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Resumen

La sincronizacion de senales de sistemas de comunicacién, eliminacién de ruidos o atenuacién
retrasos son problemas en los se busca soluciones eficientes, ya que resultan de vital importancia
para su correcto funcionamiento.

Una soluciéon muy utilizada es elPLL, debido a sus numerosas ventajas. Segin sea el problema
o aplicacién existen diferentes topologias que se pueden aplicar lo que le da gran versatilidad.

En este TFG se presenta los conceptos fundamentales y se hace un andlisis para su comprension.
Se eligen dos de sus tipologias para hacer una comparativa entre ellas mediante simulacién en
Matlab y Simulink, y se implementa la que mejor prestaciones presente en un microcontrolador.
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Capitulo 1

Introduccion

1.1. Motivacion y Contexto

En en los afios 20 con los receptores superheterodinos se empeza a dar los primeros pasos
en la definicién actual del PLL. En esencia, estos receptores consistian en un oscilador local, un
mezclador y un amplificador de audio. Para operar el oscilador debia ajustarse exactamente a la
misma frecuencia que la sefial de entrada, esta se convertia en una frecuencia intermedia de 0 Hz.
La salida del mezclador contenia informacién demodulada. La interferencia no era sincrona con el
oscilador y por eso se usaba el amplificador de audio a modo de filtro.

La primera mencién del concepto phaselock se publica en 1932 [2], donde se utiliza el principio
de estos receptores para formalizar la base del mismo.

En los anos 50 [3] su desarrollo fue en aumento con la sincronizacién de receptores en televisién.
Junto con el avance de la tecnologia analégica y digital, especialmente, el PLL se establece de
manera significativa en el campo de la ingenieria electronica y de telecomunicaciones, debido a sus
numerosas aplicaciones y al desarrollo de nuevas topologias.

La estructura bésica de un PLL, consta de tres elementos basicos (Figura 1.1):

Sefial de vCo

entrada

Sefal de
salida

PD LF

Figura 1.1: Estructura PLL basica

» Detector de fase (PD)
» Filtro paso bajo (LF)

» Oscilador controlado por tensién (VCO)

Una vez que el bucle ha enganchado, el control de tensién fija la frecuencia media del VCO
igual a la frecuencia media de la senal de entrada. Para cada ciclo de entrada sélo hay un ciclo de
salida del oscilador. El error de fase no sera necesariamente cero, se puede tener error de fase en
régimen permanente y error de seguimiento de la fase.



El objetivo del diseno es elegir el filtro apropiado que cumpla con los requisitos deseados en
régimen permanente y transitorio.

Esta presentacion bésica de su estructura y funcionamiento es el primer paso para poder enten-
der su importancia en el &ambito de la ingenieria y la motivacién del TFG. Su diseno y construccion,
asi como implementacién reunen buena parte de las habilidades adquiridas durante el grado y cul-
minar asi con un Trabajo de Fin de Grado que las aplique y ademés sea un complemento a la
formacion.

Algunos ejemplos de sus aplicaciones son, la sincronizacién de sefiales de datos, receptores de
television, atenuacién de retrasos, control de sistemas digitales, o control de velocidad de motores,
entre otros. Esto indica, de nuevo, su multifuncionalidad en un gran abanico de aplicaciones y
ambitos en la ingenieria.

1.2. Objetivos y alcance

Una vez enunciado el contexto de trabajo, el objetivo de este TF'G es probar distintas topologias
del PLL para estudiar su respuesta, asi como su margen de enganche. Simular su comportamiento
con la herramienta de Matlab, Simulink, e implementar una de estas topologias en coma flotante
con un microcontrolador de Tezxas Instruments, en lenguaje C, en el entorno de desarrollo Code
Composer Studio (CCS). Ademds de comprobar su funcionamiento de forma experimental en el
laboratorio.

Para poder alcanzar con éxito el objetivo se ha hecho un estudio previo de la estructura del
PLL, un anélisis matematico del mismo, asi como el anélisis de sus distintas topologias y métodos
de desarrollo. También ha sido necesario la familiarizacién con el entorno de desarrollo Matlab/Si-
mulink, CCS, y el funcionamiento del microcontrolador, manejo de sus periféricos, interrupciones,
temporizadores y fuentes de reloj, principalmente.

1.3. Estructura de la memoria

La organizacién del resto de la memoria se estructura en cinco capitulos.

= Capitulo 2: estudio del PLL.

Capitulo 3: diseno del PLL y simulacién.

Capitulo 4: microcontrolador y partes de interés para el TFG.

Capitulo 5: implementacién y experimentacion.

Capitulo 6: conclusiones y lineas futuras.



Capitulo 2

Estudio del PLL

En este capitulo se profundiza en la comprension y andlisis de la estructura del PLL.

2.1. Introduccion

El Phase-Locked Loop (PLL) es un sistema realimentado [3] cuyo principal objetivo es la sincro-
nizacion de fase entre una senal de entrada, referencia, y su salida, dentro de un margen determi-
nado, mediante la comparacién de fases. El diagrama de bloques basico se muestra en la Figura 2.1

Sefal de
entrada

—_—]

Sefial de
salida

VC
PD LF
)

Figura 2.1: Diagrama bésico de bloques PLL

Este sistema estd compuesto por tres bloques bésicos:
» Detector de fase (PD)

» Filtro paso bajo (LF)

» Oscilador controlado por tensién (VCO)

Para conseguir la sincronizacion deseada, la senal del oscilador cambia su frecuencia en respuesta
a la entrada, controlada por una tensién.

El detector de fase compara la referencia con la salida del VCO, y genera una sefial que cambia
en proporcion a la diferencia de fases. Esta es procesada por el filtro cuya salida entra al VCO. Se
repite el proceso hasta que se alcanza la sincronizacién, y el PLL alcanza su estado de enganchado
(locked).

Los dos tipos bésicos de PLL son los analégicos (APLL) y digitales (DPLL). Su implementacién
difiere en sus pardmetros y tiempos de respuesta [4]. Los digitales tienen menos tiempo de respuesta
con respecto a los analdgicos, son més inmunes a cambios bruscos de la entrada y al ruido. Sin
embargo, al tener més bloques son més caros que los analdgicos.



En este TFG se va a disenar tipologias digitales, como son la béasica y SOGI-PLL, que se desa-
rrollan y explican en el capitulo 3.

El PLL tiene un gran abanico de aplicaciones [3, 5, 6, 7] debido a su gran utilidad. Algunas de
ellas son la sincronizacién para sistemas de comunicacion, sintetizadores de frecuencia [8], aplica-
ciones biomédicas, como la implantacién de dispositivos biomédicos [9], aplicaciones FACTS [10];
acondicionamiento de alimentacion, conexién de sistemas de energias renovables a la red como los
sistemas fotovoltaicos, o edlicos; o sistemas que trabajan a altas frecuencias [11].

2.2. Ecuaciones basicas/Andlisis del PLL

Para poder entender el concepto del PLL es necesario realizar un andlisis teérico del mismo.

T A AV Y

Yi va(t) Vo (1) Veo v,

PD LP

Figura 2.2: Diagrama de bloques basico

Sea la entrada del sistema PLL, V;,, una senal sinusoidal general

v; = Visin(w;t + 6;(t)) (2.1)

La senal de salida del bloque VCO
Vo = Vo cos(wot + 0,(t)) (2.2)

Suponiendo el caso bésico en el que el bloque PD es un multiplicador de ganancia K,,, su salida se
define como
vg = Knvi(t)vo(t) = K Alsin(w;t + 6;(t)) cos(wot + 6,(t))] (2.3)

donde K, es la ganancia del PD y A = V; V.

Utilizando la propiedad del producto del seno y coseno en términos de los anteriores parametros,

2sin(a) cos(b) = 2sin(w;t + 0;(t)) cos(wot + b,(1))

= sin(w;it + 0;(t) + wot + 0,(t)) + sin(wit + 0;(t) — wot — 0,(t)) (24)
Reagrupando términos se obtiene
2sin(a) cos(b) = sin[(w; + wo )t + 0;(t) + 0,(t))] + sin[(w; — wo)t + ;(t) — O,(t)] (2.5)

Operando con (2.5) se obtiene

vg(t) = %KmA[sin[(wi + wo)t + 0;(t) + 0,(t))] + sin[(wi — wo)t + 6;(t) — 0,(t)] (2.6)



La senal de salida vg(t) comprende dos componentes, w; + w, y w; — w,. Cuando el PLL aun no ha
alcanzado la sincronizacién, estas frecuencias son distintas, w; # w,. Ambas se sitian en la banda
atenuada del filtro y el primer término del seno de (2.6) es atenuado por el filtro paso bajo.

La salida del bloque del filtro paso bajo es

va(t) = Kgsin[(w; — wo)t + 0;(t) — 0o(t))] (2.7)
con K4 = 3K, A[V /rad].
Haciendo la siguiente sustitucion en 2.7, 64(t) = 0;(t) — 0,(t) y wg = w; — w,, se obtiene
va(t) = Kgsin(wgt + 04(t)) (2.8)
El VCO verifica la relacién [12],
Wo = We + Kyeova(t) (2.9)

donde w, es la frecuencia central del VCO y K, es la ganancia del mismo.

Cuando el PLL estd sintonizado la frecuencia de entrada y salida son aproximadamente iguales,
w1 & w,. La ecuacién (2.8) queda
va(t) = Kgsin(64(1)) (2.10)

La solucién se puede expresar tanto en el dominio del tiempo como de la frecuencia [3]. Aunque
ambas resulten de interés, en el dominio del tiempo tenemos un sistema no lineal mientras que
en el caso del frecuencial es lineal como se demuestra a continuacion. En el siguiente apartado
se desarrolla el modelo de pequena senal del PLL. Este modelo se utilizara en el capitulo siguien-
te para disenar el controlador que asegure un comportamiento adecuado del lazo de realimentacién.

2.3. Modelo de pequena senal

Las senales del diagrama de la Figura 2.2 se pasan al dominio frecuencial, para este caso se
toma como entrada 6; y salida 6,.

Para valores pequenos de 6, se puede aproximar que sinf; = 6; de forma que la tensién de
salida del PD se define
Va(s) = Kq(0:(s) — 0,(s)) (2.11)
La funcién de transferencia del LF se denomina F'(s). La salida del filtro que controla la frecuencia
del VCO al pasar al dominio frecuencial es

Va(s) = F(s)Va(s) (2.12)

Para poder obtener 6, a la salida, partiremos de (2.9), donde se observa que la desviacién de la
frecuencia central del VCO, Aw, es la senal de control del mismo, es decir,
d8, (1)

Aw = Kyeova(t) — e Kyeova(t) (2.13)

Aplicando la trasformada de Laplace a cada término de 2.13 se obtiene

. chonZ(S)

S

$05(38) = KyeoVa(s) = 0,(5) (2.14)



PD LF vCo

Salida

K, F(s) Kyao -

Figura 2.3: PLL bésico, modelo pequena senial

donde s = 0 + jw es la variable independiente de Laplace. Es digno de mencién que % es la trans-
formada de Laplace de un integrador, por lo cual la fase del VCO es proporcional a la integral a la
tensién de control.

El diagrama de bloques queda como aparece en la Figura 2.3.

A continuacién se obtiene las funciones de transferencia del PLL tras el analisis.

= Funcion de transferencia en bucle abierto:

(90(8) _ KUCOKdF(S)

G(s) = o) - (2.15)
= Funcién de transferencia en bucle cerrado:
1) = G = TE G = 7 ka9 216
= Funcién de transferencia del error:
E(s) = 2e®) L HGs i (2.17)

0:(s) 1+G(s) () =57 Koo K (5)

2.4. Margenes de enganche y de captura

Existen unos mérgenes de trabajo entre las cuales el PLL se encuentra en sintonia o es capaz
de sincronizar, estos margenes son el margen de enganche y de captura, respectivamente.

El margen de captura (Awp) es el rango en el que el PLL es capaz de engancharse a una senal
inicialmente no sincronizada. Se puede calcular para el PLL clésico como [5]:

Awp = Koo KgF (0) (2.18)

El margen de enganche (Awp) , rango de frecuencia en que la senal permanece enganchada, se
puede estimar [5] como:

AwL ~ choKdF(OO) (2.19)

El margen de captura es siempre menor que el margen de enganche, y ambos estan centrados
respecto de la frecuencia central del VCO, como se puede ver en la Figura 2.4



Figura 2.4: Margenes de enganche y captura

2.5. Bloques del PLL basico

2.5.1. Detector de fase (PD)

Es un circuito capaz de generar una senal proporcional al desfase entre dos senales de entra-
da [13]. Se pueden distinguir dos tipos:

= Dispositivos multiplicadores.
Se usan exclusivamente en PLLs lineales. El error DC de la salida es la media del producto
de forma de onda de la sefial de entrada y la forma de onda del oscilador. Con un diseno
apropiado son capaces de trabajar con senales de entrada con ruido.

= Dispositivos secuenciales.
Genera el error de la tensién de salida dependiente solo del intervalo de tiempo entre una
transicion de la forma de onda de las senial y de la forma de onda del VCO. Son circuitos
digitales 16gicos lo que les permite operar con forma de ondas rectangulares binarias. Algunos
ejemplos son los detectores XOR, JK-senales o los basados en frecuencia con salida en tension
o corriente.

2.5.2. Filtro paso bajo (LF)

Como se pudo observar en la Figura 2.3, la funcién de transferencia de LF se definié de manera
genérica como F'(s). Este filtro paso bajo tiene como objetivo filtrar la frecuencia suma de entrada
y salida y de esa manera conseguir la sincronia que se busca. Este filtro puede ser de tipo activo o
pasivo, de primer, segundo, tercer, u orden superior, o combinacién de los mismos, segin sean los
requisitos de nuestro diseno.

2.5.3. Oscilador controlado por tensién (VCO)

El VCO es una parte esencial en todo PLL. Es un dispositivo no lineal que genera una oscilacion
periddica [5]. Esta oscilacién es controlada por una tensién para reducir el error de fase hasta que
sea 0 o préximo a 0, ajustando asf la frecuencia del mismo con respecto a la de la entrada. Para los
PLLs digitales el VCO puede ser sustituido por un oscilador controlado numéricamente (NCO) o
digitalmente (DCO), donde la tensién es reemplazada por un valor digital y su salida es una onda
digital oscilante.






Capitulo 3

Diseno del PLL y Simulacién

3.1. Introduccion

En este capitulo se explica el disenio de las topologias PLL bésico y SOGI-PLL. Se hace una
comparativa entre ellas y se elige el método a implementar.
3.2. Topologias

3.2.1. PLL-bdsico

Esta topologia tiene como detector de fase un multiplicador [14].

vi(t) _val(t) v (t) (1)
LF VCO

Figura 3.1: Diagrama de bloques del PLL-basico

Se reconstruye la senal de entrada a partir de su componente fundamental estimando su ampli-
tud, fase y frecuencia.

En la Figura 3.1, el bloque LF de filtrado suele incluir un controlador C que asegure ciertas
prestaciones al lazo cerrado.

Presenta inmunidad a pequenias variaciones de la senal de entrada o internas, ruidos, armoénicos
o variaciones de frecuencia pequenas. Se aplica en alimentacion de sistemas electrénicos, deteccion
de picos de tensién o deteccién de perturbaciones, entre otros.

A continuacién, se van a desarrollar tres disenos partiendo de la funcién de transferencia en
bucle abierto (2.15) vista en el capitulo anterior, utilizando la herramienta Sisotool de Matlab.

La senal de entrada de todos los disefios serd una senal sinusoidal de 50 Hz. La herramienta
tiene como parametros el margen de fase deseado al igual que el ancho de banda. Se establece



para los disenos un margen de fase de 60°2 y un ancho de banda de 20 rad/s, para que el desfase
introducido por el filtro sea pequeno.

= Diseno 1
Sea R
G(S) — M (3.1)
s
Se usa como filtro un controlador PI de la forma
1 K K;
F(s) = K, + K;- = 2>~ 21 R (3.2)
s s

Con Kg =0,5y Ky = 0,1, se obtiene que K, = 11,547 y K; = 346,4102 - K,,

From: uc To: uc
100 T T

Magnitude (dB)

-120

jo?
System: sisPI
Phase Margin (deg): 60
Delay Margin (sec): 0.0524
At frequency (rad/s): 20
Closed loop stable? Yes T

Phase (deg)

-180 I
107! 10° 10’ 10% 10°
Frequency (rad/s)

Figura 3.2: Diagrama de bode PLL-bésico (PI)

Mirando el diagrama de bode (Figura 3.2), se observa que se cumple con las especificaciones
impuestas al sistema y este es estable en bucle cerrado.

= Diseno 2

En este diseno se va a implementar un filtro de primer orden (3.3), y un PIL

F(s) ! T = L (3.3)

“1+7s We

La frecuencia de corte del filtro, w,., debe ser menor que w; para reducir la influencia del nivel
de continua de la entrada [15].

Se define de nuevo G(s) incluyendo el filtro de primer orden
KyeoK g
G(s) = ———
() s(1+7s)

Con los mismos valores de Ky, K., del disenio 1, y w. = 2710, se obtiene K, = 4,3765 y
K; =410,0721 - K,,.

Mirando el diagrama de bode de la Figura 3.3, se observa que se cumple con las especificaciones
impuestas al sistema y este es estable en bucle cerrado.

(3.4)
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= Diseno 3

En este diseno se va a implementar un filtro paso bajo con un filtro Butterworth de orden

2 (3.5), y un PL

ag + ais + ass®

F(s) = 3.5
(8) b() + b18 + 5282 ( )
Los coeficientes se obtienen con la funcién butter de Matlab tomando f. = 10 Hz.
Se define de nuevo G(s) incluyendo el filtro de segundo orden
. KyeoKq (ap+a1s+ a252
G(S) N S < bo + b1s + bys? > (36)

Con los mismos valores de K4, Ky, del diseno 1, se obtiene K, = 0,35 y K; = 401,9782 - K,
Mirando el diagrama de bode Figura 3.4, se observa que se cumple con las especificaciones
impuestas al sistema y este es estable en bucle cerrado.
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3.2.2. SOGI-PLL

El uso del SOGI-PLL ha crecido en los tltimos afios desde su publicacién en [16], debido a
las deficiencias del PLL-bésico, como errores en la estimacién de la frecuencia, poca inmunidad al
ruido o pérdida de estabilidad en cambios en la frecuencia o fluctuaciones de la senal de entrada.

Algunas de sus ventajas frente a otras topologias, son la no inclusién de retraso, mayor inmu-
nidad ante cambios de frecuencia [17] o su uso en sistemas trifasicos [18]. En este apartado se va
desarrollar la aplicacién en un sistema de una sola fase (single-phase SOGI).

SAAS
v Generacién | %o
—— Sistema vs
Ortogonal '

Figura 3.5: Diagrama de bloques del SOGI-PLL

La estructura de la Figura 3.5 correspondiente al SOGI (bloque generacién sistema ortogonal)
genera un sistema ortogonal de tensiones v, y vg a partir de la tensién de entrada. Este sistema
puede obtenerse mediante métodos como la transformada de Clark, Hilbert, o la inversa de Park,
entre otras [19]. Las senales de salida v, y vg tienen un desfase entre ellas de 90°, y v, tiene la
misma fase y magnitud que la componente fundamental de la senal de entrada como se puede
observar en la Figura 3.6) del modelo del pequena senal de la estructura del SOGI.



Figura 3.6: Diagrama de bloques del modelo de pequena SOGI

A continuacién se usa la transformada de Park, cuya relacién entre la entrada y salida es [19]
va| _ sin 6 c9s0 Ve (3.7)
Vg —cosf sinf| |vg

Este método es una alternativa para generar un sistema ortogonal de tensién comparado con

otros [19, 20] que son mds complejos, no lineales, con ningiin o poco filtrado y dependientes de la
frecuencia. Ademds su implementacién es simple [16].

La funcién de transferencia en bucle abierto del bloque SOGI es GI(s)

ws
52 4 w?

GI(s) (3.8)

donde w es la frecuencia de resonancia del SOGI
Las funciones en bucle cerrado se pueden obtener aplicando las propiedades de los bloques

Gu(s) = vals) kws (3.9)

in(s) 82+ kws + w?

S

vg(s) kw?
= .10
vin(s) 8%+ kws + w? (3.10)

Gp(s)

donde k es el ganancia que afectard al ancho de banda.

La ganancia regula el nivel de filtrado del sistema, si ésta es pequena(k < 1) el filtrado sera
mayor pero se ralentiza el sistema. Por el contrario, si esta es mayor el filtrado es menor pero el
sistema es mas rapido.

El diseno del filtro paso bajo es igual al disenio 1 del PLL-bésico. Utilizando de nuevo la herra-
mienta Sisotool de Matlab con los mismos pardametros de ancho de banda y desfase, partiendo de
la linealizacién del SOGI [21].

1 2

sogi Teogi - S 1 y Tsogi kw ( )

Se define de nuevo G(s) con la estructura del SOGI

G(s) = Bueoltd ( ! ) (3.12)

s Tsogi + 5+ 1

Se obtiene K, = 0,35 y K; = 323,7491 - K,
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3.2.3. Analisis resultados simulacién

En este apartado se va a comparar la respuesta de cada diseno. Como se enuncié en el capitulo
anterior los margenes de trabajo son funcion del filtro paso bajo, y en las siguientes figuras se
observa esa influencia.
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Figura 3.8: Tension de entrada y salida, diseno 1 y 2

En la Figura 3.8 se observa el enganche de la tensién de salida del diseno 1 y 2 con una entrada
sinusoidal con ruido tenue. En ambos casos el ruido es atenuado en la salida.

En la Figura 3.9 se observa el enganche de la tensién de salida del disefio 3 y SOGI con la misma
senal entrada sinusoidal anterior. En ambos casos el ruido es atenuado en la salida, y su respuesta
es mejor que en los disefios anteriores, ya que en los pasos por cero el error es mucho menor. Esto
se observa mejor en las siguientes figuras.
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Figura 3.11: Frecuencia de salida



En la Figura 3.10 donde se observa el angulo de salida se puede ver como ........

En la Figura 3.11 se observa de manera mas clara la diferencia entre los 4 disenios. Aunque en los
4 casos el PLL engancha con la sefial de entrada, y en media la frecucia de salida es 50 Hz, el error
difiere para cada uno de ellos. Observando la frecuencia del Pll-bésico este error oscila entre 49.92
y 50.08, para el Pll-basico tipo 2 esta variacion es menor, entre 49.98 y 50.02. El error de Pll-basico
tipo 3 disminuye atin mas, entre 49.997 y 50.009. Sin embargo, para el diseno del SOGI-PLL este
error oscila entre 49.999 y 50.001 .

En conclusién, conforme se eleva el orden del filtro paso bajo mejor es la respuesta y menor el
error. El caso del SOGI es el que menor error tiene y cuya variabilidad es del orden de 0.1. Por
tanto es esta tipologia la que se va a implementar en el microcontrolador MSP432 P401R.



Capitulo 4

Microcontrolador MSP432

4.1. Introduccién

Para el desarrollo de nuestro algoritmo del PLL, se ha elegido el MSP432 LaucnhPad, Develop-
ment Kit de Texas Instruments (Figura 4.1).
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Figura 4.1: MSP-EXP432P401R LaunchPad™ Development Kit [1]

Su microcontrolador es el MSP432 P401R. Es de bajo consumo y cuenta con un ntcleo Arm(®)
de 32-bit, Cortex®)-M4F. Es un médulo de evaluacion facil de usar, contiene todo lo necesario para
desarrollar, depurar la programacién y el cédigo, y medir consumos. Este dispositivo admite aplica-
ciones de bajo consumo que requieren una velocidad de CPU elevada, memoria, puertos analdgicos

17
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Figura 4.2: Placa de prueba y depuracién [1]

entre otros. Cuenta con 40 pines, su ntcleo es de bajo consumo con un reloj de hasta 48 MHz, y se
puede anadir nuevos médulos como el BoosterPack de Texas Instruments.

Tiene dos botones y dos LEDs para la interaccién con el usuario, ademés de un canal UART por
USB para ordenador. Una memoria flash de 256 KB, 64 KB de SRAM y 32 KB de ROM. Cuatro
temporizadores de 16 bits con captura, comparacién o PWM, y dos temporizadores de 32 bits y un
RTC. Tiene 8 canales de comunicacion serie tipo 12C, SPI, UART, e IrDA. Cuenta, ademés, con
un médulo ADC de precisién.

Este kit tiene como soporte entornos de desarrollo profesionales como Code Composer Studio,
Keil pVision e IAR Embedded Workbench. En este TFG se utilizara CCS.

Ademds, la placa de prueba y depuracién (Onboard Debug Probe, Figura 4.2) que incorpora
elimina la necesidad de programadores caros y soporta casi todos los dispositivos derivados de los
Arm que incorpora Tezxas Instruments en sus dispositivos.

4.2. Caracteristicas

En esta apartado se van a exponer las caracteristicas del microcontrolador que resultan de es-
pecial interés en el TFG.

En la Figura 4.3 aparecen todas la funciones que tiene el microcontrolador.

4.2.1. Ntcleo

El niicleo Arm®) 32-bit Cortex®)-M4F CPU (Figura 4.4) estd basado en la arquitectura ArmV7-
M, cuenta con una unidad de coma flotante, que permite operaciones de procesamiento de datos
(C float) de simple precisién. El convertidor analégico-digital tiene una precision de 14 bits y tiene
una velocidad de 1 Msps. Cuenta con fuentes de reloj flexibles, y dos temporizadores de 32 bits con
capacidad para generar interrupciones y otros cuatro temporizadores de propdsito general.
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Figura 4.3: MSP432P401R Diagrama de Bloque Funciones [1]
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Figura 4.4: Diagrama de Bloques CPU [1]




4.2.2. Interrupciones

Las interrupciones se manejan mediante un bloque Nested Vectored Interrupt Controller (NVIC).
Puede generarse hasta un total de 64 interrupciones. Cada interrupcién tiene un nivel de prioridad
programable codificada de 0 a 7, donde el 7 corresponde al nivel mas bajo de prioridad y el 0 al
mas alto. Esta prioridad se puede cambiar de forma dinamica, y se pueden agrupar por niveles de
prioridad. La deteccién de las senales de interrupcién puede ser por nivel o por pulso, y este con-
trolador cuenta ademds con interrupcién no enmascarable (NMI) externa. Los resgistros del NVIC,
que aparecen en aparecen en la Figura 4.5, pueden ser de tres tipos: read-write(escritura-lectura),
read-only (sélo lectura) o write-only (sélo escritura).

La CPU lanza todas las interrupciones, los periféricos de estas interrupciones pasan al estado
pendiente si el NVIC detecta una senal de interrupcion en alto y no se activa o si detecta un flanco
en la misma. El software escribe la interrupcién pendiente en el bit correspondiente o en el STIR
para generar una interrupcién pendiente por software. La interrupcion deja de estar pendiente
cuando el procesador maneja la ISR y pasa a estar en activo. Entonces, dependiendo de si la
interrupcién es por nivel o por pulso procedera de una manera u otra para manejarla y desactivar
el bit correspondiente.

Offset Acronym Register Name Type Reset Section

100h  ISERO Irg 0 to 31 Set Enable Register read-write 00000000h Section 2.4.3.1
104h  ISER1 Irq 32 to 63 Set Enable Register read-write 00000000h Section 2.4.3.2
180h ICERO Irg 0 to 31 Clear Enable Register read-write 00000000h Section 2.4.3.3
184h ICER1 Irq 32 to 63 Clear Enable Register read-write 00000000h Section 2.4.3.4
200h  ISPRO Irg 0 to 31 Set Pending Register read-write 00000000h Section 2.4.3.5
204h  ISPR1 Irqg 32 to 63 Set Pending Register read-write 00000000h Section 2.4.3.6
280h  ICPRO Irq 0 to 31 Clear Pending Register read-write 00000000h Section 2.4.3.7
284h  ICPR1 Irq 32 to 63 Clear Pending Register read-write 00000000h Section 2.4.3.8
300h  IABRO Irg 0 to 31 Active Bit Register read-only 00000000h Section 2.4.3.9
304h  IABR1 Irq 32 to 63 Active Bit Register read-only 00000000h Section 2.4.3.10
400h  IPRO Irg O to 3 Priority Register read-write 00000000h Section 2.4.3.11
404h  IPR1 Irq 4 to 7 Priority Register read-write 00000000h Section 2.4.3.12
408h  IPR2 Irqg 8 to 11 Priority Register read-write 00000000h Section 2.4.3.13
40Ch  IPR3 Irq 12 to 15 Priority Register read-write 00000000h Section 2.4.3.14
410h  IPR4 Irq 16 to 19 Priority Register read-write 00000000h Section 2.4.3.15
414h  IPR5 Irq 20 to 23 Priority Register read-write 00000000h Section 2.4.3.16
418h  IPR6 Irq 24 to 27 Priority Register read-write 00000000h Section 2.4.3.17
41Ch  IPR7 Irq 28 to 31 Priority Register read-write 00000000h Section 2.4.3.18
420h  IPR8 Irq 32 to 35 Priority Register read-write 00000000h Section 2.4.3.19
424h  IPR9 Irq 36 to 39 Priority Register read-write 00000000h Section 2.4.3.20
428h  IPR10 Irq 40 to 43 Priority Register read-write 00000000h Section 2.4.3.21
42Ch  IPR11 Irq 44 to 47 Priority Register read-write 00000000h Section 2.4.3.22
430h  IPR12 Irq 48 to 51 Priority Register read-write 00000000h Section 2.4.3.23
434h  IPR13 Irqg 52 to 55 Priority Register read-write 00000000h Section 2.4.3.24
438h  IPR14 Irq 56 to 59 Priority Register read-write 00000000h Section 2.4.3.25
43Ch  IPR15 Irq 60 to 63 Priority Register read-write 00000000h Section 2.4.3.26
FOOh  STIR Software Trigger Interrupt Register write-only 00000000h Section 2.4.3.27

Copyright © 2015-2019, Texas Instruments Incorporated

Figura 4.5: Registro NVIC [1]



4.2.3. Fuentes de reloj

El modulo del sistema del reloj admite sistemas de bajo coste y de bajo consumo. El modulo del
reloj se puede configurar para operar sin ningin otro componente externo, con 2 cristales externos
o con resonadores, o con una resistencia externa controlada por software.

Las fuentes de reloj que incluye este sistema son, un oscilador de baja frecuencia (LFXTCLK)
que se puede usar con cristales de baja frecuencia de reloj de 32768 Hz, estdndar, resonadores
o fuentes de reloj externas en el rango de 32 kHz o por debajo. Un oscilador de alta frecuencia
(HFXTCLK) que se puede usar con cristales estdndar o resonadores en el rango entre 1 MHz y
48 MHz. Un oscilador controlado digitalmente (DCOCLK) de frecuencias programable, con 3 MHz
por defecto.Un oscilador de baja frecuencia y muy bajo consumo (VLOCLK) con una frecuencia
tipica de 9.4 KHz. Un oscilador interno de baja frecuencia y bajo consumo (REFOCLK) con frecuen-
cias seleccionables de 32.768 kHz o 128 kHz. Un oscilador interno de bajo consumo (MODCLK),de
25 MHz frecuencia tipica, y oscilador interno (SYSOSC) con 5 MHz, frecuencia tipica.

Ademds, se encuentran disponibles cinco sefiales de reloj que se pueden obtener del modulo del
reloj. El primero es el ACLK (Auziliary Clock) cuya frecuencia maxima de operacién es 128 kHz,
y que se puede dividir para generar la frecuencia deseada. El segunddo es el MCLK (Master clock)
usado por la CPU y directamente por algunos médulos de los periféricos, y puede dividirse por 1,
2,4, 8, 16, 32, 64, o 128. El tercero es el HSMCLK (Subsystem master clock) se puede seleccionar
por software,por médulos periféricos individuales. El cuarto es el SMCLK(Low speed subsystem
master clock) que utiliza el HSMCLK como fuente de reloj. Su frecuencia estd limitada a la mitad
del maximo de frecuencia del HSMCLK.Y el quinto, el BCLK(Low speed backup domain clock), su
frecuencia estd restringida a un maximo de 32768 kHz.

En la implementacién del PLL, se utilizaran el MCLK a una frecuencia de 48 MHz, que se

obtiene del DCOCLK.
4.2.4. Temporizadores
El MSP432P401R cuenta con cuatro temporizadores Timer-A, y dos temporizadores indepen-
dientes Timer32. Ademas de un system tick timer propio de los ARM Cortex-M.
Timer-A

Timer-A es un temporizador/contador de 16 bits con siete registros de captura/comparacién.
Admite multiples capturas/comparaciones, salidas PWM, e intervalos de tiempo. Ademads, puede
usarse para interrupciones, que pueden ser generadas o por un contador en condiciones de overflow,
o por los registros.

Este médulo incluye:

» Contadores/temporizadores de 16 bits asincronos con cuatro modos de operacién : Stop, Up,
Continuos, Up/down. Se distinguen por el valor de partida del contador, un valor maximo
predeterminado o uno elegido por el usuario.

= Recurso de reloj configurable y seleccionable.
= Siete registros configurables.

» Salidas configurables con capacidad Pulse Width Modulation (PWM).
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Figura 4.6: Reloj Timer32 [1]

» Captura asincrona de entrada/salida.

El registro del Timer-A, TAxR, incrementa o decrementa el valor del mismo por medio de un
flanco de reloj segtin su configuracién. Se puede leer y escribir por software y puede generar una
interrupcién cuando se desborda (overflow).

Con respecto a sus fuentes de reloj pueden ser internos coomo el ACLK, o SMCLK, o externos
desde el registro TAxCLK o INCLK. La fuente de reloj se puede dividir por 2, 3, 4, 5, 6, 7,0 8
usando el registro TAIDE.

Timer32

El Timer32 es un periférico desarrollado por Arm, cuyos registros se presentan en la Figura 4.7.

Su estructura consiste en dos contadores decrecientes programables, de 32 o 16 bits, que son
capaces de generar interrupciones cuando llegan a cero. Estos contadores independientes tienen tres
diferentes modos de operacion cada uno,y su fuente de reloj, MCLK, se puede dividir por 1, 16 o
256 (4.6) . Las interrupciones son independientes en cada contador y también una combinada con
ambos contadores.

Tiene tres modos de operacién: Free-runnig, Periodic timer, y One-shot timer.

La primera una vez que llega al cero, continua la cuenta decremental desde el valor maximo. La
segunda genera una interrupcién a un intervalo constante y parte del valor asignado por el usuario
como periodo una vez que llega a cero. La udltima, genera una interrupcion sélo una vez.

Cuando se produce un reset, los contadores se deshabilitan, la interrupcion se interrumpe y el
registro de carga se pone a cero, el modo de operacién pasa a ser Free-running y los valores de
preescala se quedan en 1.

Con respecto a las interrupciones, estas se generan cuando el contador de 32 bits ha alcanzado
el cero, y se desactivan cuando se escribe en el registro T32INTCLRx. El registro mantiene el
valor hasta que la interrupcién se desactiva. Se pueden enmascarar escribiendo un 0 en el bit de
interrupcién Enable en el registro T32CONTROLx. Para la implementacién en el microcontrolador
se ha elegido este médulo y su interrupcién periddica cada periodo de muestreo (7), para controlar
la conversion del ADC.



Offset Acronym Register Name Type Reset Section
00h T32LOAD1 Timer 1 Load Register RW Oh Section 18.5.1
04h T32VALUE1 Timer 1 Current Value Register R FFFFFFFFh  Section 18.5.2
08h T32CONTROL1 Timer 1 Timer Control Register RW 20h Section 18.5.3
0Ch T32INTCLR1 Timer 1 Interrupt Clear Register W - Section 18.5.4
10h T32RIS1 Timer 1 Raw Interrupt Status Register R Oh Section 18.5.5
14h T32MIS1 Timer 1 Interrupt Status Register R Oh Section 18.5.6
18h T32BGLOAD1 Timer 1 Background Load Register RW Oh Section 18.5.7
20h T32LOAD2 Timer 2 Load Register RW Oh Section 18.5.8
24h T32VALUE2 Timer 2 Current Value Register R FFFFFFFFh  Section 18.5.9
28h T32CONTROL2 Timer 2 Timer Control Register RW 20h Section 18.5.10
2Ch T32INTCLR2 Timer 2 Interrupt Clear Register W X Section 18.5.11
30h T32RIS2 Timer 2 Raw Interrupt Status Register R Oh Section 18.5.12
34h T32MIS2 Timer 2 Interrupt Status Register R Oh Section 18.5.13
38h T32BGLOAD2 Timer 2 Background Load Register RW Oh Section 18.5.14
Copyright © 2015-2019, Texas Instruments Incorporated
Figura 4.7: Registros Timer32 [1]
4.2.5. Conversores ADC

El médulo ADC tiene una precision de 14 bits, 32 buffers independientes de control y conversion,
lo que permite que cada buffer tenga ademéas 32 muestras ADC independientes, que se convierten
y guardar sin intervencion de la CPU. La velocidad méaxima de conversion es de 1 Msps, con una
resolucién de 14 bits, mdédules de muestreo y retenciéon con periodos programables controlado por
software o por temporizadores y las conversiones pueden ser iniciadas también por los mismos.

La tension de referencia puede ser interna o externa. Tiene un sensor de temperatura interno y
cuenta con 32 canales individuales externos de tipo diferencial o monopolar (single-ended).

Segun sea la eleccién la férmula de conversién cambia al igual que su tensién de entrada.

Para el monopolar :

Vinge — VR_ Ve, — Vr_
N =16384 - ———— 1LSB = —= 4.1
APC Vi, — Vi 16384 (4.1)
Para el diferencial:
‘/in - ‘/in, VR - VR,
N = (8192 . =+ "= 8192,1LSB = B - 4.2
ADC < VRJr —Vgr_ + 8192 ( )

El reloj del médulo se usa para la conversiéon y para el periodo de muestreo cuando se ha
seleccionado el modo de muestreo por pulso. Para poder elegir el reloj se usa el bit ADC14SSELx,
ademads si es de interés se puede dividir por 1, 4, 32, o 64. Este reloj puede tener como fuente los
relojes MODCLK, SYSCLK, ACLK, MCLK,SMCLK,y HSMCLK. Se debe tener especial cuidado
en que al escoger el reloj se de tiempo suficiente para que se pueda realizar todo el proceso de
conversién, sino el resultado no sera valido.

Para evitar corrientes parasitas en la entrada del puerto analogico el fabricante recomienda
deshabilitar la parte digital del puerto mediante el bit PySELx, y de esa manera eleminar esta
corriente parasita y reducir el consumo méximo de corriente.

PONER FOTO DEL CODIGO



Start Stop Start Conversion  Data
Sampling and Sampling Conversion Complete  Stored
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sH |

SAMPCON 16 x ADC14CLK
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t

convert
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Note: If internal ADC reference buffers are used, the SHI signal is gated while ADC14RDYIFG = 0.

Copyright © 2015-2019, Texas Instruments Incorporated
Figura 4.8: Extended Sample Mode [1]
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Note: If internal ADC reference buffers are used, the SHI signal is gated while ADC14RDYIFG = 0.
Copyright © 2015-2019, Texas Instruments Incorporated
Figura 4.9: Pulse Sample Mode [1]
Mode tclk tsync tsa\mple tphase tconvert tdmove Total
Pulse Sample Mode Upto3or5 2 . 16 cycles for 27 or 29
with ADC14MSC =0 cycles® cycles Minimum 4 cycles 1 cycle 14-bit 1 cycle cycles
Pulse Sample Mode ® ® I, 16 cycles for
with ADC14MSC = 1 N/A N/A Minimum 4 cycles 1 cycle 1a-bit 1 cycle 22 cycles
See the device
Extended Sample N/A N/A _de}tasheet for 1 cycle 16 cyclgs for 1 cycle 18 + sampling
Mode minimum sample 14-bit cycles
period

@ The time for reference settling is not included
@ Up to 3 cycles when SHI is generated based on the same clock source of the Precision ADC or 5 cycles when a different clock
source is used to generate SHI signal

® . .
Successive conversions Copyright © 2015-2019, Texas Instruments Incorporated

Figura 4.10: Tiempos de conversién y muestreo [1]

La conversién analégica a digital se inicia cuando hay un flanco de subida en la senal de entrada



de muestreo, SHI. Esta senal se seleciona con los bits SHSx, que incluye el bit ADC14SC, y otros sie-
te recursos. Cuando la senal SHI se activa, se solicita el reloj del ADC y después de un tiempo(tx)
de méximo 3 ciclos, la senal de reloj esta disponible. Dependiendo de la resolucién que requiera la
conversién puede durar entre 9, 11, 14, y 16 ciclos de reloj para 8, 110, 12,y 14 bits, respectivamente.
La polaridad de esta sefial se puede invertir con el bit ADC14ISSH, para nuestro caso no es de
interés por lo que permanerd en su valor por defecto. Para controlar el comienzo de conversién y
el periodo de muestreo se utiliza la sefial SAMPCON, cuando esta esta en alto el muestreo esta
activo, mientras que cuando cambia a estado bajo comienza la conversién. Una vez ésta finalice , el
dato convertido se guarda en el registro ADC14MEMXx, este proceso cuesta un ciclo de reloj (¢gmove )-

Hay dos modos diferentes de muestrear, el modo de muestra extendida (Ezrtended Sample Mode,
Figura 4.8) y el modo de muestra por pulso (Pulse Sample Mode, Figura 4.9). Su principal diferencia
es que en el modo extendido la sefial SHI se usa directamente para controlar la senal SAMPCON,
mientras que en el modo del pulso se usa para controlar el temporizador de muestreo. El tiempo
total de conversién y muestreo depende del modo de muestreo que se elija, en la Figura 4.10 se
puede ver cuanto valen estos tiempos.

Para la configuracion en el microntrolador se utiliza una resolucién de 10 bits y se ha elegido el
modo de pulso con tiempo de muestro(tsqmpie) de 4 ciclos, y se utiliza el mismo reloj para la senal
SHI y el reloj del ADC, HSMCLK.

Cuenta con cuatro modos de conversién quue se seleccionan mediante los bits CONSEQx :
» Un canal (single channel), donde la conversiin se produce solo una vez

» Un canal con repeticién (repeat-single channel), en la que conversién se repite cada cierto
tiempo.

» Secuencia (sequence), cuando la conversién se produce en secuencia cuando hay varios canales
seleccionados.

» Secuencia repetida (repeat-sequence), es igual que la anterior pero se repite cada cierto tiempo.

En los casos de repeticién cuando se lee el valor del registro de memoria, éste borra el valor para
dejar paso al siguiente.

Los resultados de la conversion siempre se guardan en formato binario sin signo. Por lo que
para los de tipo diferencial tienen un offset de 8192 anadido. Sin embargo, el formato del bit del
dato (ADC14DF) en el registro ADC14CTL1,permite al usuario leer los resultados en formato sin
signo o con signo expresado en complemento a 2.

Para parar la conversion en el modo de un canal con repeticion es necesario poner a cero el bit
ADC14ENC, en los otros modos se hace una vez finalizada la conversién.

Hay 32 registros de memoria ADC14MEMx para guardar los resultados, cada uno estéd asociado
con un registro de control ADC14MCTLx. El bit ADC14VRSEL define la tension de referencia ,y
los bits ADC14INCHx y ADC14DIF seleccionan los canales de entrada. El bit ADC14EOS define
el final se la secuencua cuando se estd en modo secuencia. Los bits CSTARTADDx bits definen el
primer ADC14MCTLx que se usa para cualquier conversién.

PONER el caso del TFG

Este médulo ofrece también interrupciones, cuyos recursos son los siguientes. Los bits ADC14IFGx
bits, que se configura cuando su registro de memoria correspondiente tiene el resultado de una con-
versién. La interrupcion ADC140V que ocurre cuando el valor de una conversién se escribe en su



registro de memoria antes de que el valor anterior guardado en ese registro se lea. La interrupcién
ADC14TOV que se produce cuando se requiere muestreo y conversiéon antes de que que se com-
plete la conversién actual. Las interrupciones ADC14LOIFG, ADC14INIFG, y ADC14HIIFG para
gestionar el registro ADC14MEMx.

Todas estas interrupciones se encuentran dentro del vector de interrupcién ADC141V, donde se
priorizan, combinan y gestionan las interrupciones.

4.2.6. Puertos de Entrada/Salida

Los puertos de entrada/salida de este microcontrolador son programables de forma indepen-
diente e individual. Los registros PxIN son solo de lectura y los PxOUT se configuran como entrada
o salida con el registro de direccién PxDIR. Cada puerto posee un registro de datos individual, asi
como resistencias de pullup o pulldown que se activan en el registro PxEN.

PxDIR PXREN PxOUT | 1/O Configuration
0 0 X Input
0 1 0 Input with pulldown resistor
0 1 1 Input with pullup resistor
1 X X Output

Copyright © 2015-2019, Texas Instruments Incorporated

Figura 4.11: Configuracién de E/S [1]

Cada puerto necesita de dos bits (PxSELO, PxSEL1), para seleccionar su funcién, de propédsito
general, modulo primario, modulo secundario, y modulo secundario. Esta seleccién no configura su
pin de direccién. Todas las interrupciones de cada puerto estan priorizadas siendo el bit PxIFG.0
el de mayor prioridad, y cada una de ellas corresponden con un pin. El registro de interrupcién
de seleccién por flanco (PxXIES) selecciona el flanco de interrupcién para cada pin de E/S. Estas
interrupciones se pueden habilitar mediante el registro PxIE. Estos puertos cuentan con modos de
despertar (Wake-up) y bajo consumo. Estos modos son LPM3, LPM4,LPM3.5 y LPM4.5. Los dos

primeros se corresponden con el primer modo y los otros con el modo de bajo consumo.

Toda la informacién de este capitulo asi como sus figuras se han obtenido de [1].



Capitulo 5

Implementacion y Experimentacion

5.1. Introduccion

En este capitulo se va implementar el SOGI-PLL.

5.2. Discretizacion del SOGI-PLL

5.2.1. Modelo de Simulink discretizado

Se discretiza el modelo del SOGI-PLL en Simulink y se discretiza el PI calculado en el capitulo 3.
Los valores de Ky y K, son iguales a los del capitulo 3, y los valores discretizados del PI con
Fy =10 kHz, son K, = 0,35y K; = 0,3387

En las figuras 5.1 y 5.2 se comprueba su correcto funcionamiento. Ademas, se comprueba que
el muestreo se hace a la frecuencia F; (Figura 5.3).

Amplitud

0.005

|
0.01 0.015 0.02

Tiempo (s)

0.025 0.03 0.035

Figura 5.1: Tensién de entrada y salida
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Figura 5.3: Tiempo de muestreo

5.2.2. Ecuaciones en diferencias

Siguiendo los paso de [16], para poder implementar el algoritmo primero es necesario obtener
las ecuaciones en diferencias. Para ello, se transforman las funciones de transferencia del espacio
en continuo al espacio discreto mediante la aproximacién de integracién trapezoidal (Tustin), con
un tiempo de muestreo T = 100 ps.

Partiendo de (3.9) y (3.10), del capitulo 3, se obtienen las funciones correspondientes en el
espacio discreto z,

_ bo + 522_2
Galz) = ag+ a1zt +agz—2 (5.1)
bo + 2b12_1 + b22_2
Ga(z) = 2)

ao+ a1z~ + agz?
Los parametros de las funciones se calculan con la funcién de Matlab ¢2d, y asi obtener las
ecuaciones en diferencias de todos los bloques. Los parametros de v, y vg son distintos.



El bloque del SOGI

Vo (k) = boVin (k) + b2Vin(k — 2) — (a1v4(k — 1) 4+ agua(k — 2))
Va(k —2) =va(k —1)
vall = 1) = va ()
vg(k) = boVin(k) + b1Vip(k — 1) 4+ baVip (k — 2) — (a1vg(k — 1) + agvg(k — 2))
vk —2) = vg(k —1)
vg(k — 1) = vg(k)

La transformada de Park

va(k) = va(k)sing(k — 1) + vg(k)cosi(k — 1)
vg(k) = —va(k)cosi(k — 1) +vg(k) * sing(k — 2)

El filtro paso bajo

vo(k) = Kpvg(k) — Kijvg(k — 1) +v2(k — 1)
vyl = 1) = v, (k)
’Ug(k’ — 1) = ’Ug(k')
El bloque VCO

wo = wo + Kyva(k)
Oo(k) =0(k — 1) + w, x T

o o e N e T
o J O Ot = W
— — — — ~— —

(5.9)
(5.10)

(5.11)
(5.12)
(5.13)

(5.14)
(5.15)

Para comprobar su correcto funcionamiento se implementa en Matlab estas ecuaciones y se

definen tres casos y se analiza la respuesta del SOGI-PLL.
» Caso 1: respuesta a un salto de fase (Figura 5.4)

» Caso 2: respuesta a una variacién pequena de frecuencia (Figura 5.5)

» Caso 3: respuesta a una variacién de la amplitud de la senal de entrada (Figura 5.6)

05 —_V

Amplitud
1)
T
[

-05 —

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

error

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Tiempo (s)

Figura 5.4: Respuesta a salto de fase
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Figura 5.5: Respuesta a variacién de frecuencia
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Figura 5.6: Respuesta a variacién de amplitud

5.3. Implementacion en C

Se va a implementar el SOGI-PLL con los parametros antes establecidos. Se ha compilado el
codigo para comprobar que no tiene errores de sintaxis. En el anexo se encuentra el cédigo que se
ha implementado.

5.4. Experimentacién

La parte experimental requiere de un generador de sefiales, un osciloscopio para poder observar
la entrada y salida del SOGI-PLL y el microncontrolador, su montaje se puede ver en la Figura 5.7.

La parte experimental no se pudo ejecutar antes de depositar la memoria del TFG, debido
a problemas con la placa de desarrollo, el entorno de desarrollo no reconocia el dispositivo pro-
porcionado por los directores. Se conté con la ayuda del profesor del Departamento de Ingenieria
Electrénica y Comunicaciones, Isidro Urriza Parroqué, ya que habia trabajado previamente con la
placa y con el entorno CCS. Sin embargo, aunque se probara con tres placas, no se pudo conseguir
la implementacion en mi equipo de trabajo. Se dirigié a los foros de Texas Instruments pero sin
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Figura 5.7: Montaje

Figura 5.8: Mensajes de error CCS Console

éxito. En la Figura 5.8 se muestran los mensajes de error que aparecian, y por los que esta parte

no se ha podido ejecutar.






Capitulo 6

Conclusiones y Lineas futuras

El PLL es un concepto ampliamente estudiado que tiene numerosas aplicaciones, como pue-
den ser, entre otras, el control de motores, generadores, convertidores de potencia, o sintonizadores
digitales. El estudio de las topologias presentadas da una buena visién de su utilidad. En dicho estu-
dio se ha analizado la influencia de los distintos parametros que definen el comportamiento del PLL.

Por otro lado, la implementacién de un algoritmo en un microcontrolador va mas alla del
diseno del propio algoritmo; es necesario el estudio de las interrupciones, temporizadores, y otras
caracteristicas del microcontrolador. Ademaés, pueden aparecer problemas derivados del hardware
utilizado.

La linea de trabajo futura primordial seria resolver los problemas con el entorno de desarrollo

y comprobar el funcionamiento del algoritmo del SOGI-PLL planteado en este TFG.
Otras fuera del alcance de este trabajo serian desarrollar otras topologias [22], modificar los con-
troles aumentando el orden o aplicando otros criterios de tiempo de respuesta o error en régimen
permanente, por ejemplo. La implementacién del algoritmo desarrollado en coma fija, utilizar otro
microcontrolador u otros dispositivos como FPGAs [23], o DSPs [24].

Estudiar su aplicaciéon en sistemas trifasicos, o desarrollar en concreto alguna de las aplicaciones
que resulten de interés para el autor de las mencionadas en este TFG.
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Capitulo 7

Anexos

Codigo Matlab
PLL

clear all;

close all;

%% PLL SIMULACION

% Rango de trabajo

%  50Hz

% margen de enganche = f(Kv,Kpd)
% margen de captura = f1 (Kv,Kpd)
%

% Variables
% parametros simulacion

t_final = 0.04; %tiempo de simulacion
max_step = 10e—6; % paso maximo de simulacion
% Senal de entrada

A=1;

fo = 50;

ts=0.9¢—3; % ms

fs=1/ts;

VA Bloques

% Bloque PD
Kpd=0.5; %V/2

%% Bloque VCO

% controla el enganche

Kv=0.1;

w0=2xpi*50; % frecuencia central

VA Bloque LF

%% P1

SysL=tf ([0 Kpd«Kv], [1 0]);

% sisotool (SysL)

% figure

% bode (sisPI) % SIS exportado de sisotool
% grid on

%PM = 60 BW = 20
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75

76

7

78

79

80

81

Kp = 11.547;

Ki = 346.4102xKp;

%% PI + primer orden

sysl = tf ([0 Kpd«Kv], [1 0]);

welp = 2xpi*x10;

sys2 = tf([0 1], [(1/welp) 1]); % primer orden
SysL = series (sysl,sys2);

% sisotool (SysL) ;

% figure

% bode (sisPI1) % SIS exportado de sisotool
% grid on

%PM = 60 BW = 20

Kpp = 4.3765;

Kii = 410.0721+Kpp;

%% P1 + segundo orden(butter)

sysl = tf ([0 Kpd«Kv], [1 0]);

fc = 10;

wnb = fc /(fs/2);

[b,a] = butter (2,wnb);

sys = tf(b,a,ts);

sys2 = d2c(sys);

[num,den] = tfdata(sys2,'v’);

SysL = series (sysl,sys2);

% sisotool (SysL) ;

% figure

% bode (sisPI12) % SIS exportado de sisotool
% grid on

%PM = 60 BW = 20

Kp3 = 0.35;

Ki3 = 401.9782xKp3;

%% SOGI + PI

%KPD = 10;

KvV=0.01;

f_sogi = 10;

wO_sogi = 2xpixf_sogi;

t_sogi = 2/(Kpd«w0_sogi);

sysl=tf ([0 KV], [1 0]);

sys-_sogi=tf ([0 1],[t_-sogi 1]); % linealizacion Golestan (ec.
SysL=series (sysl ,sys_sogi);

sisotool (SysL)

figure

bode (sisSOGI) % SIS exportado de sisotool
grid on

%PM = 60 BW = 20

%Kpd — 6.47498:

% Ki4d = 8.384xKp4;

Kpd = 0.35;

Kid = 323.7491%Kp4;
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sim('pll7);

%——nplot tensiones

figl = figure (1);

subplot (2,1,1)

plot (stime , Vin, 'LineWidth’,3);

hold on

plot (stime , V_out_basic , 'LineWidth ' ,2)
ylabel (’Amplitud’,’ FontSize’ ,12)
xlabel (’Tiempo (s)’, FontSize’ ,12)
legend ({'V_{in}’,’V_{pll—basico}’}, FontSize  ,12)
grid

grid minor

subplot (2,1,2)

plot (stime , Vin, 'LineWidth’,3);

hold on

plot (stime ,V_out2, 'LineWidth ' ,2)
ylabel (’Amplitud’, FontSize’ ,12)
xlabel (’'Tiempo (s)’, FontSize’  ,12)
legend ({'V_{in}’,’V_{pll—tipo2} '}, FontSize’ ,12)
grid

grid minor

%

fig2 = figure (2);

subplot (2,1,1)

plot (stime ,Vin, 'LineWidth " ,2);

hold on

plot (stime ,V_out3, 'LineWidth ' ,2)

ylabel (’Amplitud’,’ FontSize  ,12)

xlabel (’'Tiempo (s)’,’FontSize’ ,12)

legend ({’'V{in}’,’V_{pll—tipo3}’}, FontSize’ ,12)
grid

grid minor

subplot (2,1,2)

plot (stime ,Vin, 'LineWidth " ,2);

hold on

plot (stime , V_outs, 'LineWidth " ,2)

ylabel (’Amplitud’,’FontSize’ ,12)

xlabel (’'Tiempo (s)’, FontSize’ ,12)

legend ({'V{in} ,’V_{sogi—pll} '}, FontSize  ,12)
grid

grid minor

%% ——-plot frecuencia

figd = figure (3);

subplot (2,1,1)

hold on

plot (stime ,f_out_basic , 'LineWidth ' ,2)
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plot (stime ,f_out2 , 'LineWidth ' ,2)
ylabel (’Frecuencia (Hz)’,’FontSize’ ,12)
xlabel (’Tiempo (s)’, FontSize ,12)

legend ({'F_{pll—basico}’,’F_{pll—tipo2}’}, FontSize’,12)

grid

grid minor

hold

off

subplot (2,1,2)

hold

on

plot (stime , f_outs , 'LineWidth ' ,2)

plot (stime , f_out3 , 'LineWidth ,2)

ylabel (’Frecuencia (Hz)’, FontSize’ ,12)
xlabel (’Tiempo (s)’, FontSize ,12)

legend ({'F_{pll—tipo3}’,’F_{sogi—pll}’}, FontSize’ ,12)

grid

grid minor

hold off

%% ——-plot tita

figd = figure (4);

subplot (2,1,1)

hold on

plot (stime , tita_out_basic , 'LineWidth ™ ,2)

plot (stime , tita_out2 , ' — , 'LineWidth’ ,3)
ylabel (’\theta (rad)’,’FontSize’ ,12)
xlabel (’'Tiempo (s)’, FontSize’,12)

legend ({’\theta_{pll—basico}’,’\theta_{pll—tipo2}’},’FontSize’

grid

grid minor

hold

off

subplot (2,1,2)

hold

on

plot (stime , tita_out3d , "LineWidth  ,2)

plot (stime , tita_outs , — , LineWidth " ,2)
ylabel (’\theta (rad)’,’FontSize’ ,12)
xlabel (’Tiempo (s)’, FontSize ,12)
legend ({’\theta_{pll—tipo3}’,’\theta_{sogi—pll}’}, FontSize’ ,12)

grid

grid minor

hold

off

SOGI PLL

clear all;
close all;

%% SOGI-PLL

discretizado SIMULACION

% Rango de trabajo

%

50Hz

,12)
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% margen de enganche = f(Kv,Kpd)
% margen de captura = 1 (Kv,Kpd)
T

% Variables
% parametros simulacion
t_fin = 0.5; %tiempo de simulacion

max_step = 10e—6; % paso maximo de simulacion

%Senal de entrada
A= 1; % Amplitud

f0 = 50; % frec (Hz) senal de entrada

Fs = 10000; % Frec (Hz) muestreo

Ts = 1/Fs; % Tiempo muestreo (s)
t = 0:Ts:t_fin;
%% Bloque VCO

% controla el enganche
Kv=0.1; %Kv=0.08 para caso 2
w0=2*pi*50; % frecuencia central

VO Bloque LF
%Kp = 0.35;

%Ki = 323.7491+Kp;

% sis = tf ([Kp Ki],[1 0]);

% sisz = c2d(sis ,Ts);

% Kpz = 0.35;

%Kiz = 0.3387:

Kpz = 0.35;

Kiz = 0.3387;

%% Discretizacion y ec. en diferencia
% calculo coef. del SOGI

k = 0.5; %Kpd

wn = 2xpixf0;

in.va = tf ([kswn 0],[1 ks«wn wn"2])
in.vb = tf ([kxwn"2 |,[1 kxwn wn" 2]
in_vaz = c2d(in_va ,Ts, "tustin’);
in_vbz = ¢2d(in_vb ,Ts, "tustin’);
[num,den,Ts] = tfdata(in_vaz, 'v’);
bO0=num (3) ;

)

aa2=den
%% Simulacion Simulink
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Kpd = 1;

sim ("SOGIpllZ ") ;

figl = figure (1);

plot (stime , Vin, 'LineWidth " 3);

hold on

plot (stime , Vout, 'LineWidth ' ,2)

ylabel (’Amplitud’,’ FontSize  ,12)
xlabel (’Tiempo (s)’, FontSize’,12)
legend ({'V_{in}’ ,’V_{out} '}, FontSize’  ,12)
grid

grid minor

figure (2)

subplot (2,1,2)

plot (stime , fout , 'LineWidth ' ,3);
ylabel (’Frecuencia (Hz)’,’FontSize’ ,12)
xlabel (’Tiempo (s)’, FontSize ,12)
legend (’'f_{out}’, FontSize  ,12)

grid

grid minor

subplot (2,1,1)

plot (stime , tita , 'LineWidth ' ,3);
ylabel (’\theta (rad)’,’FontSize’ ,12)
xlabel (’'Tiempo (s)’, FontSize’,12)
legend (’\theta_{out}’, FontSize’ ,12)
grid

grid minor

%% Simulacion Matlab

% arrays

err = [0,0,0,0];

v2 = [0,0,0];

cos_t = [1,1,1];

sin_.t = [0,0,0];

theta = [0,0,0];

wo=0;

% senales

v_,a = [0,0,0,0];

v.b = [0,0,0,0];

vd = [0,0,0,0]; % salida Vd de la transf. de PARK
vq = [0,0,0,0]; % salida Vq de la transf. de PARK
% plot

Var=[0,0,0,0];
Theta=1[0,0,0,0];

V_a=[0,0,0,0]:
V_b=[0,0,0,0];
V.d=1[0,0,0,0];
V_q=[0,0,0,0];
V.2=[0,0,0,0];



104 % senal de entrada

105 L=length (t);

ws Y CASO 1: Salto de fase a mitad
17 for n = 1:floor (L)

s u(n) = Axsin (2xpixf0«Tsxn) ;

109 end

1o for n = floor(L/2):L

1 u(n) = Axsin (2% pixf0*xTsxn+pi/2);
1z end

13 % CASO 2:variacion en la frecuencia
e for n = 1:floor (L)

115 u(n) = Axsin (2xpi*f0xTsxn);

116 end

ur for n = floor(L/2):L

s u(n) = Axsin (2xpi*(f0—0.5)*Tsx*n) ;
119 end

120 Y% CASO 3: variacion en la amplitud
121 for n = 1:floor (L)

122 u(n) = Axsin (2% pixf0«Tsxn);

123 end

124 for n = floor (L/2):L

12 u(n) = 1.5%xAxsin (2xpixf0*Tsxn);

126 end
127 (%%

128 % proceso de PLL
120 for n = 3:t_fin/Ts

130 % SOGI

131 v_,a(l) = bOxu(n)+b2xu(n—2)—(alsxv_a(2)4+a2xv_a(3));
132 v,a(3) = v_oa(2);

133 vea(2) = vea(l);

134

135 v_b (1) = bbOxu(n)+bblsu(n—1)+bb2xu(n—2)—(aalxv_b(2)+aa2xv_b(3));
136 v_b(3) = v.b(2);

137 v_b(2) = v_b(1);

138 % TF PARK

139 vd(1l) = v_,a(1l)xsin_t (2)4+v_b(1)xcos_t(2);
140 vq(l) = —v_a(1l)xcos_t (2)+v_-b(1)*sin_t (2);
141

142 % Filtro PI

143 v2 (1) = Kpzxvq(1)—Kiz*vq(2)4+v2(2);

14 vq(2) = vq(1);

145 v2(2) = v2(1);

146

147 wo = wOHKv*v2(1);

148 theta (1) = theta (2)+woxTs;

149 if (theta (1)>=2xpi)

150 theta (1) = theta(1l)—2xpi;

151 end

152 theta (2) = theta(1);
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sin_t (1) = sin(theta(1));
cos_t (1) = cos(theta(1l));
sin_t(2) = sin_t (1);
cos_t(2) = cos_t(1);
Theta(n+1) = theta(1);
V_a(n+1l) = v_a(1);
Vob(n+1l) = v_b(1);
V.d(n+1) = vd(1);
Voq(n+1) = vq(1);
V_2(n+1l) = v2(1);
Var(n+1) = sin_t (1);

end

%% CASO 1

casol = figure(1);

error = Var—u;

subplot (2,1,1)

plot (t,Var, 'r’,t,u, 'b’)

ylabel ("Amplitud’,’FontSize ' ,12)

legend ({ 'V_{in} ,’V_{out}’ '}, FontSize’  ,12)
grid on

subplot (2,1,2)

plot (t,error, 'r’)

xlabel ("Tiempo (s)’, FontSize’ ,12)

grid on

legend ("error’, ’FontSize  ,12)

%% CASO 2

caso2 = figure (2);

error = Var—u;

subplot (2,1,1)

plot (t,Var, 'r’,t,u, 'b’)

ylabel ("Amplitud’,’FontSize ' ,12)

legend ({ 'V {in} ', V_{out}’ '}, FontSize’ ,12)
grid on

subplot (2,1,2)

plot (t,error, 'r’)

xlabel ("Tiempo (s)’, FontSize ,12)

grid on

legend ("error’, 'FontSize’ ,12)

%% CASO 3

caso3 = figure (3);

error = [(Var(1:2522)—u(1:2522)) ,(Var(2523:5001) —1/1.5xu(2523:5001))];
subplot (2,1,1)

plot (t,u, 'r’,t,Var, 'b")

ylabel ("Amplitud’,’FontSize ' ,12)

legend ({ 'V {in} ', ’V_{out}’ '}, FontSize’  ,12)
grid on

subplot (2,1,2)

plot (t,error, 'r’)



202

203

204

xlabel ("Tiempo (s)’, FontSize ,12)
grid on
legend ("error’, FontSize ,12)

Cédigo C

#include "msp.h”
#include <stdint.h>

3 #include <stdbool.h>

IS

oo ~ (=2} ot
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11
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14
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32

33

35

36

37

38

39

#include <math.h>
/*Declaracion de funcionesx/

void configurar CLK (void);
void configurar_Puertos (void);
void configurar_ ADC (void);
void configurar_Timer32 (void);

volatile int value_adc;
volatile int SGN;
void main(void)
{
__disable_irq();
WDT A—>CTL = WDT A CTLPW + WDT A CTLHOLD; // Stop watchdog timer
configurar CLK () ;
configurar_Timer32 () ;
configurar_Puertos();
configurar ADC () ;

NVIC_EnableIRQ (T32_.INT1.IRQn);
__enable_irq();

while (1)
{

}
}

void configurar CLK (void){

// en fichero system _msp432p401lr.c se puede configurar
SYSTEM_CLOCK 4800000, la m xima frecuencia

// Posiblemente no es necesario llamar a esta funcin de
configuracin

CS—KEY = CSKEY_VAL; // unlock CS registers

CS—CTLO = 0; // reset DCO settings

CS—CTL0 = CS_.CTLO_-DCORSEL.5; // select DCO 5 (48MHz)



40 CS—CTL1 = CS_.CTL1.SELS_DCOCLK | CS.CTL1.SELM_DCOCLK; // ACLK =
REFOCLK, SMCLK = MCLK = DCOCLK

" CS—KEY = 0; // lock CS registers

42 }

43

11 void configurar_Timer32 (void){

45 TIMER32_1—LOAD = 4800—1; /% 4800, fclk = 48MHZ fs = 10 KHzx/
46 TIMER32_1—>CONTROL = TIMER32.CONTROL_ENABLE | TIMER32.CONTROLMODE

| TIMER32_CONTROL.IE; /* Enable, periodic mode, interrupt
enablex/

a }

48

49

so0 void configurar_Puertos(void){

51 // Salidas digitales P6.0 y P6.1

- P6->SEL1 &= ~(BIT1 + BIT0); // P6.1 y P6.0 1/O

5 P6->SELO &= ~(BIT1 + BITO):

54 P6—0UT |= BIT1 + BITO;

55 P6—DIR |= BIT1 + BITO;

56}

57

58

59 void configurar ADC (void){

60 P4—>SEL1 |= BIT7; // Enable A/D channel A6 de ADC — pin P4.7

o1 P4>SELO |= BITT;

62

63 // ADC14 Configuration

64 ADC14—>CTLO &= "ADC14_CTLO_ENC;

65 /*CONFIGURE ADC14x /

66 ADC14—>CTL0 |= ADC14_CTLO-SSEL__MCLK | ADC14.CTLO-SHTO0.2 |
ADC14 CTLO.ON ; /*ADC14 ON | S&=16 | SAMPLING TIMEsx/

67 ADC14—>CTL1 = ADC14_CTL1_RES__14BIT ;

68 ADC14->MCIL[0] |= ADC14 MCTLN.INCH6 | ADC14 MCTLN.VRSELO; //

ref+=AVcc, channel = A6
69 }
70
71
72 void leerADC(void){
73 ADC14—>CTL0 |= ADC14.CTLO-ENC | ADC14_CTL0-SC; /*
ENABLE CONVERTION | SAMPLING CONVERSION: /

74 while (ADC14—>CTL0 & ADC14_.CTL0O-BUSY) ;
75 value_adc = ADC14—>MEM[O0];

76

m }

s void sogiPll(int Da){

79 /* Variables =/

so float Ts = 1.0e—04;

s1 float al = —1.9834;

s2  float a2 = 0.9844;



s  float b0 = —0.0078;

sa float b2 = —b0;

ss float aal = —1.9834;

ss float aa2 = 0.9844;

57 float bb0 = 1.2238e—4;
ss float bbl = 2.4476e—4;
o float bb2 = 1.2238e—-04;
9o float Kp = 336.47498 ;
o1 float Ki = 336.47271;
92 float Kv = 0.8;

93 float w0 = 314.1593; /*Hzx/
oa float wo =0.0;

95 [*——— Se ales * /
96 float VinO,Vinl,Vin2 = 0.0;

o7 float v_a0, v_al, v_a2 = 0.0;
98¢ float v_b0, v_bl, v_b2 = 0.0;
9 float v_q0, v_ql = 0.0;

100 float v2_.0, v2_.1 = 0.0;

101 float thetaO, thetal = 0.0;

102 float sen0, senl = 0.0;

103 float cos0,cosl = 1.0;

104 [/*——— Control * /
105 VinO=(float )Da;

106 /* — SOGI**/

w7 v_a0 = b0%Vin0+b2xVin2—(alxv_al+a2xv_a2);

108 v_.a2 = v_al;

w9 v_al = v_a0;

10 v_bl = bb0%Vin0+bblxVinl+bb2%Vin2—(aalxv_bl+aa2*v_b2);
m v_b2 = v_bl;

1z v_bl = v_b0;

s [x+——— Tf PARK—x/
1ma v_q0 = —v_a0*xcosl4+v_bOxsenl;
15/ x —— Loop Filter —x/

e v2_.0 = Kpxv_q0—Kixv_ql4+v2_1;
7 v_ql = v_q0;

ns v2_.1 = v2_1;

e /% VCO * /

120 wo = w0 + Kvxv2_0;

121 thetal = thetal + woxTs;

122 if(thetaO >:6.2832)

123 theta0 = thetal — 6.2832;
124

125 thetal = thetal;

126 sen0 = sin(thetal);

127 cos0 = cos(theta0);

128 senl = senO0;

120 cosl = cos0;

130

11 SGN = (int)sen0;



132

133

134

135

137

138

}

void T32_INT1_IRQHandler (void){
TIMER32_1—INTCLR = 0; // Clear interrupt flag

leerADC () ;

sogiPll (value_adc);

P6—0UT"=SGN;;

// Toggle P6.0, comprobar que lo hace cad 100 us
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