
V-tracer: a Vehicular Trace Generator for Future
Predictive Maintenance

Mirialys Machin, Piedad Garrido, Francisco J. Martinez
iNiT Research Group

University of Zaragoza, Spain
{mmachin, piedad, f.martinez}@unizar.es

Julio A. Sanguesa
Centro Universitario de la Defensa

Zaragoza, Spain
jsanguesa@unizar.es

Abstract— In this paper we present V-tracer, a vehicular trace
generator aimed at generating realistic data about mobility of
vehicles, as well as their daily operation and wear. The objectives
of our approach are two: first, gathering real traces obtained by
in-vehicle on-board units (OBUs), and second, as the first target
is hard to achieve, generating synthetic data. The final goal will
be getting all the information that would be very useful to infer
and predict vehicle failures. The traces provided by our generator
may be used to perform the predictive maintenance of vehicles
in the near future.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) are intended to
improve the operation and safety of transportation through
the use of solutions based on information technology and
telecommunications [1]. Although recent ITS-based proposals
have mainly focused on transport safety applications, other
services such as those related to predictive maintenance could
be developed. Predictive maintenance services will reduce the
maintenance cost by suggesting drivers when they have to
replace any component just before its malfunction [2].

To carry out an efficient and accurate predictive maintenance
it is necessary to gather and process a massive quantity of data
related to vehicles and their behavior, such as diagnostic trou-
ble codes (DTCs), mobility patterns, driving styles, etc. These
data would allow extracting information useful to accurately
predict some vehicle component faults before the end of their
lifetime, or failure takes place.

As gathering real traces obtained by in-vehicle onboard
units (OBUs) is currently hard, we consider necessary to
generate synthetic data that accurately resemble the data that
would be obtained by real vehicles. However, data related
to vehicles, their components and weather conditions, are
currently distributed in different sources. Additionally, several
data are difficult to obtain because they are proprietary or are
protected by confidentiality agreements.

In this paper, we describe the implementation of V-tracer,
a vehicular data generator primarily aimed at obtaining data
related to vehicles mobility, their daily operation, and wear.
V-tracer is able to combine real information obtained from
in-vehicle OBUs and a synthetic vehicular data generator to
obtain realistic traces including routes, weather conditions, and
failures. Our data generator will be capable of automatically
generating vehicle-related data that, either is currently una-
vailable, or it would take much more time to gather in real

scenarios. In the future, researchers may use these data to
build better and more accurate vehicle predictive maintenance
systems. Existing works focused their attention on generating
data for particular objectives, which are not related to vehicles
[3]. Even though some of them are capable of generating
more generic data [4], [5], these approaches cannot be directly
extrapolated to the vehicular environment.

II. OUR PROPOSAL: V-TRACER

In this section, we describe V-tracer, a system which gene-
rates synthetic data traces related to vehicle environment. The
software has been implemented using the Java programming
language and the PostgreSQL open source database.

As shown in Figure 1, the vehicular generator architecture
can be divided into three different parts. Specifically, we can
identify: (i) the input data reading process, (ii) the parameters
adjustment process, and finally, (iii) the output data process,
where the output data is generated and stored in a database.

II-A. Input data

The information used as the input data of the system is
scattered in several sources and stored in different formats. In
fact, all the information related to vehicles must be obtained
from different sources and has to be unified (we make this
in CSV files) to be processed by the vehicular generator. This
information includes vehicles’ make, model, fuel consumption,
their sales percentage [6], fuel tank capacity [7], tires used, the
routes followed, the weather conditions (i.e., minimum and
maximum temperatures, relative humidity, and precipitations)
[8], and finally, the most common vehicles’ failures [9].

Fig. 1. Vehicular data generator architecture.



II-B. Parameters

During the second step, the user provides the parameters
to the system. Basically, these parameters will include the
number of vehicles to be generated and the number of routes
for each one. Also, the user will have the possibility to choose
the kind of routes to generate (rural or urban) and the region
in Spain. According to the parameters specified by the user,
the system will generate the traces during the last step.

II-C. Generating output data

The third step comprises the generation of vehicular traces.
After receiving the number of vehicles, the system will ran-
domly generate them according to the data of sales in 2016 [6],
and it also assigns them different routes. More specifically, a
set of routes will be generated for each vehicle including useful
information regarding refueling in gas stations, the weather
conditions, visits to garages, as well as vehicles’ failures.

The generation and the assignation of a route to a vehicle
involves different issues, such as determining the weather
conditions, or if it is necessary to visit a gas station. The routes
including their distance, average velocity, and duration of each
trajectory will be generated using the Google Maps Geocoding
API [10]. Users will be able to select the number of routes per
vehicle and the area where the vehicles can travel. In addition,
refueling is automatically generated for each vehicle when the
fuel tank is below 25 % of its capacity, although this threshold
can be changed. Additionally, the system can generate failures
including some details (i.e., date, affected component, problem
description, and the location of the garage). Therefore, a set of
vehicles along with their routes, the refueling made according
to the specified parameters, and the weather in each route will
be obtained at the end of the execution. All these data may be
used by any vehicles’ predictive maintenance system.

III. RESULTS: SIMULATION EXAMPLE

Our vehicular data generator was executed with the follo-
wing parameters: (i) 50 vehicles. This number was chosen
to obtain a reasonable sample to test the performance of
our proposal, (ii) 5,331 routes, approximately 100 routes per
vehicle, and (iii) half of the routes were generated all over
the country (i.e., Spain), and the other half were generated in
different regions: Aragón, Andalucı́a, Galicia, and Cataluña.

During the routes generated for the vehicles, 1,233 refueling
operations were carried out with a total of 48,876 liters of fuel.
In addition, the system generated 81 failures: 13.5 % were in
the engine, 29.6 % in the electric system (ES), 12.3 % in the
transmission, 9.9 % in the fuel injection system (FIS), 14.8 %
in the wheels, steering system, suspension and brakes (WSSB),
and the remaining 19.7 % in other systems. Figure 2 shows a
comparison between the data generated by the system and the
real data obtained by the RAC [9]. As shown, there is a good
agreement between the real and the generated data, except for
the failures in the electric system and in the transmission.

IV. CONCLUSIONS

In this paper, we described a synthetic data generator spe-
cially designed for vehicle environments. The main objective

Fig. 2. Real failures [9] and generated failures.

is to provide realistic vehicles’ traces that could be used
to develop and train predictive maintenance systems in the
future. Unlike other applications that obtain data only from the
vehicles, our system is able to generate synthetic traces (i.e.,
routes, vehicles with their characteristics, weather conditions,
refueling and failures) quickly (about 4,000 routes/h) and ea-
sily, without the obligation to install any additional equipment
and thus saving considerable time and money to obtain data.

V. ACKNOWLEDGMENTS

This work has been partially supported by the 2016 Mo-
bility Scholarship for Latin American PhD Students Program
granted by the University of Zaragoza and the Santander Bank.

REFERENCES

[1] Economic Committee, “Directive 2010/40/UE of the
european parliament and council,” 2010, Available at
http://195.76.37.162/NR/rdonlyres/77CCCE9E-3548-41FE-BF7A-
AF03023445F2/115152/LexUriServ.pdf.

[2] D. Goyal, A. Saini, S. S. Dhami, and B. S. Pabla, “Intelligent predic-
tive maintenance of dynamic systems using condition monitoring and
signal processing techniques—a review,” in International Conference
on Advances in Computing, Communication and Automation (ICAC-
CA)(Spring), July 2016, p. 1–6.

[3] L. Kelch, T. Pögel, L. Wolf, and A. Sasse, “Traffic generator for
hsdpa network simulations,” in International Conference on Connected
Vehicles and Expo (ICCVE), 2014, p. 325–330.

[4] R. Malhotra, Poornima, and N. Kumar, “Automatic test data generator: A
tool based on search-based techniques,” in 5th International Conference
on Reliability, Infocom Technologies and Optimization (Trends and
Future Directions) (ICRITO), 2016, pp. 570–576.

[5] J. Singh and K. Singh, “Designing a customized test data generator for
effective testing of a large database,” in International Conference on
Advanced Computer Theory and Engineering, 2008, p. 84–88.

[6] Institute for the diversification of savings and
energy (IDAE). Cars Database, 2016, available at
http://coches.idae.es/portal/BaseDatos/MarcaModelo.aspx.

[7] Informative cars, 2015, available at http://carerac.com.
[8] National Oceanic and Atmospheric Administration (NOAA), 2016,

available at http://www.noaa.gov/.
[9] Reial Automòbil Club de Catalunya, “Las 4 averı́as de coche más

habituales,” 2017, Available at http://blog.racc.es/coche-y-moto/las-4-
averias-de-coche-mas-habituales/.

[10] Google Maps API. Google Developers,
“What is Geocoding?” 2017, Available at
https://developers.google.com/maps/documentation/geocoding/intro?hl=en-

419.


