000101516 001__ 101516
000101516 005__ 20211122141545.0
000101516 0247_ $$2doi$$a10.1016/j.seppur.2020.116995
000101516 0248_ $$2sideral$$a118111
000101516 037__ $$aART-2020-118111
000101516 041__ $$aeng
000101516 100__ $$0(orcid)0000-0003-2006-1495$$aPaseta, L.
000101516 245__ $$aFunctionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration
000101516 260__ $$c2020
000101516 5060_ $$aAccess copy available to the general public$$fUnrestricted
000101516 5203_ $$aThis work deals with the use of octadecylamine (ODA)-functionalized reduced graphene oxide (rGO) for thin film nanocomposite (TFN) membranes. The functionalization of rGO with ODA leads to graphene-based nanofillers, more hydrophobic than GO, and thus to the easier dispersion in the organic phase of the interfacial polymerization (IP) reaction carried out to produce polyamide (PA) TFN membranes. The performance of the new TFN membranes is evaluated by organic solvent nanofiltration (OSN) of alcoholic solutions containing dyes Acridine Orange (AO, MW 265 g·mol-1), Sunset Yellow (SY, MW 452 g·mol-1) and Rose Bengal (RB, MW 974 g·mol-1). The functionalized nature of the nanoparticles introduced into the hydrophilic PA layer allows an increase of the ethanol permeance from 2.8, 3.4 and 3.7 L·m-2·h-1·bar-1 for AO, SY and RB, respectively, corresponding to the bare thin film composite membrane (without rGO-ODA particles), to 4.3, 4.6 and 6.0 L·m-2·h-1·bar-1 for AO, SY and RB, respectively, for the rGO-ODA based TFN membrane. In fact, we hypothesize that the increase of the ethanol flux achieved with the use of rGO-ODA as a filler in TFN membranes is owing to a combination of the simultaneous presence of polar and non-polar groups from rGO-ODA nanosheets and the creation of still selective narrow gaps between these particles and the polyamide (PA).
000101516 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BES-2014-068287$$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/MAT2016-77290-R$$9info:eu-repo/grantAgreement/ES/DGA-FSE/T43-17R
000101516 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000101516 590__ $$a7.312$$b2020
000101516 591__ $$aENGINEERING, CHEMICAL$$b16 / 143 = 0.112$$c2020$$dQ1$$eT1
000101516 592__ $$a1.278$$b2020
000101516 593__ $$aFiltration and Separation$$c2020$$dQ1
000101516 593__ $$aAnalytical Chemistry$$c2020$$dQ1
000101516 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000101516 700__ $$0(orcid)0000-0001-5002-7197$$aLuque-Alled, J.M.
000101516 700__ $$0(orcid)0000-0001-9595-0831$$aMalankowska, M.$$uUniversidad de Zaragoza
000101516 700__ $$0(orcid)0000-0001-7702-9619$$aNavarro, M.
000101516 700__ $$0(orcid)0000-0002-6905-714X$$aGorgojo, P.
000101516 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, J.$$uUniversidad de Zaragoza
000101516 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez, C.$$uUniversidad de Zaragoza
000101516 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000101516 773__ $$g247 (2020), 116995 [9 pp]$$pSep. Purif. Technol.$$tSeparation and Purification Technology$$x1383-5866
000101516 8564_ $$s844493$$uhttps://zaguan.unizar.es/record/101516/files/texto_completo.pdf$$yPostprint
000101516 8564_ $$s802149$$uhttps://zaguan.unizar.es/record/101516/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000101516 909CO $$ooai:zaguan.unizar.es:101516$$particulos$$pdriver
000101516 951__ $$a2021-11-22-14:07:43
000101516 980__ $$aARTICLE