000101515 001__ 101515
000101515 005__ 20230926093531.0
000101515 0247_ $$2doi$$a10.1039/d0me00030b
000101515 0248_ $$2sideral$$a118316
000101515 037__ $$aART-2020-118316
000101515 041__ $$aeng
000101515 100__ $$aMabesoone, M.F.J.
000101515 245__ $$aCompetitive hydrogen bonding in supramolecular polymerizations of tribenzylbenzene-1, 3, 5-tricarboxamides
000101515 260__ $$c2020
000101515 5060_ $$aAccess copy available to the general public$$fUnrestricted
000101515 5203_ $$aDespite numerous reports on nucleated supramolecular polymerization, the molecular origin of the properties of these supramolecular polymers remains overlooked. Here, the formation of fibers formed by self-assembly of N, N '', N ''''-tris(alkoxybenzyl)benzene-1, 3, 5-tricarboxamides (benzyl-BTAs) has been studied using both simulations and experimental techniques. The simulations show that the fibers exhibit a dynamic behavior with stacking defects that appear and propagate differently depending on the BTA molecular structure. To validate theoretical results, a library of eight benzyl-BTAs has been synthesized to compare their supramolecular polymerizations both in the bulk and in apolar solvents. We show that the molecular organization of monomers and dynamics of supramolecular polymers strongly depend on the number and position of the alkoxy substituents on peripheral phenyl rings. By combining theoretical results with experimental measurements, we elucidate the likely role of competitive hydrogen bonding between the central amides and peripheral ether moieties on the stacking behavior of BTAs and the dynamics of structural defects in supramolecular polymers. Our findings open up new design rules for these dynamic materials.
000101515 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/RYC-2013-12570$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2015-66869-P
000101515 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000101515 590__ $$a4.935$$b2020
000101515 591__ $$aCHEMISTRY, PHYSICAL$$b57 / 162 = 0.352$$c2020$$dQ2$$eT2
000101515 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b52 / 106 = 0.491$$c2020$$dQ2$$eT2
000101515 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b106 / 333 = 0.318$$c2020$$dQ2$$eT1
000101515 592__ $$a1.355$$b2020
000101515 593__ $$aBiomedical Engineering$$c2020$$dQ1
000101515 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000101515 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000101515 593__ $$aProcess Chemistry and Technology$$c2020$$dQ1
000101515 593__ $$aIndustrial and Manufacturing Engineering$$c2020$$dQ1
000101515 593__ $$aMaterials Chemistry$$c2020$$dQ1
000101515 593__ $$aEnergy Engineering and Power Technology$$c2020$$dQ1
000101515 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000101515 700__ $$aKardas, S.
000101515 700__ $$0(orcid)0000-0002-5823-0314$$aSoria-Carrera, H.
000101515 700__ $$0(orcid)0000-0001-5816-7960$$aBarbera, J.$$uUniversidad de Zaragoza
000101515 700__ $$0(orcid)0000-0003-1081-8482$$aMartinez de la Fuente, J.
000101515 700__ $$aPalmans, A.R.A.
000101515 700__ $$aFossepre, M.
000101515 700__ $$aSurin, M.
000101515 700__ $$0(orcid)0000-0003-0702-8260$$aMartin-Rapun, R.$$uUniversidad de Zaragoza
000101515 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000101515 773__ $$g5, 4 (2020), 820-828$$tMOLECULAR SYSTEMS DESIGN & ENGINEERING$$x2058-9689
000101515 8564_ $$s1323315$$uhttps://zaguan.unizar.es/record/101515/files/texto_completo.pdf$$yPostprint
000101515 8564_ $$s1178221$$uhttps://zaguan.unizar.es/record/101515/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000101515 909CO $$ooai:zaguan.unizar.es:101515$$particulos$$pdriver
000101515 951__ $$a2023-09-26-09:29:59
000101515 980__ $$aARTICLE