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Summary

Wepresent a real-timemethod for computing themechanical interaction between real
and virtual objects in an augmented reality environment. Using model order reduc-
tion methods we are able to estimate the physical behaviour of deformable objects
in real time, with the precision of a high-fidelity solver but working at the speed of
a video sequence. We merge tools of machine learning, computer vision and com-
puter graphics in a single application to describe the behavior of deformable virtual
objects allowing the user to interact with them in a natural way. Three examples are
provided to test the performance of the method.
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1 INTRODUCTION

New technologies are bringing better tools to improve the augmented andmixed reality experience. These tools are in the form of
both hardware and software. On the hardware side we have the development of new devices to show information to the user, such
as smartphones, or high resolution virtual reality glasses (e.g. StereoLabs ZEDMini on Oculus Rift, see https://www.stereolabs.
com/zed-mini/setup/rift/); we also notice great efforts on the development of devices to capture information around us such as
RGB-D systems (Microsoft Kinect for Windows, for instance, see https://developer.microsoft.com/en-us/windows/kinect), or
stereo cameras; and even systems that include both the capture and visualization of information, such as Microsoft Hololens
2 (https://www.microsoft.com/en-us/hololens) or Magic Leap One (see https://www.magicleap.com/magic-leap-one), which
allow the capture of the environment, the visualization of virtual objects and the interaction thanks to built-in controls.
From the software point of view, a great work has been done to generate new environments to reduce complexity in the

process of capturing the data, such as the new development kits Apple ARKit 3 (https://developer.apple.com/augmented-reality/)
or Google ARCore (https://developers.google.com/ar/); other software development kits are more focused and integrated into
helmets such as Hololens; there are also great advances in visualization libraries such as OpenGL (https://www.opengl.org/)
or other proprietary libraries like Nvidia CUDA (https://developer.nvidia.com/cuda-zone) or Apple Metal (https://developer.
apple.com/metal/); and also there has been a big development in new techniques to take robust measures from a scene, such as
ORB-SLAM1 or LSD-SLAM2, among others.
This paper leverages some of these technologies and develops real-time computational mechanics techniques so as to provide

mixed reality systems the ability to seamlessly integrate virtual and physical objects andmake them interact according to physical
laws. The interest of adding physical realism to the interaction between real and virtual elements in a scene is to increase
the degree of perceived realism for the user. In other words, the degree of presence in the mixed environment. The addition

†This project has been partially funded by the ESI Group through the ESI Chair at ENSAM ParisTech and through the project “Simulated Reality” at the University of
Zaragoza. The support of the Spanish Ministry of Economy and Competitiveness through grant number CICYT-DPI2017-85139-C2-1-R and by the Regional Government
of Aragon and the European Social Fund, are also gratefully acknowledged.
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2 A. Badías ET AL

of physical behavior to this interaction is something not yet explored, to our knowledge, in previous augmented/mixed reality
(AR/MR) applications. The degree of perceived realism is expected to increase substantially in this type of applications, and
this makes it worth exploring the ways to do it.
We believe that this fusion is novel in the field of mixed/augmented reality and has not been applied in current systems, where

augmented reality is understood as the positioning of static information in space3 or animated sequences4, but in very few cases
deformable solids are taken into account5. We are looking for a simple and natural interaction with virtual objects, which are
capable of deform as if they were really in front of the user. We believe that the union between machine learning, computer
graphics and computer vision provides very realistic results. The fusion between virtual and real objects with interaction between
them is known asMixed Reality (MR), since both realities (virtual and real) are mixed in a not easily separable way. We do not
understand the idea of MR without the union of the three scientific communities (Fig. 1), where each one provides the necessary
tools to obtain the desired result.

COMPUTER

VISION

COMPUTER

GRAPHICS

MACHINE

LEARNING

MR

FIGURE 1 Mixed Reality (MR) as the interaction of three sciences: machine learning, computer graphics and computer vision.

2 RELATED WORK

2.1 Contact on Deformable Solids
General contact between solids is a classic problem in the engineering mechanics of deformable solids6 7. There are many
published works that solve this problem from a numerical point of view by getting into the contour conditions applied in the
formulation of the problem. Two basic known implementations are the Lagrange multipliers8, and the penalty method 9 or the
augmented Lagrangian method10, together with multiple variants to adapt the formulation to each type of problem (such as, for
example, the contact dynamics problem11). However, all this complexity cannot be dealt with in real time by a standard finite
element solver. Given the inherent high non-linearity of the problem, we must iterate between linearized approximations until a
solution that complies with the physics is found, precluding penetrations from one object to another. To obtain real-time feedback
at video rates (some 30-60 Hz, 1kHz if we want to add haptic response12) we therefore need to use Model Order Reduction
(MOR) methods to reduce the problem complexity, that consists in estimating the deformations due to contact, through a series
of snapshots or previous observations of these deformations during an off-line or learning phase. In addition, since we want
the contact to take place between the virtual object and any physical object for which no previous information is available, we
cannot apply classical methods. We therefore apply the idea of collision (well known in computer graphics13) instead of the
standard contact between two objects from classical mechanics, see Fig. 2. This idea of collision applied to deformable objects
allows us to estimate how the virtual object is deformed when interacting with any object through the application of a system
of loads located at a point, without being necessary to mesh and analyze that second object for the contact.
There are some works that estimate the collision of objects in real time, such as14,15. But, according to our knowledge, there

is no work that allows the interaction in real time of deformable virtual objects where the real physics are solved and giving
correct values of the tensional state of the object in each instant.
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FIGURE 2 Collision problem showing the load application. a) Standard contact problem, where the boundary forces applied
(red arrow) depend, among other factors, on the rigidity of both solids. b) Collision problem implemented in our method with
incremental loads applied to the contour, as the rigidity of the second object is not known. c) Example of load application to the
Stanford bunny in Section 5.2, showing the nodes where the load is applied to obtain smooth and more realistic deformations.

2.2 Learning the behavior of deformable objects
Estimating the physical response of objects, subjected to severe real-time restrictions, under a priori not known situations is one
of the most complex tasks. There are multiple ways to face this problem—based on neural networks, for instance16—, but we
have chosen the use of model order reduction (MOR) methods to allow these real time rates, while certifying that the solution
fulfills the physics defined by the mechanics of deformable solids. In a nutshell, what we do is to determine, off-line, the response
surface of these objects under variable conditions—loads, imposed displacements, for instance—, considered as parameters.
MOR methods can be based on data (non-intrusive or a posteriori), or on the differential equation governing the problem

(model-based or a priori, these can be intrusive or not). In this work we employ both a priori and a posteriori methods to
demonstrate that the results are independent of the method employed. In certain cases the use of one or the other may be more
convenient, as intrusive methods require access to the solver while non-intrusive methods only need data arising from a black-
box solver. But in general, the use of MOR methods requires a previous work to precompute and store the data in a compressed
way, at the same time a correct evaluation of the solution is allowed in real time. The type of MOR methods that we use are
approximations based on the projection of the solution on a space of smaller dimensionality. The goal is to estimate the reduced-
order manifold  ∈ ℝn where our problem really lives, hopefully being n much smaller than the dimension N of the original
high-fidelity manifold  ∈ ℝN . The basic methods are based on linear projections17, although non-linear embeddings can be
applied if required by the complexity of the response manifold18,19,20. There are also other types of methods coming from data
science—globally coined as manifold learning—that can be applied to the mechanics of deformable solids, such as the kernel-
Principal Component Analysis21 or Locally Linear Embedding22, capable of obtaining non-linear embeddings to the data. There
are, of course, some examples of MOR methods applied to contact problems23,24.
All the examples shown above can be grouped as classical methods, as opposed to more recent techniques where artificial

intelligence is used by means of neural networks. There are a lot of examples where neural networks achieve surprising results,
such as in classification25 or location26 of objects in images, natural language processing27 or even the artificial composition
of music28. These complex tasks are not easily expressed with an equation, and that is why neural networks have conquered
these fields. However, it seems that in computational mechanics neural networks are taking longer to be introduced, since in
general there are good models that express well the mechanical behavior. But with the advance of technology and the most
recent research to generate new branches in deep learning, some results are being applied to computational mechanics, which
means computers learn the mechanical behavior29 with some restrictions (trying to meet the equilibrium equations)30,31.
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4 A. Badías ET AL

2.3 User Interaction
Regarding the user interaction experience, there are many published works. Some papers are focused in hand detection using
appearance detectors over monocular cameras32. Other works use stereo cameras or RGB-D systems33 for hand localization
and gesture classification. There was also a breakthrough in the creation of devices for tracing hand movements, such as the
Leap Motion sensor34 or the Kinect system35. In recent years, some headsets such asMicrosoft Hololens also developed a good
tracking of manual gestures36. There are also haptic devices such as robotic arms37 and even gloves that allow the user to feel a
touch experience38. However, our work aims to go further, and not only perform the interaction between virtual objects and the
hands of the user, but allow an interaction with any real object. There are some implementations39 that also pretend to simulate
the collision that occurs between any type of object, but we remember that in this work we also solve the real physics of virtual
deformable objects.

2.4 Overview
This work aims to resolve in real time the contact between a virtual object and any real object. To do this, we must first anchor the
deformable virtual object to a surface in our real world. To that end we use methods of Simultaneous Localization and Mapping
(SLAM), that allow us to locate the camera at any time while scanning the environment and creating a 3Dmap of it. For this task,
we used a Zed Mini stereo camera from Stereo Labs (https://www.stereolabs.com/zed-mini/), that directly brings the estimation
of the depth in each frame, at the same time it merges the data with the temporal information of the camera movement to build
the global map. Once the environment surrounding the user has been scanned, we anchor the virtual object to a real surface in
the scene. Since the stereo recovers the correct scale, the size of the virtual object is consequent with the scale environment.
Now it is possible to interact with the virtual object in order to deform it by contact with any real object.
To detect virtual-physical collisions, we employ a variant of the voxmap pointshell algorithm40. Basically, the boundary of the

virtual object is discretized, for collision detection purposes, as a collection of boundary points. These could be finite element
nodes on the boundary, a subset of them, or simply different points. In turn, the physical object is equipped with a distance
field (level set), computed directly by the stereo camera. Once one of the boundary points crosses the zero-level surface of the
physical solid, contact takes place. Figure 3 shows a summary of the process.
The outline of the paper is as follows. In Section 3 we present the formulation of the problem. In Section 4 we introduce the

strategy for real-time simulation, formulated as a data assimilation problem that takes measurements from the video stream. In
Section 5 we show three different examples of the performance of the proposed strategy, showing its potentialities. Finally, in
Section 6 we discuss the results.

3 PROBLEM FORMULATION

The problem as a whole can be divided into three main tasks: the off-line phase in which a reduced-order parametric model is
constructed, scanning the scene and contact detection in real time.

3.1 Physical description of virtual solids
In this work we focus on deformable solids, but our method can be applied to any other physical problem, such as fluid mechanics
with the estimation of aerodynamics in a car41 or even electromagnetic problems42.
In general, and without loss of generality, we consider the virtual solids to be hyperelastic. More simplified assumptions, such

as linear elasticity, are well-known to produce unrealistic results in this context. The equilibrium equation thus reads

( ⋅ P + B = 0 in Ω0 (1)

where P is the first Piola-Kirchhoff stress tensor, B collects the set of volumetric forces and Ω0 represents the volume of the
solid in the undeformed, reference configuration. The above equation is subject to boundary conditions

u(X) = ū on Γu,
P ⋅N = t̄ on Γt.

where u(X) is the displacement field, ū the imposed displacements, Γu the portion of the boundary where essential conditions
are imposed,N the normal vector and t̄ the traction forces imposed in Γt, the portion of the boundary where natural conditions
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FIGURE 3 Summary of the whole process, starting from the application of reduced models to the precomputed solution
(Machine Learning), through the scanning process (SLAM) and finally the visualization and interaction with the object in real
time.

are imposed. The behavior of hyperelastic materials is defined by the strain-energy function (Helmholtz free-energy potential)43
Ψ, which is related to the second Piola-Kirchhoff stress tensor by

S = )Ψ
)E

, (2)

E being the Green-Lagrange strain tensor. Equations (1) and (2) are related by P = FS where F is the deformation gradient
tensor. Finally, the weak form of the problem can be obtained by multiplying Eq. (1) by a test function u∗ (Galerkin standard
projection) and integrating over Ω0,

∫
Ω0

(

∇ ⋅ FS + B
)

⋅ u∗dΩ. (3)

The above equation will ultimately depend on the constitutive law chosen to describe the behavior of the material (through
S). In this work we show examples applying Saint Venant-Kirchhoff behavior and neo-Hookean behavior (see Section 5 for
more information).
The resolution of the weak form also depends on the model order reduction method used, since some methods are intrusive

and require somemodifications in the original equation. Therefore, the following section shows the application ofMORmethods
in both the intrusive and non-intrusive approaches.

3.2 Model Order Reduction
The above formulation, Eqs. (1)-(3) imposes very stringent restrictions due to its inherent complexity. This prevents standard
finite element methods to run at video rates (30-60 Hz). Thus, some form of model order reduction is mandatory to achieve
such feedback rates. In order to create a general methodology, we have applied both a priori (equation-based) and a posteriori
(data-based) MOR methods. In both we have used the Proper Generalized Decomposition (PGD) methodology, in its intrusive
version44 and in its non-intrusive version (either Data Compression PGD45 or sparse PDG46). An alternative non-intrusive
implementation of PGD also exists, where a commercial solver is used to perform the computation tasks by means of continuous
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6 A. Badías ET AL

calls to the solver that computes the problem equation and feedbacks the PGD algorithm47. In our work, we apply a different
approach, where we only use the non-intrusive PGD algorithm to project the high-dimensional data coming from an external
solver.
The intrusive version of the PGD method requires accessing and modifying the tangent stiffness operator of our differen-

tial equation, which in the case of deformable solids refers to Eq. (3). In any case, intrusive or not, the PGD is based on the
approximate expression of the solution u(X) as a finite sum of separate functions—also termed affine decomposition,

u(X,�) ≈ uROM(X,�) =
nmod
∑

i=1
F i(X)◦G1

i (�1)◦G
2
i (�2)◦… ◦Gp

i (�p),

where nmod is the number of summands or modes needed to approximate the real solution, which is a finite number, hopefully
small. “◦” stands for the Hadamard, or component-wise product of vectors. Terms F i,G

j
i , i = 1,… , nmod, j = 1,… , p, are the

functions expressed in separate variables depending on parameters �, being p the number of those parameters.
This affine representation of the solution allows us to avoid the curse of dimensionality48, by reducing the initial solution,

defined in a space of a high number of dimensions (three spatial dimensions plus p parameters) to a sequence of one three-
dimensional problems plus p one-dimensional problems, whose computation time is negligible.
However, it is also relevant to mention that the larger p is, the more complicated the convergence of the method is, in general.

Convergence depends on the operator of the differential equation to be solved and the appropriateness to linearly project the
solution. Some works try to improve convergence rates working with local subdomains (nonlinear in global domain)20, and
other works adapted nonlinear operators to the PGD algorithm by cross approximations49 or asymptotic expansions50.
On the other hand, the non-intrusive version of the PGD method (NI-PGD) requires only knowing the data, regardless of

where the information comes from. It is about applying a projection in the style of high order algebraic decompositions such as
High-Order Singular Value Decomposition51 based on tensorial decompositions such as Tucker352,53 or PARAFAC54, which
are also not necessarily optimal in high dimensions.
Like methods based on algebraic decompositions, NI-PGD is also a non-optimal method in high dimensions, but the greedy

algorithm of PGD is very simple to implement and obtains the modes very quickly, which in the end translates into a very simple
tool to implement the projection in separate variables.
This non-intrusive method makes sense when we do not know the differential equation from which the data come, or even for

complex solutions where the intrusive aspect of PGD requires a significant effort. As it happens in two of our examples in this
article, for complex 3D geometries with non-linear behavior the standard PGD method needs for a dedicated code that can be
overcome by using any of the before mentioned non-intrusive PGD approaches.

3.3 Stereo Visual Simultaneous Localization and Mapping
Although there are very precise monocular systems, we decided to use a stereo system to reduce the complexity of the spatial
scanning process.
A standard monocular camera (like the one we can have in our smartphone) requires, in general1, the application of the

triangulation process to estimate the 3D position of points in space. The transformation applied by the pinhole camera model55
(basic model for the camera obscura), the pillar on which conventional computer vision is based, can be modeled as a mapping
Π∶ ℝ3 → ℝ2, whereℝ3 is the 3D euclidean space of the real 3D world (object space) andℝ2 represents the 2D image. However,
due to the type of projective geometry of the process, the inverse functionΠ−1 ∶ ℝ2 → ℝ3 that relates the objects in the image to
the objects in the real scene is not so easy to obtain. More than one 2D image taken from different positions of the same objects
are required (and with certain restrictions2) in order to accurately estimate the 3D position of objects in space using triangulation
techniques, also known as Structure from Motion58 (Fig. 4.b).
Figure 4.a shows the scheme of a pinhole camera, whereC is the camera centre, p is the principal point, f is the focal distance

and the image plane represents the plane where the image is formed.M1 is any point in the space that is projected onto m1 on
the image plane, with coordinates m1 = (m1x , m1y) with respect to the origin p.

13D reconstructions are also possible from one image if some information about the scene is known (Single view reconstruction 55), and even some systems based on
artificial intelligence are able to estimate the depth of the scene from a single 2D image 56,57, but we do not use this type of systems in our work since in this case we bet
more on a system based on measurements instead of learning to estimate the 3D position of objects in space.

2Some problems may appear with the known degenerated configurations 55.
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FIGURE 4 Projective geometry in a pinhole camera. a) Simple scheme showing the projection of a point in the image plane. b)
Standard triangulation method where the 3D space coordinates of a point observed from two camera positions can be estimated.

The projection of a point from the real 3D space to the image is carried out by the mapping that we have defined asm = Π(M),
and can be written in matrix form as P = K[R|t], whereK corresponds to the camera intrinsic matrix and [R|t] represents the
camera extrinsic matrix. In its expanded view, the projection can be expressed as
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⎥

⎦
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The camera extrinsic matrix transforms the original 3D scene points to the camera reference. It can be decomposed in an
SO(3) rotation matrix (R) and translation vector (t), and it is used to reference the points observed in the image with respect to
a global coordinate system for all frames. The camera intrinsic matrix K applies the projection from 3D camera points into 2D
pixel coordinates, and it stores the projection centre (cx,cy), the pixel size (dx,dy) and the focal distance (f ). The third component
of m1 (m1s) refers to the scaling factor according to the homogeneous coordinate system.
In short, to estimate the position in space of a pointM we apply the triangulation process, which is usually done byminimizing

the reprojection error d(m, m̂) on the 2D image, having a set of corresponding points in (at least) two images (although, of
course, other techniques exist59). Point m̂ refers to the projected 3D pointM in the image.
Since a stereo vision system—see Fig. 5—consists of twomonocular cameras rigidly joined together, the triangulation process

can be carried out on each frame (which are actually two images taken at the same time). In addition, the fact that both cameras are
rigidly fixed implies that a series of assumptions can be applied to simplify the process, which can be summarized step-by-step
below60:

• Image undistortion: lenses used in conventional cameras apply radial and/or tangential distortions that must be corrected
in order to obtain the real image.

• Image rectification: adjustment of the two images captured with the stereo camera to produce alignment and rectification.

• Correspondences: relate the points observed in the left image with their counterparts in the right image, producing the
disparity map.

• Reprojection: obtaining the depth of each point from the disparity map.

As the images from both cameras have been previously undistorted and rectified, the triangulation process is simplified with
the known baseline separation between cameras, where the cameras are assumed perfectly coplanar (Fig. 5).
Assuming that a point P of the scene is captured by both cameras in pleft and pright, respectively, and that the calibration and

rectification processes have been successful, for a frontal parallel camera both points appear on the same vertical coordinate,
being ypleft = ypright (row aligned). The difference between the horizontal coordinates defines the disparity d = xpleft − xpright ,
which can be related to depth by the equation

Z =
f T

xpleft − xpright
,
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FIGURE 5 Stereo camera system, where the triangulation process is simplified assuming coplanarity. fleft is the left focal
distance, cxleft , cyleft are the points where the left principal ray is intersecting the left image plane, Oleft is the origin of the left
principal ray, T is the displacement between left and right camera centers and d is the disparity (difference) of the horizontal
coordinates of the left and right projections of point P .

where f is the focal length (assuming same value for both cameras) and T is the displacement between camera centers of
projection.
Once the geometric problem has been defined, only the points observed in left and right images should be matched to estimate

the depth of the scene. This can be done by searching for relevant points extracting features61 or in a dense way by comparing
left and right image by applying energy based techniques62. The second technique is the most desirable since it produces a
dense map of the scene, estimating depth values for each pixel. As can be expected, this process is computationally expensive,
so modern computers equipped with GPUs are used to perform this massive computation. It is usual to obtain frequencies of 30
frames-per-second (fps) for 1080p video resolution or 60 fps for 720 p.3.
In addition to the online stereo depth perception, a virtual reality system must be self-localized at any time, so it is necessary

to merge the depth captured in each frame for all time instants (SLAM). It builds a 3D map of the static objects that surround
the camera at the same time the camera trajectory is estimated (Fig. 6).

3.4 Collision Estimation
As mentioned before, we employ a pointshell-type algorithm, see Fig. 7. Basically, the virtual solid is equipped with a collection
of points placed on its boundary. In turn, the physical object is equipped with a level set (distance field), provided by the stereo
camera, see Fig. 8.
In the development of the collision algorithm care must be taken with the limitations imposed by the hardware. In this case,

the Zed mini stereo camera is designed to operate in the range of 0.2 to 15 m. Stereo vision algorithms employ triangulations to
estimate depth from the disparity of both recorded images. The depth resolution accuracy decreases with distance in a quadratic
fashion, with an accuracy of 1% in the near distance to 9% in the far field range.
The particular examples developed herein make intensive use of interactions in the near field range—say, 0.1 to 0.5 m—,

precisely where the error is minimal. This affects critically the discretization of the contact regions, that will be chosen among

3See https://www.stereolabs.com/zed-mini/
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FIGURE 6 Trajectory of a stereo system, where the path travelled over time is shown by the blue line. The stereo camera
estimates the depth in each frame, so it is necessary to merge the information of all frames to create a complete map of the
scene. Optionally, it is possible to apply a mesh algorithm to estimate the surface of the objects and get more information about
the scene63.

the most salient features of the surface of the object. It is simply a waste of computer power to perform a very fine discretization
of the contact regions, since the error is limited by the mentioned 1% value given by the camera, much more than usual values
for high-fidelity simulations in applied sciences and industry. It is expected, nevertheless, that these values will dramatically
decrease in the years to come.
At every frame cycle, contact penalty forces are determined by querying the points of the virtual solidΩ2 against the distance

field associated to Ω1. This is possible thanks to the fast rates of the stereo camera where the graphic acceleration ensures real
time frequencies to estimate in any frame the depth of each pixel. Therefore, the camera is capable to estimate also the position
of dynamic objects, while they are excluded from the SLAM algorithm. It means a natural and robust feeling in the interaction,
where static objects are used to locate the camera in space while real dynamic objects are used in the collision estimation.
The computation of 3D distances between virtual and real objects for collision detection is sketched in Algorithm 1.

Algorithm 1 Pseudo-code of the collision-deformation algorithm.
matricesMemoryAllocation(3DCoordinatesVirtualObject, 3DCoordinatesStereo);
while (True) do

3DCoordinatesStereo = decimate3DStereoData(Raw3DCoordinatesStereo,Nstep);
(dmin, nodeVirtualObject) = parallelizedDistance(3DCoordinatesVirtualObject, 3DCoordinatesStereo);
if (dmin < �Incr) and (deformationPseudoTime < maxDeformationPseudoTime) then

deformationPseudoTime++;
update3DNodePositions(nodeVirtualObject, deformationPseudoTime);

else if (�Incr < dmin < �Decr) and (deformationPseudoTime > minDeformationPseudoTime) then
deformationPseudoTime–;
update3DNodePositions(nodeVirtualObject, deformationPseudoTime);

end if
end while

A decimation was applied on the depth image to reduce the computational complexity of estimating distances with the virtual
object. Objects of 1 pixel size or less will not appear, in general, inside the normal distance range from the camera, so we consider
this simplification has no drawbacks. In addition, there is an intrinsic error associated with estimating depth from disparity map,
which means that the tolerance of the 3D reconstruction error may involve noise in the estimation of the correct depth for 1 pixel
objects. The decimation is only applied to the distance estimation algorithm, so that the visualization process is carried out in
high resolution.
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10 A. Badías ET AL

FIGURE 7 Sketch of the pointshell method for collision detection. The virtual object (in blue) is equipped with a collection
of boundary points. Their collision with the zero-distance isosurface of the physical object (in red) is checked at each time step
(frame of the video sequence).

As can be seen in Algorithm 1, contact with the virtual object is only allowed at one point of the contour per instant, since
deformation does not comply with the principle of superposition when the material does not follow a linear behavior. In the case
that more than one contact point at a time is desired, new simulations need to be precomputed including these new loading states.
Thus, the manifold obtained after applying the MOR method to project the solution would store all that new information.

3.5 Visualization
To visualize all the content in a smooth way we used OpenGL, that allows to render primitives in an efficient way getting real-
time rates (the maximum frequency of visualization is imposed by the capture frequency of the stereo camera). Thanks to the
simplicity and optimization of OpenGLwe added lighting effects that translate into amore natural visualization of virtual objects,
fitting better into the real scene. It is not our goal to create a hyper-realistic rendering, so we have employed basic visualization
techniques.
Occlusions are a characteristic that gives a natural behavior to the augmented reality interaction. However, its computation is

one of the most complex tasks, since it is not easy to perfectly estimate the depth of all objects to draw in front those that are
closest to the camera. This procedure is known as Z-culling, a term used in the computer graphics community for this process64.
Since the stereo camera estimates the depth of all the pixels in the image, we have implemented a small algorithm capable of
applying occlusions to the video sequence in real time. For this task we use shaders (written in OpenGL Shading Language or
GLSL, see https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)), which are small programs that run directly on the
GPU and are able to perform simple tasks in parallel and very efficiently. Occlusions are estimated between real and virtual
objects for each pixel of the image as a function of the distance to the camera, see Fig. 9. It is important to notice that we are
not using object recognition techniques, but only the depth information from the stereo camera.
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FIGURE 8 An example of the distance field computed by the stereo camera. Top: original image. Bottom: the computed field
as a contour map. It indicates the distance to the camera. Blue objects are closer to the lens, while red objects are farther.

4 DATA ASSIMILATION PROCESS

The fusion of all ingredients described in previous sections builds the whole method. It is the interaction between all of them
where the advantage lies, and we understand this process as a particular instance of data assimilation: collecting data that comes
from the images so as to determine the particular values of parameters in our physical model and to finally visualize the updated
result of these models.
Data come directly from the camera where, thanks to the contact algorithm, the contact (loading) point xcontact and the dis-

placement u(xcontact) are estimated. Displacements are related to the module of the applied load, so with it is straightforward
to reconstruct the particular solution for that set of parameters �contact = (xcontact, u(xcontact)). This reconstruction is actually a
mapping from the reduced, low-dimensional space to the original space where the high-fidelity solution lies. The displacements
and the stress field can then be plotted on the object at video frequency (30 frames per second).
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a) b) c)

FIGURE 9 Occlusions implementation to visualize in a natural way the objects that are closer to the camera. Frames extracted
from one of our videos (https://www.youtube.com/watch?v=jtMe47mg82k), working in real time and with no postproduction
modifications. a) Hand of the user (real object) closer to the camera than the virtual object. b) Virtual object closer to the camera
than the hand of the user (real object). c) Interaction between both objects, virtual and real, with the occlusion system working
properly.

4.1 Implementation details
We used a stereo camera from StereoLabs, model ZED Mini. To carry out all computational tasks we use a workstation with an
Intel Core i7-8700K CPU, where the graphics part was the most critical since the stereo camera needs graphic acceleration, for
which we used a Nvidia GeForce RTX 2070. We used and integrated the SDK of the stereo camera with our own code, where
the functions to obtain the depth of the camera and the SLAM fusion have been provided by the manufacturer.

5 EXPERIMENTAL RESULTS

In this section we show three different examples to show the potentialities of our method. The first example shows the contact
between two virtual objects and any real object. Subsequent examples consider only one virtual object, but interaction is allowed
with any object of the physical environment.

5.1 Cantilever Beams
The first example consists of two cantilever beams placed perpendicularly, where free ends of both beams overlap, being that
part where contact occurs (see Fig. 10).
Both beams are made of a hyperelastic material (Saint Venant-Kirchhoff), where the energy density function can be expressed

as
Ψ(E) = 1

2
�[tr(E)]2 + �E ∶ E.

We applied the PGD method in its classical, intrusive standard version with one parameter s that serves to parameterize the
position of load t. For more details of this implementation, the reader is referred to previous works of the authors, see, for
instance,65. The code for this problem is available at66. The solution in separate variables takes the form

u(X, s) ≈
nmod
∑

i=1
F i(X)Gi(s), (4)

whereX = (X, Y ,Z) are the reference coordinates of each beam node, s = (sX , sY ) are the application positions of the load on
the top face of the blue beam (see Fig. 10) and nmod is the number of modes needed to approximate the solution. To obtain the
solution evaluated for a specific position of the load in the original high-dimensional space it is necessary to particularize the
solution at a value of s, which is computed by simple multiplications.
The weak form of the equation to solve, therefore, is expressed as

∫
Γ̄

∫
Ω

(su∗ ∶ � dΩdΓ̄ = ∫
Γ̄

∫
Γ

u∗ t dΓdΓ̄, (5)
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FIGURE 10 Beams location in space. Load is applied in the upper face of the blue beam and when it deforms enough, contact
between both beams arises.

where Ω represents the volumetric solid, Γ̄ is the boundary region discretized by s where the load can be applied, u∗ is the test
function, (s the symmetric gradient operator, “∶” the double contraction operator, � the stress tensor and t the load applied at
the boundary. The load function can be separated as

t ≈
M
∑

j=1
f j(X)gj(s). (6)

By substituting Eqs. (4) and (6) into (5), it is possible to solve the parametric problem by projecting the solution into separate
spaces (intrusively). For more information about the PGD application to the nonlinear equation of Saint Venant-Kirchhoff, reader
can consult67, and for more information about the original PGD method (intrusive) applied to differential equations, see44.
The mesh used has a total of 3381 nodes with 6758 elements in space, while the number of nodes for the s parameter are

1749 (possible load positions). More information about the implementation can be found in12. The result of some of the spatial
modes as well as those for the s parameter can be seen in Fig. 11. In the case of modes related to the parameter s, we plot only
the upper surface, since the load can only be applied within that domain.
The parametric solution obtained for the contact in one beam is actually applied on both beams, since the problem to be solved

is the same, although the origin of the load is different. For the upper beam, contact is made with any real object captured by the
stereo camera. For the lower beam, contact is produced by the deformed upper beam (which in turn has been deformed with the
contact of the real object) and therefore the load is assumed to be always vertical. Therefore, we have solved the problem only
once, although the solution is evaluated online in two beams.
The resulting sequence can be seen at https://youtu.be/PaK7STfWGfs. Some frames are shown in Fig. 12.

5.2 Stanford Bunny
The second example uses the Stanford bunny68 as virtual object to deform. The material law applied is homogeneous and
isotropic throughout the solid, with a Neo-Hookean compressible hyperelastic model. The energy density function can be
expressed as

Ψ = C1(Ī1 − 3 − 2lnJ ) +D1(lnJ )2, (7)
being C1 and D1 material constants, J = det(F ), with F the deformation gradient and Ī1 the first deviatoric strain invariant
defined as

Ī1 = �̄21 + �̄
2
2 + �̄

2
3, (8)

where �̄i = J−1∕3�i. In this problem, we used the Non-Intrusive PGDmethod bymaking external calls to the well-knownAbaqus
software (3DS, Dassault Systèmes, France) so as to obtain modes F i(X)andGi(s), where F i stores the spatial information, and
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FIGURE 11 Modes of the cantilever beam example. The three first columns represent the three first components, respectively,
of the modes F i(X), for i = 1, 2, 3 and 6. The fourth column represents the modes Gi(s).

modes Gi depend on s, that defines the position and module of the load. To simplify the problem, all loads are applied in the
direction of the center of mass of the object. The discretization of the geometry is composed by amesh of 16519 nodes and 87916
elements, where we defined 34 possible contact points where the force is gradually applied during 26 pseudo-time increments.
However, to reduce the cost of visualization we only show boundary nodes (although calculations have been made with all the
nodes), being reduced to 3733 nodes and 7462 elements. The result of the modes in space and stress can be seen in Fig. 13.
Each sampling point s of the Stanford bunny problem takes in Abaqus more than 34 minutes running on a PC equipped with

Intel i5 chipset at 2.9 GHz. As can readily be noticed, direct computation is far from being a solution for real-time frequencies.
And most likely will continue to be so in the near future.
Figure 14 plots the L2-norm error made by the approximation in the projection.
Finally, Fig. 16 shows four frames extracted from a video sequence (https://www.youtube.com/watch?v=lmApbJA6gH4)

recorded in a desktop. They show a person interacting with the virtual object touching it in different points, using his own hands
but any other object could be used.
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FIGURE 12 Two frames of the contacting beams sequence.

Mode 1 Mode 2 Mode 4 Mode 7 Mode 12 Mode 72

Mode 1 Mode 2 Mode 4 Mode 7 Mode 12 Mode 72

Spatial Modes

Stress Modes
FIGURE 13 Spatial modes for the Stanford bunny problem.
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FIGURE 14 L2-norm error due to the projection process for the Stanford bunny.

FIGURE 15 Contact points for the Stanford bunny and dragon. The applied loads simulating contact are centered on the orange
dots and have an application range of 2 neighbors (graph distance), marked in the figure with yellow and violet colors).

5.3 Stanford Dragon
The third and last example uses the Stanford dragon68 as a deformable virtual object. The material law is the same as for the
Stanford bunny. The number of possible contact points in this case is 32 (Fig. 15, right) with 16 pseudo-time increments to apply
the loads progressively. Since the geometry of the dragon is more intricate than the bunny one, the directions of application of
the loads follow the normal directions to the planes that form each set of load application points. The dragon mesh is discretized
in 22982 nodes and 46540 elements.
As in the bunny example, we plot the error reconstruction due to projection in Fig. 18. Figure 19 shows four frames

extracted from the same video sequence than the bunny. Here the user is touching two points of the dragon contour producing
displacements and showing in color the stress map that the contact generates.
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FIGURE 16 Some frames extracted from the bunny sequence. Colors show the stress map associated with the deformations
imposed by contact with real objects.

6 CONCLUSIONS

In this work we present a method for the real-time interaction of virtual and physical objects in mixed reality applications. Three
examples are analyzed that showed real time performance in our experiments. Although the examples may seem related to the
entertainment industry we would like to note the relevance that this type of work could have in other areas such as surgery or
industry. The visualization of relevant data in real time has an enormous importance in decision making, and by relevant data we
mean visual information that our eyes cannot perceive directly. In the mechanical case we are talking about stress distribution
in a solid, but we could talk about any other physical phenomenon that provides information with physical sense and a simple
and natural user interaction.
We believe that the introduction of model order reductionmethods has much to say in this field.We have used several methods,

but of course there are many other MOR methods, each with its own advantages, which can be applied in the visualization of
data in real time. Physical engines (such as those used in video games) serve to greatly simplify physical equations working at
video frequencies, but the results are far from what we really want to solve: high-fidelity models.

Mode 1 Mode 2 Mode 4 Mode 7 Mode 12 Mode 72

Mode 1 Mode 2 Mode 4 Mode 7 Mode 12 Mode 72

Spatial Modes

Stress Modes
FIGURE 17 Spatial modes for the Stanford dragon problem.
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FIGURE 18 Reconstruction errors due to the projection process for the Stanford dragon. The left graph shows the L2-norm
error, the center one shows the median error along the different load positions, and the right one shows the maximum error for
any loading point and any pseudo-time increment.

FIGURE 19 Some frames extracted from the dragon sequence. Colors show the stress map associated with the deformations
imposed by contact with real objects.

Visualization tasks and measurements with the camera are possible here thanks to the graphic acceleration. In our case we
used a workstation, but nowadays it is also possible to use mobile devices with graphical acceleration, although of course the
resolution is drastically reduced to maintain video frequencies around 30 frames per second. The problem of occlusions has
been treated in this work by brute force, analyzing the depth of each pixel by graphical acceleration and GLSL shaders, but
it is still an open problem, where some works use dense segmentations of objects in images, see https://developer.apple.com/
augmented-reality/arkit/. Using a stereo camera, some small errors may appear in the measurement of the depth, which are
usually due to areas not visible from both cameras at the same time, or surfaces that are oriented in the direction of the camera
projecting rays. However, there are some works to correct these effects in geometry and texture by applying neural networks69.
Sometimes, spurious effects are perceived due to the difficult identification of depth in a flat image, when the video stream
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is being observed from the computer screen, for instance. Implementations on stereo glasses such as Hololens or similar are
expected to very much improve this sensation of realism.
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