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Resumen

La sincronización de señales de sistemas de comunicación, eliminación de ruidos o atenuación
retrasos son problemas en los se busca soluciones eficientes, ya que resultan de vital importancia
para su correcto funcionamiento.

Una solución muy utilizada es elPLL, debido a sus numerosas ventajas. Según sea el problema
o aplicación existen diferentes topoloǵıas que se pueden aplicar lo que le da gran versatilidad.

En este TFG se presenta los conceptos fundamentales y se hace un análisis para su comprensión.
Se eligen dos de sus tipoloǵıas para hacer una comparativa entre ellas mediante simulación en
Matlab y Simulink, y se implementa la que mejor prestaciones presente en un microcontrolador.
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Caṕıtulo 1

Introducción

1.1. Motivación y Contexto

En en los años 20 con los receptores superheterodinos se empeza a dar los primeros pasos
en la definición actual del PLL. En esencia, estos receptores consist́ıan en un oscilador local, un
mezclador y un amplificador de audio. Para operar el oscilador deb́ıa ajustarse exactamente a la
misma frecuencia que la señal de entrada, esta se convert́ıa en una frecuencia intermedia de 0 Hz.
La salida del mezclador conteńıa información demodulada. La interferencia no era śıncrona con el
oscilador y por eso se usaba el amplificador de audio a modo de filtro.

La primera mención del concepto phaselock se publica en 1932 [2], donde se utiliza el principio
de estos receptores para formalizar la base del mismo.

En los años 50 [3] su desarrollo fue en aumento con la sincronización de receptores en televisión.
Junto con el avance de la tecnoloǵıa analógica y digital, especialmente, el PLL se establece de
manera significativa en el campo de la ingenieŕıa electrónica y de telecomunicaciones, debido a sus
numerosas aplicaciones y al desarrollo de nuevas topoloǵıas.

La estructura básica de un PLL, consta de tres elementos básicos (Figura 1.1):

Figura 1.1: Estructura PLL básica

Detector de fase (PD)

Filtro paso bajo (LF)

Oscilador controlado por tensión (VCO)

Una vez que el bucle ha enganchado, el control de tensión fija la frecuencia media del VCO
igual a la frecuencia media de la señal de entrada. Para cada ciclo de entrada sólo hay un ciclo de
salida del oscilador. El error de fase no será necesariamente cero, se puede tener error de fase en
régimen permanente y error de seguimiento de la fase.
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El objetivo del diseño es elegir el filtro apropiado que cumpla con los requisitos deseados en
régimen permanente y transitorio.

Esta presentación básica de su estructura y funcionamiento es el primer paso para poder enten-
der su importancia en el ámbito de la ingenieŕıa y la motivación del TFG. Su diseño y construcción,
aśı como implementación reunen buena parte de las habilidades adquiridas durante el grado y cul-
minar aśı con un Trabajo de Fin de Grado que las aplique y además sea un complemento a la
formación.

Algunos ejemplos de sus aplicaciones son, la sincronización de señales de datos, receptores de
televisión, atenuación de retrasos, control de sistemas digitales, o control de velocidad de motores,
entre otros. Esto indica, de nuevo, su multifuncionalidad en un gran abanico de aplicaciones y
ámbitos en la ingenieŕıa.

1.2. Objetivos y alcance

Una vez enunciado el contexto de trabajo, el objetivo de este TFG es probar distintas topoloǵıas
del PLL para estudiar su respuesta, aśı como su margen de enganche. Simular su comportamiento
con la herramienta de Matlab, Simulink, e implementar una de estas topoloǵıas en coma flotante
con un microcontrolador de Texas Instruments, en lenguaje C, en el entorno de desarrollo Code
Composer Studio (CCS). Además de comprobar su funcionamiento de forma experimental en el
laboratorio.

Para poder alcanzar con éxito el objetivo se ha hecho un estudio previo de la estructura del
PLL, un análisis matemático del mismo, aśı como el análisis de sus distintas topoloǵıas y métodos
de desarrollo. También ha sido necesario la familiarización con el entorno de desarrollo Matlab/Si-
mulink, CCS, y el funcionamiento del microcontrolador, manejo de sus periféricos, interrupciones,
temporizadores y fuentes de reloj, principalmente.

1.3. Estructura de la memoria

La organización del resto de la memoria se estructura en cinco caṕıtulos.

Caṕıtulo 2: estudio del PLL.

Caṕıtulo 3: diseño del PLL y simulación.

Caṕıtulo 4: microcontrolador y partes de interés para el TFG.

Caṕıtulo 5: implementación y experimentación.

Caṕıtulo 6: conclusiones y ĺıneas futuras.



Caṕıtulo 2

Estudio del PLL

En este caṕıtulo se profundiza en la comprensión y análisis de la estructura del PLL.

2.1. Introducción

El Phase-Locked Loop (PLL) es un sistema realimentado [3] cuyo principal objetivo es la sincro-
nización de fase entre una señal de entrada, referencia, y su salida, dentro de un margen determi-
nado, mediante la comparación de fases. El diagrama de bloques básico se muestra en la Figura 2.1

Figura 2.1: Diagrama básico de bloques PLL

Este sistema está compuesto por tres bloques básicos:

Detector de fase (PD)

Filtro paso bajo (LF)

Oscilador controlado por tensión (VCO)

Para conseguir la sincronización deseada, la señal del oscilador cambia su frecuencia en respuesta
a la entrada, controlada por una tensión.

El detector de fase compara la referencia con la salida del VCO, y genera una señal que cambia
en proporción a la diferencia de fases. Ésta es procesada por el filtro cuya salida entra al VCO. Se
repite el proceso hasta que se alcanza la sincronización, y el PLL alcanza su estado de enganchado
(locked).

Los dos tipos básicos de PLL son los analógicos (APLL) y digitales (DPLL). Su implementación
difiere en sus parámetros y tiempos de respuesta [4]. Los digitales tienen menos tiempo de respuesta
con respecto a los analógicos, son más inmunes a cambios bruscos de la entrada y al ruido. Sin
embargo, al tener más bloques son más caros que los analógicos.
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En este TFG se va a diseñar tipoloǵıas digitales, como son la básica y SOGI-PLL, que se desa-
rrollan y explican en el caṕıtulo 3.

El PLL tiene un gran abanico de aplicaciones [3, 5, 6, 7] debido a su gran utilidad. Algunas de
ellas son la sincronización para sistemas de comunicación, sintetizadores de frecuencia [8], aplica-
ciones biomédicas, como la implantación de dispositivos biomédicos [9], aplicaciones FACTS [10];
acondicionamiento de alimentación, conexión de sistemas de enerǵıas renovables a la red como los
sistemas fotovoltaicos, o eólicos; o sistemas que trabajan a altas frecuencias [11].

2.2. Ecuaciones básicas/Análisis del PLL

Para poder entender el concepto del PLL es necesario realizar un análisis teórico del mismo.

Figura 2.2: Diagrama de bloques básico

Sea la entrada del sistema PLL, Vin, una señal sinusoidal general

vi = Vi sin(ωit+ θi(t)) (2.1)

La señal de salida del bloque VCO

vo = Vo cos(ωot+ θo(t)) (2.2)

Suponiendo el caso básico en el que el bloque PD es un multiplicador de ganancia Km, su salida se
define como

vd = Kmvi(t)vo(t) = KmA[sin(ωit+ θi(t)) cos(ωot+ θo(t))] (2.3)

donde Km es la ganancia del PD y A = ViVo.

Utilizando la propiedad del producto del seno y coseno en términos de los anteriores parámetros,

2 sin(a) cos(b) = 2 sin(ωit+ θi(t)) cos(ωot+ θo(t))

= sin(ωit+ θi(t) + ωot+ θo(t)) + sin(ωit+ θi(t)− ωot− θo(t))
(2.4)

Reagrupando términos se obtiene

2 sin(a) cos(b) = sin[(ωi + ωo)t+ θi(t) + θo(t))] + sin[(ωi − ωo)t+ θi(t)− θo(t)] (2.5)

Operando con (2.5) se obtiene

vd(t) =
1

2
KmA[sin[(ωi + ωo)t+ θi(t) + θo(t))] + sin[(ωi − ωo)t+ θi(t)− θo(t)] (2.6)



La señal de salida vd(t) comprende dos componentes, ωi + ωo y ωi − ωo. Cuando el PLL aun no ha
alcanzado la sincronización, estas frecuencias son distintas, ωi 6= ωo. Ambas se sitúan en la banda
atenuada del filtro y el primer término del seno de (2.6) es atenuado por el filtro paso bajo.

La salida del bloque del filtro paso bajo es

v2(t) = Kd sin[(ωi − ωo)t+ θi(t)− θo(t))] (2.7)

con Kd = 1
2KmA[V/rad].

Haciendo la siguiente sustitución en 2.7, θd(t) = θi(t)− θo(t) y ωd = ωi − ωo, se obtiene

v2(t) = Kd sin(ωdt+ θd(t)) (2.8)

El VCO verifica la relación [12],

ωo = ωc +Kvcov2(t) (2.9)

donde ωc es la frecuencia central del VCO y Kvco es la ganancia del mismo.

Cuando el PLL está sintonizado la frecuencia de entrada y salida son aproximadamente iguales,
ω1 ≈ ωo. La ecuación (2.8) queda

v2(t) = Kd sin(θd(t)) (2.10)

La solución se puede expresar tanto en el dominio del tiempo como de la frecuencia [3]. Aunque
ambas resulten de interés, en el dominio del tiempo tenemos un sistema no lineal mientras que
en el caso del frecuencial es lineal como se demuestra a continuación. En el siguiente apartado
se desarrolla el modelo de pequeña señal del PLL. Este modelo se utilizará en el caṕıtulo siguien-
te para diseñar el controlador que asegure un comportamiento adecuado del lazo de realimentación.

2.3. Modelo de pequeña señal

Las señales del diagrama de la Figura 2.2 se pasan al dominio frecuencial, para este caso se
toma como entrada θi y salida θo.

Para valores pequeños de θd se puede aproximar que sin θd = θd de forma que la tensión de
salida del PD se define

Vd(s) = Kd(θi(s)− θo(s)) (2.11)

La función de transferencia del LF se denomina F (s). La salida del filtro que controla la frecuencia
del VCO al pasar al dominio frecuencial es

V2(s) = F (s)Vd(s) (2.12)

Para poder obtener θo a la salida, partiremos de (2.9), donde se observa que la desviación de la
frecuencia central del VCO, ∆ω, es la señal de control del mismo, es decir,

∆ω = Kvcov2(t)→
dθo(t)

dt
= Kvcov2(t) (2.13)

Aplicando la trasformada de Laplace a cada término de 2.13 se obtiene

sθo(s) = KvcoV2(s)→ θo(s) =
KvcoV2(s)

s
(2.14)



Figura 2.3: PLL básico, modelo pequeña señal

donde s = σ + jω es la variable independiente de Laplace. Es digno de mención que 1
s es la trans-

formada de Laplace de un integrador, por lo cual la fase del VCO es proporcional a la integral a la
tensión de control.

El diagrama de bloques queda como aparece en la Figura 2.3.

A continuación se obtiene las funciones de transferencia del PLL tras el análisis.

Función de transferencia en bucle abierto:

G(s) =
θo(s)

θe(s)
=
KvcoKdF (s)

s
(2.15)

Función de transferencia en bucle cerrado:

H(s) =
θo(s)

θi(s)
=

G(s)

1 +G(s)
=

KvcoKdF (s)

s+KvcoKdF (s)
(2.16)

Función de transferencia del error:

E(s) =
θe(s)

θi(s)
=

1

1 +G(s)
= 1−H(s) =

s

s+KvcoKdF (s)
(2.17)

2.4. Márgenes de enganche y de captura

Existen unos márgenes de trabajo entre las cuales el PLL se encuentra en sintońıa o es capaz
de sincronizar, estos márgenes son el margen de enganche y de captura, respectivamente.

El margen de captura (∆ωH) es el rango en el que el PLL es capaz de engancharse a una señal
inicialmente no sincronizada. Se puede calcular para el PLL clásico como [5]:

∆ωH = KvcoKdF (0) (2.18)

El margen de enganche (∆ωL) , rango de frecuencia en que la señal permanece enganchada, se
puede estimar [5] como:

∆ωL ≈ KvcoKdF (∞) (2.19)

El margen de captura es siempre menor que el margen de enganche, y ambos están centrados
respecto de la frecuencia central del VCO, como se puede ver en la Figura 2.4



Figura 2.4: Márgenes de enganche y captura

2.5. Bloques del PLL básico

2.5.1. Detector de fase (PD)

Es un circuito capaz de generar una señal proporcional al desfase entre dos señales de entra-
da [13]. Se pueden distinguir dos tipos:

Dispositivos multiplicadores.
Se usan exclusivamente en PLLs lineales. El error DC de la salida es la media del producto
de forma de onda de la señal de entrada y la forma de onda del oscilador. Con un diseño
apropiado son capaces de trabajar con señales de entrada con ruido.

Dispositivos secuenciales.
Genera el error de la tensión de salida dependiente solo del intervalo de tiempo entre una
transición de la forma de onda de las señal y de la forma de onda del VCO. Son circuitos
digitales lógicos lo que les permite operar con forma de ondas rectangulares binarias. Algunos
ejemplos son los detectores XOR, JK-señales o los basados en frecuencia con salida en tensión
o corriente.

2.5.2. Filtro paso bajo (LF)

Como se pudo observar en la Figura 2.3, la función de transferencia de LF se definió de manera
genérica como F (s). Este filtro paso bajo tiene como objetivo filtrar la frecuencia suma de entrada
y salida y de esa manera conseguir la sincrońıa que se busca. Este filtro puede ser de tipo activo o
pasivo, de primer, segundo, tercer, u orden superior, o combinación de los mismos, según sean los
requisitos de nuestro diseño.

2.5.3. Oscilador controlado por tensión (VCO)

El VCO es una parte esencial en todo PLL. Es un dispositivo no lineal que genera una oscilación
periódica [5]. Esta oscilación es controlada por una tensión para reducir el error de fase hasta que
sea 0 o próximo a 0, ajustando aśı la frecuencia del mismo con respecto a la de la entrada. Para los
PLLs digitales el VCO puede ser sustituido por un oscilador controlado numéricamente (NCO) o
digitalmente (DCO), donde la tensión es reemplazada por un valor digital y su salida es una onda
digital oscilante.





Caṕıtulo 3

Diseño del PLL y Simulación

3.1. Introducción

En este caṕıtulo se explica el diseño de las topoloǵıas PLL básico y SOGI-PLL. Se hace una
comparativa entre ellas y se elige el método a implementar.

3.2. Topoloǵıas

3.2.1. PLL-básico

Esta topoloǵıa tiene como detector de fase un multiplicador [14].

Figura 3.1: Diagrama de bloques del PLL-básico

Se reconstruye la señal de entrada a partir de su componente fundamental estimando su ampli-
tud, fase y frecuencia.

En la Figura 3.1, el bloque LF de filtrado suele incluir un controlador C que asegure ciertas
prestaciones al lazo cerrado.

Presenta inmunidad a pequeñas variaciones de la señal de entrada o internas, ruidos, armónicos
o variaciones de frecuencia pequeñas. Se aplica en alimentación de sistemas electrónicos, detección
de picos de tensión o detección de perturbaciones, entre otros.

A continuación, se van a desarrollar tres diseños partiendo de la función de transferencia en
bucle abierto (2.15) vista en el caṕıtulo anterior, utilizando la herramienta Sisotool de Matlab.

La señal de entrada de todos los diseños será una señal sinusoidal de 50 Hz. La herramienta
tiene como parámetros el margen de fase deseado al igual que el ancho de banda. Se establece
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para los diseños un margen de fase de 60º y un ancho de banda de 20 rad/s, para que el desfase
introducido por el filtro sea pequeño.

Diseño 1

Sea

G(s) =
KvcoKdF (s)

s
(3.1)

Se usa como filtro un controlador PI de la forma

F (s) = Kp +Ki
1

s
=
Kps+Ki

s
(3.2)

Con Kd = 0,5 y Kvco = 0,1, se obtiene que Kp = 11,547 y Ki = 346,4102 ·Kp

Figura 3.2: Diagrama de bode PLL-básico (PI)

Mirando el diagrama de bode (Figura 3.2), se observa que se cumple con las especificaciones
impuestas al sistema y este es estable en bucle cerrado.

Diseño 2

En este diseño se va a implementar un filtro de primer orden (3.3), y un PI.

F (s) =
1

1 + τs
, τ =

1

ωc
(3.3)

La frecuencia de corte del filtro, ωc, debe ser menor que ωi para reducir la influencia del nivel
de continua de la entrada [15].

Se define de nuevo G(s) incluyendo el filtro de primer orden

G(s) =
KvcoKd

s(1 + τs)
(3.4)

Con los mismos valores de Kd, Kvco del diseño 1, y ωc = 2π10, se obtiene Kp = 4,3765 y
Ki = 410,0721 ·Kp.

Mirando el diagrama de bode de la Figura 3.3, se observa que se cumple con las especificaciones
impuestas al sistema y este es estable en bucle cerrado.



Figura 3.3: Diagrama de bode PLL-básico, (PI+1ºorden)

Diseño 3

En este diseño se va a implementar un filtro paso bajo con un filtro Butterworth de orden
2 (3.5), y un PI.

F (s) =
a0 + a1s+ a2s

2

b0 + b1s+ b2s2
(3.5)

Los coeficientes se obtienen con la función butter de Matlab tomando fc = 10 Hz.

Se define de nuevo G(s) incluyendo el filtro de segundo orden

G(s) =
KvcoKd

s

(
a0 + a1s+ a2s

2

b0 + b1s+ b2s2

)
(3.6)

Con los mismos valores de Kd, Kvco del diseño 1, se obtiene Kp = 0,35 y Ki = 401,9782 ·Kp

Mirando el diagrama de bode Figura 3.4, se observa que se cumple con las especificaciones
impuestas al sistema y este es estable en bucle cerrado.



Figura 3.4: Diagrama de bode PLL-básico (PI+2ºorden)

3.2.2. SOGI-PLL

El uso del SOGI-PLL ha crecido en los últimos años desde su publicación en [16], debido a
las deficiencias del PLL-básico, como errores en la estimación de la frecuencia, poca inmunidad al
ruido o pérdida de estabilidad en cambios en la frecuencia o fluctuaciones de la señal de entrada.

Algunas de sus ventajas frente a otras topoloǵıas, son la no inclusión de retraso, mayor inmu-
nidad ante cambios de frecuencia [17] o su uso en sistemas trifásicos [18]. En este apartado se va
desarrollar la aplicación en un sistema de una sola fase (single-phase SOGI ).

Figura 3.5: Diagrama de bloques del SOGI-PLL

La estructura de la Figura 3.5 correspondiente al SOGI (bloque generación sistema ortogonal)
genera un sistema ortogonal de tensiones vα y vβ a partir de la tensión de entrada. Este sistema
puede obtenerse mediante métodos como la transformada de Clark, Hilbert, o la inversa de Park,
entre otras [19]. Las señales de salida vα y vβ tienen un desfase entre ellas de 90º, y vα tiene la
misma fase y magnitud que la componente fundamental de la señal de entrada como se puede
observar en la Figura 3.6) del modelo del pequeña señal de la estructura del SOGI.



Figura 3.6: Diagrama de bloques del modelo de pequeña SOGI

A continuación se usa la transformada de Park, cuya relación entre la entrada y salida es [19][
vd
vq

]
=

[
sin θ cos θ
− cos θ sin θ

] [
vα
vβ

]
(3.7)

Este método es una alternativa para generar un sistema ortogonal de tensión comparado con
otros [19, 20] que son más complejos, no lineales, con ningún o poco filtrado y dependientes de la
frecuencia. Además su implementación es simple [16].

La función de transferencia en bucle abierto del bloque SOGI es GI(s)

GI(s) =
ωs

s2 + ω2
(3.8)

donde ω es la frecuencia de resonancia del SOGI
Las funciones en bucle cerrado se pueden obtener aplicando las propiedades de los bloques

Gα(s) =
vα(s)

vin(s)
=

kωs

s2 + kωs+ ω2
(3.9)

Gβ(s) =
vβ(s)

vin(s)
=

kω2

s2 + kωs+ ω2
(3.10)

donde k es el ganancia que afectará al ancho de banda.

La ganancia regula el nivel de filtrado del sistema, si ésta es pequeña(k < 1) el filtrado será
mayor pero se ralentiza el sistema. Por el contrario, si esta es mayor el filtrado es menor pero el
sistema es más rápido.

El diseño del filtro paso bajo es igual al diseño 1 del PLL-básico. Utilizando de nuevo la herra-
mienta Sisotool de Matlab con los mismos parámetros de ancho de banda y desfase, partiendo de
la linealización del SOGI [21].

Fsogi =
1

τsogi · s+ 1
, τsogi =

2

kω
(3.11)

Se define de nuevo G(s) con la estructura del SOGI

G(s) =
KvcoKd

s

(
1

τsogi · s+ 1

)
(3.12)

Se obtiene Kp = 0,35 y Ki = 323,7491 ·Kp



Figura 3.7: Diagrama de bode SOGI-PLL

3.2.3. Análisis resultados simulación

En este apartado se va a comparar la respuesta de cada diseño. Como se enunció en el caṕıtulo
anterior los márgenes de trabajo son función del filtro paso bajo, y en las siguientes figuras se
observa esa influencia.
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Figura 3.8: Tensión de entrada y salida, diseño 1 y 2

En la Figura 3.8 se observa el enganche de la tensión de salida del diseño 1 y 2 con una entrada
sinusoidal con ruido tenue. En ambos casos el ruido es atenuado en la salida.

En la Figura 3.9 se observa el enganche de la tensión de salida del diseño 3 y SOGI con la misma
señal entrada sinusoidal anterior. En ambos casos el ruido es atenuado en la salida, y su respuesta
es mejor que en los diseños anteriores, ya que en los pasos por cero el error es mucho menor. Esto
se observa mejor en las siguientes figuras.
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Figura 3.9: Tensión de entrada y salida, diseño 3 y SOGI
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tiempo (s)

49.9

49.95

50

50.05

50.1

F
re

c
u

e
n

c
ia

 (
H

z
)

F
pll-basico

F
pll-tipo2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tiempo (s)

49.995

50

50.005

50.01

F
re

c
u

e
n

c
ia

 (
H

z
)

F
pll-tipo3

F
sogi-pll

Figura 3.11: Frecuencia de salida



En la Figura 3.10 donde se observa el ángulo de salida se puede ver como ........

En la Figura 3.11 se observa de manera más clara la diferencia entre los 4 diseños. Aunque en los
4 casos el PLL engancha con la señal de entrada, y en media la frecucia de salida es 50 Hz, el error
difiere para cada uno de ellos. Observando la frecuencia del Pll-básico este error oscila entre 49.92
y 50.08, para el Pll-básico tipo 2 esta variación es menor, entre 49.98 y 50.02. El error de Pll-básico
tipo 3 disminuye aún más, entre 49.997 y 50.009. Sin embargo, para el diseño del SOGI-PLL este
error oscila entre 49.999 y 50.001 .

En conclusión, conforme se eleva el orden del filtro paso bajo mejor es la respuesta y menor el
error. El caso del SOGI es el que menor error tiene y cuya variabilidad es del orden de 0.1. Por
tanto es esta tipoloǵıa la que se va a implementar en el microcontrolador MSP432 P401R.



Caṕıtulo 4

Microcontrolador MSP432

4.1. Introducción

Para el desarrollo de nuestro algoritmo del PLL, se ha elegido el MSP432 LaucnhPad, Develop-
ment Kit de Texas Instruments (Figura 4.1).

1SLAU597F–March 2015–Revised March 2018
Submit Documentation Feedback

MSP432P401R SimpleLink™ Microcontroller LaunchPad™ Development Kit
(MSP‑EXP432P401R)

User's Guide
SLAU597F–March 2015–Revised March 2018

MSP432P401R SimpleLink™ Microcontroller LaunchPad™
Development Kit (MSP‑‑EXP432P401R)

The SimpleLink™ MSP‑EXP432P401R LaunchPad™ development kit is an easy-to-use evaluation
module for the SimpleLink MSP432P401R microcontroller. It contains everything needed to start
developing on the SimpleLink MSP432™ low-power + performance Arm® 32-bit Cortex®-M4F
microcontroller (MCU), including onboard debug probe for programming, debugging, and energy
measurements. The MSP432P401R device supports low-power applications requiring increased CPU
speed, memory, analog, and 32-bit performance.

     

Copyright © 2015–2018, Texas Instruments Incorporated

Figura 4.1: MSP-EXP432P401R LaunchPad™ Development Kit [1]

Su microcontrolador es el MSP432 P401R. Es de bajo consumo y cuenta con un núcleo Arm®
de 32-bit, Cortex®-M4F. Es un módulo de evaluación fácil de usar, contiene todo lo necesario para
desarrollar, depurar la programación y el código, y medir consumos. Este dispositivo admite aplica-
ciones de bajo consumo que requieren una velocidad de CPU elevada, memoria, puertos analógicos
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2.3 XDS110-ET Onboard Debug Probe
To keep development easy and cost effective, TI's LaunchPad development kits integrate an onboard
debug probe, which eliminates the need for expensive programmers. The MSP‑EXP432P401R has the
XDS110-ET debug probe, which is a simple low-cost debug probe that supports nearly all TI Arm device
derivatives.

The XDS110-ET hardware can be found in the schematics in Section 6 and in the MSP‑EXP432P401R
Hardware Design Files.

2.3.1 XDS110-ET Isolation Block J101
The J101 isolation block is composed of J101 jumpers shown in Table 1. The J101 isolation block allows
the user to connect or disconnect signals that cross from the XDS110-ET domain into the MSP432P401R
target domain. This crossing is shown by the silkscreen dotted line across the LaunchPad development kit
through J101. No other signals cross the domain, so the XDS110-ET can be completely decoupled from
the MSP432P401R target side. This includes XDS110-ET power and GND signals, UART, and JTAG
signals.

Table 1 lists the signals that are controlled at the isolation block.

Table 1. Isolation Block Connections

Signal Description

GND
GND power connection between XDS110 and MSP432 target GND planes. The GND jumper is
populated to connect the separate GND planes. This connection is required for proper operation with
3V3, 5V, UART, and JTAG.

5V 5-V power rail, VBUS from USB
3V3 3.3-V power rail, derived from VBUS by an LDO in the XDS110-ET domain

RXD << Backchannel UART: The target MCU receives data through this signal. The arrows indicate the direction
of the signal.

TXD >> Backchannel UART: The target MCU sends data through this signal. The arrows indicate the direction of
the signal.

RST MCU RST signal (active low)
TCK_SWCLK Serial wire clock input (SWCLK) / JTAG clock input (TCK)
TMS_SWDIO Serial wire data input/output (SWDIO) / JTAG test mode select (TMS)
TDO_SWO Serial wire trace output (SWO) / JTAG trace output (TWO) (Also PJ.5)

TDI JTAG test data input (Also PJ.4)

     

MSP432P401R SimpleLink™ Microcontroller LaunchPad™ Development Kit 
(MSP‑EXP432P401R)

     

Copyright © 2015–2018, Texas Instruments Incorporated

Figura 4.2: Placa de prueba y depuración [1]

entre otros. Cuenta con 40 pines, su núcleo es de bajo consumo con un reloj de hasta 48 MHz, y se
puede añadir nuevos módulos como el BoosterPack de Texas Instruments.

Tiene dos botones y dos LEDs para la interacción con el usuario, además de un canal UART por
USB para ordenador. Una memoria flash de 256 KB, 64 KB de SRAM y 32 KB de ROM. Cuatro
temporizadores de 16 bits con captura, comparación o PWM, y dos temporizadores de 32 bits y un
RTC. Tiene 8 canales de comunicación serie tipo I2C, SPI, UART, e IrDA. Cuenta, además, con
un módulo ADC de precisión.

Este kit tiene como soporte entornos de desarrollo profesionales como Code Composer Studio,
Keil µVision e IAR Embedded Workbench. En este TFG se utilizará CCS.

Además, la placa de prueba y depuración (Onboard Debug Probe, Figura 4.2) que incorpora
elimina la necesidad de programadores caros y soporta casi todos los dispositivos derivados de los
Arm que incorpora Texas Instruments en sus dispositivos.

4.2. Caracteŕısticas

En esta apartado se van a exponer las caracteŕısticas del microcontrolador que resultan de es-
pecial interés en el TFG.

En la Figura 4.3 aparecen todas la funciones que tiene el microcontrolador.

4.2.1. Núcleo

El núcleo Arm® 32-bit Cortex®-M4F CPU (Figura 4.4) está basado en la arquitectura ArmV7-
M, cuenta con una unidad de coma flotante, que permite operaciones de procesamiento de datos
(C float) de simple precisión. El convertidor analógico-digital tiene una precisión de 14 bits y tiene
una velocidad de 1 Msps. Cuenta con fuentes de reloj flexibles, y dos temporizadores de 32 bits con
capacidad para generar interrupciones y otros cuatro temporizadores de propósito general.
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Figura 4.3: MSP432P401R Diagrama de Bloque Funciones [1]

Private
Peripheral Bus

(internal)

Data
Watchpoint

and
Trace

Interrupts

Debug

Sleep

Instrumentation
Trace

Macrocell

Trace

Port

Interface

Unit

CM4 Core

Instructions Data

Flash
Patch
and

Breakpoint

Memory

Protection

Unit

Debug

Access Port

Nested

Vectored

Interrupt

Controller

Serial Wire JTAG

Debug Port

Bus

Matrix

Advanced
Peripheral

Bus
I-code bus

D-code bus

System bus

ROM

Table

Serial
Wire

Output
Trace
Port

(SWO)

ARM Cortex-M4F
FPU

Embedded
Trace

Macrocell

www.ti.com Overview

53SLAU356I–March 2015–Revised June 2019
Submit Documentation Feedback

Copyright © 2015–2019, Texas Instruments Incorporated

Cortex-M4F Processor

1.2 Overview

1.2.1 Bus Interface
MSP432P4xx Cortex-M4F implementation contains three high-speed AMBA® technology AHB-Lite Bus
interfaces named ICODE, DCODE, and SBUS (System Bus) and one AMBA technology APB bus named
PPB (Private Peripheral Bus). ICODE and DCODE buses support Harvard implementation of the
processor, allowing separate paths for Instruction (ICODE) and Data (DCODE) accesses during code
execution. Table 1-2 lists the slaves mapped on each of these buses.

NOTE: The exact address range for each of the bus interfaces can be found in the device-specific
data sheet. The values shown in Table 1-2 are examples only.

(1) SRAM mapped on SBUS should not be used for code execution, but only for stack and data storage.
(2) Mapping RSTCTL and SYSCTL on PPB allows accesses to the registers even if device is locked under Hard Reset. This is

useful for debugging some of the lockup conditions.

Table 1-2. Cortex-M4F Bus Interfaces in MSP432P4xx

Sl. No. Bus Interface
Name Protocol Type Valid Address Range

(Indicative Only) Description

1 ICODE AHB-Lite 0x0000_0000–0x1FFF_FFFF Used for Instruction Access within the address
range. Connects to Flash, ROM and SRAM.

2 DCODE AHB-Lite 0x0000_0000–0x1FFF_FFFF Used for Data Access within the address range.
Connects to Flash, ROM and SRAM.

3 SBUS AHB-Lite 0x2000_0000–0xDFFF_FFFF Used for Data access within the address range.
Connects to SRAM (1) and on-chip peripherals.

4 PPB APB (v3.0) 0xE004_0000–0xE00F_FFFF

Connects to some system-critical modules like
RSTCTL and SYSCTL. (2) Also the Core internal
components like NVIC and MPU are mapped on
this bus.

Copyright © 2016, Texas Instruments Incorporated

Figura 4.4: Diagrama de Bloques CPU [1]



4.2.2. Interrupciones

Las interrupciones se manejan mediante un bloque Nested Vectored Interrupt Controller (NVIC).
Puede generarse hasta un total de 64 interrupciones. Cada interrupción tiene un nivel de prioridad
programable codificada de 0 a 7, donde el 7 corresponde al nivel más bajo de prioridad y el 0 al
más alto. Esta prioridad se puede cambiar de forma dinámica, y se pueden agrupar por niveles de
prioridad. La detección de las señales de interrupción puede ser por nivel o por pulso, y este con-
trolador cuenta además con interrupción no enmascarable (NMI) externa. Los resgistros del NVIC,
que aparecen en aparecen en la Figura 4.5, pueden ser de tres tipos: read-write(escritura-lectura),
read-only (sólo lectura) o write-only (sólo escritura).

La CPU lanza todas las interrupciones, los periféricos de estas interrupciones pasan al estado
pendiente si el NVIC detecta una señal de interrupción en alto y no se activa o si detecta un flanco
en la misma. El software escribe la interrupción pendiente en el bit correspondiente o en el STIR
para generar una interrupción pendiente por software. La interrupción deja de estar pendiente
cuando el procesador maneja la ISR y pasa a estar en activo. Entonces, dependiendo de si la
interrupción es por nivel o por pulso procederá de una manera u otra para manejarla y desactivar
el bit correspondiente.
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2.4.3 NVIC Registers
Table 2-25 lists the memory-mapped registers for the NVIC. All register offset addresses not listed in
Table 2-25 should be considered as reserved locations and the register contents should not be modified.

Table 2-25. NVIC Registers

Offset Acronym Register Name Type Reset Section
100h ISER0 Irq 0 to 31 Set Enable Register read-write 00000000h Section 2.4.3.1
104h ISER1 Irq 32 to 63 Set Enable Register read-write 00000000h Section 2.4.3.2
180h ICER0 Irq 0 to 31 Clear Enable Register read-write 00000000h Section 2.4.3.3
184h ICER1 Irq 32 to 63 Clear Enable Register read-write 00000000h Section 2.4.3.4
200h ISPR0 Irq 0 to 31 Set Pending Register read-write 00000000h Section 2.4.3.5
204h ISPR1 Irq 32 to 63 Set Pending Register read-write 00000000h Section 2.4.3.6
280h ICPR0 Irq 0 to 31 Clear Pending Register read-write 00000000h Section 2.4.3.7
284h ICPR1 Irq 32 to 63 Clear Pending Register read-write 00000000h Section 2.4.3.8
300h IABR0 Irq 0 to 31 Active Bit Register read-only 00000000h Section 2.4.3.9
304h IABR1 Irq 32 to 63 Active Bit Register read-only 00000000h Section 2.4.3.10
400h IPR0 Irq 0 to 3 Priority Register read-write 00000000h Section 2.4.3.11
404h IPR1 Irq 4 to 7 Priority Register read-write 00000000h Section 2.4.3.12
408h IPR2 Irq 8 to 11 Priority Register read-write 00000000h Section 2.4.3.13
40Ch IPR3 Irq 12 to 15 Priority Register read-write 00000000h Section 2.4.3.14
410h IPR4 Irq 16 to 19 Priority Register read-write 00000000h Section 2.4.3.15
414h IPR5 Irq 20 to 23 Priority Register read-write 00000000h Section 2.4.3.16
418h IPR6 Irq 24 to 27 Priority Register read-write 00000000h Section 2.4.3.17
41Ch IPR7 Irq 28 to 31 Priority Register read-write 00000000h Section 2.4.3.18
420h IPR8 Irq 32 to 35 Priority Register read-write 00000000h Section 2.4.3.19
424h IPR9 Irq 36 to 39 Priority Register read-write 00000000h Section 2.4.3.20
428h IPR10 Irq 40 to 43 Priority Register read-write 00000000h Section 2.4.3.21
42Ch IPR11 Irq 44 to 47 Priority Register read-write 00000000h Section 2.4.3.22
430h IPR12 Irq 48 to 51 Priority Register read-write 00000000h Section 2.4.3.23
434h IPR13 Irq 52 to 55 Priority Register read-write 00000000h Section 2.4.3.24
438h IPR14 Irq 56 to 59 Priority Register read-write 00000000h Section 2.4.3.25
43Ch IPR15 Irq 60 to 63 Priority Register read-write 00000000h Section 2.4.3.26
F00h STIR Software Trigger Interrupt Register write-only 00000000h Section 2.4.3.27
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Figura 4.5: Registro NVIC [1]



4.2.3. Fuentes de reloj

El modulo del sistema del reloj admite sistemas de bajo coste y de bajo consumo. El modulo del
reloj se puede configurar para operar sin ningún otro componente externo, con 2 cristales externos
o con resonadores, o con una resistencia externa controlada por software.

Las fuentes de reloj que incluye este sistema son, un oscilador de baja frecuencia (LFXTCLK)
que se puede usar con cristales de baja frecuencia de reloj de 32768 Hz, estándar, resonadores
o fuentes de reloj externas en el rango de 32 kHz o por debajo. Un oscilador de alta frecuencia
(HFXTCLK) que se puede usar con cristales estándar o resonadores en el rango entre 1 MHz y
48 MHz. Un oscilador controlado digitalmente (DCOCLK) de frecuencias programable, con 3 MHz
por defecto.Un oscilador de baja frecuencia y muy bajo consumo (VLOCLK) con una frecuencia
t́ıpica de 9.4 KHz. Un oscilador interno de baja frecuencia y bajo consumo (REFOCLK) con frecuen-
cias seleccionables de 32.768 kHz o 128 kHz. Un oscilador interno de bajo consumo (MODCLK),de
25 MHz frecuencia t́ıpica, y oscilador interno (SYSOSC) con 5 MHz, frecuencia t́ıpica.

Además, se encuentran disponibles cinco señales de reloj que se pueden obtener del modulo del
reloj. El primero es el ACLK (Auxiliary Clock) cuya frecuencia máxima de operación es 128 kHz,
y que se puede dividir para generar la frecuencia deseada. El segunddo es el MCLK (Master clock)
usado por la CPU y directamente por algunos módulos de los periféricos, y puede dividirse por 1,
2, 4, 8, 16, 32, 64, o 128. El tercero es el HSMCLK (Subsystem master clock) se puede seleccionar
por software,por módulos periféricos individuales. El cuarto es el SMCLK(Low speed subsystem
master clock) que utiliza el HSMCLK como fuente de reloj. Su frecuencia está limitada a la mitad
del máximo de frecuencia del HSMCLK.Y el quinto, el BCLK(Low speed backup domain clock), su
frecuencia está restringida a un máximo de 32768 kHz.

En la implementación del PLL, se utilizarán el MCLK a una frecuencia de 48 MHz, que se
obtiene del DCOCLK.

4.2.4. Temporizadores

El MSP432P401R cuenta con cuatro temporizadores Timer-A, y dos temporizadores indepen-
dientes Timer32. Además de un system tick timer propio de los ARM Cortex-M.

Timer-A

Timer-A es un temporizador/contador de 16 bits con siete registros de captura/comparación.
Admite múltiples capturas/comparaciones, salidas PWM, e intervalos de tiempo. Además, puede
usarse para interrupciones, que pueden ser generadas o por un contador en condiciones de overflow,
o por los registros.

Este módulo incluye:

Contadores/temporizadores de 16 bits aśıncronos con cuatro modos de operación : Stop, Up,
Continuos, Up/down. Se distinguen por el valor de partida del contador, un valor máximo
predeterminado o uno elegido por el usuario.

Recurso de reloj configurable y seleccionable.

Siete registros configurables.

Salidas configurables con capacidad Pulse Width Modulation (PWM).
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18.4 Interrupt Generation
An interrupt is generated when the full 32-bit counter reaches zero and is only cleared when the
T32INTCLRx register is written to. A register holds the value until the interrupt is cleared. The most
significant carry bit of the counter detects the counter reaching zero.

The interrupts can be masked by writing 0 to the Interrupt Enable bit in the T32CONTROLx register. Both
the raw interrupt status, prior to masking, and the final interrupt status, after masking, can be read from
status registers. The interrupts from the individual counters, after masking, are logically ORed into a
combined interrupt, TIMINTC, provides an additional interrupt condition from the Timer32 peripheral. Thus,
the module supports three interrupts in total – TIMINT1, TIMINT2, and TIMINTC.
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Figura 4.6: Reloj Timer32 [1]

Captura aśıncrona de entrada/salida.

El registro del Timer-A, TAxR, incrementa o decrementa el valor del mismo por medio de un
flanco de reloj según su configuración. Se puede leer y escribir por software y puede generar una
interrupción cuando se desborda (overflow).

Con respecto a sus fuentes de reloj pueden ser internos coomo el ACLK, o SMCLK, o externos
desde el registro TAxCLK o INCLK. La fuente de reloj se puede dividir por 2, 3, 4, 5, 6, 7,o 8
usando el registro TAIDE.

Timer32

El Timer32 es un periférico desarrollado por Arm, cuyos registros se presentan en la Figura 4.7.

Su estructura consiste en dos contadores decrecientes programables, de 32 o 16 bits, que son
capaces de generar interrupciones cuando llegan a cero. Estos contadores independientes tienen tres
diferentes modos de operación cada uno,y su fuente de reloj, MCLK, se puede dividir por 1, 16 o
256 (4.6) . Las interrupciones son independientes en cada contador y también una combinada con
ambos contadores.

Tiene tres modos de operación: Free-runnig, Periodic timer, y One-shot timer.
La primera una vez que llega al cero, continua la cuenta decremental desde el valor máximo. La

segunda genera una interrupción a un intervalo constante y parte del valor asignado por el usuario
como periodo una vez que llega a cero. La última, genera una interrupción sólo una vez.

Cuando se produce un reset, los contadores se deshabilitan, la interrupción se interrumpe y el
registro de carga se pone a cero, el modo de operación pasa a ser Free-running y los valores de
preescala se quedan en 1.

Con respecto a las interrupciones, estas se generan cuando el contador de 32 bits ha alcanzado
el cero, y se desactivan cuando se escribe en el registro T32INTCLRx. El registro mantiene el
valor hasta que la interrupción se desactiva. Se pueden enmascarar escribiendo un 0 en el bit de
interrupción Enable en el registro T32CONTROLx. Para la implementación en el microcontrolador
se ha elegido este módulo y su interrupción periódica cada periodo de muestreo (Ts), para controlar
la conversión del ADC.



www.ti.com Timer32 Registers

767SLAU356I–March 2015–Revised June 2019
Submit Documentation Feedback

Timer32

18.5 Timer32 Registers
Table 18-1 lists the Timer32 registers and their address offsets. See the device-specific data sheet for the
base address of the module.

Table 18-1. Timer32 Registers

Offset Acronym Register Name Type Reset Section
00h T32LOAD1 Timer 1 Load Register RW 0h Section 18.5.1
04h T32VALUE1 Timer 1 Current Value Register R FFFFFFFFh Section 18.5.2
08h T32CONTROL1 Timer 1 Timer Control Register RW 20h Section 18.5.3
0Ch T32INTCLR1 Timer 1 Interrupt Clear Register W - Section 18.5.4
10h T32RIS1 Timer 1 Raw Interrupt Status Register R 0h Section 18.5.5
14h T32MIS1 Timer 1 Interrupt Status Register R 0h Section 18.5.6
18h T32BGLOAD1 Timer 1 Background Load Register RW 0h Section 18.5.7
20h T32LOAD2 Timer 2 Load Register RW 0h Section 18.5.8
24h T32VALUE2 Timer 2 Current Value Register R FFFFFFFFh Section 18.5.9
28h T32CONTROL2 Timer 2 Timer Control Register RW 20h Section 18.5.10
2Ch T32INTCLR2 Timer 2 Interrupt Clear Register W X Section 18.5.11
30h T32RIS2 Timer 2 Raw Interrupt Status Register R 0h Section 18.5.12
34h T32MIS2 Timer 2 Interrupt Status Register R 0h Section 18.5.13
38h T32BGLOAD2 Timer 2 Background Load Register RW 0h Section 18.5.14

NOTE: This is a 32-bit module and can be accessed ONLY through word (32-bit) access.

For details on the register bit access and reset conventions that are used in the following sections, refer to
Preface.

Copyright © 2015–2019, Texas Instruments Incorporated

Figura 4.7: Registros Timer32 [1]

4.2.5. Conversores ADC

El módulo ADC tiene una precisión de 14 bits, 32 buffers independientes de control y conversión,
lo que permite que cada buffer tenga además 32 muestras ADC independientes, que se convierten
y guardar sin intervención de la CPU. La velocidad máxima de conversión es de 1 Msps, con una
resolución de 14 bits, módules de muestreo y retención con periodos programables controlado por
software o por temporizadores y las conversiones pueden ser iniciadas también por los mismos.

La tensión de referencia puede ser interna o externa. Tiene un sensor de temperatura interno y
cuenta con 32 canales individuales externos de tipo diferencial o monopolar (single-ended).

Según sea la elección la fórmula de conversión cambia al igual que su tensión de entrada.

Para el monopolar :

NADC = 16384 ·
Vin+ − VR−

VR+ − VR−

, 1LSB =
VR+ − VR−

16384
(4.1)

Para el diferencial:

NADC =

(
8192 ·

Vin+ − Vin−

VR+ − VR−

)
+ 8192, 1LSB =

VR+ − VR−

8192
(4.2)

El reloj del módulo se usa para la conversión y para el periodo de muestreo cuando se ha
seleccionado el modo de muestreo por pulso. Para poder elegir el reloj se usa el bit ADC14SSELx,
además si es de interés se puede dividir por 1, 4, 32, o 64. Este reloj puede tener como fuente los
relojes MODCLK, SYSCLK, ACLK, MCLK,SMCLK,y HSMCLK. Se debe tener especial cuidado
en que al escoger el reloj se de tiempo suficiente para que se pueda realizar todo el proceso de
conversión, sino el resultado no será válido.

Para evitar corrientes parásitas en la entrada del puerto analogico el fabricante recomienda
deshabilitar la parte digital del puerto mediante el bit PySELx, y de esa manera eleminar esta
corriente parásita y reducir el consumo máximo de corriente.

PONER FOTO DEL CÓDIGO
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The regular-power mode (ADC14PWRMD = 00b) supports sampling rates up to 1 Msps and can be used
with any of the resolutions settings. The low-power mode (ADC14PWRMD = 10b) is a power saving mode
recommended for 12-, 10-, or 8-bit resolution settings with sampling rates not exceeding 200 ksps.

22.2.6 Sample and Conversion Timing
An analog-to-digital measurement is initiated with a rising edge of the sample input signal SHI. The source
for SHI is selected with the SHSx bits and includes the following:
• ADC14SC bit
• Up to seven other sources which may include timer output (see to the device-specific data sheet for

available sources).

When the sample input signal SHI is asserted, the Precision ADC clock is requested and after tclk (a
maximum of 3 cycles when SHI is generated based on the same clock source of the Precision ADC or 5
cycles when a different clock source is used to generate SHI signal), the request clock becomes available.
The analog-to-digital conversion requires 9, 11, 14 and 16 ADC14CLK cycles for 8-bit, 10-bit, 12-bit, and
14-bit resolution modes respectively. The polarity of the SHI signal source can be inverted with the
ADC14ISSH bit. The SAMPCON signal controls the sample period and start of conversion. When
SAMPCON is high, sampling is active. The high-to-low SAMPCON transition starts the analog-to-digital
conversion. Once the conversion is complete, converted data is stored to ADC14MEMx register within 1
cycle ( tdmove ). Two different sample-timing methods are defined by control bit ADC14SHP, extended
sample mode, and pulse mode. See the device-specific datasheet for available timers for SHI sources.

22.2.6.1 Extended Sample Mode
The extended sample mode is selected when ADC14SHP = 0. The SHI signal directly controls SAMPCON
and defines the length of the sample period tsample. If an ADC internal buffer is used, the application should
assert the sample trigger, wait for the ADC14RDYIFG flag to be set (indicating the Precision ADC local
buffered reference is settled), and then keep the sample trigger asserted for the desired sample period
before deasserting. Alternately, if an internal ADC buffer is used, the user may assert the sample trigger
for the desired sample time plus the max time for the reference and buffers to settle (reference and buffer
settling times are provided in the device-specific data sheet). The maximum sampling time must not
exceed 420 µs. An ADC internal buffer is used when ADC14VRSEL= 0001 or 1111. The high-to-low
SAMPCON transition starts the conversion after phase alignment with ADC14CLK (see Figure 22-3 and
Table 22-1).
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                Note: If internal ADC reference buffers are used, the SHI signal is gated while ADC14RDYIFG = 0.

Figura 4.8: Extended Sample Mode [1]
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22.2.6.2 Pulse Sample Mode
The pulse sample mode is selected when ADC14SHP = 1. The SHI signal is used to trigger the sampling
timer. The ADC14SHT0x and ADC14SHT1x bits in ADC14CTL0 control the interval of the sampling timer
that defines the SAMPCON sample period tsample. The sampling timer asserts SAMPCON signal when the
reference and internal buffer is settled if the internal reference is used. It takes tsync for synchronization
with ADC14CLK before asserting SAMPCON signal. see Figure 22-4 and Table 22-1 for total sample and
conversion cycles in pulse sample mode.

There is an autoscan measurement mode (see Section 22.2.8) which repeats measurements
automatically. In this mode, the tclk and tsync are only applicable to the first measurement. In subsequent
measurements these cycles are not applicable.

The ADC14SHTx bits select the sampling time in 4x multiples of ADC14CLK. The programmable range of
sampling timer is 4 to 192 ADC14CLK cycles. ADC14SHT0x selects the sampling time for ADC14MCTL8
to ADC14MCTL23, and ADC14SHT1x selects the sampling time for ADC14MCTL0 to ADC14MCTL7 and
ADC14MCTL24 to ADC14MCTL31.

Table 22-1 summarizes the sample and conversion time for pulse sample mode and extended sample
mode.

(1) The time for reference settling is not included
(2) Up to 3 cycles when SHI is generated based on the same clock source of the Precision ADC or 5 cycles when a different clock

source is used to generate SHI signal
(3) Successive conversions

Table 22-1. Sample & Conversion Time (1)

Mode tclk tsync tsample tphase tconvert tdmove Total
Pulse Sample Mode
with ADC14MSC = 0

Up to 3 or 5
cycles (2)

2
cycles Minimum 4 cycles 1 cycle 16 cycles for

14-bit 1 cycle 27 or 29
cycles

Pulse Sample Mode
with ADC14MSC = 1 N/A (3) N/A (3) Minimum 4 cycles 1 cycle 16 cycles for

14-bit 1 cycle 22 cycles

Extended Sample
Mode N/A N/A

See the device
datasheet for

minimum sample
period

1 cycle 16 cycles for
14-bit 1 cycle 18 + sampling

cycles

22.2.6.3 Sample Timing Considerations
When SAMPCON = 0, all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can
be modeled as an RC low-pass filter during the sampling time tsample (see Figure 22-5). An internal MUX-on
input resistance RI (see device-specific data sheet) in series with capacitor CI (see device-specific data
sheet) is seen by the source. The capacitor CI voltage VC must be charged to within one-half LSB of the
source voltage VS for an accurate n-bit conversion, where n is the bits of resolution required.

Note: If internal ADC reference buffers are used, the SHI signal is gated while ADC14RDYIFG = 0.

Copyright © 2015–2019, Texas Instruments Incorporated

Figura 4.9: Pulse Sample Mode [1]
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22.2.6.2 Pulse Sample Mode
The pulse sample mode is selected when ADC14SHP = 1. The SHI signal is used to trigger the sampling
timer. The ADC14SHT0x and ADC14SHT1x bits in ADC14CTL0 control the interval of the sampling timer
that defines the SAMPCON sample period tsample. The sampling timer asserts SAMPCON signal when the
reference and internal buffer is settled if the internal reference is used. It takes tsync for synchronization
with ADC14CLK before asserting SAMPCON signal. see Figure 22-4 and Table 22-1 for total sample and
conversion cycles in pulse sample mode.

There is an autoscan measurement mode (see Section 22.2.8) which repeats measurements
automatically. In this mode, the tclk and tsync are only applicable to the first measurement. In subsequent
measurements these cycles are not applicable.

The ADC14SHTx bits select the sampling time in 4x multiples of ADC14CLK. The programmable range of
sampling timer is 4 to 192 ADC14CLK cycles. ADC14SHT0x selects the sampling time for ADC14MCTL8
to ADC14MCTL23, and ADC14SHT1x selects the sampling time for ADC14MCTL0 to ADC14MCTL7 and
ADC14MCTL24 to ADC14MCTL31.

Table 22-1 summarizes the sample and conversion time for pulse sample mode and extended sample
mode.

(1) The time for reference settling is not included
(2) Up to 3 cycles when SHI is generated based on the same clock source of the Precision ADC or 5 cycles when a different clock

source is used to generate SHI signal
(3) Successive conversions

Table 22-1. Sample & Conversion Time (1)

Mode tclk tsync tsample tphase tconvert tdmove Total
Pulse Sample Mode
with ADC14MSC = 0

Up to 3 or 5
cycles (2)

2
cycles Minimum 4 cycles 1 cycle 16 cycles for

14-bit 1 cycle 27 or 29
cycles

Pulse Sample Mode
with ADC14MSC = 1 N/A (3) N/A (3) Minimum 4 cycles 1 cycle 16 cycles for

14-bit 1 cycle 22 cycles

Extended Sample
Mode N/A N/A

See the device
datasheet for

minimum sample
period

1 cycle 16 cycles for
14-bit 1 cycle 18 + sampling

cycles

22.2.6.3 Sample Timing Considerations
When SAMPCON = 0, all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can
be modeled as an RC low-pass filter during the sampling time tsample (see Figure 22-5). An internal MUX-on
input resistance RI (see device-specific data sheet) in series with capacitor CI (see device-specific data
sheet) is seen by the source. The capacitor CI voltage VC must be charged to within one-half LSB of the
source voltage VS for an accurate n-bit conversion, where n is the bits of resolution required.

Note: If internal ADC reference buffers are used, the SHI signal is gated while ADC14RDYIFG = 0.

     

Copyright © 2015–2019, Texas Instruments Incorporated

Figura 4.10: Tiempos de conversión y muestreo [1]

La conversión analógica a digital se inicia cuando hay un flanco de subida en la señal de entrada



de muestreo, SHI. Esta señal se seleciona con los bits SHSx, que incluye el bit ADC14SC, y otros sie-
te recursos. Cuando la señal SHI se activa, se solicita el reloj del ADC y después de un tiempo(tclk)
de máximo 3 ciclos, la señal de reloj está disponible. Dependiendo de la resolución que requiera la
conversión puede durar entre 9, 11, 14, y 16 ciclos de reloj para 8, 110, 12,y 14 bits, respectivamente.
La polaridad de esta señal se puede invertir con el bit ADC14ISSH, para nuestro caso no es de
interés por lo que permanerá en su valor por defecto. Para controlar el comienzo de conversión y
el periodo de muestreo se utiliza la señal SAMPCON, cuando está está en alto el muestreo está
activo, mientras que cuando cambia a estado bajo comienza la conversión. Una vez ésta finalice , el
dato convertido se guarda en el registro ADC14MEMx, este proceso cuesta un ciclo de reloj (tdmove).

Hay dos modos diferentes de muestrear, el modo de muestra extendida (Extended Sample Mode,
Figura 4.8) y el modo de muestra por pulso (Pulse Sample Mode, Figura 4.9). Su principal diferencia
es que en el modo extendido la señal SHI se usa directamente para controlar la señal SAMPCON,
mientras que en el modo del pulso se usa para controlar el temporizador de muestreo. El tiempo
total de conversión y muestreo depende del modo de muestreo que se elija, en la Figura 4.10 se
puede ver cuanto valen estos tiempos.

Para la configuración en el microntrolador se utiliza una resolución de 10 bits y se ha elegido el
modo de pulso con tiempo de muestro(tsample) de 4 ciclos, y se utiliza el mismo reloj para la señal
SHI y el reloj del ADC, HSMCLK.

Cuenta con cuatro modos de conversión quue se seleccionan mediante los bits CONSEQx :

Un canal (single channel), donde la conversíın se produce solo una vez

Un canal con repetición (repeat-single channel), en la que conversión se repite cada cierto
tiempo.

Secuencia (sequence), cuando la conversión se produce en secuencia cuando hay varios canales
seleccionados.

Secuencia repetida (repeat-sequence), es igual que la anterior pero se repite cada cierto tiempo.

En los casos de repetición cuando se lee el valor del registro de memoria, éste borra el valor para
dejar paso al siguiente.

Los resultados de la conversión siempre se guardan en formato binario sin signo. Por lo que
para los de tipo diferencial tienen un offset de 8192 añadido. Sin embargo, el formato del bit del
dato (ADC14DF) en el registro ADC14CTL1,permite al usuario leer los resultados en formato sin
signo o con signo expresado en complemento a 2.

Para parar la conversión en el modo de un canal con repetición es necesario poner a cero el bit
ADC14ENC, en los otros modos se hace una vez finalizada la conversión.

Hay 32 registros de memoria ADC14MEMx para guardar los resultados, cada uno está asociado
con un registro de control ADC14MCTLx. El bit ADC14VRSEL define la tensión de referencia ,y
los bits ADC14INCHx y ADC14DIF seleccionan los canales de entrada. El bit ADC14EOS define
el final se la secuencua cuando se está en modo secuencia. Los bits CSTARTADDx bits definen el
primer ADC14MCTLx que se usa para cualquier conversión.

PONER el caso del TFG
Este módulo ofrece también interrupciones, cuyos recursos son los siguientes. Los bits ADC14IFGx

bits, que se configura cuando su registro de memoria correspondiente tiene el resultado de una con-
versión. La interrupción ADC14OV que ocurre cuando el valor de una conversión se escribe en su



registro de memoria antes de que el valor anterior guardado en ese registro se lea. La interrupción
ADC14TOV que se produce cuando se requiere muestreo y conversión antes de que que se com-
plete la conversión actual. Las interrupciones ADC14LOIFG, ADC14INIFG, y ADC14HIIFG para
gestionar el registro ADC14MEMx.

Todas estas interrupciones se encuentran dentro del vector de interrupción ADC14IV, donde se
priorizan, combinan y gestionan las interrupciones.

4.2.6. Puertos de Entrada/Salida

Los puertos de entrada/salida de este microcontrolador son programables de forma indepen-
diente e individual. Los registros PxIN son solo de lectura y los PxOUT se configuran como entrada
o salida con el registro de dirección PxDIR. Cada puerto posee un registro de datos individual, aśı
como resistencias de pullup o pulldown que se activan en el registro PxEN.
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12.2 Digital I/O Operation
The digital I/O are configured with user software. The setup and operation of the digital I/O are discussed
in the following sections.

12.2.1 Input Registers (PxIN)
Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the
pin is configured as I/O function. These registers are read only.
• Bit = 0: Input is low
• Bit = 1: Input is high

NOTE: Writing to read-only registers PxIN

Writing to these read-only registers results in increased current consumption while the write
attempt is active.

12.2.2 Output Registers (PxOUT)
Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is
configured as I/O function, output direction.
• Bit = 0: Output is low
• Bit = 1: Output is high

If the pin is configured as I/O function, input direction and the pullup or pulldown resistor are enabled; the
corresponding bit in the PxOUT register selects pullup or pulldown.
• Bit = 0: Pin is pulled down
• Bit = 1: Pin is pulled up

12.2.3 Direction Registers (PxDIR)
Each bit in each PxDIR register selects the direction of the corresponding I/O pin when it is configured for
I/O function. PxDIR register also in most of the cases controls the direction of the I/O when it is configured
for peripheral functions. PxDIR bits for I/O pins that are selected for peripheral functions must be set as
required by the peripheral functions. For certain secondary functions like eUSCI, the I/O direction is
controlled by the secondary function itself and not by the PxDIR register. Refer to device-specific data
sheet for more details.
• Bit = 0: Port pin is switched to input direction
• Bit = 1: Port pin is switched to output direction

12.2.4 Pullup or Pulldown Resistor Enable Registers (PxREN)
Each bit in each PxREN register enables or disables the pullup or pulldown resistor of the corresponding
I/O pin. The corresponding bit in the PxOUT register selects if the pin contains a pullup or pulldown.
• Bit = 0: Pullup or pulldown resistor disabled
• Bit = 1: Pullup or pulldown resistor enabled

Table 12-1 summarizes the use of PxDIR, PxREN, and PxOUT for proper I/O configuration.

Table 12-1. I/O Configuration

PxDIR PxREN PxOUT I/O Configuration
0 0 x Input
0 1 0 Input with pulldown resistor
0 1 1 Input with pullup resistor
1 x x Output

Copyright © 2015–2019, Texas Instruments Incorporated

Figura 4.11: Configuración de E/S [1]

Cada puerto necesita de dos bits (PxSEL0, PxSEL1), para seleccionar su función, de propósito
general, modulo primario, modulo secundario, y modulo secundario. Esta selección no configura su
pin de dirección. Todas las interrupciones de cada puerto están priorizadas siendo el bit PxIFG.0
el de mayor prioridad, y cada una de ellas corresponden con un pin. El registro de interrupción
de selección por flanco (PxIES) selecciona el flanco de interrupción para cada pin de E/S. Estas
interrupciones se pueden habilitar mediante el registro PxIE. Estos puertos cuentan con modos de
despertar (Wake-up) y bajo consumo. Estos modos son LPM3, LPM4,LPM3.5 y LPM4.5. Los dos
primeros se corresponden con el primer modo y los otros con el modo de bajo consumo.

Toda la información de este caṕıtulo aśı como sus figuras se han obtenido de [1].



Caṕıtulo 5

Implementación y Experimentación

5.1. Introducción

En este caṕıtulo se va implementar el SOGI-PLL.

5.2. Discretización del SOGI-PLL

5.2.1. Modelo de Simulink discretizado

Se discretiza el modelo del SOGI-PLL en Simulink y se discretiza el PI calculado en el caṕıtulo 3.
Los valores de Kd y Kv son iguales a los del caṕıtulo 3, y los valores discretizados del PI con
Fs = 10 kHz, son Kp = 0,35 y Ki = 0,3387

En las figuras 5.1 y 5.2 se comprueba su correcto funcionamiento. Además, se comprueba que
el muestreo se hace a la frecuencia Fs (Figura 5.3).
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Figura 5.1: Tensión de entrada y salida
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Figura 5.2: Ángulo de salida y frecuencia
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Figura 5.3: Tiempo de muestreo

5.2.2. Ecuaciones en diferencias

Siguiendo los paso de [16], para poder implementar el algoritmo primero es necesario obtener
las ecuaciones en diferencias. Para ello, se transforman las funciones de transferencia del espacio
en continuo al espacio discreto mediante la aproximación de integración trapezoidal (Tustin), con
un tiempo de muestreo Ts = 100 µs.

Partiendo de (3.9) y (3.10), del caṕıtulo 3, se obtienen las funciones correspondientes en el
espacio discreto z,

Gα(z) =
b0 + b2z

−2

a0 + a1z−1 + a2z−2
(5.1)

Gβ(z) =
b0 + 2b1z

−1 + b2z
−2

a0 + a1z−1 + a2z−2
(5.2)

Los parámetros de las funciones se calculan con la función de Matlab c2d, y aśı obtener las
ecuaciones en diferencias de todos los bloques. Los parámetros de vα y vβ son distintos.



El bloque del SOGI

vα(k) = b0Vin(k) + b2Vin(k − 2)− (a1vα(k − 1) + a2vα(k − 2)) (5.3)

vα(k − 2) = vα(k − 1) (5.4)

vα(k − 1) = vα(k) (5.5)

vβ(k) = b0Vin(k) + b1Vin(k − 1) + b2Vin(k − 2)− (a1vβ(k − 1) + a2vβ(k − 2)) (5.6)

vβ(k − 2) = vβ(k − 1) (5.7)

vβ(k − 1) = vβ(k) (5.8)

La transformada de Park

vd(k) = vα(k)sint(k − 1) + vβ(k)cost(k − 1) (5.9)

vq(k) = −vα(k)cost(k − 1) + vβ(k) ∗ sint(k − 2) (5.10)

El filtro paso bajo

v2(k) = Kpvq(k)−Kivq(k − 1) + v2(k − 1) (5.11)

vq(k − 1) = vq(k) (5.12)

v2(k − 1) = v2(k) (5.13)

El bloque VCO

ωo = ω0 +Kvv2(k) (5.14)

θ0(k) = θ(k − 1) + ωo ∗ Ts (5.15)

Para comprobar su correcto funcionamiento se implementa en Matlab estas ecuaciones y se
definen tres casos y se analiza la respuesta del SOGI-PLL.

Caso 1: respuesta a un salto de fase (Figura 5.4)

Caso 2: respuesta a una variación pequeña de frecuencia (Figura 5.5)

Caso 3: respuesta a una variación de la amplitud de la señal de entrada (Figura 5.6)
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Figura 5.4: Respuesta a salto de fase
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Figura 5.5: Respuesta a variación de frecuencia
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Figura 5.6: Respuesta a variación de amplitud

5.3. Implementación en C

Se va a implementar el SOGI-PLL con los parámetros antes establecidos. Se ha compilado el
código para comprobar que no tiene errores de sintaxis. En el anexo se encuentra el código que se
ha implementado.

5.4. Experimentación

La parte experimental requiere de un generador de señales, un osciloscopio para poder observar
la entrada y salida del SOGI-PLL y el microncontrolador, su montaje se puede ver en la Figura 5.7.

La parte experimental no se pudo ejecutar antes de depositar la memoria del TFG, debido
a problemas con la placa de desarrollo, el entorno de desarrollo no reconoćıa el dispositivo pro-
porcionado por los directores. Se contó con la ayuda del profesor del Departamento de Ingenieŕıa
Electrónica y Comunicaciones, Isidro Urriza Parroqué, ya que hab́ıa trabajado previamente con la
placa y con el entorno CCS. Sin embargo, aunque se probara con tres placas, no se pudo conseguir
la implementación en mi equipo de trabajo. Se dirigió a los foros de Texas Instruments pero sin



Figura 5.7: Montaje

Figura 5.8: Mensajes de error CCS Console

éxito. En la Figura 5.8 se muestran los mensajes de error que aparećıan, y por los que esta parte
no se ha podido ejecutar.





Caṕıtulo 6

Conclusiones y Ĺıneas futuras

El PLL es un concepto ampliamente estudiado que tiene numerosas aplicaciones, como pue-
den ser, entre otras, el control de motores, generadores, convertidores de potencia, o sintonizadores
digitales. El estudio de las topoloǵıas presentadas da una buena visión de su utilidad. En dicho estu-
dio se ha analizado la influencia de los distintos parámetros que definen el comportamiento del PLL.

Por otro lado, la implementación de un algoritmo en un microcontrolador va más allá del
diseño del propio algoritmo; es necesario el estudio de las interrupciones, temporizadores, y otras
caracteŕısticas del microcontrolador. Además, pueden aparecer problemas derivados del hardware
utilizado.

La ĺınea de trabajo futura primordial seŕıa resolver los problemas con el entorno de desarrollo
y comprobar el funcionamiento del algoritmo del SOGI-PLL planteado en este TFG.
Otras fuera del alcance de este trabajo seŕıan desarrollar otras topoloǵıas [22], modificar los con-
troles aumentando el orden o aplicando otros criterios de tiempo de respuesta o error en régimen
permanente, por ejemplo. La implementación del algoritmo desarrollado en coma fija, utilizar otro
microcontrolador u otros dispositivos como FPGAs [23], o DSPs [24].

Estudiar su aplicación en sistemas trifásicos, o desarrollar en concreto alguna de las aplicaciones
que resulten de interés para el autor de las mencionadas en este TFG.
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Caṕıtulo 7

Anexos

Código Matlab

PLL

1 c l e a r a l l ;
2 c l o s e a l l ;
3 %% PLL SIMULACION
4 % Rango de t raba jo
5 % 50Hz
6 % margen de enganche = f (Kv, Kpd)
7 % margen de captura = f1 (Kv, Kpd)
8 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 % Var iab l e s

10 % parametros s imulac ion
11 t f i n a l = 0 . 0 4 ; % tiempo de s imulac ion
12 max step = 10e−6; % paso maximo de s imulac ion
13 % Senal de entrada
14 A=1;
15 f 0 = 50 ;
16 t s =0.9e−3; % ms
17 f s =1/ t s ;
18 %%−−−−−−−−−−−−−−−−−−Bloques −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 %−−−−−−−−−−−−−−−−−−−Bloque PD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 Kpd=0.5; %V/2
21 %%−−−−−−−−−−−−−−−−−−Bloque VCO−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 % cont ro l a e l enganche
23 Kv=0.1;
24 w0=2∗pi ∗50 ; % f r e c u e n c i a c e n t r a l
25 %%−−−−−−−−−−−−−−−−−−Bloque LF−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 %% PI
27 SysL=t f ( [ 0 Kpd∗Kv] , [ 1 0 ] ) ;
28 % s i s o t o o l ( SysL )
29 % f i g u r e
30 % bode ( s i s P I ) % SIS exportado de s i s o t o o l
31 % gr id on
32 %PM = 60 BW = 20
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33 Kp = 1 1 . 5 4 7 ;
34 Ki = 346.4102∗Kp;
35 %% PI + primer orden
36 sys1 = t f ( [ 0 Kpd∗Kv] , [ 1 0 ] ) ;
37 wclp = 2∗ pi ∗10 ;
38 sys2 = t f ( [ 0 1 ] , [ ( 1 / wclp ) 1 ] ) ; % primer orden
39 SysL = s e r i e s ( sys1 , sys2 ) ;
40 % s i s o t o o l ( SysL ) ;
41 % f i g u r e
42 % bode ( s i s P I 1 ) % SIS exportado de s i s o t o o l
43 % gr id on
44 %PM = 60 BW = 20
45 Kpp = 4 . 3 7 6 5 ;
46 Kii = 410.0721∗Kpp ;
47 %% PI + segundo orden ( butte r )
48 sys1 = t f ( [ 0 Kpd∗Kv] , [ 1 0 ] ) ;
49 f c = 10 ;
50 wnb = f c /( f s /2) ;
51 [ b , a ] = butte r (2 ,wnb) ;
52 sys = t f (b , a , t s ) ;
53 sys2 = d2c ( sys ) ;
54 [ num, den ] = t fda ta ( sys2 , ’ v ’ ) ;
55 SysL = s e r i e s ( sys1 , sys2 ) ;
56 % s i s o t o o l ( SysL ) ;
57 % f i g u r e
58 % bode ( s i s P I 2 ) % SIS exportado de s i s o t o o l
59 % gr id on
60 %PM = 60 BW = 20
61 Kp3 = 0 . 3 5 ;
62 Ki3 = 401.9782∗Kp3 ;
63 %% SOGI + PI
64 %KPD = 10 ;
65 KV=0.01;
66 f s o g i = 10 ;
67 w0 sog i = 2∗ pi ∗ f s o g i ;
68 t s o g i = 2/(Kpd∗ w0 sog i ) ;
69 sys1=t f ( [ 0 KV] , [ 1 0 ] ) ;
70 s y s s o g i=t f ( [ 0 1 ] , [ t s o g i 1 ] ) ; % l i n e a l i z a c i o n Golestan ( ec . 15)
71 SysL=s e r i e s ( sys1 , s y s s o g i ) ;
72 s i s o t o o l ( SysL )
73 f i g u r e
74 bode ( sisSOGI ) % SIS exportado de s i s o t o o l
75 g r id on
76 %PM = 60 BW = 20
77 % Kp4 = 6 . 474 98 ;
78 % Ki4 = 8.384∗Kp4 ;
79 Kp4 = 0 . 3 5 ;
80 Ki4 = 323.7491∗Kp4 ;
81



82 %%
83 sim ( ’ p l l ’ ) ;
84 %−−−−p lo t t ens i one s−−−−−−−−
85 f i g 1 = f i g u r e (1 ) ;
86 subplot ( 2 , 1 , 1 )
87 p lo t ( stime , Vin , ’ LineWidth ’ , 3 ) ;
88 hold on
89 p lo t ( stime , V out bas ic , ’ LineWidth ’ , 2 )
90 y l a b e l ( ’ Amplitud ’ , ’ FontSize ’ ,12)
91 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
92 l egend ({ ’V { in } ’ , ’V { p l l−bas i co } ’ } , ’ FontSize ’ ,12)
93 g r id
94 g r id minor
95 subplot ( 2 , 1 , 2 )
96 p lo t ( stime , Vin , ’ LineWidth ’ , 3 ) ;
97 hold on
98 p lo t ( stime , V out2 , ’ LineWidth ’ , 2 )
99 y l a b e l ( ’ Amplitud ’ , ’ FontSize ’ ,12)

100 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
101 l egend ({ ’V { in } ’ , ’V { p l l−t ipo2 } ’ } , ’ FontSize ’ ,12)
102 g r id
103 g r id minor
104

105 %%
106 f i g 2 = f i g u r e (2 ) ;
107 subplot ( 2 , 1 , 1 )
108 p lo t ( stime , Vin , ’ LineWidth ’ , 2 ) ;
109 hold on
110 p lo t ( stime , V out3 , ’ LineWidth ’ , 2 )
111 y l a b e l ( ’ Amplitud ’ , ’ FontSize ’ ,12)
112 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
113 l egend ({ ’V{ in } ’ , ’V { p l l−t ipo3 } ’ } , ’ FontSize ’ ,12)
114 g r id
115 g r id minor
116 subplot ( 2 , 1 , 2 )
117 p lo t ( stime , Vin , ’ LineWidth ’ , 2 ) ;
118 hold on
119 p lo t ( stime , V outs , ’ LineWidth ’ , 2 )
120 y l a b e l ( ’ Amplitud ’ , ’ FontSize ’ ,12)
121 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
122 l egend ({ ’V{ in } ’ , ’V { sog i−p l l } ’ } , ’ FontSize ’ ,12)
123 g r id
124 g r id minor
125

126 %%−−−−p lo t f r e cuenc i a−−−−−−−
127 f i g 3 = f i g u r e (3 ) ;
128 subplot ( 2 , 1 , 1 )
129 hold on
130 p lo t ( stime , f o u t b a s i c , ’ LineWidth ’ , 2 )



131 p lo t ( stime , f out2 , ’ LineWidth ’ , 2 )
132 y l a b e l ( ’ Frecuenc ia (Hz) ’ , ’ FontSize ’ , 12)
133 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
134 l egend ({ ’ F { p l l−bas i co } ’ , ’ F { p l l−t ipo2 } ’ } , ’ FontSize ’ ,12)
135 g r id
136 g r id minor
137 hold o f f
138 subplot ( 2 , 1 , 2 )
139 hold on
140 p lo t ( stime , f ou t s , ’ LineWidth ’ , 2 )
141 p lo t ( stime , f out3 , ’ LineWidth ’ , 2 )
142 y l a b e l ( ’ Frecuenc ia (Hz) ’ , ’ FontSize ’ , 12)
143 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
144 l egend ({ ’ F { p l l−t ipo3 } ’ , ’ F { sog i−p l l } ’ } , ’ FontSize ’ ,12)
145 g r id
146 g r id minor
147 hold o f f
148 %%−−−−p lo t t i t a−−−−−−−−−−−−−
149 f i g 4 = f i g u r e (4 ) ;
150 subplot ( 2 , 1 , 1 )
151 hold on
152 p lo t ( stime , t i t a o u t b a s i c , ’ LineWidth ’ , 2 )
153 p lo t ( stime , t i t a o u t 2 , ’−− ’ , ’ LineWidth ’ , 3 )
154 y l a b e l ( ’ \ theta ( rad ) ’ , ’ FontSize ’ ,12)
155 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
156 l egend ({ ’ \ th e ta { p l l−bas i co } ’ , ’ \ th e ta { p l l−t ipo2 } ’ } , ’ FontSize ’ ,12)
157 g r id
158 g r id minor
159 hold o f f
160 subplot ( 2 , 1 , 2 )
161 hold on
162 p lo t ( stime , t i t a o u t 3 , ’ LineWidth ’ , 2 )
163 p lo t ( stime , t i t a o u t s , ’−− ’ , ’ LineWidth ’ , 2 )
164 y l a b e l ( ’ \ theta ( rad ) ’ , ’ FontSize ’ ,12)
165 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
166 l egend ({ ’ \ th e ta { p l l−t ipo3 } ’ , ’ \ th e ta { sog i−p l l } ’ } , ’ FontSize ’ ,12)
167 g r id
168 g r id minor
169 hold o f f

SOGI PLL

1 c l e a r a l l ;
2 c l o s e a l l ;
3 %% SOGI−PLL d i s c r e t i z a d o SIMULACION
4 % Rango de t raba jo
5 % 50Hz



6 % margen de enganche = f (Kv, Kpd)
7 % margen de captura = f1 (Kv, Kpd)
8 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 % Var iab l e s

10 % parametros s imulac ion
11 t f i n = 0 . 5 ; % tiempo de s imulac ion
12 max step = 10e−6; % paso maximo de s imulac ion
13 %Senal de entrada
14 A = 1 ; % Amplitud
15 f 0 = 50 ; % f r e c (Hz) s ena l de entrada
16

17 Fs = 10000 ; % Frec (Hz) muestreo
18 Ts = 1/Fs ; % Tiempo muestreo ( s )
19 t = 0 : Ts : t f i n ;
20 %%−−−−−−−−−−−−−−−−−−Bloque VCO−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 % cont ro l a e l enganche
22 Kv=0.1; % Kv=0.08 para caso 2
23 w0=2∗pi ∗50 ; % f r e c u e n c i a c e n t r a l
24 %%−−−−−−−−−−−−−−−−−−Bloque LF−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 % Kp = 0 . 3 5 ;
26 % Ki = 323.7491∗Kp;
27 % s i s = t f ( [Kp Ki ] , [ 1 0 ] ) ;
28 % s i s z = c2d ( s i s , Ts ) ;
29 % Kpz = 0 . 3 5 ;
30 % Kiz = 0 . 3 3 8 7 ;
31 Kpz = 0 . 3 5 ;
32 Kiz = 0 . 3 3 8 7 ;
33 %% D i s c r e t i z a c i o n y ec . en d i f e r e n c i a
34 % c a l c u l o c o e f . de l SOGI
35 k = 0 . 5 ; % Kpd
36 wn = 2∗ pi ∗ f 0 ;
37 i n va = t f ( [ k∗wn 0 ] , [ 1 k∗wn wnˆ 2 ] ) ;
38 in vb = t f ( [ k∗wnˆ2 ] , [ 1 k∗wn wnˆ 2 ] ) ;
39 i n vaz = c2d ( in va , Ts , ’ t u s t i n ’ ) ;
40 i n vbz = c2d ( in vb , Ts , ’ t u s t i n ’ ) ;
41 [ num, den , Ts ] = t fda ta ( in vaz , ’ v ’ ) ;
42 b0=num(3) ;
43 b2=num(1) ;
44 a0=den (1 ) ;
45 a1=den (2 ) ;
46 a2=den (3 ) ;
47 [ num, den , Ts ] = t fda ta ( in vbz , ’ v ’ ) ;
48 bb0=num(1) ;
49 bb1=num(2) ;
50 bb2=num(3) ;
51 aa0=den (1) ;
52 aa1=den (2) ;
53 aa2=den (3) ;
54 %% Simulac ion Simulink



55 Kpd = 1 ;
56 sim ( ’ SOGIpllZ ’ ) ;
57 f i g 1 = f i g u r e (1 ) ;
58 p lo t ( stime , Vin , ’ LineWidth ’ , 3 ) ;
59 hold on
60 p lo t ( stime , Vout , ’ LineWidth ’ , 2 )
61 y l a b e l ( ’ Amplitud ’ , ’ FontSize ’ ,12)
62 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
63 l egend ({ ’V { in } ’ , ’V {out} ’ } , ’ FontSize ’ ,12)
64 g r id
65 g r id minor
66 f i g u r e (2 )
67 subplot ( 2 , 1 , 2 )
68 p lo t ( stime , fout , ’ LineWidth ’ , 3 ) ;
69 y l a b e l ( ’ Frecuenc ia (Hz) ’ , ’ FontSize ’ , 12)
70 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
71 l egend ( ’ f {out} ’ , ’ FontSize ’ ,12)
72 g r id
73 g r id minor
74 subplot ( 2 , 1 , 1 )
75 p lo t ( stime , t i t a , ’ LineWidth ’ , 3 ) ;
76 y l a b e l ( ’ \ theta ( rad ) ’ , ’ FontSize ’ ,12)
77 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
78 l egend ( ’ \ th e ta {out} ’ , ’ FontSize ’ ,12)
79 g r id
80 g r id minor
81 %% Simulac ion Matlab
82 % arrays
83 e r r = [ 0 , 0 , 0 , 0 ] ;
84 v2 = [ 0 , 0 , 0 ] ;
85 c o s t = [ 1 , 1 , 1 ] ;
86 s i n t = [ 0 , 0 , 0 ] ;
87 theta = [ 0 , 0 , 0 ] ;
88 wo=0;
89 % s e n a l e s
90 v a = [ 0 , 0 , 0 , 0 ] ;
91 v b = [ 0 , 0 , 0 , 0 ] ;
92 vd = [ 0 , 0 , 0 , 0 ] ; % s a l i d a Vd de l a t r a n s f . de PARK
93 vq = [ 0 , 0 , 0 , 0 ] ; % s a l i d a Vq de l a t r a n s f . de PARK
94 % plo t
95 Var = [ 0 , 0 , 0 , 0 ] ;
96 Theta = [ 0 , 0 , 0 , 0 ] ;
97 V a = [ 0 , 0 , 0 , 0 ] ;
98 V b = [ 0 , 0 , 0 , 0 ] ;
99 V d = [ 0 , 0 , 0 , 0 ] ;

100 V q = [ 0 , 0 , 0 , 0 ] ;
101 V 2 = [ 0 , 0 , 0 , 0 ] ;
102

103 %%



104 % sena l de entrada
105 L=length ( t ) ;
106 %%CASO 1 : Sa l to de f a s e a mitad
107 f o r n = 1 : f l o o r (L)
108 u(n) = A∗ s i n (2∗ pi ∗ f 0 ∗Ts∗n) ;
109 end
110 f o r n = f l o o r (L/2) : L
111 u(n) = A∗ s i n (2∗ pi ∗ f 0 ∗Ts∗n+pi /2) ;
112 end
113 %%CASO 2 : v a r i a c i o n en l a f r e c u e n c i a
114 f o r n = 1 : f l o o r (L)
115 u(n) = A∗ s i n (2∗ pi ∗ f 0 ∗Ts∗n) ;
116 end
117 f o r n = f l o o r (L/2) : L
118 u(n) = A∗ s i n (2∗ pi ∗( f0 −0.5)∗Ts∗n) ;
119 end
120 %%CASO 3 : v a r i a c i o n en l a amplitud
121 f o r n = 1 : f l o o r (L)
122 u(n) = A∗ s i n (2∗ pi ∗ f 0 ∗Ts∗n) ;
123 end
124 f o r n = f l o o r (L/2) : L
125 u(n) = 1.5∗A∗ s i n (2∗ pi ∗ f 0 ∗Ts∗n) ;
126 end
127 %%
128 % proceso de PLL
129 f o r n = 3 : t f i n /Ts
130 % SOGI
131 v a (1 ) = b0∗u(n)+b2∗u(n−2)−(a1∗ v a (2 )+a2∗ v a (3 ) ) ;
132 v a (3 ) = v a (2 ) ;
133 v a (2 ) = v a (1 ) ;
134

135 v b (1 ) = bb0∗u(n)+bb1∗u(n−1)+bb2∗u(n−2)−(aa1∗v b (2 )+aa2∗v b (3 ) ) ;
136 v b (3 ) = v b (2) ;
137 v b (2 ) = v b (1) ;
138 % TF PARK
139 vd (1) = v a (1 ) ∗ s i n t (2 )+v b (1) ∗ c o s t (2 ) ;
140 vq (1 ) = −v a (1 ) ∗ c o s t (2 )+v b (1) ∗ s i n t (2 ) ;
141

142 % F i l t r o PI
143 v2 (1 ) = Kpz∗vq (1 )−Kiz∗vq (2 )+v2 (2 ) ;
144 vq (2 ) = vq (1 ) ;
145 v2 (2 ) = v2 (1) ;
146

147 wo = w0+Kv∗v2 (1 ) ;
148 theta (1 ) = theta (2 )+wo∗Ts ;
149 i f ( theta (1 )>=2∗pi )
150 theta (1 ) = theta (1 )−2∗pi ;
151 end
152 theta (2 ) = theta (1 ) ;



153 s i n t (1 ) = s i n ( theta (1 ) ) ;
154 c o s t (1 ) = cos ( theta (1 ) ) ;
155 s i n t (2 ) = s i n t (1 ) ;
156 c o s t (2 ) = c o s t (1 ) ;
157 Theta (n+1) = theta (1 ) ;
158 V a (n+1) = v a (1 ) ;
159 V b (n+1) = v b (1) ;
160 V d (n+1) = vd (1) ;
161 V q (n+1) = vq (1) ;
162 V 2 (n+1) = v2 (1) ;
163 Var (n+1) = s i n t (1 ) ;
164 end
165 %%CASO 1
166 caso1 = f i g u r e (1 ) ;
167 e r r o r = Var−u ;
168 subplot ( 2 , 1 , 1 )
169 p lo t ( t , Var , ’ r ’ , t , u , ’b ’ )
170 y l a b e l ( ’ Amplitud ’ , ’ FontSize ’ ,12)
171 l egend ({ ’V { in } ’ , ’V {out} ’ } , ’ FontSize ’ ,12)
172 g r id on
173 subplot ( 2 , 1 , 2 )
174 p lo t ( t , e r ro r , ’ r ’ )
175 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
176 g r id on
177 l egend ( ’ e r r o r ’ , ’ FontSize ’ , 12)
178

179 %%CASO 2
180 caso2 = f i g u r e (2 ) ;
181 e r r o r = Var−u ;
182 subplot ( 2 , 1 , 1 )
183 p lo t ( t , Var , ’ r ’ , t , u , ’b ’ )
184 y l a b e l ( ’ Amplitud ’ , ’ FontSize ’ ,12)
185 l egend ({ ’V { in } ’ , ’V {out} ’ } , ’ FontSize ’ ,12)
186 g r id on
187 subplot ( 2 , 1 , 2 )
188 p lo t ( t , e r ro r , ’ r ’ )
189 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
190 g r id on
191 l egend ( ’ e r r o r ’ , ’ FontSize ’ , 12)
192 %%CASO 3
193 caso3 = f i g u r e (3 ) ;
194 e r r o r = [ ( Var (1 : 252 2 )−u ( 1 : 2 522 ) ) , ( Var (2523 :5001) −1/1.5∗u (2523 :5001) ) ] ;
195 subplot ( 2 , 1 , 1 )
196 p lo t ( t , u , ’ r ’ , t , Var , ’b ’ )
197 y l a b e l ( ’ Amplitud ’ , ’ FontSize ’ ,12)
198 l egend ({ ’V { in } ’ , ’V {out} ’ } , ’ FontSize ’ ,12)
199 g r id on
200 subplot ( 2 , 1 , 2 )
201 p lo t ( t , e r ro r , ’ r ’ )



202 x l a b e l ( ’ Tiempo ( s ) ’ , ’ FontSize ’ ,12)
203 g r id on
204 l egend ( ’ e r r o r ’ , ’ FontSize ’ , 12)

Código C

1 #inc lude ”msp . h”
2 #inc lude <s t d i n t . h>
3 #inc lude <s tdboo l . h>
4 #inc lude <math . h>
5

6 /∗ Dec larac ion de func i one s ∗/
7

8 void configurar CLK ( void ) ;
9 void c o n f i g u r a r P u e r t o s ( void ) ;

10 void configurar ADC ( void ) ;
11 void conf igurar Timer32 ( void ) ;
12

13 v o l a t i l e i n t va lue adc ;
14 v o l a t i l e i n t SGN;
15 void main ( void )
16 {
17 d i s a b l e i r q ( ) ;
18 WDT A−>CTL = WDT A CTL PW + WDT A CTL HOLD; // Stop watchdog t imer
19 configurar CLK ( ) ;
20 con f igurar Timer32 ( ) ;
21 c o n f i g u r a r P u e r t o s ( ) ;
22 configurar ADC ( ) ;
23

24

25 NVIC EnableIRQ ( T32 INT1 IRQn ) ;
26 e n a b l e i r q ( ) ;
27

28 whi le (1 )
29 {
30

31 }
32 }
33

34 void configurar CLK ( void ) {
35 // en f i c h e r o system msp432p401r . c se puede c o n f i g u r a r

SYSTEM CLOCK 4800000 , l a m xima f r e c u e n c i a
36 // Posiblemente no es n e c e s a r i o l lamar a e s ta f u n c i n de

c o n f i g u r a c i n
37 CS−>KEY = CS KEY VAL; // unlock CS r e g i s t e r s
38 CS−>CTL0 = 0 ; // r e s e t DCO s e t t i n g s
39 CS−>CTL0 = CS CTL0 DCORSEL 5 ; // s e l e c t DCO 5 (48MHz)



40 CS−>CTL1 = CS CTL1 SELS DCOCLK | CS CTL1 SELM DCOCLK ; // ACLK =
REFOCLK, SMCLK = MCLK = DCOCLK

41 CS−>KEY = 0 ; // lock CS r e g i s t e r s
42 }
43

44 void conf igurar Timer32 ( void ) {
45 TIMER32 1−>LOAD = 4800−1; /∗ 4800 , f c l k = 48MHZ f s = 10 KHz∗/
46 TIMER32 1−>CONTROL = TIMER32 CONTROL ENABLE | TIMER32 CONTROL MODE

| TIMER32 CONTROL IE ; /∗ Enable , p e r i o d i c mode , i n t e r r u p t
enable ∗/

47 }
48

49

50 void c o n f i g u r a r P u e r t o s ( void ) {
51 // S a l i d a s d i g i t a l e s P6 . 0 y P6 . 1
52 P6−>SEL1 &= ˜(BIT1 + BIT0) ; // P6 . 1 y P6 . 0 I /O
53 P6−>SEL0 &= ˜(BIT1 + BIT0) ;
54 P6−>OUT |= BIT1 + BIT0 ;
55 P6−>DIR |= BIT1 + BIT0 ;
56 }
57

58

59 void configurar ADC ( void ) {
60 P4−>SEL1 |= BIT7 ; // Enable A/D channel A6 de ADC − pin P4 . 7
61 P4−>SEL0 |= BIT7 ;
62

63 // ADC14 Conf igurat ion
64 ADC14−>CTL0 &= ˜ADC14 CTL0 ENC ;
65 /∗CONFIGURE ADC14∗/
66 ADC14−>CTL0 |= ADC14 CTL0 SSEL MCLK | ADC14 CTL0 SHT0 2 |

ADC14 CTL0 ON ; /∗ADC14 ON | S&H=16 | SAMPLING TIME∗/
67 ADC14−>CTL1 = ADC14 CTL1 RES 14BIT ;
68 ADC14−>MCTL[ 0 ] |= ADC14 MCTLN INCH 6 | ADC14 MCTLN VRSEL 0 ; //

r e f+=AVcc , channel = A6
69 }
70

71

72 void leerADC ( void ) {
73 ADC14−>CTL0 |= ADC14 CTL0 ENC | ADC14 CTL0 SC ; /∗

ENABLE CONVERTION | SAMPLING CONVERSION∗/
74 whi le (ADC14−>CTL0 & ADC14 CTL0 BUSY) ;
75 va lue adc = ADC14−>MEM[ 0 ] ;
76

77 }
78 void s o g i P l l ( i n t Da) {
79 /∗ Var iab l e s ∗/
80 f l o a t Ts = 1 .0 e−04;
81 f l o a t a1 = −1.9834;
82 f l o a t a2 = 0 . 9 8 4 4 ;



83 f l o a t b0 = −0.0078;
84 f l o a t b2 = −b0 ;
85 f l o a t aa1 = −1.9834;
86 f l o a t aa2 = 0 . 9 8 4 4 ;
87 f l o a t bb0 = 1.2238 e−4;
88 f l o a t bb1 = 2.4476 e−4;
89 f l o a t bb2 = 1.2238 e−04;
90 f l o a t Kp = 336.47498 ;
91 f l o a t Ki = 336 .47271 ;
92 f l o a t Kv = 0 . 8 ;
93 f l o a t w0 = 314 . 1593 ; /∗Hz∗/
94 f l o a t wo =0.0;
95 /∗−−−−−−−− S e a l e s −−−−−−−−−−− ∗/
96 f l o a t Vin0 , Vin1 , Vin2 = 0 . 0 ;
97 f l o a t v a0 , v a1 , v a2 = 0 . 0 ;
98 f l o a t v b0 , v b1 , v b2 = 0 . 0 ;
99 f l o a t v q0 , v q1 = 0 . 0 ;

100 f l o a t v2 0 , v2 1 = 0 . 0 ;
101 f l o a t theta0 , theta1 = 0 . 0 ;
102 f l o a t sen0 , sen1 = 0 . 0 ;
103 f l o a t cos0 , cos1 = 1 . 0 ;
104 /∗−−−−−−−− Control −−−−−−−−−−−∗/
105 Vin0=( f l o a t )Da ;
106 /∗−−−−−− SOGI−−−−−−−−−∗/
107 v a0 = b0∗Vin0+b2∗Vin2−(a1∗ v a1+a2∗ v a2 ) ;
108 v a2 = v a1 ;
109 v a1 = v a0 ;
110 v b1 = bb0∗Vin0+bb1∗Vin1+bb2∗Vin2−(aa1∗v b1+aa2∗v b2 ) ;
111 v b2 = v b1 ;
112 v b1 = v b0 ;
113 /∗−−−−−− Tf PARK−−−−−−−−−∗/
114 v q0 = −v a0 ∗ cos1+v b0∗ sen1 ;
115 /∗−−−−−− Loop F i l t e r−−−−−−−−−∗/
116 v2 0 = Kp∗v q0−Ki∗v q1+v2 1 ;
117 v q1 = v q0 ;
118 v2 1 = v2 1 ;
119 /∗−−−−−− VCO−−−−−−−−−∗/
120 wo = w0 + Kv∗ v2 0 ;
121 theta0 = theta1 + wo∗Ts ;
122 i f ( theta0 >=6.2832)
123 theta0 = theta0 − 6 . 2 8 3 2 ;
124

125 theta1 = theta0 ;
126 sen0 = s i n ( theta0 ) ;
127 cos0 = cos ( theta0 ) ;
128 sen1 = sen0 ;
129 cos1 = cos0 ;
130

131 SGN = ( i n t ) sen0 ;



132 }
133 void T32 INT1 IRQHandler ( void ) {
134 TIMER32 1−>INTCLR = 0 ; // Clear i n t e r r u p t f l a g
135 leerADC ( ) ;
136 s o g i P l l ( va lue adc ) ;
137 P6−>OUT̂ =SGN; // Toggle P6 . 0 , comprobar que l o hace cad 100 us
138 }
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