problema de este método, es que para fotos en las que sepamos de antemano que  van 
a estar orientadas horizontalmente o con desviaciones cercanas, podemos usar como referencia la 
dirección vertical de la referencia absoluta. Pero para otras orientaciones con desviaciones 
mayores de 45º no nos valdría esta aproximación, ya que se asignaría como dirección vertical una 
de las direcciones horizontales de la escena. 
 
Este problema a la hora de conocer cuál es la dirección vertical según el método geométrico 
expuesto, resulta crítico a la hora de elegir este algoritmo como solución para la rectificación de la 
orientación en imágenes panorámicas. 

Método % de acierto para 
theshold de 5º 

% de acierto para 
theshold de 10º 

Media del 
error 
(grados) 

Mediana del 
error 
(grados) 

Geométrico: dirección más 
dominante 

42,28% 53,73% 22,12 7,82 

Geométrico: dirección más 
cercana a la vertical 21,4% 

 
28,36% 

32,78 32,25 

Geométrico: dirección más 
cercana al ground truth 79,6% 87,06% 4,08 0,97 

HorizonLineNet-360 
99,23% - 0,47 0,15 

Tabla 7.4  Resultados en imágenes de interior rotadas 
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CAPÍTULO 8 

 
CONCLUSIONES 
 

 

En este trabajo se ha investigado el uso de redes de aprendizaje profundo para la estimación de la 
línea del horizonte y los puntos de fuga verticales a partir de imágenes panorámicas. Como 
resultado del trabajo, hemos logrado alcanzar los objetivos planteados al desarrollar un método 
eficaz a la hora de rectificar la orientación vertical de imágenes panorámicas independientemente 
del tipo de escena que representen, solucionando de este modo la problemática presente en las 
fotos de exterior natural como bosques o playas, donde al no haber una composición de líneas 
rectas artificial como si ocurre en entornos de interior o entornos urbanos, los métodos 
geométricos clásicos referenciados en el estado del arte fallaban en su cometido. 
 
Una de las principales contribuciones de este trabajo ha sido la explotación de técnicas de 
aprendizaje profundo (deep learning), más concretamente a partir de las redes neuronales 
convolucionales, las cuales son muy apropiadas para tareas que requieren información contextual 
de la imagen completa. La configuración autoencoder de la red, representando la salida de la 
misma como dos canales de imágenes que representan la línea del horizonte y los puntos de fuga 
se ha visto eficaz de cara al entrenamiento, siendo una representación de salida lo suficientemente 
detallada para una eficiente estimación numérica de la dirección vertical. 
 
Los resultados experimentales demuestran que el método propuesto tiene un buen desempeño en 
la detección de la línea del horizonte y los puntos de fuga verticales superando a los métodos 
clásicos basados en rectas, no solo en escenarios desfavorables para ellos como entornos naturales 
exteriores, sino también en escenas de interior donde se esperaba un comportamiento similar. 
 
Destacar que el método propuesto es capaz de funcionar en escenas y situaciones con las que los 
métodos basados en rectas directamente fallan, como escenas de exterior donde la dirección de la 
gravedad está implícita en el contexto de la imagen o en escenas de interior donde la identificación 
de techo y suelo es capaz de resolver la ambigüedad entre direcciones dominantes. 
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