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Abstract

This work introduces the n-dimensional congruent lattices using necklaces, a general methodology to generate uniform distributions
in multidimensional modular spaces. The formulation presented in this manuscript constitutes the mathematical foundation of the most
used satellite constellation designs, including Walker Constellations, and Lattice and Necklace Flower Constellations. These constella-
tion design models are based on Number Theory and allow to obtain distributions that have some interesting properties of uniformity
and large number of symmetries. This work includes the complete formulation of the methodology, proofs for existence and uniqueness
of the distribution definitions, and several theorems that focus on the counting possibilities of design for the most common cases of study.
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1. Introduction

The generation of distributions of elements in multidi-
mensional spaces while preserving some configuration
properties is a complex process due to the large number
of variables involved in the problem, which are propor-
tional to the number of elements that are required to be dis-
tributed and the number of dimensions considered. This
situation is worsened by the difficulty of studying and opti-
mizing distributions that depend on many variables in a
reasonable amount of time. An example of this kind of
problems is satellite constellation design.

In general, satellite constellation design requires to set
the values of six variables per satellite in order to define
the state of each spacecraft in the constellation. These vari-
ables could be, for example, the positions and velocities of
the satellites, or the so called classical elements (semi-major
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axis, inclination, eccentricity, right ascension of the ascend-
ing node, argument of perigee and mean anomaly). This
means that the number of dimensions considered in the
problem quickly increases with the number of satellites in
the constellation. Moreover, and since satellite constella-
tions are dynamical systems, multitude interrelations
appear between satellites during their movement, increas-
ing even more the complexity of these systems.

In the last fifty years, a wide variety of constellation
design methodologies have been introduced to simplify
the design process and the study of satellite constellations.
Examples of that are Walker Constellations (Walker,
1984), Streets of Coverage (Luders, 1961), Draim Constel-
lations (Draim, 1987), Flower Constellations (Mortari
et al.,, 2004; Mortari and Wilkins, 2008; Wilkins and
Mortari, 2008), or the kinematically regular satellite net-
works (Mozhaev, 1973), but there are many others
(Ulybyshev, 2008; Lo, 1999; Beste, 1978; Ballard, 1980;
Ortore et al., 2017; Dale et al., 2017; Arnas et al., 2017b).
The common characteristic of all these design methodolo-
gies is that they limit the searching space by imposing a
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set of conditions that are interesting for satellite constella-
tions, such as repeatability of the dynamic, Earth coverage,
or the sharing of their space tracks.

Most of the constellation design methodologies rely on
performing their satellite distribution using solely real
numbers. This seems to be the most natural process to fol-
low since the distribution variables are real numbers (such
as distances, angles or velocities). However this is far from
true. In a constellation there are an integer number of satel-
lites that are located in an integer number of orbits. Thus, it
makes sense to use integers in the definition of the constel-
lation distribution. This is the basic idea behind Lattice
Flower Constellations (Avendano et al., 2013; Avendano
and Mortari, 2012; Davis et al., 2013), to benefit from
the properties of Number Theory in order to perform satel-
lite constellation design.

Lattice Flower Constellations have shown its beneficial
properties in different problems including telecommunica-
tions (Mortari et al., 2011), Earth coverage and global
positioning systems (Casanova et al., 2014a). Moreover,
the effects of orbital perturbations have also been studied
for Lattice Flower Constellations showing that it is easy
and feasible to maintain the properties of constellations
over time (Casanova et al., 2015; Arnas et al., 2016;
Arnas and Casanova, 2020).

However, the number of possibilities that Lattice Flower
Constellations can generate is limited by the number of
satellites in the constellation. This limitation was overcome
by the introduction of the concept of necklace in satellite
constellation design (Casanova et al., 2014). The idea was
to generate a fictitious constellation with a larger number
of satellites than the ones required, and then select a subset
of those satellites (the real ones) in such a way that the con-
figuration maintains the properties of uniformity and sym-
metry from the original Lattice Flower Constellation.
Later, and in order to generalize this idea for its application
to optimization problems and extend the original applica-
tions and design possibilities, Necklace Flower Constella-
tions were introduced (Arnas, 2018; Arnas et al., 2017a,c).

This paper introduces the n-Dimensional congruent lat-
tices using necklaces, a mathematical methodology that
allows to generate uniform distributions in a modular
space of any dimension, maintaining the properties of uni-
formity, symmetry and congruence of the resultant config-
urations. In particular, this methodology represents the
generalization of the methodologies introduced in the 2D
(Arnas et al., 2017a), 3D (Arnas et al., 2017c), and 4D
(Arnas, 2018) Lattice and Necklace Flower Constellations,
making the formulation more compact and robust. In that
respect, this manuscript deals also with the problem of exis-
tence and uniqueness of the configurations obtained, pro-
viding the set of constraints that the parameters of the
distribution must fulfill in order to avoid duplicates in
the formulation. Additionally, several theorems that focus
on the problem of counting the number of possibilities of
design under different conditions are presented. As such,
they represent the mathematical generalization of the theo-

rems introduced for the 2D Necklace Flower Constella-
tions (Arnas et al., 2017a). Furthermore, the theorems
included in this work have proven useful to other applica-
tions other than satellite constellation design. An example
of that is kernel generation for star-trackers under the exis-
tence of false stars in their images (Arnas et al., 2017d).

This article is organized as follows. First, a motivation
of the manuscript is included in order to link this work
to the origins of the problem considered. Second, we intro-
duce the concept of congruent lattices in n-dimensional
spaces, providing a general formulation to define congru-
ent distributions in multidimensional modular spaces, to
find the constraints of the formulation and to derive the
number of possibilities of design resultant from this
methodology. Then, we present the concept of Necklace
and apply it to the congruent lattices generated previously.
In that regard, we are interested in finding the distributions
that maintain the conditions of congruence from the orig-
inal lattice configurations. Moreover, we include several
theorems for counting the number of possibilities that this
formulation allows. Finally, we show the relations between
this mathematical methodology with the Lattice and Neck-
lace Flower Constellations.

2. Motivation of the problem

As mentioned in the introduction, the work presented in
this manuscript is motivated by the difficulties that appear
during satellite constellation design when a large number of
spacecrafts is considered. Space missions including global
coverage, telecommunications, or global positioning sys-
tems are examples of applications where this problem
becomes important. In particular, these systems require
that the resultant distributions are as uniform as possible
in order to optimize the number of satellites in orbit.

As a result of that, Walker Constellations have become
the most well known satellite constellation design when
defining constellations in circular orbits and several orbi-
tal planes. The idea behind this distribution is to obtain a
configuration of satellites in such a way that no matter
which satellite of the constellation is selected, the space-
craft configuration observed from it remains the same.
In other words, the relative configuration of the constella-
tion is independent of the satellite that is selected as the
reference. This interesting property is achieved by dis-
tributing all the satellites using only the right ascension
of the ascending node and the mean anomaly as distribu-
tion variables, where satellites are located evenly in a
given number of equally spaced orbital planes, being the
distances between satellites of the same orbit constant.
This kind of distribution is in fact, and mathematically
speaking, the representation of a congruent lattice
(Apostol, 1976; Conway and Sloane, 1999; Birkhoff,
1935) in a two dimensional modular space. Therefore, this
work aims to focus on the mathematical aspect of the
problem in order to obtain useful information on these
distributions and their properties.
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This general idea for the uniform distribution of satel-
lites can be extended to elliptical orbits by introducing
the argument of perigee as the third distribution variable.
In that case, the objective remains the same, to generate
a configuration whose relative distribution is independent
on the satellite of the constellation selected. This is the
focus of 2D and 3D Lattice Flower Constellations. Addi-
tionally, this methodology can be extended by taking into
account more distribution variables. Particularly, 4D Lat-
tice Flower Constellations becomes the design tool when
the semi-major axes of the orbits are considered or when
we want to include the orbit inclination as a distribution
parameter.

All these satellite constellation designs generate com-
pletely uniform configurations in the chosen distribution
variables. However, there are missions where, despite of
requiring a mostly uniform distribution, satellites cannot
be located evenly in their inertial orbits due to mission
requirements. Also, there are many space missions whose
mission requirements only allow to define a set of available
positions where satellites can be located, needing in addi-
tion a uniform distribution of spacecrafts in these available
positions to optimize revisiting time, coverage or telecom-
munication access. For those applications, the notion of
necklace (Riordan, 1978; Tucker, 1984; Gilbert and
Riordan, 1961) is introduced, using as a base the previous
satellite constellation designs. This allows to increase the
number of possibilities that these methodologies can pro-
vide and allows more freedom during design. For this rea-
son, it seems interesting to study how to extend the notion
of necklace into congruent lattices while providing a math-
ematical foundation to all these satellite constellation
design methodologies already in use.

3. n-Dimensional congruent lattice distribution

The objective of this section is to provide a mathemati-
cal foundation for the generation of uniform distributions
in modular spaces and extend it to problems where any
number of distribution variables is involved. In addition,
we are interested in aiming this study to the mathematical
generalization of Walker, Draim, Lattice Flower and
Necklace Flower Constellations.

Therefore, the first goal of this manuscript is to generate
a uniform distribution of points in a n-dimensional space
that is subjected to modular arithmetic. This implies three
important consequences. First, due to the modular arith-
metic affecting the n-dimensional space, such space can
be regarded as a (n— 1)-dimensional torus in a n-
dimensional space. Second, since points cannot be split,
there are an integer number of them that are distributed
in the space considered. Third, the locations of these points
are defined using coordinates in the space, which means
that, in order to locate a point, n real numbers are required,
being n the number of dimensions of the space. Thus, a
relation between a set of integers and the real space must
be defined, that is, a lattice.

Let n be the number of dimensions of a space where a
congruent lattice is required to be generated. The lattice
is defined as an application between Z" and R”:

TI: 70 — R

kK — VvV’ (1)

where k names each point of the distribution, and V locates
it in the space considered, that is, it is the set of coordinates
of each point of the distribution. Leti = 1,...,n be an inte-
ger parameter that names each of the dimensions of the
space. Then, V = (V,Vy,...,V;...,V,) € R" is a vector
containing the distribution variables, while
k= (ki,ky,... kiy...,k,) € Z" is the vector containing
the distribution parameters on each dimension. In particu-
lar, k; represents the relative position of the point in the
dimension i € Z,, while V; is the distribution variable in
the dimension i. Additionally, and without lost of general-
ity, V; is considered to range between [0, 1] due to the mod-
ular arithmetic of the space. In that regard, it is important
to note that spaces with other range sizes can be also
obtained by an homotopy of the space defined.

Moreover, and as a mean to define the whole distribu-
tion, we denote /C to the number of possible combinations
of k for a given lattice configuration that are able to gener-
ate different points in the configuration. This implies that
the whole lattice distribution can be represented by the fol-
lowing set of points:

{UV(k)}, (2)

where V (k) are each one of the points defined in the n-
dimensional space and part of the lattice configuration.

That way, and when related to satellite constellation
design, V contains the information about the distribution
variables, while & names each satellite of the constellation.
For instance, in a 2D Lattice Flower Constellation 27V,
represent the relative distribution of the constellation in
the right ascension of the ascending node, 27V, is the rela-
tive distribution in the mean anomaly, and &; and &, name
a satellite of the constellation that is located in the orbital
plane k; and the position &, of that orbit. Furthermore, C
represents all the possible combinations of k; and k,, that
is, it contains the identification of all the satellites from
the constellation.

Definition 1. Two lattice configurations are identical if they
represent the same points in the space. This means that the
set of points defined by:

{UV(k)} 3)

is the same as:

{Traf. (@

https://doi.org/10.1016/j.asr.2020.04.045

Please cite this article as: D. Arnas, D. Casanova and E. Tresaco, n-Dimensional congruent lattices using necklaces, Advances in Space Research,



https://doi.org/10.1016/j.asr.2020.04.045

4 D. Arnas et al. | Advances in Space Research xxx (2020) xxx—xxx

where V(k) and V* (k") are the points of two different dis-
tributions. This definition is represented as:

{@ V(k)} _ {’I@ V*(k*)}. (5)

However, an in order to simplify notation, we refer to two
identical configurations as:

Vik) = V(k), (6)
for the whole distribution, or:

Vilk') = Vik), (7)
with i€ {l,...,n}, for each given dimension of the
configuration.

Since we are dealing with configurations with a count-
able number of points distributed, the number of available
positions in a given dimension is limited. Therefore, it
makes sense to define a parameter to count the number
of these available positions. Let L; be the number of differ-
ent values of V; provided that {k;|j # i} are fixed. In other
words, L; represents the number of available positions in
the dimension i (or possible values of V;) under a variation
of the distribution parameter £;.

Definition 2. A congruent lattice is defined as a lattice
whose points fulfill the following condition:

Vil ek}

8
= V,'({17...,km+me,... ( )

k)) Vime{1,2,...,n},

which means that a complete rotation in one of the dimen-
sions of the space of configuration generates an identical
distribution. In that respect, it is worth noticing that even
if two distributions are identical, each point can be defined
with a different combination of the values of k. In addition,
and in order to ease the notation, from now on we will refer
to this condition as:

Vi(km) = Vi(km + me)~ (9)

Theorem 1. A congruent lattice in a n-dimensional space is
defined through an Hermite Normal Form of size n X n,
and described as:

1 i—1

J=1

: (10)

where mod(a, b) is the modulo in base b of a, and L;; are the
elements of the Hermite Normal Form associated with the
distribution.

Proof. A lattice between 7" and R”" can be defined as an

application:
T2 : 7" — R
{ala"waiw'w“ﬂ} s {V17"'7Vi7"'

)

(11)

) Vn}

which, in general, is represented by a system of n indepen-
dent equations:

Py Py oo Py, v oy
Py Py oo Py Vs, o
Pn,l Pn,2 e Pn,n Vn Oy

where P;; are a set of integers, and the values of V; can be
obtained by an inversion of the matrix (since it is non sin-
gular). However, Eq. (12) can produce the same distribu-
tions with different combinations of the values of P;; and
o;. For this reason, the Hermite Normal Form (Newman,
1972) is used in order to avoid possible duplicates in the
formulation.

By performing row operations in Eq. (12), the Hermite
Normal Form of the system is obtained (Storjohann and
Labahn, 1996), that is, a system expressed by a lower
triangular matrix applied to the variables of the problem:

Ly, 0 0 ‘e 0 V, ky
L, L, 0 e 0 V, k>
Lyo1gp Laap Loyt O V- ka
Ln,l Ln,2 e e Lnﬁn Vﬂ kn
(13)

Note that, due to the process of row operations, L;; and k;
are obtained as a linear combination of the former param-
eters P; and o; respectively, and thus L; € Z and k; € Z.
Eq. (13) can also be represented in matrix notation as:

ZLU Vj = ki; (14)
j=1

and from this equation, an expression for V; can be
obtained:

1 i—1

which defines a lattice in the space studied. However, Eq.
(15) does not fulfill, in general, the conditions for a congru-
ent lattice as it is explained in Definition 2. In particular,
using Eq. (15), and applying the condition for congruent
lattice:

V[(km) = Vi(km +me)7 (16)

three different cases can be observed:

e If m > i the congruence is fulfilled automatically since V;
only depends on terms of k; such that j < i.
e If m = i, we have to impose that:

Vitk;)=Vilki+Ly;) Vie{l,2,... n}, (17)

which leads to:
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( ZL,]V> <k +L;- iL,,V) (18)

J=1

where both sides of the equation are equal only if
L; = 0. However, if L; =0, the distribution has no
available positions in dimension i, and thus, no lattice
would be generated. For that reason, an additional
property of the space has to be considered to overcome
this problem. In particular, if the modular arithmetic of
the space is considered and introduced in Eq. (15) the
resultant distribution becomes:

Vi :—mod< ZL,] ) (19)

Note that now, this expression is also defining a bound-
ary in the number of different available positions in each
dimension. In particular, the condition of congruence
lattice is achieved if:

ki = k; + L mod (L;), (20)

which leads to the first boundary of the distribution
parameters:

Corollary 1.

In order to avoid duplicates in the formulation and to
obtain a congruent distribution, k; € Z;,,, where there exist
an intrinsic modular arithmetic in the distribution parameters
such that:

k,' = kl' + L,‘i mOd (L”) (21)

o If m < i, the resulting congruent condition leads to:

i—1
( ZL,,V ) L1< ZL,,Vk+Lm,n)>7

7 (22)

which is equivalent to the congruence lattice condition
since:

Vilkm) =V i(km+ Lyw) Yj,me{1,2,...,n}, (23)

as presented in Corollary 1.

Therefore, by using Eq. (19), it is possible to fulfill the con-
gruence condition for all the dimensions of the lattice.
Additionally, if the term L; is introduced inside the modu-
lar operator, the following expression is obtained:

v, —mod[ ( ZL,JV>

Note that the definition of the lattice defined by Theo-
rem | implies that the point with distribution parameters
ki=L; VielZ,islocated in the center of the coordinate
system of the space, that is, this point represents the origin
reference for the whole distribution. Furthermore, it is
important to note that by including the modular arithmetic

(24)

in L; in the formulation, we have also achieved that the
terms L; represent the number of different positions in V;
provided that {k;|j # i} are fixed. On the other hand, the
terms {L;|i # j} from the Hermite Normal Form are the
configuration numbers, a set of integers that modify the
distribution of the lattice, that is, they allow to shift the
configuration with respect to different dimensions.

Once the lattice is defined in Theorem 1, a boundary in
the parameters is established in order to avoid duplicates in
the formulation. In that sense, two sets of boundaries are
generated, the first related with the parameter distribution
k;, and the second related to the possible values of the Her-
mite Normal Form L;;.

Theorem 2. The set of distribution parameters k; is bounded
in order to avoid duplicates in the formulation of a congruent
lattice. In particular:

ke {1,2,...,Ly}. (25)

Proof. Let k be a vector containing the distribution param-
eters where the position m is occupied by k,, € Z, and let k*
be the same vector but with the position m occupied by the
parameter &, € Z instead of k,. Suppose that both distri-
butions are identical in the dimension m. Then, using Eq.
(24), a relation between both distribution parameters is
obtained:

m—1
mod [LL (km - ZLM,-VJ) , 1]
=1

m—1
J=1

which can be expanded, leading to:

1 m—1 m—1
7 (km - ZL,,,jV,> +A4= ( ZL,,UV ) (27)
mm =1

where A4 is an unknown integer. Then, performing some
operations in the former expression, the following relation
is obtained:

km +Ame = k ) (28)

m

and thus, if k, is defined in the ring of integers
7, =1{1,2,...,Lu},k, can range all Z. On the other
hand, the lattlces generated in the rest of the dimensions
are identical due to the congruence lattice condition
(Corollary 1). Consequently, all possible configurations
are equivalent to the ones defined by &, € {1,2,..., L.}
U

Theorem 2 also allows to determine the number of dif-
ferent elements that the resultant configuration is able to
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generate. In particular, since k; € {1,2,...,L;}, the number
of element in the distribution is given by the possible com-
binations of k; with i € {1,... n}, that is:

Corollary 2. The number of elements defined in a congruent
configuration where L;; are the number of available positions
such that {k;|j #i} are fixed for each dimension
ie{l,...,n}is

Iz (29)
i=1

which corresponds to the number of different combinations of
k.

Theorem 3. The set of configuration numbers L;; must be
constrained in order to avoid duplicates in the formulation
of a congruent lattice. In particular:

L;€{0,1,....L,—1} Vij€Z,. (30)

In addition, the relation between two equivalent distributions
L and L is given by:

L _L,,+ZA - (31)

where A, are the integer numbers that are used to perform
row operations in the Hermite Normal Form.

Proof. A n x n integral matrix is in Hermite Normal Form
if the matrix is lower triangular (or upper triangular), the
elements of the diagonal are positive, and the elements of
a column are bounded by L;; € [0,L;; — 1]. If these condi-
tions are met, we can conclude that the matrix is in its Her-
mite Normal Form and in addition, we can assure that the
representation of the system is unique (Newman, 1972).
This means that all the equivalent congruent lattice config-
urations can be generated performing row operations in
this Hermite Normal Form (which is unique).

Let i be an arbitrary row in which we want to modify the
configuration numbers L;; in such a way that the resultant
distribution is identical to the original. In order to obtain
the new combination numbers, we perform row operations
such that the matrix is still triangular and the diagonal
remains unaltered since the diagonal defines the number of
elements in each dimension (see Theorem 2). That way, the
formulation of the congruent lattice, defined in this work,
is maintained no matter the distribution presented.

Let L and L* be two equivalent distributions. Thus, each
element of the matrix L* can be expressed by means of the
elements of L. In particular, the general term of the matrix
can be written as:

L, =L;+ ZA - (32)

where 4, are the integer numbers that are used to perform
the row operations and #n is the number of dimensions of
the distribution. Since we want the matrix that defines each

distribution to be triangular, and with a given set of values
in the diagonal, we have to constrain the sum to certain
rows. In particular:

Ly=Ly+) ALy (33)
We can rewrite the former expression into:

Ll*j = L,'/' + Z Aprj + A‘/'LU', (34)

p=j+1

which represents the general expression to obtain all the
equivalent distributions of a given configuration. From
Eq. (34) and since we can impose the parameters 4; to pre-
sent any integer value, we can transform the expression
into:

=L+ Z A,L,; mod (L), (35)

p=j+1

where it is easy to observe that any distribution can be
defined by an equivalent set of parameters that follow this
boundary:

L,ef{0,1,....L;~ 1} VijeZ, (36)

That way, the boundaries of the configuration numbers
(L; €{0,1,...,L; — 1}) are completely defined and also
the relations between two equivalent configurations given

by this methodology. [

3.1. Number of possible configurations

Once the lattice and the distribution is completely
defined, it is time to evaluate the number of different con-
figurations that can be obtained under the assumption that
the number of elements in each dimension i (L;) is already
known.

Theorem 4. Given a lattice distribution defined by:

V—-mod[ ( llL,,V) 1 (37)

and for a fixed number of elements distributed in each dimen-
sion i (L;), the number of different configurations provided by
this lattice configuration is:

TIze, (38)
i=1

where n is the number of dimensions of the problem.

Proof. Since the number of elements in each dimension is

fixed L;, the only parameters that can modify the distribu-
tion are the combination numbers Z;; which have the par-
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ticularity that i # j. Additionally, from Theorem 3, we
know that the values of L; are constrained in order to
obtain different configurations. Thus, in the dimension i
there are:

i—1

[ vi>1, (39)

J=1

possible combinations of the combination numbers. Then,
for the complete Hermite Normal Form, we have:

n i—1

HHL,,, (40)

i=2 j=

different configurations of the lattice. The former expres-
sion can be rearranged into:

(o) ([ (11

_ =)y (n=2) )
=Ly Ly "'L(n71)<n71)’

or in a more compact notation:

Tee, (42)
i=1

which is the number of different possible configurations in
a congruent lattice in a space of n dimensions. []

(41)

It is important to note that Theorems 1-4 provide all
uniform distributions that can be generated based on a
given number of positions in each dimension. This means
that it is not possible to generate additional uniform con-
gruent distributions that are not equivalent to the ones pro-
vided by this formulation. Moreover, and related to
satellite constellation design, this result allows to study
all uniform distributions of satellites in a very fast an effi-
cient manner, assuring that all uniform and congruent dis-
tributions are assessed.

4. n-Dimensional congruent necklace distributions

The objective now is to generate a configuration space
based on a congruent lattice as described in Eq. (10) and
select from it a subset of available positions in such a
way that the property of congruence in the distribution is
maintained. In order to do that, we first introduce the con-
cept of necklace and some of its basic properties.

Definition 3. A necklace G is a subset of elements selected
from a set of available positions defined under modular
arithmetic. It is represented as:

GCZ,, (43)
where m is the number of available positions considered.
Definition 4. Two necklaces (G, and G,) are identical (=) if

they select the same subset of elements from the available
positions:

G =G, = {gl} = {gz} mod (m). (44)

Definition 5. Two necklaces (G, and G,) are equivalent,
that is, there is an equivalence relation = between them, if:

G 26 < 3d5: G =G, +s5,

At this point, it is important to remark the differences
between identical and equivalent necklaces. A necklace
whose elements are reordered but they occupy the same
available positions define an identical necklace. Con-
versely, a necklace that performs a rotation in the available
positions generates an equivalent necklace. Additionally, it
is easy to derive that two necklaces that are identical, are
also equivalent (as seen in Definition 5 if s|m). However,
there are other cases where a rotation generates an identical
necklace. For that reason, we introduce the concept of
symmetry of the necklace.

with s € N,,. (45)

Definition 6. The symmetry of the necklace is the minimum
number of positions that a given necklace has to rotate in
order to obtain an identical necklace. The symmetry of a
given necklace G is represented by Sym(G) and its math-
ematical expression is provided by the following equation:

Sym(G) r<m:G+r=gG} (46)

This definition implies that given a necklace G and
applying a rotation of r: Sym(G)|r (that is, Sym(G) divides
r) generates an identical necklace (see Definition 4) which is
also equivalent to G (see Definition 5). In addition, this
means that the maximum number of rotations that we
can apply to the necklace G without generating an identical
necklace is (Sym(G) — 1). This constraint allows to define
the shifting parameter, a distribution parameter whose
objective is the definition of the different rotations that a
given necklace can perform in its available positions while
avoiding a duplicity in the formulation.

=min {1 <

Definition 7. The shifting parameter S is the minimum
representation of any rotation that a necklace can perform
in its available positions. As a consequence of the definition
of symmetry of the necklace and the modular arithmetic of
the problem, the shifting parameter is constrained such
that:

Se{0,1,...,(Sm(G) — 1)}. (47)

In order to clarify the previous mathematical concepts
related to necklaces, a simple example is presented in here.
Imagine that we have a table with four chairs around it,
and at some point two people try to take a seat. If we num-
ber the chairs, the combinations in which chairs can be
occupied are: {1,2},{1,3},{1,4},{2,3},{2,4}, and
{3,4}. These are all the combinations of necklaces that
we can generate from this problem. If once they have taken
a seat we allow them to exchange their seat with their com-
panion, we obtain an identical necklace, that is, for
instance {1,2} = {2, 1}. However, while sitting in a table,
most people are more interested in knowing their relative
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position with respect to other people. If that is the case,
there exist only two possible combinations. In the first
one, both persons are close to each other. This is repre-
sented by solutions {1,2},{1,4},{2,3}, and {3,4} which
are equivalent necklaces. Alternatively, they can take a seat
in front of each other, which is represented by combina-
tions {1,3} and {2,4}, being these necklaces also equiva-
lent between them. Finally, and regarding the symmetry
of these necklaces, the solution where these people is seated
one in front of the other has a symmetry of 2, that is, if we
walk around the table a distance equivalent to two consec-
utive chairs, we will observe an equivalent configuration.
On the other hand, when people is seated close to each
other, we need to do a complete turn around to observe
an equivalent distribution, that is, the symmetry of these
necklaces is 4. A graphical representation of this can be
seen in Fig. | where the white circles represent empty chairs
and the black ones are the chairs occupied by people.

If we relate this concept to satellite constellation design,
the available positions (chairs) are the combination of dis-
tribution variables (for instance, mean anomaly and right
ascension of the ascending node) where a satellite can be
located in order to fulfill a given mission, or a set of defined
slots from a control strategy for the constellation. On the
other hand, the necklace represents the subset of available
positions in which we locate a satellite (the persons from
the previous example). In here, it is important to note that
necklaces can be applied to any distribution variable (or
dimension), for instance the mean anomaly (positions in
a given orbit), the right ascension of the ascending node
(orbital planes in use), or the argument of perigee (different
orientations of the orbits that are in the same orbital
plane). This allows to define both uniform and non-
uniform distributions in terms of combinations of
necklaces.

With the definitions and properties of the necklace
already defined, it is now possible to find all the different
movements that each necklace introduced in the lattice is
able to perform in order to maintain the property of con-
gruence in the lattice. As before, we are very interested in
avoiding duplicates in the formulation both for counting
purposes as for efficiency in the study.

Let G; be a necklace defined in the dimension i of the
space, where G; is represented as a vector of dimension

Fig. 1. Example of necklace.

N, which contains the information of the positions occu-
pied from the available positions. Note that N; also corre-
sponds to the number of different elements in the
dimension i provided that {k;|j # i} are fixed. That is,
the necklace G; is a subset from the set of available loca-
tions in Z;,:

gig{17-")Lii}7 (48)

where |G;| = N; is the number of elements in the necklace
G.. In order to simplify notation, we refer to the elements
of the necklace as:

G ={G(1),---, Gu(k;),- ., Gi(Ni)}, (49)

where without lost of generality are ordered in such a way
that:

1<G()<...<G(k)) <... < Gi(N;) < Ly, (50)

being the index k] € {1,...,N;} an integer modulo N; (that
is, k; + N; is the same index as &) that names each element
inside the necklace. Therefore, it is possible to compute the
number of elements in the distribution as the number of
different combinations that k; can provide, that is:

Corollary 3. The number of elements defined in a congruent
configuration using necklaces is:

I (s1)

where N; is the number of occupied positions in each dimen-
sion i € {1,...,n} such that {k;|j # i} are fixed.

This allows the unequivocal definition of a map (G;) that
describes where the elements of the necklace are located
from a set of available positions:

g,- : ZN.—> ZL--
! " 52
Gi(k?). 52)

ki—

Therefore, we use G;(k;) to relate a position in a necklace
with its correspondent location in the available positions.
Additionally, since the modular arithmetic is affecting the
necklace:

Gi(k;) = Gi(mod(k; + N;,N;)). (53)

which represents a complete rotation in the dimension i.
Note that such movement of the necklace is equivalent to
a rotation in the available positions as defined by Corollary
l:

ki = ki —+ Lii mOd (Ll‘,'), (54)

due to the fact that both formulations represent the same
action. In addition, by applying the definition of symmetry
of the necklace (Definition 6), the former equation can be
defined in terms of the symmetry of the necklace in the
dimension i (Sym(G;)) and the necklace G;:

https://doi.org/10.1016/j.asr.2020.04.045
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G =G —|—ASym(g,-), (55)

where A is an unknown integer. Thus, the following corol-
lary can be derived:

Corollary 4. The modular arithmetic governing the rotations
in the set of available positions subjected to a given necklace
is:

G =G +Sm(G). (56)

Note that since a complete rotation over the available
positions generates an identical distribution, Z; must be a
multiple of Sym(G) due to the fact that Sym(G) is the min-
imum rotation to generate an identical necklace. This
implies that Sym(G)|L;.

On the other hand, we define a set of movements for
each necklace in its dimension in order to provide a
methodology in the formulation to shift the necklaces over
the available positions with respect to the movement per-
formed in other dimensions. Let the shifting matrix S be
a lower triangular matrix of size n X n composed entirely
of integer elements, where the term S;; € Z is the shifting
parameter (see Definition 7) that relates the movement of
the necklace G; with the movement performed in the
dimension j. This means that the movement of the
necklace G; is only affected by the movement of necklaces
G, located in dimensions where j < i (as was previously
the case with the wvariables V; and the distribution
parameters k;).

Theorem 5. A congruent lattice in a n-dimensional modular
space based on a necklace formulation is defined by the
following expression:

iL,-jVj = kj
=1

i—1
k,‘ = mod [g,(kf) +m0d (ZSU/(/,S)/m(gL)) ,L,‘[] ;
=

(57)

where G; is the necklace in the dimension i,k is the distribu-
tion parameter inside the necklace, and S;; is the shifting
parameter of the necklace G; with respect to the dimension j.

Proof. An application between the available locations k;
and the necklace elements G,;(k;) can be defined as done
in Eq. (52):

T3: (ZN] XZNZ X ... XZNn)—> (ZL“ XZLZZ X ... XZL"”)

58
(k)lkak;?k:)'_) (k17k2a"'7kn)a ( )

where the relation between the distribution parameters in
the available positions k;, and the elements of the necklace
is described as:

i—1
ki = Gilk)) + Y _Sik), (59)
=

being G;(k;) the term that provides the information about
the structure of the necklace in the dimension, while the
term 23;115111'/‘_/ represents all the possible dependencies
between the necklace G; with the movement of the config-
uration in other dimensions. Note that the summation in
Eq. (59) is not defined when i < j since S;; = 0 for those
cases and thus, these operations in the summation are
not performed. In addition, and due to the existence of
symmetries in the necklace, there are movements that gen-
erate identical configurations. Thus, using Corollary 1 and
Corollary 4:
i—1
k; = mod [g,.(k;f) + mod (Zs,-,.kj, Sym(Q,)) ,Lii] . (60)
J=1
which avoids the duplicates of configurations for different
sets of shifting parameters.
Now, we introduce Eq. (60) into the initial lattice
defined in Eq. (14), obtaining:

zi:L,-jVj = k;;
=1

i—1
k[ = mOd [g,(k?) +m0d (ZS,ka,Sym(g,)> ,L,‘,"| .
j=1

(61)

Note that the former expression is a recursive function in
the different dimensions of the space in study due to the
fact that both L;; and S;; are zero when j > i. [1

Theorem 6. The shifting parameters that allow the lattice
defined by:

ZLUVj = k”
J=1
i—1
k,‘ = mod lgl(kf) + mod (Zsil'k.f’ Sym(Q,)) ,L,;| s
J=1

(62)

to be congruent must fulfill the following relation:

i—1
SiLy; — <L,—,- -> Siquf> : (63)

g=j+1

Sym(G;)

Proof. In order to derive the theorem, we focus on a given
dimension i where the congruence condition seen in Defini-
tion 2 is applied:

V[(kj)E Vj(kj+ij) Vl,]E{l,Z,,n} (64)

https://doi.org/10.1016/j.asr.2020.04.045
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This represents a complete rotation of the configuration in
the dimension j while the other dimensions remain unro-
tated. This means also that in addition to the congruence
condition this relation is also true:

since only the dimension i is subjected to a movement.

From the lattice defined in Eq. (57) three different cases
can be observed: the case in which j > i, the case j = i and
the case j < i. For all the cases of study we consider an
original lattice before the complete rotation in the dimen-
sion j as:

Zi:Ltp Vplky) = ki(k))

Gi(k;) + Zs,pk

(66)

ki(k;) = )+ AiSym(Gy),

where V,(k;) and k,(k;) represent the variable and the dis-
tribution parameters of the original configuration, and 4; is
an unknown integer. On the other hand, the lattice after
the complete rotation in the dimension j is:

ZL,,, V,(

ki(kj+ij) =

+L// - k(ki+L_/J)
. (67)
Gi(k) +Zs,pk (k;+L;) +B:iSym(G:),

p=1

where V,(k; + L;;) represents the variable in the dimension
p affected by a complete rotation performed in the dimen-
sion j, and k,(k; + L;;) is the modified distribution parame-
ter k, after the rotation. Finally B; is an unknown integer
generated as a consequence of the modular arithmetic of
the problem.

e If j > i, the difference between both lattices is:

ZLw

k +LU) ( )} :07

(68)

ZLip Vp (k/ + ij) - ZLIP Vp(k
p=1 p=1

which implies that the rotation in the dimension j does
not affect k;. That is:

kp(kj+ Ly;) = kp(k;) V<. (69)
Regarding the second expression of the lattice, we com-

pare the original and the rotated configuration,
obtaining:

0= ZS,,,

which means that no constraint has to be imposed in the
shifting parameters for the fulfillment of the congruent
condition.

(kj + Lyy) = ky(ky)] + (B; — A4)Sym(Gy),  (70)

e If j =i, the difference between both lattices is:

ZLJP

since L;; = k;(k; + L;;) — k;(k;) (a complete rotation in
this dimension). In addition, the former equation can
be rearranged into:

(kj + Lyj) = Vy(ky)] = Ly, (71)

Ly [Vi(k;+Ly) ~ +ZL,p ki+Ly) = V,(k))] =Ly,
§ (72)
and using Eq. (65), we obtain:
Vilk; + L) = Vi(k;) =1 (73)

that represents the complete rotation in the dimension i.
It is clear that since the variables V; are subjected to a
modulo 1 arithmetic, V;(k; + L;) = V.(k;). However, this
result affects other dimensions as it is shown later. On
the other hand, from the differences between the second
terms of the lattice of the original and rotated
conﬁgurationsz

M‘

+L]j) kp(kj)] + (Bj

=
I

A/->Sm(gj)7 (74)

where applying the condition presented in Eq. (69) we
derive that:

Ly = (B; — 4;)Sym(G;), (75)

and thus, no additional constraint must be imposed
since Sym(G;)|L;.
o If j < i, the difference between both lattices is:

ZLtq V ZLiq Vq (k/)
g=1

= ki(k; + Ly) — ki(ky), (76)

kj+Ly)

which is equal to:

i

ZLiq [Vq (kj + ij) -

q=1

Vq(kj)] =
and if rearranged leads to:

Vlki+Li) = Vy(k)] +Ly [V (ki +Lj) = V(k))]

(kj+Lyy) = Vo (k)] =ki(k; +Lj;) —ki(k),

Jj—1

D L[V
g=1
+ZL,q
g=j+1

which can be simplified using Egs. (65) and (73), to
obtain:

Lij = ki(k; + Lyj) — ki(k;). (79)
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On the other hand, from the differences in the second
term of the lattice of both configurations:

ki(kj + Lj;) — ki(k;) = isz‘p ko (ky + L) — ky(k))]

+(B; — 4,)Sym(G;), (80)
where using Eq. (79) and (69) leads to:

i—1
Ly =" Splky(k;+Ly) — k()] + (B;
p=Jj

— 4;)Sym(G;)). (81)
In addition, the former expression can be rearranged
into:
L= Sylkj(k;+Ly;) — k;(k;)]

i—1

+ Z Sip [kp(kj + Ly) — kyp(k;)] + (B; — 4;)Sym(G;),

p=j+1
(82)
where:
ki(k; + L) — ki(k;) = Ly, (83)

representing the complete rotation in the dimension j,
while:

kp(kj + Lj;) — ky(k;) = Ly (84)
as seen in Eq. (79). Thus, Eq. (82) can be written as:

i—1
Ly =Syl + Y Sply + (B; — 4;)Sym(G)), (85)

p=j+l1
or, in a more compact manner:

i—1
SyLj; — (L,-,— -> S,-qu,-> ) (86)

g=j+1

Sym(G;)

which is an expression that relates the values of the shift-
ing parameters with respect to elements of the Hermite
Normal Form and other shifting parameters. Note that
the expression is a recursive function.

Thus, and as seen from the three cases studied, the only
constraint that affects the shifting parameters is:

i—1
SifLyj — (L,-, -y S,-quj> - d (87)

q=j+1

Sym(G)

4.1. Number of possible configurations

This section focuses on the problem of counting the
number of different configurations that the n-dimensional
congruent lattices using necklaces can generate. In that
regard, three general scenarios are considered, which repre-
sents the most common cases of study:

e Fixing the set of necklaces G, for all i € {1,...,n}, and
the Hermite Normal Form.

e Fixing the set of necklaces G;
ief{l,...,n}.

e Fixing the sizes of the necklaces N; = |G;| and L; for all
ie{l,...,n}.

and L; for all

However, before starting with this study, we are previ-
ously required to determine the number of necklace config-
urations, of a given size, that can be generated in a given
dimension. This result will be used in the scenarios pro-
posed. Let L be a set of available positions in a given
dimension, and let G be a necklace comprised of N ele-
ments selected from these locations. This means that
GC{l,...,L} where |G| = N.

Theorem 7. The number of different necklaces under the
equivalence relation = and which are comprised by N
elements selected from L available positions is:

Lo g g,
p (M ) > TIFix(E)], (88)
g—lg Lg g/:1
g|L g'lg
LIN LIN
g = 4

where g = Sym(G) are the possible symmetries in the problem
considered and |Fix(s)| is the number of elements contained
in the Fix of a given symmetry s, and which is provided by:

) L s s—1 S/ ) .
|Fix(s)| == (N )— Z Z|F1x(s)| . (89)
s ZS -
s =1
s
i oIV |

Proof. Let + Z; be the possible different actions that can
be applied to a given necklace. In the problem considered,
these actions represent the different rotations that a defined
necklace G can perform over the set of available positions
Z;. In addition, let G = Z; be the group containing the
actions that can be applied to any necklace defined in L
available positions. Therefore, a map ¢ can be described
as:

¢: GxX— X

(g,x) — x+gmod (L). (%0)

Once this map is defined, we aim to apply Burnside’s
Lemma (Tucker, 1984) to this application. In order to do
that, we first require to determine the |Fix(g)|.

The Fix of an action is defined as the set of elements that
remain unchanged under the application of that action.

https://doi.org/10.1016/j.asr.2020.04.045
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Therefore, from the definition of symmetry of a necklace
(see Eq. (40)), it can be derived that the only values of
g € G that have elements in the Fix(X) are those that have
symmetries, in other words, these elements must fulfill the
condition g = Sym(G). This implies that the only elements
that contribute to the Fix are those where g|L and ﬁ V.

First, we deal with the problem of finding the number of
different necklaces that are associated with a given
symmetry of the necklace. To that end, we focus on a
particular value of g and compute its Fix. Since g = Sym(G)
is an integer number that divides L, the problem can be
also regarded as the repetition of a pattern of size g that is
repeated L/g times. Therefore, and since the pattern is
repeated, there must be Ng/L elements from the necklace in
each pattern. Then, the number of pattern combinations of
size g, denoted by PC(g), is:

PC(g) = (Ng ) 1)

Additionally, since the pattern is repeated inside the neck-
lace (due to its symmetry), each pattern is able to rotate
L/g times and still generate the same configuration. There-
fore, there are:

ten-4(7)

different combinations of N elements with symmetry g
selected from L available positions. However, this quantity
is also including some elements that can be generated under
other symmetries. In that respect, it is important to remem-
ber that the symmetry of the necklace was defined as the
minimum rotation in order to obtain an identical necklace
(see Definition 6). Therefore, the elements related with
these other symmetries must be removed in order to avoid
duplicates during the process. As an example of that, let
L=06 and N = 3. If we select g = 6 as the symmetry in
study, the number of combinations obtained in Eq. (91)
also includes the combination of elements that has symme-
try of g = 3, that is, necklaces {1,4},{2,5} and {3, 6}. For
that reason, we have to take into account this effect. In that
regard, we define the symmetry of the necklace as the
smallest symmetry that a necklace has.

Moreover, the Fix represents the number of combina-
tions of N elements with a particular symmetry g, since
these elements are invariant under a rotation g. In addition,
necklaces with symmetry g are generated based on patterns
of size g (see Eq. (91)). Thus, under a symmetry g there
must be:

rc(g) = FIFix(), (93)

different patterns. As commented before, from the number
of patterns associated with a given symmetry, it is neces-
sary to remove, during the counting process, those ele-
ments that have other symmetries such that g’ < g, thus:

g g—1 g/
ree) = ()~ ¥ Eirie)l
glg
Ly
&g

where the summation is done over the symmetries g’ such
that g’|g and ﬁ |N. Note that these constraints are imposed

to g’ due to the fact that the conditions of symmetry are
still applied inside the summation.

That way, by combining the results from Egs. (93) and
(94) the |Fix(g)| is obtained:

. L|[¢ S
[Fix(g)| == ||y | — Z ZIFIX(g)I : (95)
g Zg I — 1
g =
glg
LN
= g

Eq. (95) is a recursive function that provides the number of
elements contained in the Fix under the action g. This
result allows to determine the number of different neck-
laces under a symmetry g by the use of Burnside’s Lemma.
Since G = Z;, the number of different necklaces is:

1 L
I Z |Fix(g)[, (96)
g=1
glL
£|N
g
which can be rewritten using Eq. (95) to obtain:
L g1 /
1 g g .
e () - & T o e
g = 1 L g’ = 1
gIL glg
rll s
8 - 4

Once Theorem 7 is presented, it is now possible to intro-
duce the counting theorems for congruent lattices using
necklaces. Each condition studied and theorem is presented
in a different subsection.

4.1.1. Fixing G, for all i € {1,...,n} and the Hermite
Normal Form

In this section we study the problem of counting the
number of different congruent configurations that can be
generated under the condition that the available positions
in the space are fixed, and the patterns that are applied
in each dimension are already defined. This means that
the necklaces G; and the complete Hermite Normal Form
are fixed for the whole configuration. This problem is
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equivalent to computing the number of different shifting
parameters S;; that are compatible with Eq. (63).

Theorem 8. Given a set of necklaces G; in each dimension of
the space such that i€ {l,...,n}, and a fixed Hermite
Normal Form, there exist congruent configurations in the
available distributions if and only if:

< Z S’/Lf11>a V{i,jeZ,:i

> j} (98)

Furthermore, if that condition is fulfilled, the number of dif-
ferent configurations is provided by:

ged(Sym(G,),

n i—1

Hchd Sym(G,),Ly), (99)
i=2 j=
Proof. Eq. (63) can be expressed as:

i—1
> Sily:s

q=j+1

where A4 is an unknown integer. As it can be seen, Eq. (100)
can be regarded as a linear Diophantine equation where A4
and S;; are the variables of study and the rest of parameters
are already known. Thus, using Bézout’s identity, it can be

concluded that a solution to the equation exists if and only
if:
ged(Sym(Gi),

ij) Lij - Z St/Lq/

In the case the former expression is fulfilled, all the possible
solutions of Eq. (100) can be expressed as:

(101)

_ Sym(G;i)
(Si), = (Sip)y + AL with Al = o Sj/m(g)L R (102)
A Lj
), =" () — 2 csmicrz
where (S;;), and (4), are a particular solution to the equa-

tion, while 1 € Z.
It is important to note that the shifting parameters S;;
are constrained as seen in Definition 7, and thus,

Si;; €{0,...,Sym(G;) — 1}. This means that the number of
different S;; available is:

Sym(Gi _ (Sym(Gi)—1)ged (Sym(Gi

[t 1= || 4

= ged(Sym(G)), L) — [ng(gﬁgggﬁLm] +1
= ged(Sym(Gi), L)
(103)

The condition provided by Eq. (102) as well as the num-
ber of different values of S;; given by Eq. (103) must be ful-

filled for all the dimensions of the space, thus, the condition
for the existence of solution is:

( ZSULW)v Vi{i,j:i>j},

=j+1

ged(Sym(Gi), L

(104)

while the total number of different configurations is given
by all possible combinations of the shifting parameters
S;;. Therefore the number of different configurations is:

n i—1

HHng Sym(G;),L;;). O

i=2 j=

(105)

As it can be observed, if all the necklaces comprise all
the available positions of their respective dimensions, we
obtain that there exists congruent configurations always
since Sym(G;) = 1 for any dimension. In addition, there is
only one possible configuration due to the fact that:

n i—1

HHng (I,Ly) =

=2 j=

(106)

This is an expected result, since in a complete configura-
tion, a given Hermite Normal Form can only generate
one congruent lattice distribution.

4.1.2. Fixing G; and L; for all i € {1,... ,n}

In this second case of study, we are interested in deter-
mine, for a space of fixed size, the number of different dis-
tributions that can be generated using a given set of
patterns. In order to impose that condition, the number
of available positions in each dimension, that is, the param-
eters L; from the Hermite Normal Form, and the necklaces
G, are fixed. Note that this condition is equivalent to deter-
mine the number of pairs {S Lf,»} that fulfill Eq. (63).

ijs
Theorem 9. Given a set of necklaces G; and a number of

available positions in each dimension Lj, the number of
different congruent configurations that can be generated is:

T1zs
i=1

Proof. We first focus on a particular combination of
dimension of study i and dimension in which rotations
are considered. Then, by using Eq. (63) we can present
the relation between S; and L;;:

Z SigLaqj,

q=j+1

(107)

LSy — 1L, = ASym(Gy) — (108)

where the elements S;, and L, with g > ;j are already
known since they were computed in previous recursions
of the equation (that is, in the equations related to previous
dimensions). Eq. (108) can be regarded as a Diophantine
equation where S;; and L;; are its variables, and whose solu-
tion exists if and only if:
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ng( Jjs ) ASym( gM

Z SigLgj

q=j+1

(109)

which is always true. Furthermore, the solutions generated
are:

Si), = i)o + 2

(S5 = (S, o
(Lij)g = (L ) + ALjj,

where (S;;), and (L;;), are a particular solution of Eq. (108)

and A € Z. By using Eq. (110), it can be concluded that,
given a value of A4, there only exists one solution to the
equation. This is due to the fact that L;; € {0,...,L; — 1}
and that the summation is assumed to be fixed in the equa-
tion. Therefore, we now focus on the determination of all 4
values that are compatible with the conditions.

From Eq. (108) and the different maximum and mini-
mum constraints of L; and S;; (see Theorem 3 and
Definition 7), the maximum and minimum values of A
that can be obtained are:

Apin = Sw, (D) ( Z Squq/ 1)) )

=j+1

g (111)

Apax = Svm ( Z SigLq; + Ly (Sym(Gi) — 1)) )
q=j+1

which define:

L;(Sym(G:) — 1)+ (L;; — I)J
Amzm _Amin +1= Y £ +1=L;
A = 1= | o |

(112)

different possible values of 4. This means that, there are L;;
different combinations for the pairs {Z;;, S;;}. It is interest-
ing to note that this is coincident with the number of pos-
sibilities that L;; € {0,...,L;; — 1} presents.

Therefore, and under these conditions, the formulation
is able to generate a number of different configurations
equal to:

[z, (113)
i=1

which corresponds to the number of possible configura-
tions of a complete congruent lattice (see Theorem 4). [J

Theorem 9 also leads to an important property when
both the set of necklaces G; and the number of available
positions in each dimension L; is fixed: the number of pos-
sibilities only depends on the number of available posi-
tions, not in the necklace selected nor in the
configuration numbers.

4.1.3. Fixing N; and L;; for all i € {I,...,n}
The problem studied here has some similarities with pre-
vious counting methodology, however, instead of fixing the

necklaces G; (as done previously), the number of elements
taken in each dimension is set, that is, N; = |G;|. Therefore,
this counting process provides the number of distribution
possibilities that are available with a given number of ele-
ments retrieved and a set of available positions in each
dimension.

Theorem 10. Let L; where i € {1,...,n} be the number of
available positions in each dimension i of a n-dimensional
space, and let N; be number of elements taken as a subset of
the available positions. Then, the number of different
congruent lattice configurations using necklaces that can be
generated is:

n ) Li;i 1 g g8— /
Ly =y, ) - Z |Fix(¢g")|], (114)
i1 1 8 L8
glLi; g \g
ﬂ\m L—l;w

where for each dimension i, the term |Fix(g)| represents the
number of elements contained in the Fix of g, which can be
obtained using:

[Fix(g)| = (115)

o/=1
dlg
Ly
g

Proof. From Theorem 7 we know that in each dimension i,
it is possible to generate:

Lii 1 &= /
P = Z 2 <1Lvlg> Z |Fix(g )

| (116)
8= 2lg
glLi L—‘/\‘\
%‘Ni £
different necklaces, where:
. L; g &1 g' .
[Fix(g)l =— || x| = 2_7IFix(g)] (117)
g g ; Ly

dlg
L
<HN;

4

This means that the total number of combinations of neck-
laces between the different dimensions is:

7.
i=1

(118)

In addition, once all the necklaces in the space are fixed, we
can apply Theorem 9 in order to compute the number of
different configurations by a direct combination of all the
possibilities:
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HP HL<” . (119)
The former expression can be rearranged into:
Hm " (120)
and using Eq. (116) we obtain:
n Lii gl
n—i 1 g g . 7

HLI(‘I‘ )Z_ N; _Z_|le(g)| (121)
i=1 1 8 ;8 g=1 Li

2lLi; dle

Ly, Ly,

which shows the total number of configurations that are
presented in the lattice under the considered conditions
of fixed N; and L;. O

In addition, it is interesting to note that if N; = L; for all
i, the number of configurations is the same as in the case of
a complete lattice (as seen in Theorem 4). This result was
expected due to the fact that the necklace methodology is
a generalization of the original lattice methodology
presented.

5. Alternative formulation

It is possible to generate a congruent lattice, and its gen-
eralization using necklaces, based on an entirely integer
formulation. This includes the variables V; which are real
numbers in the original formulation.

We depart from Eq. (14):

zi:Lij V=ki,
j=1

and multiply each expression by the integer H Ly,
obtaining:

i i—1
ZL,,.H v ka -
j=1 p=1

which can be expressed in a different manner by simple
operations in the summation:

i—1 i—1 i—1 i—1
Ll [LwVi+ Y Lol [LwVi = k] [ Lo,
p=1 j=1 p=1 p=1

and by merging the product in the first term of the equation
and rearranging the product of the second term we derive:

HL,,p Vit ZL,, H Lum HL,,,,V =k HL,,,,

j=1 m=j+1 p=

(122)

(123)

(124)

(125)

Now, a change in the distribution variable V; is per-
formed. Let A/; be the new set of variables that relate with
the originals V; through the following relation:

N = HLPI’V (126)
p=1
which introduced in Eq. (125) leads to:
i—1
N+ ZL’JN H Lym = k] [ Lo (127)

m=j+1 p=1

where we can obtain the value of the new variable by
means of the distribution parameters k;:

=k HLW ZLI,N H Lom-

m=j+1

(128)

As in the case of V;, the former expression is constrained
due to the modular arithmetic of the space. In particular,

and Since Nj = HizlepVhNi € |:17 Hi:]LFF:|:

N; = mod k,HLpp ZLI,N, H me,HLpp] (129)

=1 J=1 m=j+1

One important thing to note is that N; € N Vi € Z,,, since
all the operations performed are products and sums of inte-
ger numbers.

Now, we introduce the new formulation provided by
Eq. (129) into the necklace formulation given by Eq.
(57), which leads to:

N+ ZL,]N H Lym = ki H o

m=j+1

i—1
ki = mOd [gl(kj) + InOd (Zs,jkj, Sym(g,)) ,L,;| 5

=1

(130)

where the congruent configurations correspond to the ones
provided by Theorem 6. In that respect, note that the con-
gruent relations provided by Eq. (63) are independent on
the definition of the variables used.

Eq. (130) defines congruent lattices where the variables
N present now integer numbers (note that they are sums
and products of integers) that are defined in

N e 1,...,Hi:1Lpp}.

6. Relation with Lattice and Necklace Flower Constellations

n-Dimensional congruent lattices using necklaces is the
mathematical generalization of the 2D, 3D and 4D Lattice
and Necklace Flower Constellations. In particular, the n-
dimensional congruent distribution (see Section 3) presents
the general formulation for the Lattice Flower Constella-
tions, providing also the constraints of the distribution
parameters and the number of possibilities that Lattice
Flower Constellations are able to generate. On the other
hand, n-Dimensional congruent lattices using necklaces
(see Section 4) does the same for the Necklace Flower Con-
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stellations. It is also important to note that Lattice Flower
Constellations are also a generalization of other well
known satellite constellation designs, including Walker
Constellations or Draim Constellations, and thus, the n-
dimensional congruent lattices using necklaces is also a
generalization of these methodologies, being the theorems
presented in this work also of application to these constel-
lation design techniques.

2D and 3D Lattice and Necklace Flower Constellations
perform their satellite distribution using just angles as dis-
tribution variables: the right ascension of the ascending
node, the argument of perigee and the mean anomaly;
being the other design variables (semi-major axis, eccentric-
ity and inclination) common for all the satellites of the con-
stellation. This means that all the dimensions of the
problem where the distribution is performed have modular
arithmetic mod(2n) (they are angles), and thus, the config-
uration space becomes a torus where satellites are dis-
tributed. It is in this space where the distribution is
performed by searching for congruent and uniform distri-
butions (which are the ones with better properties for glo-
bal coverage (Casanova et al., 2014a)).

On the other hand, 4D Lattice and Necklace Flower
Constellations (Arnas, 2018) are defined using the alterna-
tive formulation presented in Section 5. This is due to the
fact that the semi-major axis of the orbits (the new distribu-
tion variable in the 4D Lattice and Necklace Flower Con-
stellations) does mnot have modular arithmetic.
Nevertheless, the formulation allows to define different alti-
tudes for the constellation in such a way that some proper-
ties of periodicity and uniformity are imposed. This shows
an example of the multiple possibilities of application of
the alternative formulation presented in this work.

Moreover, it is worth noting that n-dimensional con-
gruent lattices using necklaces allows to increase the num-
ber of possibilities in Lattice and Necklace Flower
Constellations. This is due to two generalizations intro-
duced in this methodology. First, n-dimensional congru-
ent lattices using necklaces allows to freely select the
hierarchy order of the distribution variables, that is, the
order of dependency between dimensions. Second, the
methodology also allows to set the values that the distri-
bution variables can present, providing more freedom to
the designer. In addition, and based on the counting the-
orems presented in this work, the methodology allows to
provide direct control in the number of possible configu-
rations that will be generated, a property extremely useful
in optimization problems since the size of the searching
space is known beforehand.

6.1. Example of application to the 2D formulation of Flower
Constellations

In order to exemplify this relation, we show a summary
of its application to 2D Lattice Flower Constellations. By
using Theorem 1| for the case of two dimensions and a
space modulo 27:

AQ,‘j = 27'CV1 = 2nﬁmod(2n),
L (131)
AM; = 2nVy= 277,-(@ ~l L—) mod(27),

where k; = i and k, = j names a satellite in orbit / and posi-
tion j in that orbit. In here, the first dimension represents
the distribution in the right ascension of the ascending
node of the satellites (which determines the orbital plane
in which spacecrafts are located), while the second dimen-
sion is the mean anomaly (which determines the position of
the satellites in each orbital plane). That way, L;; defines
the number of equally spaced orbital planes in which the
constellation is distributed, while L, is the number of satel-
lites that are uniformly distributed in each orbit. Finally,
the only combination number that appears in this formula-
tion L,; determines the relative spacing between spacecrafts
at adjacent orbital planes. As it can be seen, this formula-
tion is equivalent to the ones presented in Avendano et al.
(2013) for the 2D Lattice Flower Constellations formula-
tion, or to a Walker-Delta constellation (Walker, 1984)
for the case of circular orbits.

As a simple example of application of this formulation,
a constellation in 3 orbital planes with 5 satellites per orbit
(Ly; = 3 and Ly = 5 respectively) is defined. As we know
from Theorem 4, the number of different possibilities of
design that a distribution in mean anomaly and right ascen-
sion of the ascending node can provide is L;; = 3, which
correspond to the three possible values of the combination
number Ly; = {0,1,2}. The selection of Ly, determines the
relative phasing of satellites between orbital planes, that is,
the phasing between the mean anomaly (dimension 2) with
respect to the right ascension of the ascending node (di-
mension 1).

Figs. 2-4 shows the three possible combinations of con-
stellations for these conditions. Particularly, Fig. 2 repre-
sents the case with L, =0, Fig. 3 the case L, =1, and
Fig. 4 the case L) = 2. These three figures contain both
the inertial distribution of the constellation for a given
instant and also the (Q, M)-space representation of the dis-
tribution. As it can be seen, all distributions are uniform
and congruent. This implies also, that each satellite from
the constellation observes exactly the same relative distri-
bution, that is, if we select any satellite of the constellation
as the reference satellite for the distribution, the (Q, M)-
space representation of the constellation is exactly the
same. Note also that these three configurations presented
are the only ones that fulfill all the considered conditions
of uniformity and congruence.

If instead, the necklace formulation is considered, L,
and L,, become the parameters that determine now the
number of available orbital planes and positions in each
orbit, while Ny and N, define the actual number of orbital
planes and positions in each orbit in use. Finally, L, and
S, are the parameters that control the relative phasing of
satellites between adjacent planes. In particular, applying
Theorem 5 to a two dimensional space modulo 27:
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Fig. 2. Constellation distribution, case L,; = 0.

Fig. 3. Constellation distribution, case L,; = 1.

Fig. 4. Constellation distribution, case L,; = 2.

LyV, =
LoV +LnV;

Gal(i);

mod[Guy () + S21Ga (i), L], (132)

which after some algebraic manipulation, leads to the fol-
lowing equation:

AQpp =27V =2n Go(") mod (27); (133)
11
AM,*I* = 27'L'V2
2 j*
== Gu(j) + 8uGa(i") — Ly Go(’) mod (27),

Ly 11

which is an equivalent expression to the one found in
Arnas et al. (2017a) for the case of 2D Necklace Flower
Constellations with necklaces both in the mean anomaly
(Gu) and in the right ascension of the ascending node (Gg).

Following the previous example, we are still looking for
constellations distributed in 3 different orbital planes
(N1 = 3) and 5 satellites per orbit (Ny = 5). However, this
time we are interested in expanding the number of possibil-
ities of design by allowing some non-uniformities in the
configuration while still maintaining the congruent prop-
erty. That way, we have to select the size of the fictitious
constellation, that is, the number of available positions in
which satellites can be located. These available positions
can be the result of the application of a set of mission
requirements, or a given slot strategy defined for the con-
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Sym(G;)

i—1
SijLjj = (Lij — 2g=it1 Siquj)

l

ijs Lij

Congruent Distribution

Y

— Vi

~

Fig. 5. Flowchart of the process for the generation of all configurations.

stellations. Suppose that we define a constellation with
double the number of available positions in each dimen-
sion. This leads to L;; = 6 and Ly = 10. Under these con-
ditions, using Theorem 10 we obtain that the number of
different combinations is 4824. If instead we are interested
in a particular combination of necklaces, for instance
Go ={1,3,5} and Gy, ={1,2,3,4,5}, then, we can use
Theorem 9 to obtain that the number of possible configu-
rations is reduced to L;; = 6. This situation can appear
when we are interested in a given revisiting time or a gen-
eral structure for the constellation. Finally, if we require
a precise phasing between orbital planes, for instance to
impose that all satellites share the same ground-track
(Arnas and Casanova, 2020), then we have to fix L,; and
thus, the Hermite Normal Form is completely defined.
Therefore, by using Theorem § we can obtain that the
number of possible configurations is
ged(Sym(Gar), Li1) = 2 if the value of Ly is either 0, 2 or
4. As it can be seen, the number of possible constellations
is significantly increased with respect to the lattice formula-
tion. Note also that we can increase as much as we want the
number of available positions, and therefore, the number
of different distribution possibilities that the formulation
provides.

7. Generation of all the configurations

This section contains a general overview of the process
required to generate all the possible configurations that
the n-Dimensional congruent lattices using necklaces is
able to provide. The flowchart provided in Fig. 5 summa-
rizes the process.

The first step in the generation process is to fix the num-
ber of different elements that will appear in each dimension
of the problem (N;). This will set the number of elements
that are distributed during the process (remember that
the total number of elements in the distribution is
[T,N:). Then, the number of available positions is each
dimension is defined (L;), which determines the size of
the searching space and also the number of different possi-
bilities that the methodology will generate. From both sets

of quantities (N, and L;) we generate all possible necklaces
(G;) for each dimension using a generation algorithm
(Cattell et al., 2000; Sawada, 2003). Then, Theorem 6 is
applied on each dimension, taking into account that the
system of equations provided by this theorem can be easily
solved sequentially. That way, all the compatible values of
shifting parameters S;; and configuration numbers L;; that
allow to generate all the congruent distributions are
obtained. Once this generation process is performed, we
only require to select one of the possible configurations
and compute the location in each dimension of every ele-
ment of the distribution (V) using Theorem 5.

8. Conclusions

This work introduces the n-dimensional congruent lat-
tices using necklaces, a complete generalization to n-
dimensions of the mathematical basis behind the 2D, 3D
and 4D Lattice and Necklace Flower Constellations,
Walker Constellations and Draim Constellations. It also
represents the mathematical foundation of that set of satel-
lite constellation design techniques.

In its general form, this methodology is able to generate
all the congruent and uniform distributions in a n-
dimensional space subjected to modular arithmetic. More-
over, this methodology allows to select the subset of ele-
ments that are able to maintain the properties of
uniformity, symmetry and congruence in the resultant con-
figuration. In addition, and for the cases where we do not
have a natural modular arithmetic in the problem, but
instead a given set of available positions, the methodology
is able to perform congruent distributions of elements over
these available positions using a complete integer
formulation.

This manuscript introduces three sets of theorems. The
first set provides the formulation to generate lattice and
necklace congruent distributions in the space considered.
The second set aims to determine the constraints that the
distribution parameters must follow in order to avoid
duplicates in the formulation. Finally, the third set consists
of several counting theorems that focus on the evaluation
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of the number of different possibilities of design that this
methodology is able to generate under the condition of
congruence. In that sense, the most common cases of study
are considered.

n-Dimensional congruent lattices using necklaces pro-
vides a deep mathematical foundation for the configura-
tions presented in the Lattice and Necklace Flower
Constellations theories, as well as in any other uniform
congruent distribution in a modular n-dimensional space.
Moreover, and compared with Lattice and Necklace
Flower Constellations formulations, n-dimensional con-
gruent lattices using necklaces allows to increase the free-
dom in design since it allows to change the order of the
distribution variables and also to define a wider variety
of configurations. In that respect, this work complements
the methodology presented for the Necklace Flower Con-
stellations, providing mathematical robustness to the
design methodology and a more compact formulation for
the Lattice and Necklace Flower Constellations.

Finally, note that the formulation and theorems pre-
sented in this manuscript have applications not only to
satellite constellation design, but also to the fields of Com-
binatorics and Number Theory. In that sense, the results
included in this work provide a complete set of tools and
theorems to deal with the generation and study of uniform
distributions and necklaces.
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